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Robust optical delay lines with topological
protection
Mohammad Hafezi1*, Eugene A. Demler2, Mikhail D. Lukin2 and Jacob M. Taylor1

Phenomena associated with the topological properties of physical systems can be naturally robust against perturbations. This
robustness is exemplified by quantized conductance and edge state transport in the quantum Hall and quantum spin Hall
effects. Here we show how exploiting topological properties of optical systems can be used to improve photonic devices. We
demonstrate how quantum spin Hall Hamiltonians can be created with linear optical elements using a network of coupled
resonator optical waveguides (CROW) in two dimensions. We find that key features of quantum Hall systems, including the
characteristic Hofstadter butterfly and robust edge state transport, can be obtained in such systems. As a specific application,
we show that topological protection can be used to improve the performance of optical delay lines and to overcome some
limitations related to disorder in photonic technologies.

Particles in two-dimensional structures with a magnetic
field exhibit a remarkable variety of macroscopic quantum
phenomena, including integer1 and fractional2 quantum Hall

and quantum spin Hall effects3, and predicted regimes of fractional
or non-Abelian statistics4,5. A hallmark of these systems is the
presence of edge states, with transport properties that are robust
against disorder and scattering, leading to a quantized conductance
sufficient to provide a resistance standard6,7. The natural robustness
of topological states is actively explored in quantum computation
to achieve fault-tolerant operations8,9. Recently, approaches to
observing similar quantum Hall behaviour in bosonic systems,
including ultra-cold gases (for a review see ref. 10) and photons11–16,
have been suggested. In particular, simulation of the Hofstadter
butterfly spectrum using the one-dimensional Harper equation17,18

was suggested in ref. 19.
Our method for realization of topological protected photonic

devices focuses on two-dimensional arrays of coupled resonator op-
tical waveguides (CROW) with appropriate linear optical devices.
We can simulate a 2D magnetic tight-binding Hamiltonian with
degenerate clockwise and counter-clockwise modes. This approach
does not require explicit time-reversal symmetry breaking11–15, but
the degenerate modes—time-reversed pairs—behave analogously
to spins with spin–orbit coupling in the electronic quantum spin
Hall effect (QSHE; refs 20–22), and experience a spin-dependent
magnetic field (Fig. 1). When the clockwise and counter-clockwise
modes are decoupled, we can selectively drive each mode and ob-
serve quantum Hall behaviours without breaking the time-reversal
symmetry in the tight-binding Hamiltonian. In a direct analogy to
the electronic integer quantum Hall effect, we show that photonic
edge states carry light at the perimeter of the system, while being
insensitive to disorder, and therefore form a basis for robust
photonic devices. In particular, in comparison to state-of-the-art
1D CROW systems23,24, our approach can be more resistant to
scattering disorders and fabrication errors.

2D photonic system and quantum spin Hall Hamiltonian
As illustrated in Fig. 1, our system comprises optical ring microres-
onators that support degenerate clockwise and counter-clockwise
modes, restricted to one pair per resonator. We consider these
modes as two components of a pseudo-spin, that is, clockwise
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(σ =−1, or psuedo-spin down) and counter-clockwise (σ =+1,
pseudo-spin up) circulation. Resonators—evanescently coupled to
each other—have been studied in the context of 1DCROW(ref. 25),
where the coupling leads to a tight-binding model for photons
and the corresponding photonic band structure. By coupling these
modes in a two-dimensional arrangement, as we show below under
appropriate conditions, the dynamics of such a photonic system
is described by a Hamiltonian for charged bosons on a square
lattice (tight-binding), but with the addition of a perpendicular,
pseudo-spin-dependent effective magnetic field:

H0 = −κ

(∑
σ ,x,y

â†
σx+1,y âσx,ye

−i2παyσ
+ â†

σx,y âσx+1,ye
i2παyσ

+ â†
σx,y+1âσx,y+ â

†
σx,y âσx,y+1

)
(1)

where κ is the coupling rate of optical modes and â†
σx,y is the

photon creation operator at the resonator at site (x,y) with different
pseudo-spin components, σ = ±1. Specifically, photons acquire
a 2πασ phase when they go around a plaquette—equivalent to
havingα quanta ofmagnetic flux penetrating each plaquette26,27.

To derive the Hamiltonian description, we start by considering
two coupled resonators (Fig. 1a), focusing only on the counter-
clockwise modes inside each resonator. The length of connecting
waveguides is chosen such that photons respectively destructively
(constructively) interfere inside the waveguide loop (resonator)
and, therefore, they will be confined in the resonators rather than
waveguides. Moreover, the lengths of the upper and lower branches
of the waveguide differ from each other, so when a photon hops
from the left to the right resonator it acquires a different phase from
that when it hops in the opposite direction. This can be formally
verified using the standard input–output formalism28. In particular,
the boundary condition at the left resonator can bewritten as

Êout
x = Ê in

x +
√
2κ âx

where the Êx are waveguide electric field operators in the vicinity of
the xth resonator and âx is the resonator electric field operator, as
shown in Fig. 1a. The resonator field equation of motion is ∂t âx =
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Figure 1 | Schematics of the photonic system with a synthetic magnetic field. a, The dynamics of two coupled resonators is governed by a magnetic-type
Hamiltonian (equation (2)). The lengths of the upper and lower branch differ from each other such that the phase difference is 4πα and m is an integer.
b, A magnetic tight-binding model can be implemented in a 2D lattice of coupled resonators. Only the waveguide phase differences are shown. c, By
introducing scatterers in resonators and waveguides, one can induce in-plane magnetic field (Zeeman) and spin-flip hopping terms, in analogy to quantum
spin Hall models.

−κ âx −
√
2κÊ in

x , and similarly for the right resonator. Photons
propagate freely between the resonators, so for the upper branch we
have E in

x+1=−iE
out
x exp(−2π iα), and similarly for the lower branch.

By eliminating the waveguide fields, the left and right resonator
field dynamics will be given by ∂t âx(x+1) = iκ exp(±2π iα)âx+1(x),
consistent with photon tunnelling between the resonators. The
correspondingHamiltonian of the two resonators takes the form:

Htwo−res=−κ â
†
x+1âxe

−2π iα
−κ â†

x âx+1e
2π iα (2)

The above analysis for counter-clockwise modes (pseudo-
spin up â↑x,y) in the resonators shows that, in the absence
of backscattering, they are decoupled from their time-reversed
counterpart, that is, the clockwise mode of the resonator (pseudo-
spin down â↓x,y). At the same time, the pseudo-spin down
component will experience a magnetic field similar to the pseudo-
spin up component, where only the sign ofmagnetic field is changed
(α→−α). Now, by connecting resonators in a lattice structure and
tuning the phase of the connecting waveguides, we can arrange the
acquired phase around each plaquette to be uniform and equal to
2πα. The phase can be tuned either by changing the length (or the
index of refraction) of the connecting waveguides or by coupling
ring resonators to the sides of the waveguides (similar to a Mach–
Zehnder configuration29,30). The implementation of a Landau-type
gauge is shown in Fig. 1b, where the corresponding Hamiltonian is
the form of equation (1). Indeed, this is the trivial form of QSHE
Hamiltonians in an analogy to time-reversal invariant spin–orbit
interactions in solid state systems20–22, where the gauge field has
opposite orientations for the two pseudo-spin components.

Generalized pseudo-spin–orbit interaction
Furthermore, one can control the coupling between different
pseudo-spin component and exploit a wider class of QSHE Hamil-
tonians on a square lattice. In particular, semi-transparent scatterers
inside the resonators or the connecting waveguides can be engi-
neered tomix different pseudo-spin componentswith each other.

To illustrate this mixing, we consider the addition of a pair
of scatterers in every vertical connecting waveguide, as shown in

Fig. 1c. For simplicity, we assume the scattering is weak and does
not introduce any loss. We characterize the strength of the scatterer
by a parameter ε, where the transmission coefficient is near unity
(ts' 1) and the reflection coefficient is rs= iε/

√
2. As shown in the

Supplementary Information, the corresponding Hamiltonian of a
single vertical array of resonators will be:

Hflip=−κ
∑
x,y

( â†
↑x,y+1 â†

↓x,y+1 )
(
1 ε
ε 1

)(
â↑x,y
â↓x,y

)
+h.c.

The diagonal terms are identical to the tight-binding terms of
equation (1) and the off-diagonal terms represent hopping between
two adjacent sites while undergoing a spin-flip, that is, the scatterers
couple clockwise to counter-clockwise photons (Fig. 1c). This
spin-flip hopping is similar to the Rashba term in the context of
spin–orbit interaction21,31.

Similarly, if we consider a pair of weak scatterers inside the
resonators, then correspondingHamiltonian takes the form:

Hmag = −κ
∑
x,,y

( â†
↑x,y+1 â†

↓x,y+1 )
(
1 0
0 1

)(
â↑x,y
â↓x,y

)
+h.c.

−
4εκF
π

∑
x,y

( â†
↑x,y â†

↓x,y )
(
0 1
1 0

)(
â↑x,y
â↓x,y

)
The first term is the usual tight-binding form and the second term
represents the in-plane magnetic field, which is enhanced by the
finesse of the resonators (that is, number of photon round trips
F ' π/(1− r2)). If these vertical arrays replace the vertical arrays
of Fig. 1b, then the overall Hamiltonian of the system encompasses
both an in-plane Zeeman term (due to on-site scattering) and a
hopping spin-flip term (similar to the Rashba interaction).

Probing the photonic system
We now show how optical spectroscopy measurements can be
harnessed to analyse the transport properties of our photonic
system. As shown diagrammatically in Fig. 1b, we can evaluate the
transmission and the reflection of an input light field by coupling
two probe waveguides to the lattice edges. The magnetic states

908 NATURE PHYSICS | VOL 7 | NOVEMBER 2011 | www.nature.com/naturephysics

© 2011 Macmillan Publishers Limited.  All rights reserved. 

 

http://www.nature.com/doifinder/10.1038/nphys2063
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2063 ARTICLES

α

ω κ

0

0.2

0.4

0.6

0.8

1.0

0 2 4–2–4

/

Figure 2 | Hofstadter butterfly spectrum. Each point represents a
reflectivity greater than 0.005, for a 10× 10 lattice with torus boundary
condition and coupling ν/κ =0.02. The green line is a guide for the eye to
show the spectrum at the magnetic field of interest (α) for the remaining
figures in the article.

of the system (bulk states and edge states) will manifest in such
transmission spectroscopy.

Consider the simplest case of the quantum spin Hall effect,
where pseudo-spin-flip terms are absent. In this regime, we have
two decoupled copies of regular quantum Hall states, one for each
pseudo-spin component. In the rest of the article, we restrict our
analysis to a single spin component, and for brevity, we drop the
spin index. This choice enables us to examine in detail methods for
probing the system and determining its response to disorder.

Using a formalism similar to quantum scattering theory, we
investigate the problem of scattering of light fields in optical
waveguides connected to our photonic system and evaluate the
transmission and reflection coefficients under various conditions.
The waveguides only couple to co-propagating modes in the
resonators (counter-clockwise in Fig. 1b), and thus under our
assumption, the reflection in the input channel and transmission
in the output channel are zero (that is, R,T ′ = 0 as shown
in Fig. 1b). The input–output probing waveguides are coupled
to two resonators in the systems, denoted by |in〉 and |out〉,
respectively. As shown in the Supplementary Information, the self-
energy of these resonators can be written as 6=−i(ν/2)|in〉〈in|−
i(ν/2)|out〉〈out|, where the coupling strength is defined as ν.
Using the Lippman–Schwinger equation, one can deduce different
reflection/transmission coefficients32,33. In particular, the reflection
coefficient is given by

r ′(ω)=−iν
〈
out

∣∣∣∣ 1
ω−H0−6

∣∣∣∣in〉 (3)

where ω is the detuning from the resonators. Thus, appreciable
reflection should be observed when the frequency of an incoming
photon becomes resonant with the energy of a photonic state inside
the system. Note that if the photonic system is a single resonator,
equation (3) reduces to the familiar form: r ′(ω)=ν/(iω−ν).

The energy spectrum of the H0 for an infinite lattice is the
well-known Hofstadter butterfly27. We consider a Nx ×Ny lattice
with torus boundary condition (that is, coupling top–bottom and
left–right edges together) to simulate the effect of an infinite lattice.
According to the Hofstadter spectrum, for rational magnetic fluxes
(α = p/q), each magnetic band has many states (NxNy/q), which
is reminiscent of Landau level degeneracy in the continuum. The
result of our numerical solution is shown in Fig. 2, where the
reflectivity (R′ = |r ′(ω)|2) is evaluated for different frequencies

ba

c

 

d

Κ
 Λ

Edge state bands

¬π

0

π

¬1 1 2¬2 0 3¬3

ω κ/

Figure 3 | Edge states and their dispersion. Light intensity for a
forward-going (a) edge state in the absence of disorder and its
backward-going counterpart (b). c, Shows the dispersion relation; a wave
number is evaluated for each energy eigenstate at the lower edge, that is,
K3 is the phase difference between two consecutive resonators at the
edges. Magnetic band states do not have a uniform phase difference along
the edges and are shown in the yellow area. The arrows show the states
corresponding to a and b. d Shows the light intensity routes around the
disorder (black dot, U/κ = 20). In these plots, a 10× 10 square lattice with
α= 1/4 is considered.

and magnetic field (α) by the formalism described above. High
reflectivity occurs when the lower waveguide light is coupled to
the system and completely transferred to the reflection output
channel (the secondwaveguide), similar to a channel drop filter.We
can readily see that the energy spectrum of the uncoupled system
(Hofstadter butterfly) can be obtained by measuring the system
reflectivity. We note that to resolve different energy levels in the
spectrum, the probe waveguide coupling (ν) should be chosen to
be sufficiently narrow (∼<8κ/(NxNy)).

Photonic edge states
In contrast to toroidal boundary conditions, where only magnetic
bands are present, in a finite square lattice there exist states between
magnetic bands which are known as ‘edge states’. A direct analogy
to 2D electrons in a magnetic field (quantum Hall physics)34–36
suggests there should be quasi-one dimensional states localized at
the perimeter of the system which carry current and are immune to
disorders in the form of random potential. In particular, for certain
bands, the field in resonators located in the bulk (away from the
edges) undergoes destructive interference and, therefore, the light
intensity (that is, the current probability of âx,y) is non-zero only
at the edges. This is illustrated in Fig. 3a. For each edge state, there
is a corresponding edge state with an opposite chirality (Fig. 3b).
More specifically, the forward- and backward-propagating edge
states take different paths and, consequently, they have different
resonances at detuning, equal in magnitude and opposite in sign.
This is similar to the behaviour of an electron with a non-zero
orbital angular momentum which can be aligned or anti-aligned
with an external magnetic field. For edge states, the phase difference
between two consecutive resonators is uniform along the edges
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Figure 4 | Edge states versus CROW. This figure compares the quantum Hall system (left panels, 10× 10 lattice) and CROW (right panels, array of 40)
performances as delay lines. In a and b blue curves show the average time delay and output reflectivity, respectively, and the grey area highlights the
standard deviations in the presence of non-magnetic disorder (a Gaussian disorder with σ (U)/κ =0.4 for 500 realizations). Whereas the transport is
quite noisy in the magnetic bands and CROW (tight-binding band), the edge-state bands exhibit noiseless transport with delays comparable to CROW.
Depending on the input frequency, different edge states participate in the transport, which leads to shorter or longer delays, as shown in the insets.
c, Magnetic disorder: besides the non-magnetic disorder, to estimate the effect of magnetic disorder and loss, a Gaussian distribution of magnetic noise
(mode coupling) with a width εF =0.1, a random phase ([0,2π)) and an intrinsic loss (κin=0.02κ), is assigned to each resonator. We observe that the
transport properties are more degraded for CROW than edge-state bands. Whereas the counter-clockwise modes of the resonators are excited through an
input field, the onsite scatterers backscatter photons in the clockwise modes. These modes leak out into R and T′ channels, which are non-zero in these
plots. The coupling between input and output waveguides and the system is chosen to optimize the transport (for edge states ν=6κ and for CROW
ν= 2κ). In the quantum Hall system, the input and output waveguides are coupled to (x= 2,y= 1) and (x=Nx− 1,y= 1) resonators, respectively.

(that is, well-defined momentum) and the system has a smooth
dispersion (that is, the phase difference is a smooth function of
frequency) only in the edge state bands, as shown in Fig. 3c.

To illustrate the robustness of the system to disorder, we
consider that each resonator may be detuned from its neighbours.
This provides a model for ‘non-magnetic’ disorder characterized
by a random on-site potential at each site (Ux,y â†

x,y âx,y). Such
imperfections are a common problem in photonics and prevent
coupling large numbers of resonators23,37,38.

In electronic quantum Hall systems the edge states are immune
to disorder5. We find that such robustness applies to our photonics
system. When disorder is located in the bulk, the edge state is
obviously not affected. However, when disorder is located on
the edge, the edge state routes around it, as shown in Fig. 3d
for the test case of a single disordered site. More precisely,
scattering which would reverse the current is prevented because the
backward going edge state has a different energy, as discussed above,
preventing elastic scattering.

Application to delay lines
Transport through edge states requires the photon to traverse the
perimeter of the system, leading to a sizeable time delay.We now ex-
amine how our system provides a robust alternative to conventional
CROW in photonic delay lines. For illustration, we compare the
transport properties of our photonic quantum Hall (QH) system

to a conventional 1D CROW system, as shown in Fig. 4. In the
quantum Hall system, there is a robust transfer band provided by
edge states that carry photons from the input waveguide to the
output waveguide (Fig. 4 inset), in a direct analogy to electronic
edge states in the context of the integer quantumHall effect34.

We first consider both systems without disorder to find their
operational bandwidth and delay time in transport. In both cases,
the operational bandwidth is given by the smooth, linear part of
the dispersion relation. In the quantum Hall system, the edge state
band (Fig. 3c) is located between two Hofstadter bands (Fig. 2),
whereas in the CROW configuration, the operational bandwidth
is in the middle of the tight-binding dispersion to avoid the
group velocity dispersion25. Moreover, in both systems, the delay
time is proportional to the number of resonators involved in the
transport (τ ' (κ/2)N ), as shown in Fig. 5a. In the quantum Hall
system, the transport can be either performed along the long or
short edge of the system, depending on the input frequency, as
shown schematically in the inset of Fig. 4. In both systems, in the
absence of disorder, the bandwidth-delay product increases with the
length/perimeter of the system.

However, in the presence of disorder, CROW and edge states
behave differently as the system size increases. In particular, in 1D
systems (for example CROW) the disorder leads to localization39,40

and, therefore, the transmission is impeded. More specifically, one
finds a localization length l ' 10κ2/var(U ), where var(U ) is the
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Figure 5 | 1D localization versus robust edge states. For 1D CROW and 2D quantum Hall, the transport properties are evaluated at the centre frequency
ω=0 and ω= 1.5κ respectively, where the group velocity dispersion is minimum. Gaussian disorder is assumed with σ (U)/κ =0.14 and the transmission
is averaged over an ensemble of 1,000 realizations. a, Compares time delay. b, Compares transmission (R′). On increasing the system length/perimeter (x
axis), the transmission for 1D CROW decreases and the noise (standard deviation in grey) increases24, whereas both the transmission and the noise in the
2D quantum Hall system remains constant. The inset shows the standard deviation of the time delay in both systems for a. To highlight the effect of
localization, the loss is ignored in these plots.

variance of the disorder40; when Nx > l , all states are localized41,42,
whereas for Nx < l the transmission is drastically perturbed and
‘ripples’ appear in the transmission spectrum23,38 and the delay
time spectrum24. Decreasing the resonator quality factor effectively
increases the localization length and postpones the localization
effects; nevertheless, the noise in the time delay increases with the
number of resonators24. Physically the forward- and backward-
going states have the same energy and spatially overlap, and,
therefore, they easily scatter from each other. In contrast, in our
2D quantum Hall system, the forward- and backward-going edge
state have different energies and are topologically protected against
disorder5,36,43. To confirm that our edge states provide a robust
transport, we numerically study the effect of disorder, by assigning
a random frequency mismatch to each resonator and taking the
average over many ‘frozen’ disorder realizations (see ref. 44 for
transverse localization). By studying the transmission at the ‘sweet’
frequency (ω = 0 for 1D CROW and the middle of edge state
band (ω= 1.5κ) for QH), we observe that by increasing the system
length/perimeter the transmission in CROW decreases whereas the
transmission through edge states is unaffected, as shown in Fig. 5b.
Similarly the delay changes significantly from system to system
in 1D CROW; single disorder realization exhibits ripples in the
transmission and delay time spectrum (as shown in Supplementary
Information). To characterize this behaviour, we evaluate the
standard deviation for each frequency and observe that whereas the
‘time delay ripples’ increases in 1D CROW (ref. 24), the QH system
shows an almost complete absence of such ripples (seeMethods).

Outlook
Optical signalsmight be a promising alternative to electronic signals
in future circuits. A key requirement is the ability to filter and
slow down light on-chip over a large bandwidth (several Gbps)
for various time-domain processing applications, such as optical
buffering and multiplexing45. However, the effect of disorder in the
millimetre-size footprint is detrimental, for example, ‘ripples’ in
the transmission spectrum23,38 and noise in the delay time24, which
increases with the number of resonators. Our system provides a
platform to realize a photonic system robust against disorder.

In addition, our photonic system enables a new approach for
exploration of various fundamental quantum Hall phenomena.
This photonic system not only enables investigations of quantum
Hall physics by simulating different types of Hamiltonian at room
temperature, but it also taps into topological features to provide
new devices for photonics. In the non-interacting regime (which
was the topic of this article), one can explore the Hofstadter
butterfly of photons and photonic edge states as delay lines
immune to disorders and also localization in 2D for non-interacting
particles44,46. Furthermore, with the addition of interaction between
photons44,47,48, this systemopens up exciting prospects for exploring
many-body, topological states of light. Although the ground state
properties of such systems have been extensively studied, the
suitable characterization and measurement of strongly interacting
photons is still an open question. In particular, chemical energy
is absent for photons, and the relevant conditions to study
photons involves an externally driven system, which naturally
leads to non-equilibrium steady states49. Another advantage of
photons is their flexibility to form various system topologies
(tori with different genera) by simply connecting waveguides to
each other and manipulating such states for topological quantum
computation. Intriguing additional applications of these ideas
await further exploration.

Methods
For simulation, we have considered a square lattice for the QH system, but any
other shape with the same topology (for example rectangle) behaves similarly, as
the topological nature dictates. We have compared both systems for a fixed system
size and studied the transport spectrum to evaluate the effect of disorder on the
operational bandwidth (Fig. 4). We observe that whereas both magnetic band
states and CROW depend sensitively on the disorder (position/strength), from one
realization to another, the edge states are insensitive to the specific parameters, as
shown in the standard deviation of the reflectivity and delay time in Fig. 4a,b.

We note that, as time-reversal symmetry is not broken in our system, we cannot
use such edge states as a one-way waveguide similar to ref. 50. More precisely,
when we input a light field in the backward direction into the system (by swapping
the input and output channel), the waveguides couple to the opposite rotating field
in the resonators (opposite pseudo-spin) and experience a magnetic field with an
opposite sign. Therefore, the system is reciprocal and the transport properties of
the forward and backward feed are identical to each other.
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We have also investigated the effect of loss in the resonators and other
imperfections. Loss can be represented by a non-Hermitian term in the
Hamiltonian: −iκinâ†

x âx , where κin characterizes propagation, bending and
coupling losses (see Supplementary Information). The photonic loss attenuates
the reflection in the edge state transfer band owing to the propagation around
the perimeter (Fig. 4c). The effect of loss is similar in both 1D and 2D cases, and
its magnitude is proportional to the number of resonators traversed by the light.
Silicon-on-insulator technology, where more than 200 micro-ring resonators
have been successfully coupled to each other24, is a promising candidate for
implementation of our scheme (see Supplementary Information for experimentally
relevant parameters).

Other types of imperfection, such as surface roughness, can cause undesirable
backscattering, which mixes pseudo-spin up and down, acting as ‘magnetic
disorder’. As shown in the Supplementary Information, these imperfections can be
modelled by a magnetic disorder Hamiltonian. The backscattering effect manifests
in the reduction of the signal in the R′,T channels and some leakage in the R,T ′
channels. Figure 4c shows these transport coefficients.We observe that although the
transport properties of 1D CROW and magnetic bands states are affected by such
magnetic disorder, edge state transport remains robust, owing to the suppression
of backscattering events. In particular, the scattering of a forward-going spin-up
into a forward (backward)-going spin-down state is partially inhibited owing to an
energy (momentum) mismatch.
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