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Abstract: We describe a new approach for on-chip optical non-reciprocity
which makes use of strong optomechanical interaction in microring
resonators. By optically pumping the ring resonator in one direction,
the optomechanical coupling is only enhanced in that direction, and
consequently, the system exhibits a non-reciprocal response. For different
configurations, this system can function either as an optical isolator or a
coherent non-reciprocal phase shifter. We show that the operation of such
a device on the level of single-photon could be achieved with existing
technology.
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1. Introduction

The development of integrated photonic circuits is a rapidly progressing field which aims at
the realization of micron scale photonic elements and the integration of these elements into a
single chip-based device. Apart from conventional optical signal processing and telecommuni-
cation applications [1], this technology might eventually also provide the basis for applications
on a more fundamental level such as optical quantum computation [2–5] or photonic quantum
simulation schemes [6–8]. A remaining challenge in integrated photonic circuits is on-chip op-
tical isolation, that is, filtering of photons propagating in different directions in the circuit, or
more generally, the implementation of non-reciprocal optical elements on a micrometer scale.
Standard approaches for optical isolation make use of magneto-optical properties (e.g. Faraday
rotation), which however require large magnetic fields [9], and thus make it difficult for inte-
gration [10–12] on a small scale. To overcome this problem, other non-magnetic approaches
have been proposed which, for example, rely on a dynamical modulation of the index of refrac-
tion [13], stimulated inter-polarization scattering based on opto-acoustic effects [14], modu-
lated dielectric constant [15,16] or on optical non-linearities that lead to an intensity dependent
isolation [17–19].

The suitability of different optical isolation schemes will depend very much on the specific
task. While for many commercial applications high bandwidth and robust fabrication tech-
niques are key requirements for optical isolators, this can be different for on-chip quantum
computing and quantum simulation schemes, where low losses, the operation on a single pho-
ton level and also the implementation of coherent non-reciprocal phase shifters are the most
important aspects. An intriguing new direction in this context is the study of quantum Hall
physics with photons, which has recently attracted a lot of interest in the microwave as well as
in the optical domain [20–25]. Here, apart from new possibilities to simulate quantum many
body systems with light, the appearance of edge states in quantum Hall system could also be
exploited for a robust transfer of photons and optical delay lines. However, previous propos-
als (except Ref. [24]) can not be easily integrated on chip, while the scheme in Ref. [24] does
not break the time reversal symmetry and therefore, it is not suitable for non-reciprocal robust
waveguides [22], or the emulation of real magnetic fields for light.

In this work, we propose a new approach for on-chip optical non-reciprocity which makes
use of the recent advances in the fabrication of on-chip and micron sized optomechanical (OM)
devices [26–29]. In our scheme, the non-linear coupling between light and a mechanical mode
inside a ring resonator leads to a non-reciprocal response of the OM system, which is induced
and fully controlled by an external driving field. We characterize the input-output relations of
such a device and show that by choosing different configurations the same mechanism can be
employed for optical isolation as well as non-reciprocal phase shifting and routing applications.
We describe under which conditions non-reciprocity is optimized and in particular, we find that
even in the presence of a finite intrinsic mode coupling inside the ring resonator, non-reciprocal
effects remain large for a sufficiently strong OM coupling. In contrast to optical isolation based
on a non-linear response of the OM system [19], our schemes can in principle be applied on a
single photon level, limited by the up-conversion of thermal phonons only [30–32]. Our anal-
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Fig. 1. Non-reciprocal optomechanical device. (a) A strong pump field enhances the op-
tomechanical coupling between an isolated vibrational mode and the right-circulating opti-
cal mode inside a ring resonator. This results in different transmission properties for right-
and left-moving fields in the waveguide. (b) Optical isolation. (c) Non-reciprocal phase
shifter.

ysis shows that a noise level below a single photon can be achieved with present technology,
which makes this device a suitable building block for various non-reciprocal applications in the
classical as well as the quantum regime.

2. Optomechanically induced non-reciprocity: a toy model

Before starting with a more general treatment below, we first outline in this section the essence
of the OM induced non-reciprocity for an idealized and slightly simplified setting. Specifically,
we consider an OM ring resonator, for example a toroidal microresonator, which is side-coupled
to a waveguide as shown in Fig. 1(a). This configuration is commonly referred to as an all-
pass filter (APF). The ring resonator supports two degenerate right- and left-circulating optical
modes with frequency ωc and bosonic operators aR and aL respectively. Radial vibrations of the
resonator lead to a modulation of ωc which can be modeled by the standard OM Hamiltonian
[33–36] (h̄ = 1),

Hom = ωmb†b+ ∑
i=L,R

ωca
†
i ai +g0a†

i ai(b
† +b). (1)

Here b is the bosonic operator for the mechanical mode of frequency ωm and g0 is the OM cou-
pling, which corresponds to the optical frequency shift per quantum of motion. Note that the
mechanical mode is extended and varies slowly over the scale of the optical wavelength [36].
Therefore, the optomechanical coupling does not induce a mixing between the right- and left-
circulating optical modes. In typical experiments g0 is very weak and to enhance OM interac-
tions we now assume that the right-circulating resonator mode is excited by an external laser
field of frequency ωL = ωc +Δ. In the limit |αR| � 1, where αR is the classical field amplitude
of the driven mode, we can make a unitary transformation aR → aR +αR and linearize the OM
coupling around αR. As a result, we obtain an effective Hamiltonian which in the frame rotating
with ωL is given by [33–36]

Hom−lin =−Δ(a†
RaR +a†

LaL)+ωmb†b+(GRa†
R +G∗

RaR)(b
† +b), (2)

where an additional OM frequency shift has been reabsorbed into the definition of Δ (see Sec. 3
for a more detailed derivation). In Eq. (2), we have introduced the enhanced OM coupling
GR = g0αR, and in view of |GR| � g0, neglected residual OM interactions ∼ O(g0). We see
that the external driving field creates an asymmetry between left- and right-circulating modes,
which we can exploit for generating non-reciprocal effects.
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In order to study the transport properties of light through such an opto-mechanical system,
we use the input-output formalism [33, 37]. For both propagation directions, we define in- and
outgoing fields which are related by

fR/L,out(t) = fR/L,in(t)+
√

2κaR/L(t), (3)

where 2κ is the resonator decay rate into the waveguide. After Eq. (2), the equations of motion
takes the following form:

ȧR = (iΔ−κin −κ)aR − iGR(b+b†)−
√

2κ fR,in, (4)

ȧL = (iΔ−κin −κ)aL −
√

2κ fL,in, (5)

ḃ = (−iωm − γm)b− iG∗
RaR − iGRa†

R, (6)

where 2κin denotes the intrinsic photon loss rate of the optical resonator and γm the mechanical
damping rate. Due to the linearity of the above equations, we can solve them for the exception
values, in frequency space. In the following, we are primarily interested in the case where the
resonator is driven at or close to the mechanical red sideband (Δ ≈ −ωm), and only a†b+ab†

terms in Eq. (2) will be resonant. Therefore, in the sense of a rotating wave approximation,
we can ignore other off-resonant contributions in Eq. (2). In the appendix we show that this
approximation is justified and it allows us to describe the transport properties of the systems in
terms of a simple 2×2 scattering matrix

(
fR,out(δ )
fL,out(δ )

)
=

(
tR(δ ) rL(δ )
rR(δ ) tL(δ )

)(
fR,in(δ )
fL,in(δ )

)
, (7)

where δ = ω +Δ is the detuning of the incoming field from the optical resonator resonance.
For our idealized model, there is no scattering between left- and right-moving modes and rR =
rL = 0. In turn, the transmission coefficients are given by

tL =
κin −κ− iδ
κin +κ− iδ

, tR = 1− 2(γm/2− iδ )κ
|GR|2 +(γm/2− iδ )(κ+κin − iδ )

. (8)

We see that the transmission spectrum of the left-going field is simply that of a bare resonator,
while the transmission of the right-going mode is modified by the presence of the mechanical
oscillator. In particular, the expression for tR resembles that of electromagnetically induced
transparency (EIT) [38], if we assume GR to be the “control field”. As in atomic EIT, the
coupling of the light field to the long-lived mechanical mode (γm � κ) leads to a dip in the
weak coupling limit and to a splitting of the transmission resonance in the strong coupling
regime. This feature has already been suggested in previous works for slowing and stopping of
light using OM systems [31,39–41]. The same effect can be used for achieving non-reciprocity
in the following ways:

Optical isolation. Let us first consider a critically coupled ring resonator where κ = κin. In
this case, we see that for frequencies around the ring optical resonance (δ ≈ 0),

(
fR,out(δ )
fL,out(δ )

)
≈
(

1 0
0 0

)(
fR,in(δ )
fL,in(δ )

)
. (9)

Therefore, this configuration realizes an optical diode, where light passes unaltered in one di-
rection, but is completely absorbed in the other direction, as schematically shown in Fig. 1(b).
The frequency window over which this isolation is efficient is approximately G2

R/κ in the weak
coupling limit (GR � κ) and κ in the strong coupling limit, where the width of the EIT window
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Fig. 2. (a) Transmission |tR/L|2 of the OM system when operated as an optical isola-
tor (κin = κ). Within the resonator bandwidth, the left-moving field is attenuated while
the right-moving field is almost completely transmitted. For this plot GR = 5κ . (b) Non-
reciprocal phase shifter (κin = 0.01κ). Both the left and the right input field are almost
completely transmitted (> 98%), but acquire different phases, Δθ = θR − θL. Black lines
show the location of resonances. For these plots γm = 0.

is 2GR and exceeds the resonator linewidth. A typical non-reciprocal transmission spectrum for
the strong coupling regime is shown in Fig. 2(a), which is that of an optical diode for frequen-
cies around δ ≈ 0. Note that in contrast to conventional optical isolation, no magnetic field is
applied and instead the optical pump breaks the left-right symmetry.

Non-reciprocal phase shifter. Let us now consider the so-called over-coupled regime where
the intrinsic loss is much smaller than the resonator-waveguide coupling (κin � κ). In this case,
the transmittance is close to unity in both directions. However, the left- and right-going fields
experience a different dispersion and

(
fR,out(δ )
fL,out(δ )

)
≈
(

eiθR(δ ) 0
0 eiθL(δ )

)(
fR,in(δ )
fL,in(δ )

)
. (10)

In general, the phases θR and θL will be different, and therefore, in this configuration, our
devices acts as a non-reciprocal phase shifter, as schematically shown in Fig. 1(c). Again, in
contrast to conventional magnetic field induced non-reciprocal phases, e.g. Faraday rotation,
our scheme does not require large magnetic fields. As shown in Fig. 2(b), the OM induced
phase difference |θR − θL| can easily be controlled by changing the pump intensity and can
be tuned from zero to about π over a large range of frequencies. Therefore, a maximal non-
reciprocal phase shift can already be achieved for light passing through a single device.

3. General formalism

In this section we present the general formalism for investigating OM induced non-reciprocity.
In particular, we now include the effect of energy non-conserving terms as well as a finite
coupling between the left- and right-circulating resonator modes which have been neglected
in our simplified discussion above. For completeness, we will also extend our discussion to a
slightly more general configuration shown in Fig. 3, where the ring resonator is side-coupled
to two optical waveguides with rates κ and κ ′. For κ ′ = 0, this setting reduces to the resonator
coupled to a single waveguide case, which was discussed above. Moreover, in the so-called
add-drop configuration (κ ′ = κ , κin ≈ 0), this device can be used for non-reciprocal routing of
light.

To account for a more realistic situation we now include the presence of intrinsic defects
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Δx
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Fig. 3. General add-drop configuration, which can be employed for non-reciprocal photon
routing between the upper and lower waveguide. It reduces to the resonator coupled to a
single waveguide, if the coupling to the lower waveguide is absent (κ ′ = 0).

inside the ring resonator and model the system by the total Hamiltonian

H = Hom +βa†
LaR +β ∗a†

RaL. (11)

Here, in addition to the OM interaction Hom given in Eq. (2), the second and third terms in
this Hamiltonian represent a coherent scatting of strength β between the two degenerate optical
modes, which is associated with bulk or surface imperfections [42, 43]. The system dynamics
is fully described by the set of quantum Langevin equations (i = L,R)

ȧi(t) = i[H,ai(t)]−κtai(t)−
√

2κ f 1
i,in(t)−

√
2κ ′ f 2

i,in(t)−
√

2κin fi,0(t), (12)

ḃ(t) = i[H,b(t)]− γm

2
b(t)−√

γmξ (t), (13)

together with the relations f 1
i,out(t) = f 1

i,in(t)+
√

2κai(t) and f 2
i,out(t) = f 2

i,in(t)+
√

2κ ′ai(t) be-
tween the in- and out-fields. In these equations, κt = κ+κ ′+κin is the total ring resonator field
decay rate and the operators f 1,2

i,in (t) are δ -correlated field operators for the in-fields in the upper
and lower waveguide (see Fig. 3) and fi,0(t) is a vacuum noise operator associated with the
intrinsic photon loss. Finally, γm = ωm/Qm is the mechanical damping rate for a quality factor
Qm and ξ (t) is the corresponding noise operator. In contrast to the optical fields, the mechanical
mode is coupled to a reservoir of finite temperature T such that [ξ (t),ξ †(t ′)] = δ (t − t ′) and
〈ξ (t)ξ †(t ′)〉 = (Nth + 1)δ (t − t ′) where Nth is the thermal equilibrium occupation number of
the mechanical mode. Note that the Langevin equation for the mechanical mode, Eq. (13), is
only valid for γm � ωm. For typical mechanical quality factors Qm ∼ 104 −105 this condition
is well satisfied and for most of the results discussed below we will consider the limit γm → 0,
while keeping a finite thermal heating rate γmNth � kBT/(h̄Qm).

As before, we assume that the clockwise mode of the resonator is driven by a strong classical
field of frequency ωL = ωc + Δ0 and amplitude E . We make the transformation fR,in(t) →
fR,in(t)+

√
2κE and write the average field expectation values in the frame rotating with ωL,

˙〈aR〉 = (iΔ0 − ig0〈b+b†〉−κt)〈aR〉− iβ ∗〈aL〉−2κE , (14)
˙〈aL〉 = (iΔ0 − ig0〈b+b†〉−κt)〈aL〉− iβ 〈aR〉, (15)
˙〈b〉 = −iωm〈b〉− ig0(|〈aR〉|2 + |〈aL〉|2). (16)

In the steady-state, we find that 〈b〉 = −g0(|〈aR〉|2 + |〈aL〉|2)/ωm. By redefining the detuning
to absorb the OM shift, Δ = Δ0 + 2g2

0(|〈aR〉|2 + |〈aL〉|2)/ωm, we can rewrite the optical field
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equations in the steady state as

0 = (iΔ−κt)〈aR〉− iβ ∗〈aL〉−2κE , (17)

0 = (iΔ−κt)〈aL〉− iβ 〈aR〉. (18)

In the absence of mode coupling (β = 0), the counter clockwise mode remains empty (〈aL〉=
0), and we obtain 〈aR〉= 2κE /(iΔ−κt). However, in the presence of mode coupling, we have

〈aR〉= 2κ(iΔ−κt)

(iΔ−κt)2 + |β |2 E , 〈aL〉= iβ
iΔ−κt

〈aR〉, (19)

and in general both optical modes are excited. As above, we proceed by making the unitary
transformations ai → ai + 〈ai〉 and b → b+ 〈b〉 and after neglecting terms of O(g0), we arrive
at the linearized OM Hamiltonian

H = ωmb†b− ∑
i=R,L

Δa†
i ai +βa†

LaR +β ∗a†
RaL (20)

+ ∑
i=R,L

(Gia
†
i +G∗

i ai)(b
† +b),

where due to the mode coupling, both circulating modes exhibit an enhanced coupling (Gi =
g0αi) to the mechanical mode. We are primarily interested in the case where the resonator is
driven near the mechanical red sideband (Δ=−ωm), where the terms of the form a†

i b+aib† are
dominant. However, small corrections due to the off-resonant couplings a†

i b†+aib are included
in our general formalism.

We group the OM field operators into a vector v(t) = (b(t),aR(t),aL(t),b†(t),a†
R(t),a

†
L(t))

T

and write the equations of motion in the form

∂t v(t) =−Mv(t)−
√

2κI1(t)−
√

2κ ′I2(t)−√
γmIm(t). (21)

Here the coupling matrix M is given by

M = i

⎛
⎜⎜⎜⎜⎜⎜⎝

ωm − iγm/2 G∗
R G∗

L 0 GR GL

GR −Δ− iκt β ∗ GR 0 0
GL β −Δ− iκt GL 0 0
0 −G∗

R −G∗
L −ωm − iγm/2 −GR −GL

−G∗
R 0 0 −G∗

R Δ− iκt −β
−G∗

L 0 0 −G∗
L −β ∗ Δ− iκt

⎞
⎟⎟⎟⎟⎟⎟⎠
, (22)

and the input field vectors are defined as Ii(t) = (0, f i
R,in(t), f i

L,in(t),0, f †i
R,in(t), f †i

L,in(t))
T for

i = 1,2 and Im(t) = (ξ (t),0,0,ξ †(t),0,0)T . Note that in Eq. (21), we have already omitted
contributions from the intrinsic noise operators fi,0(t) which act on the vacuum and therefore
do not contribute to the results discussed below. We solve the equations of motion for the OM
degrees of freedom (a’s and b’s) in the Fourier domain and obtain

ṽ(ω) = (−M+ iωI)−1(
√

2κ Ĩ1(ω)+
√

2κ ′Ĩ2(ω)+
√
γmĨm(ω)). (23)

By defining the output field vector

Õ1(ω) = (0, f̃ 1
R,out(ω), f̃ 1

L,out(ω),0, f̃ †1
R,out(−ω), f̃ †1

L,out(−ω))T , (24)

we can rewrite the input-output relation as

Õ1(ω) =
√

2κ diag(0,1,1,0,1,1)ṽ(ω)+ Ĩ1(ω), (25)
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and a similar expression can be derived for the out-fields in the second waveguide Õ2(ω).
Combining Eqs. (23-25), the output fields can be evaluated as a function of the input field
for arbitrary system parameters. Note that due to the presence of non-resonant OM interactions
∼ (a†

i b†+aib), the scattering matrix mixes the fi,in with the conjugate fields f †
i,in. In other words

this means that different quadratures of the input fields have different transmission properties,
an effect which is related to OM squeezing [33, 44, 45]. However, in the appendix we show
that for the relevant parameter regimes this effect is negligible in our device and for a more
transparent discussion we will evaluate below only the relevant phase independent part of the
scattering matrix.

4. Results and discussion

In the four port device shown in Fig. 3, we can study various different non-reciprocal effects
and apart from the optical diode and phase-shifter settings outlined above the add-drop config-
uration (κ = κ ′, κin = 0) could be used to realize a non-reciprocal optical router between the
two waveguides where, e.g., f 1

R,in → f 1
R,out but f 1

L,in → f 2
L,out . However, this situation is formally

equivalent to the optical diode by interchanging the role of κ ′ and κin and therefore we can
restrict the following discussion to the transmission amplitudes tR,L(ω) as defined in the two
port scattering matrix in Eq. (7).

Compared to the ideal situation described in Sec. 2, we are now in particular interested in
OM non-reciprocity in the presence of a finite intrinsic mode coupling, β 
= 0, where photons in
the left- and right-circulating modes of both the probe and pump field can no longer propagate
independently. Such a coupling is found in many experiments with high-Q micro-resonators
and often attributed to bulk or surface imperfections [42, 43]. As already mentioned above, a
first consequence of this mode mixing is that the pump field is scattered into the left-circulating
mode and we obtain enhanced OM couplings GR,L ∼ αR,L for both propagation directions (see
Eq. (19)). More specifically, for a purely right-going pump field, the intra-resonator fields are
given by

〈αR〉
E

=
2κ(iΔ−κt)

(iΔ−κt)2 + |β |2 ,
〈αL〉
E

=
2iβκ

|β |2 +(iΔ−κt)2 , (26)

and these expressions are plotted in Fig. 4 as a function of the pump detuning Δ and for the
case of large mode coupling (β � κt). We see that in principle an asymmetric pumping can
be achieved either for Δ = 0 or |Δ| � β . However, to achieve a resonant OM coupling, we
should choose Δ�−ωm. Therefore, |GL|/|GR| ∼ β/

√
ω2

m +κ2 which means that the parasitic
coupling can be suppressed by choosing high frequency mechanical modes. Further, we point
out that a complete cancellation of GL could be achieved by adding a second pump beam
in the left-circulating direction. In particular, if the strength of the left input pump is chosen
as E ′ = −iβ/(iΔ−κt)E , then 〈αR〉 = 2κE /(iΔ−κt) and 〈αL〉 = 0. In the following, we will
simply assume that |GL| is suppressed either by a large detuning or by adding a reverse pumping
field to cancel the coupling exactly.

In addition to pump backscattering, the probe photons are also mixed by the coupling term ∼
β in Hamiltonian (Eq. (20)) and even for |GL| → 0 a degradation of the non-reciprocal response
of the device will occur. Let us first consider the case of weak mode mixing, β � κ , and
assume that the system is pumped in the right-circulating mode at the OM red sideband (Δ =
−ωm,ωm � β ), as indicated in Fig. 4(b). In this regime, the rate of backscattering of photons
inside the resonator is smaller than the decay rate, and therefore, the non-reciprocal response
of the device is qualitatively the same as in the ideal case. This is shown in Fig. 5(a) where the
mode coupling only slightly reduces the operational bandwidth, i.e., κ → κ(1−β 2/G2

R).
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Fig. 4. Mean photon number in the left and right circulating modes in the presence of a finite
mode coupling β and as a function of the pump detuning Δ=ωL−ωc. For this plot we have
assumed that the pump field only drives the right-circulating mode and that the resonator is
coupled to a single waveguide (κ ′ = 0). The other parameters are (β ,κin)/κ = (4,1). At the
normal mode frequencies ω �±β , the left- and right-circulating modes are almost equally
populated, while everywhere else, there is an intensity imbalance between left- and right-
circulating modes. (b) The diagram shows the relation between the relevant frequencies in
the system. In the presence of the mode coupling, the sidebands (±β ) are located around the
bare resonator frequency ωc and the resonator is pumped at the mechanical red sideband.
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Fig. 5. Transmittance for light propagating in a waveguide coupled to a resonator (AFP), in
the presence of (a) weak (β = 2κ) and (b) strong (β = 8κ) mode mixing. For these plots
we have assumed (ωm,GR,κin,γm)/κ = (20,5,1,0) and Δ=−ωm.

In contrast, when the mode coupling is strong (β � κ), the backscattering strongly redis-
tributes the probe field in between right- and left-circulating modes, and as shown in Fig. 5(b),
the EIT width and the associated non-reciprocal effects can be significantly reduced. In Fig. 6,
we have plotted the bandwidth of an optical diode as a function of the mode mixing and the
strength of the OM coupling |GR|. While the bandwidth decrease with increasing β , we observe
that this effect can be compensated for by using a stronger pump to achieve GR > β . There-
fore, we conclude that the presence of a finite intrinsic mode mixing does not fundamentally
limit the operation of our device, and even if this coupling exceeds the ring resonator linewidth,
non-reciprocal effects can persist, provided that the OM coupling is sufficiently strong.

To put our results in relation with existing experimental parameters, we consider the system
presented in Ref. [26], where an optical whispering gallery mode inside a toroidal microres-
onator is coupled to a mechanical mode of frequency ωm/(2π) = 78 MHz. In this system the
single-photon OM coupling is g0/(2π) = 3.4 kHz and the directional enhanced coupling can
reach G/(2π) = 11.4 MHz. The resonator decay rate is κt/(2π) = 7.1 MHz. Therefore, this
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system can be operated in the strong coupling regime |G|> κt , and assuming that intrinsic de-
fects can be reduced to a level |β |< |G| ∼ 10 MHz, this device can be used for implementing
the different non-reciprocal effects described in this work. In particular, if κ � κin, then the op-
tical isolation can be observed within the resonator bandwidth. Note that recents experiments
have demonstrated OM systems supporting optical whispering gallery modes with mechanical
frequencies ωm ∼ GHz [28,29]. A further optimization of such devices could be used to achieve
non-reciprocal OM effects at a much higher frequencies and to push the operational bandwidth
of such devices into the 100 MHz regime.

2
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Fig. 6. Operational bandwidth of an optical diode in the presence of a finite mode coupling
β and different values of the enhanced OM coupling GR. For this plot we have assumed
GL = 0 and (ωm,κin,γm)/κ = (20,1,0), Δ=−ωm. In the absence of the mode coupling the
bandwidth is 4κ , which for a finite β can be recovered by using a strong pump to enhance
|GR|.

5. Thermal noise and the single photon limit

So far we have only considered the scattering relations between the optical in- and out-fields,
which due to the linearity of the equations of motion are the same for large classical fields as
well as single photons. In practice additional noise sources will limit the operation of the device
to a minimal power level, or equivalently to a minimal number of photons in the probe beams.
A fundamental noise source in our system stems from the thermal Langevin force ξ (t) which
excites the mechanical resonator. The OM coupling up-converts mechanical excitations into
optical photons which then appear as noise in the output fields [30–32]. To estimate the effect
of this noise, we investigate the contribution of thermal phonons in the noise power of the right
moving out-field

Pnoise = h̄ωc ×
∫

B

dω
2π

〈 f̃ †1
R,out(ω) f̃ 1

R,out(ω)〉, (27)

where B denotes frequency band of interest centered around the optical resonance. We can
use Eq. (25) to express f̃ 1

R,out(ω) in terms of the noise operator ξ (ω) and under the relevant
conditions and Δ=−ωm, we obtain the approximate result

Pnoise � h̄ωc

∫
B

dω
2π

2γmNthκG2
R

G4
R−2G2

R(ω−ωm)2 +(κ2
t +(ω−ωm)2)(ω−ωm)2

. (28)

As described above, non-reciprocal effects are most effective in a small band around the me-
chanical frequency and we can set B = [ωm −ΔB,ωm +ΔB] where ΔB � ωm is the operation
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bandwidth of the device. By assuming that ΔB≤G2
R/κ in the weak coupling regime and ΔB≤ κ

for strong OM coupling we obtain – up to a numerical factor O(1) – the general relation

Pnoise ≈ h̄ωc × γmNth × κΔB

G2
R

. (29)

For weak coupling and a maximal bandwidth ΔB = G2
R/κ , the noise power is given by the rate

γmNth � kBT/(h̄Qm) at which phonons in the mechanical resonator are excited. This means, that
if we send a signal pulse of length ΔB−1 through the device a number Nnoise ≈ γmNth/(G2

R/κ)
noise photons is generated during this time. Therefore, in this case the condition for achieving
non-reciprocal effects on a single photon level, i.e. Nnoise < 1, is equivalent to OM ground state
cooling [34, 35], which is achievable in a cryogenic environment [26, 27]. Equation (29) also
shows that the thermal noise level can be further reduced in the strong coupling regime. In this
case the maximal operation bandwidth is ΔB = κ and the noise power is suppressed by an addi-
tional factor (κ/GR)

2 � 1. This is due to the fact that thermal noise is mainly produced at the
two split mode frequencies ωm ±GR, while the non-reciprocal effects rely on the transparency
window between those modes. Note that while OM cooling saturates at GR ≈ κ , the noise sup-
pression in our device can always be improved with increasing ratio GR/κ , eventually limited
by the onset of the OM instability at GR = ωm/2.

6. Conclusions and outlook

In summary, we have shown that optomechanics can induce non-reciprocity in the optical do-
main. In particular, an optomechanical ring resonator coupled to a waveguide induces a non-
reciprocal phase in the under-coupled regime (κin � κ) and forms an optical isolator in the
critically coupled regime (κ � κin).

From an application perspective, this system provides an optical isolator that can be inte-
grated on-chip. The bandwidth of such a device will be limited by the amount of pump power
that the system can tolerate, before nonlinear effects become significant. In current experimen-
tal settings this amounts to bandwidths in the few MHz regime, which however could be further
improved in optimized designs.

From a fundamental point of view, the relevant features of our technique are the possibility
to implement coherent non-reciprocal phase shifts, to operate on the single photon level and the
ability to dynamically control non-reciprocal effects by tuning the power of the pump beam.
For example, one can consider a 2D array of optical resonators connected to each other via such
non-reciprocal phase shifters. If the phase-shifts are chosen appropriately (e.g. according to the
Landau gauge), then a tight-binding model of photons with an effective magnetic field can be
simulated [24]. In other words, one can simulate quantum Hall physics with photons where the
time-reversal symmetry is broken. In future experiments, it might be possible to combine these
techniques with single photon non-linearities which could be either induced by the intrinsic
non-linearity of the OM interaction itself [46] or by interfacing the OM system with other
atomic [47] or solid state qubits [30]. Combined with such strong interaction between photons,
the implementation of magnetic Hamiltonians using micron-sized OM elements could pave the
way for the exploration of fractional quantum Hall physics [48, 49] and various other exotic
states of light.

A. Appendix: Phase sensitive transmission effects

We study the effect of off-resonant OM interactions ∼ (a†
i b†+aib), which lead to a phase sensi-

tive transmission or equivalently, a partial squeezing of light in the output field. For simplicity,
we consider the case of a resonator coupled to a single waveguide without mode coupling
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(β = 0), assume GR = G and GL = 0, and set the pump field to the red sideband (Δ=−ωm). In
this situation, the incoming right (left)-going field will exit the system as only right (left)-going
field, respectively. The out-field in the right-going channel is then given by

(
f 1
R,out(ω)

f 1†
R,out(−ω)

)
=

(
α(ω) η(ω)
η∗(−ω) α∗(−ω)

)(
f 1
R,in(ω)

f 1†
R,in(−ω)

)
, (30)

where

α(ω) =
4|G|2ωm(ωm + iκ)− (ω2 −ωm

2
)(

(ω+ iκin)
2 − (ωm + iκ)2

)
(4|G|2ωm

2 +(ω2 −ωm
2) ((κ+κin − iω)2 +ωm

2))
, (31)

and

η(ω) =
4iG2κωm

(4|G|2ωm
2 +(ω2 −ωm

2)((κ+κin − iω)2 +ωm
2))

. (32)

The diagonal elements are the phase insensitive transmissions amplitudes, which we have dis-
cussed in the main part of the paper and which are related to the resonant OM coupling terms.
In general the presence of non-zero off-diagonal terms, η(ω) 
= 0, mixes the fin and f †

in com-
ponents. This implies a different transmission for different quadratures of the probe light, an
effect which is exploited for OM squeezing, but is unwanted in the present context. However,
as shown in Fig. 7, these effects are strongly suppressed in the parameter regime of interest.
In particular squeezing effects are negligible within the transparency window |δ | < G, where
non-reciprocal effects are most pronounced.

mω log(    )η
α

Fig. 7. Ratio between phase sensitive squeezing terms (η) and the phase-insensitive trans-
mission amplitudes (α). For this plot we have assumed Δ = −ωm and (G,κin,γm)/κ =
(5, .5,0).
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