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Engineering three-body interaction and Pfaffian states in circuit QED systems
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We demonstrate a scheme to engineer the three-body interaction in circuit-QED systems by tuning a fluxonium
qubit. Connecting such qubits in a square lattice and controlling the tunneling dynamics in the form of a
synthesized magnetic field for the photon-like excitations of the system allows the implementation of a parent
Hamiltonian whose ground state is the Pfaffian wave function. Furthermore, we show that the addition of the
next-nearest-neighbor tunneling stabilizes the ground state, recovering the expected topological degeneracy even
for small lattices. Finally, we discuss the implementation of these ideas with the current technology.

DOI: 10.1103/PhysRevB.90.060503 PACS number(s): 73.43.−f, 05.30.Pr, 85.25.Cp

Many-body topological states have fascinating properties
such as non-Abelian statistics that have been theoretically
predicted but have not been observed [1]. Such states have
also been proposed as a promising platform to perform robust
quantum computation [2]. The simplest state with non-Abelian
properties was constructed by Moore and Read in the form of
a Pfaffian wave function, in the context of fractional quantum
Hall effect [3]. At the same time, “parent Hamiltonians” have
been introduced to generate such states as their ground states.
In particular, a Hamiltonian with three-body interaction was
proposed by Greiter et al. which yields the Pfaffian state [4].
There have been remarkable efforts to generate such Hamilto-
nians, e.g., using an ultracold-atom system [5,6]; however, the
elimination of the two-body interaction while preserving the
bosonic nature of excitations remains challenging [7–11], as
expected for perturbatively generated three-body terms [12].
In this Rapid Communication, we present a scheme using
circuit QED systems with ultrastrong microwave nonlinearity
[13,14] to achieve this end. We demonstrate how to engineer a
three-body interaction and a synthetic magnetic field which are
both required to implement the parent Hamiltonian of Ref. [4]
in a lattice.

The key idea in this Rapid Communication is to introduce a
generalized qubit that exhibits the three-body interaction; i.e.,
one and two excitations are allowed in the qubit but the creation
of the third excitation has an energy penalty, as shown in Fig.
1(b), compared to Fig. 1(a) for a two-body interaction. Such
a qubit can be characterized by a Hamiltonian of the form
Hi = 1

6U3â
†3
i âi

3, where âi is the bosonic creation operator
at site i and U3 is the interaction strength. This qubit can
be generated by tuning various parameters of a fluxonium
qubit [15], in a parameter regime similar to that of a transmon
[16], to achieve the desired level structure. We couple these
qubits in a square lattice, using SQUIDs where their external
phase is modulated, as shown in Fig. 1(c). This modulation can
imprint a tunneling phase [17], which is arranged to implement
a synthetic magnetic field with a fixed gauge. Such a system
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can be described by the following Hamiltonian:

H = −J
∑

x,y

â
†
x+1,y âx,ye

−i2παy + â†
x,y âx+1,ye

+i2παy

+ â
†
x,y+1âx,y + â†

x,y âx,y+1 + 1

6
U3â

†3
x,y â

3
x,y , (1)

where α is the acquired phase from tunneling around a single
plaquette and characterizes the strength of the magnetic field.
In the continuum limit (α � 1), this Hamiltonian is known to
be the parent Hamiltonian of Pfaffian states, when the filling
factor is ν = N/Nα = 1, where N is the number of particles
inside the system and Nα is the total number of magnetic
flux. In other words, the Pfaffian state is the ground state and
the excited states have non-Abelian statistics. We present our
numerical results that indicate that indeed the ground state is
the Pfaffian state with the threefold topological degeneracy. We
show that adding next-nearest-neighbor tunneling can flatten
the single-particle energy bands, and therefore, the Pfaffian
state can be seen even for high magnetic fields (α = 0.25).

In order to implement the Hamiltonian of Eq. (1), we
need two key elements: (1) inducing a magnetic-type hopping
between sites and (2) generating the three-body nonlinearity.
We start by describing a single qubit that exhibits the three-
body interaction and return to the discussion of the magnetic
hopping later. We consider a fluxonium [15], which can be
described by the following Hamiltonian:

Hqubit = 4Ecn
2 + 1

2ELφ2 − EJ cos(φ + φx), (2)

where Ec is the single-electron charging energy, EJ is the
Josephson junction energy, and EL = (�0/2π )2/L charac-
terizes the shunted inductive energy, defined in terms of the
flux quantum �0 = h/2e. (n,φ) are conjugate variables and
are equal to 4√8Ec/EL(Cooper pair number, node flux),
respectively. φx is the external flux through the Josephson
junction in units of the magnetic flux quanta. The spectrum
of this Hamiltonian, which basically describes a particle in
an anharmonic potential, can be numerically obtained. We
consider the so-called transmon regime where EJ � Ec [16],
so that the qubit could remain less sensitive to charge noise.
We are interested in the limit where the first and the second
excitation levels have the same energy and the third excitation
is detuned from them [Fig. 1(b)]. The nonlinearity is provided
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FIG. 1. (Color) (a) Two-body and (b) three-body interactions
emerge as two- and three-excitation nonlinearity in an anharmonic
oscillator. (c) Circuit model to implement Eq. (1). Each site is com-
posed of an anharmonic oscillator with the three-body interaction. The
qubits are detuned from each other according to a staggered pattern
(blue/red/green/black) and are coupled by externally modulated
SQUIDs.

by the Josephson junction and tuned to the desired form using
the shunted inductor and the external flux. In particular, we
analyze the four lowest energy eigenstates. In such subspace,
one can describe the system with a general Hamiltonian of the
form

Hmodel = ω0â
†â + 1

2U2â
†2â2 + 1

6U3â
†3â3, (3)

where â† is the creation operator of a single excitation, ω0

is the energy of the lowest level, and U2 (U3) characterizes
the two- (three-) particle interaction, as shown in Figs. 1(a)
and 1(b).

Figures 2(a) and 2(b) shows the numerical results for
(U2,U3), respectively. We observe that for a given EL, the
external flux φx can be tuned so that the two-body nonlinearity
vanishes. However, the three-body nonlinearity does not
necessarily vanish for that specific φx. Figure 2(c) shows
the value of the three-body nonlinearity when we operate at
U2 = 0. The largest value of U3, while keeping the bosonic
nature of the excitations (see the next paragraph), is achieved
for the following parameters: EL � 1.4EJ ,φx � 2.68, for
Ec = 0.05EJ . This suggests that once such qubits are coupled
to each other, the excitations can hop in between them, and only
zero, one, and two Fock states on each site can be occupied.
However, it is not guaranteed that the hopping has the correct
bosonic form.
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FIG. 2. (Color online) (a) Three-body (U3) and (b) two-body
(U2) interaction strength as function of the external bias flux and
the shunted inductance. The dashed line on (b) shows where the
two-body interaction vanishes. (c) Shows the three-body interaction
strength when U2 is optimized to be less than 0.0005EJ . All the plots
are for Ec/EJ = 0.05.

In order to verify that the hopping has the correct bosonic
enhancement factor (for example â|n〉 = √

n|n − 1〉; see
Supplemental Material [18]), we consider two qubits that are
inductively coupled to each other [Fig. 3(a)] and analyze
the dynamics of several excitations in between them. In
particular, we consider the coupling of the form Hcoup =
Mφ1φ2, where M is the tunneling energy, proportional to
the mutual inductance, and φi is the phase of the qubit i.
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FIG. 3. (Color) Dynamics of different excitation numbers when two qubits are inductively coupled to each other, as shown in (a): (b) one
excitation, (c) two excitations, (d) three excitations. The black line shows the total population in (b) and (c) and P21 + P12 in (d).

First, we study the dynamics of a single excitation in the
coupled system. We prepare one qubit in a Fock state with one
excitation and let the system evolve. The population dynamics
is plotted in Fig. 3(b). We observe that the system undergoes
Rabi oscillations between two states. Next, we consider two
excitations in the system. Similarly, we initiate the system
with the two-excitation Fock state and study the dynamics. We
see that the microscopic Hamiltonian of our system leads to
a dynamic identical to that of a model system of two bosonic
oscillators with two excitations, as shown in Fig. 3(c). Finally,
we start with three excitations in the system, one in the first
qubit and two in the second qubit, as shown in Fig. 3(d). Due
to the presence of the three-body nonlinearity (U3 �= 0), we
observe that the population in the three-excitation Fock states
is suppressed (less than 10−7), similar to a model system of two
bosonic systems in the three-body hard-core limit (â3

i |�〉 = 0,
where |�〉 is an arbitrary state of the system).

Now, we discuss the implementation of the magnetic
hopping terms in Eq. (1). There have been several proposals in
the past to engineer a magnetic-like Hamiltonian in the context
of circuit-QED systems [19,20] and also proposals without
breaking the time reversal symmetry in photonic systems
[21,22]. Here, we present a scheme based on phase modulating
the SQUIDs that couple adjacent sites. In particular, we set
the resonance (ωi) of adjacent sites to be different from each
other and form a staggered pattern, as shown in Fig. 1(c).
The connecting SQUID inductance is modulated by applying
a microwave flux φext(t) = δφ cos(
ij t + φp), in units of the
magnetic flux quantum, where δφ � 1 and the microwave
pump frequency is tuned to the frequency difference of
two adjacent sites (
ij = ωi − ωj ). As shown in Ref. [17],
such modulation induces a hopping Hamiltonian between

two modes of the form a
†
i aj e

+iφp + a
†
j aie

−iφp , in the rotating
frame with the rotating wave approximation. The difference
between our case and Ref. [17] is that there the hopping was
induced between two modes of the same waveguide, while
here the hopping is induced between two modes of different
sites. In contrast to the previous scheme proposed by Koch
et al. [19], our scheme is not sensitive to charge noise, and
the generated magnetic field is insensitive to minor device
variations.

The Pfaffian state is the ground state of the Hamiltonian of
Eq. (1) in the continuum limit (α � 1). However, the lattice
could distort the wave function, close the gap, and destroy the
topological order. To map the lattice to the continuum in such
models, the concept of long-range tunneling was suggested
by Laughlin [23]. By introducing the long-range hopping, the
single-particle spectrum becomes flat and the many-body gap
is enhanced. As an example, for the Laughlin fraction (ν =
1/2) in bosonic systems, for large magnetic field (α � .4)
[24], the gap closes and the topological order of the ground
state disappears. However, Kapit and Mueller showed that
including long-range order tunneling flattens the lowest branch
of the single-particle Hofstadter’s spectrum and improves the
gap even for large magnetic fields α � 0.5 [25]. Furthermore,
the long-range tunneling allows braiding operation even for
small lattices [26]. Here, we consider the Pfaffian fraction for
bosons (ν = 1) and we observe similar behavior. We assume
the bosonic occupation number on each site cannot exceed 2;
i.e., U3 = ∞. In this situation, the ground state of the system
on the torus should be threefold degenerate and should be
separated by a gap [4]. As shown in Fig. 4(a), and previously
reported in Ref. [10], the gap is nonzero even in a small 4 × 4
lattice. The ground state has the expected order; i.e., the Chern
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FIG. 4. (Color online) (a) First thirteen eigenvalues for 4 particles
on a 4× 4 lattice with torus boundary conditions, i.e., a total of 16
plaquettes, α = 0.25, and U3 = ∞. The index n labels eigenvalues.
Different shapes show different tunneling schemes: circles for only
nearest-neighbor tunneling (gap/J � 0.04), triangles for the nearest-
and the next-nearest-neighbor tunneling (gap/J � 0.12), and squares
for the long-range tunneling (gap/J � 0.12). The gaps are denoted
by arrows. (b) The order parameter as a function of U3 and U2,
characterizing the relative size of the gap.

number is equal to 1 for the ground state manifold and a very
weak overlap with the Pfaffian state, as expected for the lattice.
Now, we consider the next-nearest-neighbor tunneling terms
which in the Landau gauge are described as

∑

x,y

∑


x,
y

(−1)
x+
y+
x
ye− π
2 (1−α)(
x2+
y2)

× e−i2πα(y
x+
x
y/2)â
†
x+
x,y+
yâx,y ,

where 
x (
y) is the number of site tunneling in the x (y)
direction, respectively. If we consider only (
x = 1,
y =
0) and (
x = 0,
y = 1) terms, we recover the tunneling
terms in Eq. (1). Since our implementation of magnetic
field with modulation requires two connecting sites to have
different frequencies, we choose a staggered patterned with
four colors, as shown in Fig. 1(c), to implement the next-
nearest-neighbor tunneling terms. As shown in Fig. 4(a), if
we include next-nearest-neighbor terms, the threefold ground
state degeneracy is preserved and the gap is improved
threefold. In contrast to atoms on optical lattices, here in
circuit-QED systems, the long-range tunneling term can be
implemented by linking different sites using extra connecting
SQUIDs.

In an experimental realization, one might not be able
to access very large three-body interaction (U3 � J ), and
entirely suppress the two-body interaction (U2 = 0); therefore,
it is important to assure that the gap between the threefold-
degenerate ground state manifold and the excited state is
preserved for a nonideal situation. To numerically investigate
that, we define an “order parameter” as the ratio between the
gap and the energy difference within the ground state; i.e.,
λ = (E4 − E3)/(E3 − E1), where Ei is the energy of the ith
eigenstate. As we see in Fig. 4(b), the system is completely

gapped for large U3 and zero U2. As U3 becomes small and U2

becomes large, the order parameter vanishes, the gap closes.
Therefore, we see that for a certain region in the parameter
space the gap exists and the system is robust against the
presence of a finite two-body interaction.

We next consider experimental issues involving the real-
ization and detection of Pfaffian states in the proposed circuit
QED system. As we discussed above the three-body interaction
should be larger than the tunneling U3 � J ; i.e., we should
choose the largest (smallest) possible U 3 (J ), respectively. On
the one hand, the three-body interaction is bounded from above
as a small fraction of the Josephson energy. Considering a
Josephson energy of tens of GHz, one can achieve a three-body
interaction strength of a few 100 MHz. On the other hand, J

is bounded from below, since the tunneling process should be
faster than any decoherence mechanism. In particular, J �
T −1

2 ,T −1
1 , where T1 (T2) is the relaxation (decoherence) time,

respectively. Recent experiments have shown T1,T2 � 10 μs

[14]; therefore, assuming a tunneling rate of J � (2π )10 MHz
guarantees many tunnelings to occurs before the coherence is
lost. Therefore, one can achieve a regime where U3 � 60J ,
which according to Fig. 4(b) provides a sufficient energy gap
between the ground manifold and the excited states.

As an initial experimental step to verify whether a
three-body interaction has been implemented, we suggest a
correlation function measurement. Specifically, when a single
site with the Hamiltonian of Eq. (3) is driven with a weak
coherent field, U2 and U3 can be obtained from measuring the
output correlation functions g(2) = 〈â†2â2〉/〈â†â〉2 and g(3) =
〈â†3â3〉/〈â†â〉3, respectively (see Supplemental Material [18]).
Such correlation function measurements have been success-
fully achieved in the microwave domain [27] using quadrature
amplitude measurements instead of the conventional Hanbury
Brown–Twiss measurements [28,29]. Alternatively, we can
perform nonlinear spectroscopy to map out the anhormonic
levels [30,31].

In summary, we have presented a scheme to implement
the three-body interaction and the Hamiltonian to generate
the Pfaffian state in circuit-QED systems. Due to relatively
slow decoherence in these systems, one can use an adiabatic
approach to prepare such states [32–34] and locally probe
each site using an auxiliary transmon [35]. However, a more
relevant regime for such photonic systems is to externally
drive them and investigate their many-body nonequilibrium
behavior [36,37] and analyze their incompressibility [34,38–
40]. Another intriguing direction is to explore the braiding
of non-Abelian anyons in such systems. It has been recently
shown that even in small systems with long-range tunneling
such braiding can be obtained [26]. One can possibly dynam-
ically detune the resonance frequency of the site to trap and
move around the anyons.

We recently became aware of a similar proposal, concur-
rently developed by Kapit and Simon [41], using spin-1/2
systems.
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MURI Award No. W911NF0910406 and NSF through the
Physics Frontier Center at the Joint Quantum Institute. We
thank L. Mazza, E. Kapit, A. Houck, A. Rimberg, M. Khan,
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