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Motivated by the recent theoretical and experimental progress in implementing topological orders with
photons, we analyze photonic systems with different topologies and present a scheme to probe their
topological features. Specifically, we propose a scheme to modify the boundary phases to manipulate edge
state dynamics. Such a scheme allows one to measure the winding number of the edge states. Furthermore,
we discuss the effect of loss and disorder on the validity of our approach.
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Topology plays a fundamental role in many physical
phenomena in two-dimensional systems. The most famous
examples are various quantum Hall effects in electronic
systems [1–3]. Recently, there has been a surge of interest
in studying topological orders in nonelectronic systems,
ranging from ultra cold atoms [4–7] to photons [8–20]. For
example, it was shown that a uniform magnetic field can be
synthesized in an array of coupled resonators and the
system exhibits chiral edge states, in direct analogy to
integer quantum Hall edge states [13]. The robustness of
such edge states against disorder was experimentally
confirmed by direct imaging of the photonic array.
While the implementation of gauge fields has been

achieved, the measurement of the expected topological
orders remains elusive due to the inapplicability of the
conventional Hall conductance measurements to atomic
and photonic systems. There have been various proposals to
detect topological order in atomic [21–26] and, recently,
photonic systems [27,28], which are generally based on the
manipulation of Bloch states. However, the following
question has not yet been addressed: how can one directly
measure the integer topological invariants, e.g., the winding
number of the edge states or the Chern number of the bulk
state in a photonic system? In particular, how do the integer
values manifest themselves in an optical realization of
quantum Hall Hamiltonians. In this Letter, we propose a
scheme to measure the integer topological invariants of a
photonic system by manipulating the boundary conditions.
Following Refs. [12,13], we benefit from individual site
addressability to manipulate the synthetic gauge field at
the boundary—a property which is difficult to achieve in
electronic and atomic systems.
The main idea of our approach relies on the ability to

introduce a nonzero phase in the boundary conditions. Such
a phase is equivalent to a magnetic flux threading the holes
of the system when the system manifold is not simply
connected. If the system has an edge state around that hole,
the insertion of the magnetic flux shifts the momentum of
that edge state. Once an entire magnetic flux quantum
threads the hole, the edge state spectrum should return to its

original form, while an integer number of edge states have
been transferred during this process (Fig. 1). This integer
number is the winding number of the edge state. We
propose that, in a photonic implementation, such a spectral
shift and edge state transfer can be experimentally observed
using standard transmission spectroscopy. We note that our
proposal could be applied to all topologically ordered
photonic systems, ranging from radio frequency [29] and
microwave [30] to an optical domain, and any bosonic
system that can be externally driven. In particular, in
circuit-QED systems, whispering gallery mode resonators
[31], and in exciton-polariton systems, micropillars [32]
can be used to make an array of resonators, respectively.
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FIG. 1 (color online). (a) Coupled resonators in a ring configu-
ration: Photons hop between resonators with the rate J, except for
one link where they hop with Jeiϕ. The inset shows that the
boundary can bemodified by changing the index of refraction of the
connecting resonators. (b) Dispersion relation when the boundary
phase changes from zero to 2π, for a ring of 10 resonators.
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For concreteness, we discuss the optical scheme based on a
platform proposed in Ref. [12] and recently implemented in
Ref. [13] using silicon-on-insulator technology. Before
presenting the scheme to measure the integer topological
invariants in a 2D system, we present the case of a trivial
topology, i.e., the ring, to clarify the spectral dynamics in
the presence of a threading flux.
Ring.—We consider an array of N coupled resonators

that form a ring and study the effect of a synthetic magnetic
flux threading the ring, as shown in Fig. 1. The Hamiltonian
of the system is given by

Hring ¼ −J
XN−1

i¼1

â†i âiþ1 þ H:c:; (1)

where J is the tunneling rate between two sites and â†i is the
creation operator at the site i. The Hamiltonian terms that
describe the coupling between the first and the last site are
−Jâ†1âNeiϕ þ H:c., where ϕ is the tunneling phase. In other
words, the twist angle in the generalized boundary con-
dition can be generated by such a term in the system
Hamiltonian. For charged particles, this phase can be
obtained by introducing a magnetic flux in the middle of
the ring, whereas in our system, this phase has to be
artificially engineered. Note that such a phase does not have
to be local on the last link; i.e., it can be distributed around
the ring and generate the same effect.
Following Ref. [12], the tunneling with a hopping phase

between the resonators can be induced by connecting
resonators that are antiresonant with the primary resonators,
as shown in the inset of Fig. 1. Specifically, we assume that
the perimeter of the primary resonators ismλ wherem is an
integer and λ is the resonant wavelength. If the perimeter of
the connecting resonators is chosen to be mλþ 3λ=2, i.e.,
antiresonant with the primary resonators, it will induce a
coupling between the two primary resonators described by
the Hamiltonian: −Jâ†i âj þ H:c. Now, the tunneling term
can take a phase if the optical paths for the forward and
backward hopping are different. In Refs. [12,13], this was
achieved by having a passive length imbalance between the
connecting paths. Similarly, if the index of refraction of the
upper and lower arms is changed with opposite signs, so that
the overall connecting resonator remains antiresonant with
the primary resonators, the forward and backward hopping
acquires opposite phases, described by the Hamiltonian:
−Jâ†i âjeiϕ þ H:c. Specifically, the hopping phase is equal to
ϕ ¼ 2πΔx=λ, whereΔx is the difference between the optical
path lengths in the connecting resonators. Such an index
change can be achieved through an optical [33] or electrical
[34] carrier injection or thermal tuning [35]. Alternatively, a
nonreciprocal phase can be induced by modulating the
connecting waveguides [36] or using optomechanics [11].
Regardless of the experimental scheme, the dispersion
relation of the ring is ω ¼ −2J cosðkΛþ ϕ=NÞ.
Note that the phase is divided by N since the hopping

phase is introduced only at one link and it does not depend

on how the phase is distributed over the lattice, as long as
the total hopping phase is equal to ϕ. In the context of the
conventional tight-binding model, k can be interpreted as
the Bloch wave number and Λ as the lattice spacing. Here,
kΛ is simply the phase difference between two adjacent
resonators. In a finite system, the eigenenergies are posi-
tioned on a finite number of points on the same dispersion
curve, as shown in Fig. 1(b). Changing the twist angle ϕ
shifts the energy spectrum in one direction, along the
dispersion curve. When one flux quantum is inserted
(ϕ ¼ 0 → 2π), the momentum of each energy state moves
by 2π=N and each state replaces the adjacent state in the
Brillouin zone, as shown in Fig. 1(b).
In a photonic system, such a state transfer can be probed

through transmission spectroscopy. Using the input-output
formalism [37], the field dynamics of the resonators is
given by

_̂aj ¼ i½H; âj� − ðδj;in þ δj;outÞκexâj
− δj;in

ffiffiffiffiffiffiffiffiffi
2κex

p
Eine−iωt; (2)

where κex is the extrinsic coupling rate between the probing
waveguide and the resonators. The indices “in” (“out”)
represent the resonators to which the input (output) probing
waveguides are connected. In the linear regime where
hâii ¼ ai, we can obtain the transmission in the output
channel as T ¼ jaout=Einj2, where Ein is the input field.
Figure 2 shows the transmission spectrum of the system
when the array is probed using an input and output
waveguide [shown in Fig. 1(a)]. Since the input and output
waveguides are coupled to single sites, the incoming
photon is coupled to all momenta and the transmission
spectrum only resolves the energy and not the momentum
of system eigenstates.
In the absence of the magnetic flux (ϕ ¼ 0), the spectrum

is twofold degenerate, which corresponds to Bloch waves
going clockwise and counterclockwise around the ring.
However, in the presence of the magnetic flux (ϕ ≠ 0),
the spectrum is not necessarily degenerate, and therefore, all
the states can be resolved using transmission spectroscopy
in the undercoupled limit (κex < 4J=N); i.e., the finite size
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FIG. 2 (color online). Probing the state transfer in a ring using
transmission spectroscopy. The simulation is performed for 10
sites and κex=J ¼ 0.1. The input and output probes are separated
by two sites, as shown in Fig. 1(b).
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of the system allows us to track the transfer of the states. We
readily observe that when ϕ∶0 → 2π, the transmission
spectrum returns to its original profile and each peak moves
and replaces its adjacent peak. We use similar tools to
investigate a two-dimensional system.
Annulus.—We consider an annulus similar to Laughlin-

Halperin’s argument [38,39] to study edge state transfer.
Specifically, following Hatsugai’s work [40], we consider a
2D lattice with a uniform perpendicular magnetic field,
where the Hamiltonian of the system is given by

Hmag ¼ −J
X

x;y

â†xþ1;yâx;ye
i2παy þ â†x;yâxþ1;ye−i2παy

þ â†x;yþ1âx;y þ â†x;yâx;yþ1; (3)

where â†x;y is the creation operator at the site (x, y), and α
characterizes the phase imbalance. Specifically, a photon
hopping around a plaquette, in the clockwise direction,
acquires the phase 2πα, in direct analogy to Aharanov-Bohm
phase. Therefore, α is the effective magnetic flux per
plaquette, and therefore, the total magnetic flux is
Nα ¼ αNxNy. As it was theoretically proposed in
Ref. [12] and experimentally demonstrated in Ref. [13],
this Hamiltonian can be implemented in an array optical
resonators. In particular, such hopping phases can be
obtained when the optical paths for the forward and back-
ward hopping are different, as described above (Fig. 1 inset).
For an infinite system, the Hamiltonian of Eq. (2) yields

the Hofstadter butterfly spectrum [41]. In particular, when
the magnetic flux is rational, α ¼ p=q with mutually prime
integers, the system has q distinct (gapped) bands [41]. On
a finite annulus, or any other equivalent topology, e.g., a
cylinder or a square with a hole in the middle, the system
has edge states which are spectrally located between the
magnetic bands and are spatially confined at the edges. The
dispersion of the edge states is shown in Fig. 3(b). As
shown by Hatsugai [40], the winding number of such edge
states is related to the Chern number of the bulk states, and
is given by the following Diophantine equation [42]:

n ¼ snqþ tnp; jtnj ≤ q=2; (4)

where tn and sn are integers and n is the gap index
(1 ≤ n ≤ q − 1), and tn is the winding number of the
nth gap. The Chern number of the nth bulk band is given
by tn − tn−1 with t0 ¼ 0.
Besides the overall uniform magnetic flux (α), we

assume that the system is threaded with a synthetic
magnetic flux ϕ through the hole of the annulus. When
the magnetic flux is changed from zero to one quantum, the
edge states are transferred [40]. We can easily trace the
edge states and count how many of them have been
transferred during the insertion of a magnetic flux. By
connecting the probing waveguides to the outer (inner)
edges, we can selectively couple to the outer (inner) edge

states, respectively, as shown in Figs. 3(c)–3(d). In par-
ticular, when the connecting waveguides are coupled to the
outer (inner) edge of the system, the coupling to the inner
(outer) edge is exponentially suppressed as expð−Ny=lBÞ,
where l−1B ¼ ffiffiffiffiffiffiffiffi

2πα
p

is the magnetic length, in units of the
lattice spacing.We focus on the third gap, where for a system
with α ¼ 1=4, the winding number is one (t3 ¼ −1),
according to Eq. (4). As shown in Figs. 3(c)–3(d), the edge
states are transferred by one peak, in agreement with the
value of the winding number, which is one in this case. The
case of winding number one is similar to the ring case which
was discussed above, where the insertion of a magnetic flux
transfers the edge states by one. Such a state transfer is in
direct analogy to the electronic case [38–40], where during a
flux insertion an integer number of states is transferred above
or below the Fermi level; in the photonic case, the frequency
of the incoming photons plays the role of the Fermi level, as
shown by a dashed line in Figs. 3(c)–(d). Note that the inner
and outer edge spectrum move in opposite directions. In
general, the number of edge states might be larger than the
winding number. Therefore, in transmission spectrum some
peaks may move forwards and some backwards. However,
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FIG. 3 (color online). (a) Cylinder or annulus topology, the
system is under a uniform magnetic flux per plaquette α and the
hole is threaded with a magnetic flux ϕ. (b) shows the dispersion
relation for ϕ ¼ 0. The bulk gap indices are shown. (c),(d) The
state transfer for inner and outer edges, respectively, where the
threading flux is changed from zero to 2π. The simulation is
performed for ðNx;NyÞ ¼ ð20; 10Þ, α ¼ 1=4, and κex=J ¼ 0.1.
Blue shades represent the bulk states. The dashed lines are guides
to the eye to highlight the number of edge states transferred
during a single flux insertion.
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since the winding number is a topological invariant, the
difference between the number of forward and backward
going states, at any frequency in the edge band, will be
uniquely determined by the winding number.
This scheme can be generalized to probe winding

numbers larger than one. Similarly, the insertion of a
magnetic flux does not change the eigenstates of the
system, and therefore, the transmission spectrum remains
intact. Since in the transmission spectroscopy the momen-
tum is not resolved, all the edge state curves in the
dispersion relation are projected onto the energy axis.
Therefore, at any fixed frequency in the edge band, multiple
peaks can pass during a flux insertion. In Fig. 4, we
consider the situation where α ¼ 1=6. For the fourth gap
(i.e., 0.6 ≤ ω=J ≤ 1.4), the winding number is t4 ¼ −2.
Therefore, two edge state resonances cross the dashed line.
Note that if group velocities of different edge state curves
are close to each other, resonances cross one after another
[e.g., 0.6 < ω=J < 1.0 in Fig. 4(b)]. In contrast, if group
velocities are very different than each other, then reso-
nances can cross each other [e.g., 1 < ω=J < 1.4 in
Fig. 4(b)]. However, in both cases, the number of reso-
nances crossing a fixed frequency line (shown by the
dashed line) is equal to the winding number, in this case
two. In general, if the winding number of the edge state is
tn, the edge resonances cross tn times any frequency in the
edge band when the twist angle is changed by 2π.
Moreover, the moving direction of the peak corresponds
to the sign of the winding number of the edge states.
Effect of disorder and loss.—In an experimental reali-

zation, photonic systems are impaired by loss and disor-
ders. Therefore, we evaluate the effect of such errors and
show that the proposed scheme can still probe the topo-
logical invariants. The major source of loss in silicon-on-
insulator technology is the propagation loss in silicon

resonators, where the guided photons leave the waveguides
through elastic scattering [43]. We characterize such loss in
our Hamiltonian in the form of −iκinâ

†
i âi where κin is the

field intrinsic decay rate to undesired modes. Figure 5(a)
shows the effect of such loss on the system of Fig. 2. We
observe that the presence of loss decreases the contrast of
the transmission spectrum, and as long as the loss rate is at
most an order of magnitude lower than the tunneling rate,
the transmission peaks are discernible. The other source of
error is the frequency mismatch between neighboring
resonators. Such disorder is a common problem in inte-
grated photonics [44–46] and can be characterized by a
random on-site potential at each siteUiâ

†
i âi [12]. Figure 5(b)

shows the effect of such disorder on the transmission
spectrum. The grey area highlights 1 standard deviation
from the averaged transmission in the presence of non-
magnetic disorder evaluated for a hundred realizations. As
expected from the theory of the integer quantum Hall effect,
disorder leads to a broadening of the edge state resonances;
however, they are still resolvable, as shown in Fig. 5(b). In
contrast, since the bulk states are more susceptible to
disorder, the corresponding resonances are washed out, as
shown on the left and right of the spectrum. We note that in a
physical realization, one may have other types of disorders,
such as inhomogeneous tunneling rates and hopping phases
(i.e., inhomogeneous magnetic field). However, as long as
disorders are weak enough such that the Hofstadter band
gaps are not closed, the topological order remains unchanged
(see the Supplemental Material [47]).
In conclusion, we have shown that different topologies

can be implemented in a photonic system and their integer
topological invariants can be measured using standard
transmission spectroscopy. The focus of this Letter was
the linear regime. Recently, it has been shown that, in the
presence of strong optical nonlinearity, an externally driven
system can form fractional quantum Hall states, such as
Laughlin states [48,49]. An interesting research direction is
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FIG. 4 (color online). (a) Dispersion relation of the fourth and
the fifth bands for α ¼ 1=6 for a 70 × 20 lattice. (b) Transmission
spectrum as a function of the twist angle ϕ for a 20 × 14 lattice.
The dashed lines are guides to the eye to highlight the number of
edge states transferred during a single flux insertion.
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FIG. 5. (a) Transmission spectrum for different values of
intrinsic loss κin=J ¼ 0, 0.01, 0.05, 0.1. (b) Transmission spec-
trum in the presence of intrinsic loss (κin ¼ 0.01) and a Gaussian
disorder [σðUÞ=J ¼ 0.1]. All the other parameters are the same as
Fig. 3.
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to extend these ideas to investigate topological invariants in
such driven interacting systems.
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