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Recent progress in nanoscale quantum optics and superconducting qubits has made the creation of
strongly correlated, and even topologically ordered, states of photons a real possibility. Many of these states
are gapped and exhibit anyon excitations, which could be used for a robust form of quantum information
processing. However, while numerous qubit array proposals exist to engineer the Hamiltonian for these
systems, the question of how to stabilize the many-body ground state of these photonic quantum simulators
against photon losses remains largely unanswered. We here propose a simple mechanism that achieves this
goal for Abelian and non-Abelian fractional quantum Hall states of light. Our construction uses a uniform
two-photon drive field to couple the qubits of the primary lattice with an auxiliary “shadow” lattice,
composed of qubits with a much faster loss rate than the qubits of the primary quantum simulator itself.
This coupling causes hole states created by photon losses to be rapidly refilled, and the system’s many-
body gap prevents further photons from being added once the strongly correlated ground state is reached.
The fractional quantum Hall state (with a small, transient population of quasihole excitations) is thus the
most stable state of the system, and all other configurations will relax toward it over time. The physics
described here could be implemented in a circuit QED architecture, and the device parameters needed for
our scheme to succeed are in reach of current technology. We also propose a simple six-qubit device, which
could easily be built in the near future, that can act as a proof of principle for our scheme.
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I. INTRODUCTION

The quantum simulation of exotic many-body states
using photons is an important emerging field. By adding
features such as three- and four-body interactions [1–4] or
artificial gauge fields [5–10], the many-body ground states
of these quantum simulators may become gapped and
topologically ordered, with anyon excitations. However,
these are open quantum systems, and will continuously
leak photons into the environment, eventually reaching an
empty vacuum state. To study the many-body physics of
these systems, one must therefore devise a scheme to
prepare the state and to refill hole states created by
photon losses. In this work, we propose a simple mecha-
nism that exploits the incompressibility of topological
phases of matter to autonomously generate and protect
nonequilibrium fractional quantum Hall (FQH) states
of light. Our work is motivated by recent remarkable
progress in circuit-QED systems [11,12], where the
experimentally demonstrated strong nonlinearity between

microwave photons can allow investigation of many-body
effects [13,14].
Following earlier work on dissipative state preparation

[15–19] and “dissipative gadgets” [20,21], we propose a
generic construction that could stabilize the FQH ground
states of strongly interacting lattice photons in an artificial
gauge field. The engineered dissipation source in our case
is an auxiliary “shadow” lattice of qubits with a fast decay
rate (ΓS), with tuned energies and couplings so that hole
excitations in the primary quantum simulator will be
resonantly refilled. Since unwanted particle addition from
thermal photons in the environment can be suppressed by
simply lowering the system temperature, rapidly refilling
lost photons is sufficient to protect the quantum many-
body state.
The basic idea of our scheme is captured in Fig. 1(a).

To illustrate the dissipative protection of a quantum
state, we consider a single nonlinear oscillator where
ω12 ¼ ω01 þ Δ. We wish to hold a single photon in the
oscillator (state j1i) against a loss rate ΓP. We do so by
coupling the oscillator to a single “shadow” spin with a
rapid decay rate ΓS, and applying a parametric two-photon
drive field, of strength Ω, which resonantly adds a photon
to the oscillator and excites the spin or removes a
photon from the oscillator and returns the spin to its
ground state. This coupling will rapidly add a photon to
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the oscillator whenever it is in state j0i, but leaves state j1i
unchanged; it cannot remove the photon, since the rapid
decay quickly returns the shadow spin to its ground state,
and it cannot add a photon, since the nonlinearity brings the
j1i → j2i transition far off resonance. Consequently, the
effect of such coupling can be effectively described by a
refilling rate ΓR and an error rate ΓE (corresponding to the
weak j1i → j2i process), as shown in Fig. 1(a). If we
consider Δ ≫ ΓS ∼ Ω ≫ ΓP, we have ΓE ≪ ΓP ≪ ΓR. j1i
is therefore the most stable state of the system with an
average occupation probability P1 ∼ 1 − ΓP=ΓS. This is in
contrast to the conventional photon-blockade effect under a
weak coherent drive, where the steady state of the system is
a superposition of different Fock states with a suppressed
Poisson distribution [22].
We demonstrate both analytically and numerically that

the many-body generalization of this simple mechanism
can protect FQH states for arbitrarily long times, leaving
only a small transient population of hole excitations due to
the finite refilling rate. Similar to the simple system
described above, in the FQH case it is the many-body
gap that plays the role of the nonlinearity Δ, ensuring that
refilling stops when the FQH state is reached. Our method
is particularly attractive for near-term experiments, as it
requires no state preparation sequence to initialize the
system; since the ground state is protected by dissipation,
one can simply turn on the shadow lattice coupling and wait
for the system to relax into a topological ground state. We
also discuss possible extensions of the shadow lattice to

protect other quantum simulator Hamiltonians and dem-
onstrate that the device parameters required for our scheme
to succeed are within reach of current superconducting
qubit technology.

II. FRACTIONAL QUANTUM HALL
STATES OF LIGHT

The lattice fractional quantum Hall systems we consider
are described by the combination of a topological flat
(Chern) band [23–31] and a local kþ 1-body interaction
(where k ¼ 1, 2, 3) [32–36], and have topologically
ordered ground states with anyon excitations. The total
system Hamiltonian is given by

HP ¼ −X
ij

Jijða†iPajPeiϕij þ H:c:Þ

þ Ukþ1

ðkþ 1Þ!
X

i

ða†iPÞkþ1ðaiPÞkþ1: ð1Þ

Here, the label P denotes the primary lattice, and a†jP=ajP
creates or eliminates a photon at site j. If each site is a
simple spin-1

2
degree of freedom, then the resulting hard-

core interaction yields an infinite U2; higher-order inter-
actions (larger k) can be realized through more complex
qubit arrangements [3,4]. The hopping matrix elements are
complex and model the Peierls phases of a uniform
magnetic field which penetrates the plane; there are a

FIG. 1. (a) Simple example of dissipative protection of a quantum state. We consider a nonlinear resonator P, coupled to an auxilliary
“shadow” spin S, and we wish to hold the resonator in the one-photon state j1Pi against a loss rate ΓP. We do so by coupling the
resonator and shadow spin with a two-photon driveΩ, which resonantly adds a photon to the resonator and excites the spin or removes a
photon from the resonator and returns the spin to its ground state. The nonlinearity Δ ≫ Ω suppresses the j1i → j2i transition, and if the
shadow spin has a fast relaxation rate ΓS ≫ ΓP, then j1;↓i is the most stable state of the system and all other configurations will rapidly
relax toward it, as described in the Introduction. (b) Many-body generalization of this mechanism to protect a lattice fractional quantum
Hall system (blue) from losses. The primary quantum Hall lattice is coupled to a shadow lattice (red) through a two-photon drive field, so
that when a many-body hole excitation is created by a photon loss on the primary lattice (rate ΓP), it is resonantly mixed with a particle
excitation on the shadow lattice (rate Ω), which rapidly decays (rate ΓS), returning the primary lattice to its many-body ground state.
If ΓS ≫ ΓP and Ω ≫ ΓP, holes will be refilled much more quickly than they are created, and the fractional quantum Hall ground state
becomes the most stable state of the system. The many-body gap of the topological ground state suppresses further particle addition once
the fractional quantum Hall state is reached.
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number of proposals in the literature to engineer these
phases [5–10,37–40]. These models are particularly robust
if the Kapit-Mueller lattice Hamiltonian [23] (or a similar
model devised by Atakişi and Oktel [31]) is used to set Jij,
as in that case the band is exactly flat and spanned by lattice
discretizations of the lowest Landau level (LLL) wave
functions of the continuum. We study the Kapit-Mueller
Hamiltonian in the remainder of this work. We define the
energy scale ~μ to be the combination of any chemical
potential terms and zero point of the flatband dispersion, so
that the energy of a particle in the LLL is − ~μ ¼ OðJÞ,
where ~μ > 0 for the Hamiltonian HP as written in Eq. (1).
The magnetic length (which sets the characteristic size of
the anyon excitations) is lB ¼ 1=

ffiffiffiffiffiffiffiffiffi
2πϕ

p
, where ϕ is the

density of magnetic flux quanta per lattice plaquette.
We define the filling fraction ν ¼ N=Nϕ, where N is the

number of particles in the system and Nϕ is the total
number of flux quanta penetrating the lattice. We assume
that one of the Ukþ1 is positive so that the interaction is
repulsive, and set all the other U’s equal to zero. Whenever
N < N� ≡ k

2
Nϕ, enough states remain in the LLL that

particles can always be added at a minimum energy cost− ~μ
(Fig. 1), but, ignoring edge effects, when N ¼ N�, the LLL
is saturated, so to add an additional boson, one must either
allow more than k particles to occupy a site or push bosons
into the excited bands. In either case, this costs a finite
amount of energy, so the system develops a many-body gap
Δ when N ¼ N�. At this density, the bulk system’s wave
function is known exactly and given by the Read-Rezayi
state of level k [41]. We label this state jGPi, and for k ¼ 1,
this state is nothing more than the ν ¼ 1=2 bosonic analog
of the Laughlin state found in 2d electron gases; its
excitations are quasiholes with half of the charge of the
fundamental bosonic particles. For k ¼ 2 and k ¼ 3, the
relevant states have non-Abelian anyons (Ising and
Fibonacci anyons, respectively), the collective states of
which are topologically protected from local operations
and can be used to encode and manipulate quantum
information [42].
We pause and point out an important property of the

spectrum shown in Fig. 2, which is that the quasihole
excitations of the system are dispersionless and noninter-
acting. This is a special bulk property of lowest Landau
level bosons with a repulsive contact interaction, and is not
true of most anyon systems. When a photon is lost, it
creates a pair of anyonic fractional charges that sum to a
whole boson, and if these fractional charges are pulled
apart, they can no longer be eliminated through local
perturbations. This is a generic property of anyonic
systems, but unlike other systems, such as Kitaev’s honey-
comb [43,44] or FQH states with long-ranged interactions,
the anyons in our model are noninteracting and dispersion-
less (they are composed entirely of LLL states for any set of
anyon positions, and the parent wave function perfectly
screens the interaction), and thus do not fractionalize on

their own. The spectral density of hole excitations is thus a
sharp band at ω ¼ − ~μ with contributions at all momenta,
and as we now demonstrate, this property allows for
extremely efficient refilling.

III. PHOTON LOSSES AND REFILLING

Here, we consider the effect of photon losses. We assume
that photons are lost at a uniform rate ΓP from each site in
the lattice, independent of the energetics or configuration of
the many-body state. The Hamiltonian [Eq. (1)] conserves
particle number, so there is no term to balance these losses,
and all many-photon states will eventually relax to the
empty state. To study FQH states, we must therefore
introduce a new term that counteracts the losses. In order
to highlight the necessity of our two-photon drive scheme,
we first consider the simplest mechanism for refilling,
namely, driving the system with a coherent drive:
E cosðω0tÞ

P
iða†iP þ aiPÞ. The eigenstates of the driven

system are resonant superpositions of many particle num-
bers, and are largely unaffected by the losses. However, the
weight of the strongly correlated state jGPi within these
superpositions decreases exponentially with increasing

N 2 N 1 N N 1

2

N

FIG. 2. Generic level diagram of lowest Landau level bosons
interacting through a repulsive contact interaction, governed by
the Hamiltonian HP [Eq. (1)]. If the contact interaction is a
(kþ 1)-body term, the system is gapless and degenerate until
N ¼ N� ≡ kNϕ=2, at which point the exact ground state is a
Read-Rezayi state of level k [41]. For all N < N�, particles can
always be added at a lowest Landau level energy of exactly − ~μ,
but for N > N�, the lowest energy state is at least the gap energy
Δ (which scales as the smaller of the hopping J and the
interaction energy Ukþ1) above − ~μN. This is simply the state-
ment that the fractional quantum Hall state accommodates exactly
N� particles in its ground state and additional particles added then
must go above the many-body gap. That hole states are massively
degenerate and isoenergetic reflects the fact that the anyonic
quasiholes are dispersionless and noninteracting, and thus do not
fractionalize on their own after being created locally through a
single-photon loss. Noninteracting topological defects are not a
generic feature of most anyon systems, and the lack of inter-
actions allows us to induce self-stabilization of the correlated
states through the shadow lattice construction.
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particle number N, so the signatures of FQH physics would
only be visible in extremely small systems [9]. A simple
coherent drive field is thus insufficient to prepare many-
body FQH states of photons.
We now present an alternative construction that can

stabilize jGPi in arbitrarily large systems. We first intro-
duce an auxiliary “shadow” lattice of qubits, one for each
site in the primary lattice, as shown in Fig. 1. Throughout
this work, we let the subscript P designate operators acting
on the primary lattice and S designate operators on the
shadow lattice. The shadow lattice sites are uncoupled
from each other, but coupled to the primary lattice sites
through a parametric two-photon drive field of the

form 2Ω cos 2ω0t
P

iða†iPσþiS þ aiPσ−iSÞ, where σþð−Þ
iS adds

(removes) a photon at shadow lattice site i. Such parametric
couplings can be achieved in any driven photonic system
with χð2Þ and χð3Þ nonlinearities. For example, in circuit
QED systems, such couplings have been experimentally
demonstrated at a few-photon level, using Josephson
parametric converters [45,46]. We now let the rest frame
excitation energies of sites in the primary and shadow
lattices be ωP and ωS. Passing to the rotating frame and
discarding counterrotating terms, the total system
Hamiltonian becomes

H ¼ HP þHS þHPS þ ðωP − ω0Þ
X

i

niP;

HS ¼
1

2
ðωS − ω0Þ

X

i

σziS;

HPS ¼ Ω
X

i

ða†iPσþiS þ aiPσ−iSÞ: ð2Þ

Here, niP ¼ a†iPaiP. When N ¼ N� ¼ kNΦ=2, the primary
lattice is in the FQH state jGPi, and there is a large gapΔ to
all excitations created by photon addition (a†iP). Similar
to the discussion above, we define − ~μ ¼ ωP − ω0 þOðJÞ
to be the lowest Landau level energy in the rotating frame,
i.e., the required energy to add or subtract a particle in the
absence of interaction. The frequency choice of the rotating
frame is arbitrary; however, we require that the two-photon
resonant condition ϵS ≡ ωS − ω0 ≃ ~μ holds. If Δ ≫ Ω, the
combined state jGP; 0Si (where the primary lattice is in a
FQH state and the shadow lattice is empty) is effectively
unchanged by the drive field; photon addition is suppressed
by the many-body gap, and photon removal by HPS is
entirely forbidden since the shadow lattice is empty.
Finally, we add the last ingredient: an engineered dissipa-
tion rate ΓS for every shadow lattice spin. We now show
that if Δ ≫ Ω ∼ ΓS ≫ ΓP, the combined state jGP; 0Si is
passively stable, meaning that it will have the lowest decay
rate of all states in the system’s combined Hilbert space,
and all other configurations will relax toward it over time.
We first consider the loss of a single photon in the

primary lattice, creating a local pair of quasiholes near

some site j (for bosonic states in the Read-Rezayi
sequence, the fundamental quasihole charge is q=2). As

remarked earlier, this state jψ ðjÞ
P i is an eigenstate of HP, so

the quasiholes remain localized and not disperse on their
own, and have an energy þ ~μ. However, when we turn on
the two-photon drive (Ω ≠ 0), the quasihole pair leaves an
open LLL state, so the two-photon drive can resonantly add
a photon to it, refilling the hole and adding a photon to the
shadow lattice as well (energy is conserved, as the shadow
lattice energy is approximately ~μ). The eigenstates of the
combined system are thus resonant superpositions of a
quasihole pair in the primary with an empty shadow lattice

(jψ ðjÞ
P ; 0Si), and configurations with a FQH state in the

primary lattice and a single photon at a shadow lattice site
near j (jGP; 1jSi). Since the shadow lattice photon decays
rapidly (rate ΓS), the combined state has a much faster
decay rate than jGP; 0Si, and will relax back to it. Thus, the
combined system has an induced decay rate for holes, and if
this rate is much faster than the hole creation rate ΓP, then
adding local holes will always increase the effective decay
rate and relax the system back to jGP; 0Si.
Here, we briefly remark on the issue of fractionalization

in these systems. When a boson is lost from a FQH state, it
leaves behind a pair of quasiholes, which are fractionally
charged anyon excitations, for which refilling is exponen-
tially suppressed if they are widely separated. However, the
processes that would separate quasiholes in this system are
higher order in ΓP=ΓS, so the creation rate for these
configurations is very slow. Further, the population of
individual anyons is self-limiting, since an increase in the
anyon density increases the rate at which nearby pairs will
be refilled by the shadow lattice. Thus, the equilibrium
configuration of the system will be a FQH state with a
small, transient population of quasiholes, as demonstrated
below.
We can quantify the refilling rate ΓR with a simple

Fermi’s golden rule calculation. The complete elimination
of the hole is a two-step process (in which the first step, the
transfer of the hole to a photon in the shadow lattice, is
reversible) and limited by the slower of the two rates. For
primary lattice states jψnPi and jψmPi, these rates are

Γn→m ¼ 2πΩ2ρSðϵn − ϵmÞjhψmPja†jPjψmPij2
× jh1jSjσþjSj0Sij2;

ρSðϵÞ ¼
1

π

ΓS=2
ðϵ − ϵSÞ2 þ ðΓS=2Þ2

;

Γn→mðtotÞ ¼
Γn→m × ΓS

Γn→m þ ΓS
: ð3Þ

For the refilling of a localized quasihole pair, the matrix
element in Γn→m is typically Oð1Þ, the shadow lattice
matrix element is unity, and the energy is ~μ, so the refilling
rate ΓR reduces to
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ΓR ¼ 4Ω2ΓS

4ð~μ − ϵSÞ2 þ Γ2
S þ 4Ω2

: ð4Þ

Analogous to the simpler case considered in the Introduction
and Fig. 1(a), if ~μ ¼ ϵS, the process is resonant and refilling
is extremely efficient. Conversely, if the energies do not
match, the refilling rate is suppressed, preventing significant
particle addition once the gapped state atN ¼ N� is reached.
For finite Ω=Δ, jGP; 0Si will be weakly mixed with states
with N� þ p particles on the primary lattice and p on the
shadow lattice, and when a shadow lattice photon decays in
one of these states, it leaves a comparatively stable particle
excitation in the primary lattice. The error rate ΓE of this
process has the approximate form

ΓE ¼ Ω2ΓS

ðΔþ ~μ − ϵSÞ2
þOðΩ4=Δ4Þ: ð5Þ

As ~μ≃ ϵS, this reduces to Ω2ΓS=Δ2, and we require it to be
small, such that ΓE ≪ ΓP ≪ ΓR, so jGP; 0Si remains
passively stable. This error rate could be easily compensated
through a slightly more complex shadow lattice construction
[47], but in many cases, ΓE is small enough that the primary
loss rate ΓP can efficiently protect the system against
incoherent particle addition. In all cases, the maximum
level of protection is set by the gap Δ, even though the loss
rate ΓP is independent of the many-body energetics of the
primary lattice itself.
Taking all of these rates into account, the dynamics of the

primary lattice are described by a Lindblad equation [48].
Considering the loss processes on both lattices and the
Hamiltonian H given by Eq. (2), the system’s density
matrix ρ evolves as

∂ρ
∂t ¼ − i

ℏ
½H; ρ� þ ΓP

2

X

j

ð2ajPρa†jP − fa†jPajP; ρgÞ

þ ΓS

2

X

j

ð2σ−jSρσþjS − fσþjSσ−jS; ρgÞ: ð6Þ

This form of the Lindblad equation is particularly appro-
priate to circuit QED architectures. The loss rates for both
lattices are independent of the energetic changes they
produce by removing a photon, which is a trivial statement
for the shadow lattice (there is only one excitation energy
for all the shadow qubits) but requires some justification for
the primary lattice. Photon losses from qubits in super-
conducting device arrays involve energy transfers on the
order of the qubit’s rest frame energy ωP into the envi-
ronment, and barring coincidental resonance effects (e.g.,
from ωP being close to a cavity mode in the surrounding
system), small changes in the photon energy should not
significantly change the loss rate. As typical qubit-qubit
couplings are on the order of g=h ∼ 10–100 MHz and bare
excitation energies are 5–10 GHz, changes to a lost photon

energy from many-body effects will be relatively insig-
nificant. Thus, it is appropriate to treat all the sites in the
primary lattice as simple, independent dissipators that lose
photons at a uniform rate, as in Eq. (6). In writing down
Eq. (6), we also ignore incoherent photon addition proc-
esses; as the surrounding environment is typically at a
temperature kBT, which is more than an order of magnitude
lower than ℏωP, these processes are exponentially
suppressed.
However, the full Hilbert space of the combined system

is exponentially larger than that of the primary lattice alone,
making Eq. (6) very expensive to evaluate in practice. We
can construct a much more tractable set of equations by
using Eqs. (3)–(5) to integrate out the shadow lattice. In the
Lindblad formalism, this amounts to adding a new set of
modified quantum jump operators to capture the incoherent
refilling process, with individual transition matrix elements
appropriately rescaled to capture the energy dependence of
the transition rates. In the basis of many-body primary
lattice eigenstates jψnPi, we define the primary lattice
quantum jump operators

ð ~a†jÞnm ≡ 2Ωffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γ2
S þ 4Ω2 þ 4ðϵS − ϵm þ ϵnÞ2

p ða†jPÞnm: ð7Þ

The primary lattice then evolves under the equation

∂ρ
∂t ¼ − i

ℏ
½HP; ρ� þ

ΓP

2

X

j

ð2ajρa†j − fa†jaj; ρgÞ

þ ΓS

2

X

j

ð2~a†jρ ~aj − f ~aj ~a†j ; ρgÞ: ð8Þ

The form of the coefficients in Eq. (7) is fixed by the
requirement that the transition rate for adding photons into
a LLL state (ϵS − ϵm þ ϵn ¼ 0) is equal to ΓR, but the
transition rates for adding photons above the gap
(jϵS − ϵm þ ϵnj ≥ Δ) is appropriately suppressed, matching
the rates computed in Eqs. (3) and (4). If we were to neglect
these modulating factors and simply insert an incoherent
particle gain term using the aj and a†j operators with a
coefficient ΓR, the many-body gap would be ignored and
the resulting steady state would simply be a single photon
at every site with a transient population of holes.
Equation (8) thus captures the energy selectivity of the
shadow lattice and the resulting many-body blockade when
N ¼ N�, and using primary lattice eigenstates jψnPi
obtained analytically or through exact diagonalization,
we can numerically integrate Eq. (8) to study the time
evolution of the system due to the incohrent loss and
refilling processes induced by decays on both lattices.
To confirm our analytical predictions, we conduct a

series of numerical simulations, where we use exact
diagonalization to generate the wave functions and system
density matrix, which we then evolve with the above
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Lindblad equations. We first consider both the full dynam-
ics of the shadow lattice [Eq. (6)] and the refilling rate
approximation [Eqs. (7) and (8)], and for the small systems
studied (4 × 4 lattices, due to the increased Hilbert space of
the full Hamiltonian), the refilling rate approximation gives
a quantitatively accurate description of the long-time and
metastable equilibria. Final average densities typically
agree to within 2% for ΓP ∼ 10−3Δ and Ω ∼ ΓS
∼25–100ΓP. As the refilling rate approximation is far less
computationally costly, we employ it in all our subsequent
calculations. Likewise, in Fig. 3, we show that a FQH state
with a small density of excitations is the equilibrium

configuration of the system. We initialize the system (in
this case, a 6 × 4 lattice with Nϕ ¼ 8 and hard-core two-
body interactions) in three distinct configurations: the
empty state with N ¼ 0, the Laughlin state at
N ¼ N� ¼ 4, and the Laughlin state with an extra quasi-
particle excitation (N ¼ 5), and then let time evolve by
numerically integrating Eq. (8). In all cases, the system
relaxes to the same equilibrium configuration, though
the approach to N� from the quasiparticle state is much
slower than from the empty state, as ΓP ¼ ΓR=50 for the
parameters chosen.
In the long-time limit, the density matrix ρ can be well

approximated by a thermal ensemble. Specifically, if
ΓR=ΓP ≫ 1 and ΓP=ΓE ≫ 1, the steady-state condition
dictates that the probability PN of finding N particles in the
system will be suppressed by a factor of ðΓP=ΓRÞN�−N [or
ðΓE=ΓPÞN−N�

for N > N�], relative to the probability PN�

of finding the system in a fractional quantum Hall state.
Average final densities as a function of ΓR=ΓP are plotted
in Fig. 4, demonstrating that the density of quasihole
excitations scales as ΓP=ΓR times a constant that depends
on the flux density ϕ. The equilibrium density matrix ρ is
effectively a thermal density matrix with an induced
(positive) chemical potential μind (replacing the LLL
energy ~μ) and temperature T ind, as shown in Fig. 5. The
positive chemical potential causes quasihole pairs to
be gapped, with the ratio μind=T ind≃ logðΓR=ΓPÞ [and
ðΔ−μindÞ=Tind≃ logðΓP=ΓEÞ]. The average occupations
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FIG. 3. Commensurability and incompressibility of the sta-
tionary state, computed in the refilling rate approximation for a
6 × 4 lattice with periodic boundary conditions, ϕ ¼ 1=3,
ΓR=ΓP ≃ 50, and ΓP ¼ 0.00067J. (a) The three curves initialize
the system’s density matrix in the empty state N ¼ 0 (blue, bottom
curve), the Laughlin state (purple, center curve), and the Laughlin
state with a quasiparticle excitation (gold, top curve), and time is
evolved by numerically integrating the Lindblad equation (8). In
all cases, the system relaxes to a Laughlin state with a negligible
density of excitations, as discussed in the text. Identical behavior is
observed in all cases studied. (b) Signatures of incompressibility in
this system. We plot the average number fluctuations ðhN2i −
hNi2Þ=N� for the same parameters and initial conditions, dem-
onstrating that number fluctuations are highly suppressed by the
combination of the energy gap Δ and the rapid refilling rate ΓR.
The small asymptotic value of ðhN2i − hNi2Þ=N� ∼ 0.05 stands in
contrast to the case of a gapless system subject to a coherent drive
field, where ðhN2i − hNi2Þ=hNi would be Oð1Þ.

10 20 30 40 50 60 R P0.92

0.94

0.96

0.98

1.00

1.02
N N

FIG. 4. Scaling of the equilibrium density versus the ratio of the
refilling rate ΓR to the primary loss rate ΓP. The data (blue dots)
are taken from simulations of 4 × 4, 5 × 5, and 6 × 4 lattices with
Nϕ ¼ 6, 8, or 10 and hard-core two-body interactions, for various
choices of Ω ∼ ΓS [with the refilling rate ΓR estimated from
Eq. (4) with ~μ ¼ ϵS], and ΓP. Values of N=N� > 1 are due to
incoherent quasiparticle addition above the Laughlin state, which
occurs at a rate ΓE ≪ ΓP, as described in the text. The blue curve
N=N� ¼ 1.008 − 0.66ΓP=ΓR is a numerical fit to the data, and
the coefficient of 0.66, rather than a number close to unity, stems
from geometric considerations (the finite size of quasiholes
means that multiple sites contribute to their refilling, while a
single site contributes to their creation for a given loss event) and
the contribution from incoherent quasiparticle addition rates. The
incoherent addition rate increases with increasing Ω and ΓS, and
thus generically grows with increasing ΓR for a given ΓP.

ELIOT KAPIT, MOHAMMAD HAFEZI, AND STEVEN H. SIMON PHYS. REV. X 4, 031039 (2014)

031039-6



of all LLL states at a givenN are equal, and we observe this
behavior in models with Laughlin (U2 → ∞) and Pfaffian
(U3 → ∞; U2 ¼ 0) ground states of up to eight particles on
small lattices of up to 25 sites with periodic boundary
conditions, computed using the refilling rate approxima-
tion. As we would expect, the equilibrium density matrix is
an incoherent mixture of the LLL states; off-diagonal
matrix elements of ρ between the degenerate ground states,
which would indicate phase coherence, are negligible.
Example density matrices for equilibrium configurations
of these lattices are shown in Fig. 5.

It is important to note that in the presence of impurities
(which locally prevent refilling and bind anyons) or non-
trivial boundary conditions, these systems have topologi-
cally degenerate ground states. These states are mixed by
losses and refilling, but this is a weak process, since the
fractionalization of quasiholes is exponentially suppressed,
particularly at high flux densities. In the small systems that
are accessible to us through exact diagonalization, the
exponential tails of the relevant correlation functions are
long enough to cause significant mixing through single-
boson operations, but in large systems, this should no
longer be the case. The degree to which the shadow lattice
could passively protect quantum information encoded in
the topological ground state degeneracy of large systems
(and the degree to which these systems thermalize, given
the relative inaccessibility of highly fractionalized configu-
rations) is thus an open question. A future study that uses
the exact solubility of the Kapit-Mueller Hamiltonian to
generate the eigenbasis analytically (likely evaluating the
wave functions themselves through Monte Carlo methods)
could probe fractionalization effects more directly in much
larger systems, but it is beyond the scope of this work.

IV. IMPLEMENTATION THROUGH
CIRCUIT QED

As remarked earlier, we feel that circuit QED architec-
tures provide a promising path to realizing the system
described in this paper. Using modern charge-insensitive
qubit designs, such as flux, transmon, or fluxonium qubits
[11,12] to construct the primary lattice, the two-photon
drive field could be readily implemented through a set of
Josephson parametric amplifiers [45,46], and the artificial
gauge field could be engineered through appropriate
patterns of phase-shifted drive fields [4,10]. The next-
nearest-neighbor couplings required to implement the
Kapit-Mueller Hamiltonian could be realized through a
multilayer fabrication process. Periodic boundary condi-
tions could also be engineered in this manner, though they
would be technically challenging to implement. We caution
that as this system has gapless edge modes, the effect of the
shadow lattice on edge states is an open question and
beyond the scope of this work. However, recent experi-
ments have already demonstrated periodic boundary con-
ditions along one dimension [50], so a torus geometry
should be feasible in the future.
Given the excitation energies and nonlinearities of

these qubits, nearest-neighbor couplings J=h up to 2π ×
100 MHz are feasible, and primary lattice decay rates
100 ≥ ΓP ≥ 10 kHz are readily achieved in planar qubit
architectures. This, in turn, suggests an upper limit of
Δ=ΓP ∼ 104, allowing for extremely effective refilling.
The most straightforward experimental probes to dem-

onstrate the presence of a FQH state are density measure-
ments. As the system is gapped at N� ¼ kNϕ=2 [where Nϕ

is the number of flux quanta in the system and the system
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FIG. 5. Long-time stabilization of (a) Moore-Read and
(b) Laughlin states. (a) Using the refilling rate approximation
[Eqs. (7) and (8)], we study the dynamics of a 6 × 4 lattice with
periodic boundary conditions, ϕ ¼ 1=4, and a hard-core three-
body interaction. In this limit, the exact ground state at N¼N� ¼ 6
is a Moore-Read state [49], which is threefold degenerate on the
torus. In the figure, we plot the logarithm of the ordered
eigenvalues ρα describing the equilibrium occupation of the lowest
Landau level states (other states not shown) for ΓR ¼ 200ΓP and
ΓR ≪ Δ. Each level corresponds to a fixed particle numberN, with
N ¼ 6 being the Moore-Read state. The equilibrium occupations
(probability of finding the system in that state when a measurement
is made) of the LLL states can be modeled by an induced chemical
potential and temperature μind=T ind ≃ logðΓR=ΓPÞ. The final
occupation of the three Moore-Read states is 99% in this case.
In such a small system, equilibration was rapid, but as remarked in
the text, the exponential suppression of fractionalization in large
systems leaves the equilibration rate an open question. (b) Long-
time configuration of a 5 × 5 lattice with Nϕ ¼ 10 and hard-core
two-body interactions, with ΓR ¼ 100ΓP. The occupation of the
two Laughlin states at N ¼ N� ¼ 5 is 95%.
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Hamiltonian exhibits (kþ 1)-body contact interactions],
the small number fluctuations hN2i − hNi2 ¼ OðΓ2

P=Γ2
RÞ at

N ≃ N� would be a clear signature of strong correlations.
To confirm that the gapped state is a FQH state, one could
vary the flux density ϕ of the artificial gauge field. As the
FQH state occurs at N� ¼ kNϕ=2, the equilibrium density
of the system will track the flux density as it is increased or
decreased. We caution, however, that obtaining the flatband
in the Kapit-Mueller Hamiltonian requires the magnitudes
of the next-nearest neighbor couplings to depend on the
flux density, but for small changes in ϕ, the resulting small
bandwidth should not disrupt the FQH physics. Ranged
density correlation functions could likewise be used to shed
light on the underlying topological state. Finally, as
remarked earlier, local impurities will bind single quasi-
holes (with the effective charge of half a boson), and the
energy shift of the impurity will prevent refilling. The
fractional nature of these excitations can be confirmed
through density measurements—the average photon num-
ber in a sufficiently large region surrounding an impurity
will be equal to the same quantity in the unperturbed state
minus one half. That a local impurity removes half a
particle is a strong signature of fractionalization, though it
does not confirm the anyonic statistics of the quasiholes.

V. SIMPLE DEVICE TO DEMONSTRATE
PASSIVE ERROR CORRECTION

Finally, while the quantum Hall systems we consider
would be tremendously exciting to realize, and the device
parameters required for the shadow lattice to work have
already been attained in previous experiments, the sheer
size and complexity of these circuits present real chal-
lenges. It is thus worth considering models that could
demonstrate the fundamental result of this work—that a
properly tuned single-particle shadow lattice can protect
interesting many-body states against photon losses—using
only a handful of qubits. We now present one such
implementation.
We consider a primary ring of three superconducting

qubits, as shown in Fig. 6(a). We couple each of these
qubits with a parallel combination of the two-photon drive
field described earlier and an ordinary capacitive coupling,
which takes the form σþiPσ

−
jP þ σ−iPσþjP in the rotating frame.

This coupling can be straightforwardly achieved through
the flux-biased Josephson junction coupling shown in
Fig. 6(a). If we choose ΦðtÞ ¼ ðΦ0=4Þð1þ f cos 2ωtÞ,
where Φ0 is the superconducting flux quantum, f ≪ 1
and ω is the excitation energy of the qubits, the only part of
the Josephson coupling that survives in the rotating frame is
the two-photon drive term. We choose the coefficients of
both the two-photon and exchange terms to be equal, and
their resulting sum is a pure σxiPσ

x
jP interaction with

energy −J. We then add three additional shadow qubits
(which could be simple resonators in this case), which are
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FIG. 6. A simple circuit to demonstrate passive error correction.
(a) Ring of three primary superconducting transmon qubits
(P1; P2; P3, outlined in blue), coupled capacitively to three
shadow qubits (S1; S2; S3, outlined in red). The small Josephson
couplings that link the primary qubits are biased by a time-
dependent flux ΦðtÞ, which implements the two-photon drive
field. Combined with the internal capacitances of the junctions,
the resulting interaction is −JσxiPσxjP in the rotating frame. As
described in the text, the shadow lattice qubits rapidly correct
single bit-flip errors, protecting both of the degenerate ground
states of the primary lattice Hamiltonian. (b) Demonstration of
state protection for this circuit, with g ¼ 0.05J and ΓS ¼ 0.1J
(ΓR ¼ 0.05J). We initialize the system in the ground state j111i
and numerically integrate the Lindblad equations for the full
system’s evolution. For ΓP ¼ f10−3; 5 × 10−4; 2.5 × 10−4gJ, the
observed decay rates for the ground states j000i and j111i are
f4.6 × 10−5; 1.3 × 10−5; 3.8 × 10−6g, demonstrating the effec-
tiveness of the error correction.
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coupled through a weak capacitive interaction with their
corresponding primary qubits, and choose their excitation
energies to be 4J higher than the energies of the primary
qubits. Our total rotating frame Hamiltonian is

H ¼ −Jðσx1Pσx2P þ σx2Pσ
x
3P þ σx3Pσ

x
1PÞ

þ
X3

i¼1

½gðσxiPσxiS þ σyiPσ
y
iSÞ þ 2JσziS�: ð9Þ

We now let J ≫ g≃ ΓS ≫ ΓP, replicating the scale
hierarchy of the many-body shadow lattice. The ground-
state manifold of Eq. (9) is twofold degenerate, and up to
tiny corrections from the coupling to the shadow lattice, the
ground states are simply j000i and j111i in the σx basis, in
both cases with all shadow qubits in their ground states.
When a photon is lost from the primary lattice, the resulting
σ−iP ¼ σxiP − iσyiP operation can tip the system into one of its
excited states, but thanks to the σyiPσ

y
iS coupling to the

shadow lattice, the true excited states of the system are
resonant superpositions of a spin flip on the primary lattice
with the corresponding shadow qubit in its ground state and
the primary lattice in its ground state with an excitation
in one of the shadow qubits. As in the quantum Hall
lattice, the shadow qubits rapidly relax, protecting the
primary lattice ground-state manifold through engineered
dissipation.
This circuit thus replicates the “textbook” three-qubit bit-

flip code [51], with the energy selectivity of the shadow
lattice taking over the role of an observer acting in response
to measurements. If the refilling rate ΓR is fast compared to
ΓP, then mixing between j000i and j111i (again, in the x
basis) will be heavily suppressed, as a second spin flip must
occur before the first flip is corrected in order to induce a
transition between the two ground states. If we thus take
j000i and j111i as our logical states, the shadow lattice is a
genuine source of quantum error correction, protecting the
system against bit-flip errors. This protection is demon-
strated in Fig. 6(b); beginning in the j111i state, we
integrate the Lindblad equations for the full six-qubit
system to show that the shadow lattice suppresses the rate
at which the two spin states are mixed by a factor of ΓP=ΓR.
As ΓR > 10 MHz is achievable in this setup, it is poten-
tially much more effective than measurement-based
approaches.
However, like the three-qubit bit-flip code, it does not

protect the logical qubit against dephasing. For an arbitrary
superposition jψi ¼ αj000i þ βj111i, the magnitudes jαj
and jβj are protected by the shadow lattice, but the relative
phase argðα=βÞ is not; the σxiP component of a photon loss
operation does not excite the primary qubits, but it returns
opposite signs for the two ground states, dephasing the
superposition. More complex constructions could be
introduced to protect the system from dephasing as well,
but they would require higher-order n-qubit interactions

(where n > 2) and are thus much more difficult to
engineer.

VI. DISCUSSION AND EXTENSION TO
OTHER SYSTEMS

In this work, we present a simple construction that can
protect a topologically ordered, anyonic state of photons
against losses without any active intervention from external
observers. While bosonic fractional quantum Hall states are
particularly exotic and fascinating phenomena, they are by
no means the only system that could be stabilized through
a shadow lattice construction. The shadow lattice is funda-
mentally a local energy pump, which is tuned to be
extremely efficient for a narrow energy range. If photon
losses or decoherence create finite energy excitations in a
primary lattice, and the coupling to the shadow lattice
acts as the inverse of the error process, then these excitations
can be rapidly eliminated so long as the energies on the two
lattices match. Because of the unique spectrum of lowest
Landau level bosons with contact interactions, a single
shadow lattice energy is enough to stabilize the state.
Other primary lattice Hamiltonians could similarly be

passively stabilized, provided that they have a many-body
gapΔ. Models where the hole excitations are dispersive, for
example, could be stabilized by adding dispersion to the
shadow lattice through hopping terms between shadow
lattice sites; if the many-body dispersion of holes in the
primary lattice roughly matches the single-particle
dispersion on the shadow lattice, refilling will still be very
efficient. However, Hamiltonians where defects are
strongly interacting would be much more difficult to
stabilize than the FQH system considered here. A 1d
Ising chain of more than three sites is the simplest model
that falls into this class: single spin flips could be
eliminated rapidly, but two or more adjacent spin flips
produce extended domains that a single-band shadow
lattice could not correct. Quantum loop gases, such as
the toric code [52,53], would likewise require much
more complex constructions to be passively stabilized.
Though beyond the scope of this work, a more general
method for engineering shadow lattices to correct extended
and multibody errors in photonic systems would be
an invaluable tool for future experiments in quantum
simulation.
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