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In this article, we review the recent progress in the implementation of synthetic gauge
fields for photons and the investigation of new photonic phenomena, such as non-
equilibrium quantum Hall physics. In the first part, we discuss the implementation of
magnetic-like Hamiltonians in coupled resonator systems and provide a pedagogical con-
nection between the transfer matrix approach and the couple mode theory to evaluate
the system Hamiltonian. In the second part, we discuss the investigation of nonequilib-
rium fractional quantum Hall physics in photonic systems. In particular, we show that
driven strongly interacting photons exhibit interesting many-body behaviors which can
be probed using the conventional optical measurement techniques.
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1. Introduction

In his famous 1981 lecture “Simulating physics with computers”, Feynman high-

lighted the impossibility of simulating quantum systems using classical computers.

The underlying problem is that the computational power required to describe a

quantum system, i.e., the Hilbert space, scales exponentially with the number of

its constituents. To overcome this issue, he proposed that a “quantum simulator”

is needed that operates according to the laws of quantum mechanics. During the

past decade, with the unprecedented degree of control on the light-matter inter-

action, physicists have been able to implement such ideas in various ultracold gas

systems where neutral atoms play the role of the quantum register.1 Many efforts

have been focused on synthesizing magnetic field for neutral atoms to simulate

phenomena such as the quantum Hall effects.2 More recently, photonic systems

have been investigated as a new platform to implement such synthetic fields. In

particular, there has been an increasing interest in implementing magnetic fields

for photons in two dimensions using various techniques: application of strong mag-

netic field,3,4 polarization scheme,5 opto-mechanics,6 differential optical path,7–9
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bi-anisotropic metamaterials,10 harmonic modulation.11 There has been also recent

intriguing progress in side-coupled waveguide systems where the propagation along

the waveguide plays the role of time. Examples include: emulation of edge states as

localized state at the two ends of a one-dimensional array,12 topological states in

photonic quasi-crystals,13 strain induced magnetic field14 and topological Floquet

states in helical waveguides.15 At the same time, there has been efforts to imple-

ment synthetic gauge fields in circuit-QED systems.16,17 In particular, breaking

time-reversal symmetry using biased circulators,18 qubit-assisted tunneling.19

In this article, we review the implementation of the synthetic magnetic field in

coupled resonator systems. We start by providing a pedagogical connection between

the transfer matrix approach and the couple mode theory to evaluate the system

Hamiltonian and show that such noninteracting systems can be described by the

integer quantum Hall model. Next, we discuss that by adding strong nonlinearity

into the system, the system can enter the regime of the fractional quantum Hall

physics and its many-body signatures can be probed using the conventional optical

measurement techniques.

2. Creating Synthetic Gauge using Coupled Resonators

In this section, we show that the coupled resonators can simulate a magnetic-like

Hamiltonian based on differential optical path lengths. In particular, a nonzero

magnetic field can be synthesized using an imbalance between the optical paths

that connect resonators. In order to show this, we first review the equivalence

between the transfer matrix method and the coupled mode theory for two simple

systems: a single resonator and a three-resonator system coupled to two probing

waveguides. For the three-ring system, we show that the asymmetric coupling of

the middle resonator can be described by a nonzero magnetic-phase in the effective

Hamiltonian.

We begin by the simplest example: a ring resonator coupled to two waveguides,

as shown in Fig. 1(a). In photonics, such system is known as the add/drop filter. We

assume that the resonator has a single optical mode. Therefore, using the coupled

mode theory (input–output formalism20), we can write the dynamics of the field

inside the resonator as:

dE
dt

= (−κin − 2κex)E −
√
2κex Eine−iωt , (1)

where κex is the coupling rate between the probing-waveguide and the resonator and

κin is the field decay rate to undesired modes. We assumed that a monochromatic

field with the amplitude Ein and the detuning ω drives the system, as shown in

Fig. 1(a). The output field in the drop port is related to the field inside the resonator

by: Eout =
√
2κex E . Consequently, by solving the dynamics in the Fourier domain,

we obtain the transmission in the drop port as:

rSM =

√
2κex E

Eine−iωt
=

2κex

iω − 2κex − κin

. (2)
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Fig. 1. (a) A resonator connected to two probing waveguides, (b) the transfer matrix formalism
and the coupled mode theory yield the same results, for frequencies around the resonance. The
parameters are ǫ = 0.5, α′L = 0.05.

Now, we evaluate the transmission properties using the transfer matrix formal-

ism. The waveguide-resonator coupling regions can be described as:

Mcoupl =
1

t

(

−r2 + t2 r

−r 1

)

,

(

d

c

)

= Mcoupl

(

a

b

)

,

(

g

h

)

= Mcoupl

(

f

e

)

,

where t and r are the transmission and reflection coefficients of the coupling regions.

Furthermore, we assume that the propagation constant is β = 2πn/λ, where n is

the index of refraction and λ is the wavelength, and the absorption constant is α′.

Therefore, the free propagation inside the resonators is given by:

Mprop =

(

eiβL/2−α′L/2 0

0 e−iβL/2+α′L/2

)

,

(

f

e

)

= Mprop

(

d

c

)

. (3)

We are interested in a limit where the coupling loss can be ignored (i.e., |t|2+ |r|2 =

1) and the junctions are highly reflective. In other words: r →
√
1− ǫ2, t → iǫ, where

ǫ ≪ 1. The regime of interest is near the resonant frequency of the resonator, and

is much smaller than the free spectral range (FSR), so we consider βL ≪ 1. Since

the propagation loss over a typical distance in these systems is not large, we take

α′L ≪ 1. The input field is only present at one port, as shown in Fig. 1(a), so we

can replace: a = 1, h = 0. Keeping terms to the total 2nd order in ǫ2, βL, α′L, both

in the numerator and the denominator, we find that the field in the drop channel

can be simplified as:

rSM =
ǫ2

iβL− α′L− ǫ2
. (4)

Now, if we use the following substitutions:

ǫ2 → 4πκex

FSR
, α′L → 2πκin

FSR
, βL → 2π

ω

FSR
, (5)
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Fig. 2. (a) Two ring resonator coupled with a hopping phase (φ). (b) Two ring resonators cou-
pled through an off-resonant middle ring. These two systems are equivalent around the resonant
frequency of side resonators.

we see that Eqs. (4) and (2) are equivalent. One can also compare these two ap-

proaches, using the exact expressions, as shown in Fig. 1(b). Both formalism agree

with each other around the resonant frequency.

In the following, we show that the dynamics of two ring resonators that are

coupled through a middle off-resonant ring can be effectively written as two res-

onators coupled with a “hopping phase”. We evaluate transport properties in both

cases and show that they are identical, around the resonant frequency of the side

resonators.

First, we derive the transmission and reflection coefficients of two rings coupled

with a hopping phase. The Hamiltonian describing such system can be written as:

H = −Jâ†2â1e
−iφ − Jâ†1â2e

+iφ , (6)

where J is the tunneling rate and φ is the hopping phase, as depicted in Fig. 2(a).

Note that by hopping phase we mean a Hamiltonian of the kind written in Eq. (6).

This should not be confused with optical nonreciprocity which requires an external

field, cf. Refs. 6 and 11. Similar to the single resonator case, using coupled mode

theory, we can write the dynamics of the field inside the resonators as:

d

dt

(

a1

a2

)

=

(

−κin − κex iJe+Iφ

iJe−Iφ −κin − κex

)(

a1

a2

)

−
√
2κex

(

Ein
0

)

. (7)

The output field of the resonators is given by: aout2 =
√
2κex a2, a

out
1 = 1+

√
2κex a1.

Consequently, the transmission and reflection coefficients, as defined in Fig. 2, are

given by:

rSM =

√
2κex a2
Ein

= − 2ie−iφJκex

J2 + (iω − κex − κin)2
,

tSM =

√
2κex a1 + 1

Ein
= 1 +

2κex(+iω − κex − κin)

J2 + (+iω − κex − κin)2
.

(8)

Now, we consider two ring resonators that are coupled through a middle off-resonant

ring, as shown in Fig. 1(b). We use the transfer matrix formalism to derive the

transmission of the system. The transfer matrix for the waveguide-resonator and
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resonator–resonator coupling regions, respectively, are given by:

M1 =
1

t1

(

−r21 + t21 r1

−r1 1

)

,

M2 =
1

t2

(

−r22 + t22 r2

−r2 1

)

,

where ti and ri are the transmission and reflection coefficients of the coupling

regions. Therefore, the waveguide-resonator couplings can be written as:
(

e

h

)

= M1

(

a

c

)

,

(

l

s

)

= M1

(

r

k

)

. (9)

We assume that the length of the side resonators (the middle resonator) is L (L+η),

so that the middle resonator remains off-resonant with the other two. Furthermore,

the middle resonator is shifted vertically by x to induce the hopping phase, as we

show. Therefore, the free propagation inside the side resonators is described by

Eq. (3). The propagation inside the middle rings is given by:
(

m

p

)

= M2

(

eiβL/2+iβη−i2βx−α′L/2 0

0 e−iβL/2−iβη−i2βx+α′L/2

)

M2

(

u

q

)

. (10)

Again, keeping terms to the total 2nd order in ǫ2i , βL, α
′L, we find that the field

in the drop channel can be simplified as:

rTM =
2e−iβxǫ21ǫ

2
2

2(2α′L− 2iβL+ ǫ21)ǫ
2
2 cos(βη) − i((2α′L− 2iβL+ ǫ21)

2 + ǫ42) sin(βη)
.

(11)

To compare this expression with the one obtained from the single-mode approxi-

mation [Eq. (8)], we use the following substitutions:

ǫ21 → 4πκex

FSR
, ǫ22 → 4πJ

FSR
, α′L → 2πκin

FSR
, βL → 2π

ω

FSR
, βx → φ (12)

and we have

rTM =
2e−iφJκex

2J(κex + κin − iω) cos(βη) − i(J2 + (κex + κin − iω)2) sin(βη)
. (13)

In the special case where βη = 3π/2, this expression reduces to Eq. (8). This

means that if the middle ring is precisely anti-resonant with the side rings, the

three rings can be effectively described by two resonators coupled with a hopping

phase. If we have βη = π/2, the two models are again the same, only the sign

of the tunneling is reversed (J → −J). When the middle resonator deviates from

the anti-resonant condition (βη = π/2, 3π/2, . . .), the system can still be effectively

described by two resonators with a hopping phase, however, the effective tunneling

is Jeff → J/ sin(βη) and system is shifted in frequency by ω → ω − J cot(βη).
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Fig. 3. (Color online) (a) A 2D lattice of coupled resonators which is described by a magnetic
tight-binding model [Eq. (14)], (b) Hofstadter butterfly spectrum. Each point represents a trans-
mission greater than 0.005, for a 10 × 10 lattice with torus boundary condition and coupling
κex/J = 0.02. The red line is a guide for the eye to show the spectrum at the specific magnetic
field (α = 0.25). The bulk and edge band are highlighted.

Now, we consider a two-dimensional system of coupled resonators, where two

sets of resonators play the role of sites and links of a lattice, as shown in Fig. 3.

We arrange the system so that the phase imbalance is only present in the row link-

resonator and increases by the row number. The dynamics of the system near the

resonance of the site resonators is described by the following Hamiltonian

Hmag = −J
∑

x,y

â†x+1,yâx,ye
i2παy + â†x,yâx+1,ye

−i2παy

+ â†x,y+1âx,y + â†x,yâx,y+1 , (14)

where a†x,y is the creation operator at site (x, y), J is the effective tunneling rate

between resonators and α characterizes the phase imbalance. In particular, a pho-

ton hopping around a plaquette, in the counter-clockwise direction, acquires the

phase 2πα, in direct analogy to Aharanov–Bohm phase. Therefore, α is the effec-

tive magnetic flux per plaquette and the total magnetic flux is Nφ = αNxNy.

In this discussion, we assumed only counter-clockwise photons in the site- (link-)

resonators. The opposite circulating photon experience the opposite magnetic field.

Therefore, the system is equivalent to two copies of integer quantum Hall systems

with opposite magnetic fields, in direct analogy to a special case of the quantum

spin Hall physics in electronic systems.21

The Hamiltonian in Eq. (14) is identical to that of an electron on a lattice

with a uniform magnetic field and the spectrum of the system is known as the

Hofstadter butterfly, when Nx, Ny → ∞. The spectrum of such photonic system can

be probed using transmission spectroscopy. By applying the input–output formal-

ism, we can evaluate different transport coefficients. In this section, the dynamics is

linear, therefore, the “quantum” input–output formalism reduces to the “classical”
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coupled mode theory, by replacing the field operator with the corresponding ex-

pectation value, i.e., 〈âx,y〉 = ax,y. The field dynamics of the resonators is given

by:

dâx,y
dt

= i[H, âx,y] + [−κin − κex(δx,xin
δy,yin

+ δx,xout
δy,yout

)]âx,y

−
√
2κex (δx,xin

δy,yin
)Eine−iωt , (15)

where κex is the coupling rate between the probing-waveguide and the site res-

onators and κin is the field decay rate to undesired modes. “In” (“out”) represents

the resonators to which the input (output) probing waveguides are connected. We

assume a monochromatic input field at the left-bottom corner resonator, with am-

plitude Ein and detuned by ω from the resonance, as shown in Fig. 3(a). Going

to the Fourier domain and evaluating the steady-state solution, we can obtain the

transmission in the output channel as T = |axout,yout
/Ein|2.

Since an infinite system can be simulated by a finite system with periodic bound-

ary condition, we study a 10×10 lattice with torus boundary condition. Figure 3(b),

shows the transmission profile when the magnetic flux varies from 0 to 2π. We ob-

serve that a finite version of the Hofstadter’s fractal appears.

In a finite lattice, there exist states between magnetic bulk bands which are

known as “edge states”. In direct analogy to quantum Hall physics, such quasi one-

dimensional states localized at the perimeter of the system which carry current. In

particular, for certain frequency bands, the field in resonators located in the bulk

(away from the edges) undergoes destructive interference and, therefore, the light

intensity is nonzero only at the edges. This is illustrated in Fig. 4(a). For each

edge state, there is a corresponding edge state with an opposite chirality. More

specifically, the forward- and backward-propagating edge states take different paths,

and consequently, they have different resonances at detunings, equal in magnitude

and opposite in sign.

(a) (b)

input

output

input

output

Intensity

(normalized)

Fig. 4. Light intensity for a 10×10 lattice (a) in the absence and (b) in the presence of disorder.

For (b) the resonator (x, y) = (5, 1) is detuned by U = 20 J . For both figures, the parameters are:
(κex, κin)/J = 0.2, 0.1, α = 0.25 and the system is excited at ω = 2 J .
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Again in direct analogy to integer quantum Hall edge state, such edge states

are immune to disorders in the form of random potential. In particular, when an

impurity is located on the edge — the resonator is detuned (Uâ†x,yâx,y) — the edge

state routes around it, as shown in Fig. 4(b) for the test case of a single disordered

site. More precisely, scattering which would reverse the current is prevented because

the backward going edge state has a different energy, as discussed above, preventing

elastic scattering.

Transport through edge states requires the photon to traverse the perimeter

of the system, leading to a time delay proportional to the transverse resonators.

Since such transport is robust against frequency mismatch of among resonators,

such two-dimensional systems provide a robust alternative to conventional CROW

in photonic delay lines.7

3. Nonequilibrium Fractional Quantum Hall Physics

In this section, we show that the above system can be extended to investigate

strongly interacting photonic states. In particular, by inducing strong photon–

photon interaction, we show that certain fractional quantum Hall states can be

generated, and their signature can be probed using the correlation function mea-

surement.

Photon–photon interaction can be mediated by coupling emitters (e.g., atoms)

to each resonator, as shown in Fig. 5. In the strong coupling regime, where the

photon blockade is observed,22–24 this interaction can be represented as an on-site

interaction in a Bose–Hubbard model for a coupled array of resonators.25–27 As

atomic 

ensembles

control

field

Ω

Ω

Δ’ Δ

Γ Γ

Fig. 5. Atomic ensembles are coupled to resonators to mediate interaction. Inset: Mediating
interaction using N-level atomic ensemble. A control field couples the internal levels, and provides
on-site interaction for photons.
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shown in Refs. 28–31, in the presence of a synthetic magnetic field, such interacting

system of photons can be described by a Hamiltonian which is identical to the

fractional quantum Hall Hamiltonian on a lattice:

Hmag = −J
∑

x,y

â†x+1,yâx,ye
i2παy + â†x,yâx+1,ye

−i2παy

+ â†x,y+1âx,y + â†x,yâx,y+1 + Uâ†x,yâx,y(â
†
x,yâx,y − 1) . (16)

Such Hamiltonian can be implemented by adding strong optical nonlinearity

in the scheme presented in the previous section. As an example case, one can

use an ensemble of N -level atoms to mediate onsite two-body interaction of the

Kerr-type (Fig. 5),26 which still preserves the propagation direction (clockwise or

counterclockwise) used in Ref. 7. In this approach, the optical cavity and ensem-

ble enter into a slow-light regime, where the excitations are dark state polaritons32

Ψ̂x,y ∝ Ωâx,y−g
√
NŜx,y, where Ω is the pump field, g is the vacuum Rabi coupling,

N is the number of ensemble atoms and Ŝx,y is the spin-wave operator describing

coherence between two atomic states |a〉 and |c〉 (from Fig. 5 inset). These bosonic

excitations lead to an overall increase of dynamical timescales by η = c/vg ≫ 1,

the ratio between the speed of light and group velocity for the dark state polariton,

but they can also interact via a self-Kerr interaction with state |d〉.33 Coupling

atoms to the photonic system introduces loss which can be reduced by detuning

the cavity resonance from the emitter transitions (∆,∆′ ≫ Γ). As discussed in

Ref. 34, to observe any many-body effect and to have a finite gap, the effective

interaction between photons (U ≃ g2/∆′) should be at least comparable to the

tunneling rate J . These conditions can be satisfied for systems with a large Purcell

factor (g2/κΓ ≫ 1). The same criterion applies to implementation of such scheme

in the microwave domain.

Following Refs. 34 and 35, the ground state of Eq. (16) are the fractional quan-

tum Hall states when the magnetic field is dilute (α < 0.4). In particular, when

the filling factor (ν = Nph/Nφ), which is the ratio between the number of photons

(Nph) and the total magnetic field Nφ = αNxNy, is one half, the ground state of

the system can be faithfully described by Laughlin wavefunction (α < 0.25). For

numerical simulation, one has to consider a torus boundary condition to mimic the

effect of an infinite system. One a torus, the Laughlin wavefunction is written using

the Jacobi theta function. The detailed discussion of the overlap calculation can be

found in Ref. 34. The remarkable overlap with the Laughlin state in the photonic

case is discussed in Refs. 28–31.

One can prepare a Laughlin state by adiabatically melting a Mott-insulator of

photons, similar to the atomic method discussed in Ref. 35. However, this requires

both preparation of Nph Fock states and photon lifetimes long enough to allow

for the melting to be adiabatic. Moreover, the direct experimental verification of

the Laughlin overlap is a difficult task which requires number post-selection (Nph)

and state tomography in a Hilbert space with dimension
(NxNy

Nph

)

. Therefore, it is
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important to find an implementation and a detection scheme that is more relevant

for photonic system.

More generally most of the studies in many-body photonic system is inspired by

analogies to electronic systems which are mainly focused on ground state proper-

ties. However, a photonic system is naturally an open driven system. Therefore, the

most relevant approach to understand and manipulate many-photon states involves

understanding the nonequilibrium dynamics in such systems.36–41 For example, in a

one-dimensional system strong interaction between photons leads to their fermion-

ization, which can be probed in the output correlation functions of an externally

driven system, both in a discrete array36 and in the continuum limit.38

For the fractional quantum Hall system, Ref. 31 demonstrates that by

weakly driving the system, a few photon Laughlin state can be prepared and

experimentally-relevant observables such as the correlation function of the zero-

mode can show certain signatures of the Laughlin state. Since the system is driven

and lossy, it may seem that the master equation formalism is required to fully

described the system. However, as shown in Ref. 31, when the system is weakly

driven, one can resort to the stochastic wavefunction approach. More precisely,

if we are interested in evaluating the correlation function of any order, finding the

steady-state of the effective Hamiltonian is sufficient and the effect of the “quantum

jumps” can be ignored. Such simplification allows one to explore larger systems,

compared to the master equation approach, and to avoid finite size effects, which

usually undermines the numerical results.

When all the resonators are driven with a laser field, the input field consists of

a Poisson distribution of photons. When photons are injected at the frequency cor-

responding to the Laughlin state at the Nph-photon manifold, photons reconfigure

0.01

.1

1

10

 

 

10
2overlap

g
(3)

CM

0.1 1

0.01

.1

1

10

U/J

 

10
−3

 

10
2

(b)

−3.4 −3.2 −3
ω

p
/J

(a)

Fig. 6. Overlap with the Laughlin wavefunction (ν = 1/2), and the correlation function of the

zero mode (g
(3)
CM

) are shown as a function of: (a) the pump frequency for hard-core bosons (b) the
interaction strength for ∆ = −3.095 J , as shown by an arrow on (a). The overlap with the Laughlin
function is evaluated for Nph = 3 manifold. The total magnetic flux is Nφ = 6. The simulations
are performed for a 6× 6 lattice, torus boundary condition and the maximum number of photon
is 3. κ = 0.01 J , β = 0.01. All calculated quantities are dimensionless. Figures are reproduced
from Ref. 13.
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themselves and form a wavefunction which corresponds to the Laughlin state. The

remarkable overlap of this photonic state with the Laughlin wavefunction in the

Nph-photon manifold is shown in Fig. 6(a). Note the frequency required to be reso-

nant with the Laughlin state is at the vicinity of the free photon state (Hofstadter’s

spectrum). We can relax the hard-core constraint and investigate the same observ-

ables. In the weak interaction limit, the system approaches the classical response, as

shown in Fig. 6(b). In the absence of interaction, using transport measurements —

varying the pump frequency and measuring reflection/transmission — one recovers

the Hofstadter’s butterfly spectrum as in Fig. 3(b), but regardless of the pump

frequency, the correlation function remains equal to one.

To summarize, the driven strongly interacting photons exhibits interesting

many-body behaviors and the emergence of FQH states of photons can be probed

by using the conventional optical measurement techniques. One of the remaining

question is to investigate other many-body signatures of these states such as their

topological properties and fractional statistics.

4. Outlook

As we briefly discussed in this review, there are promising platforms to investigate

synthetic gauge fields in the optical domain. The advantage in the optical domain

is the relative ease of implementing the synthetic gauge fields and the possibility

of performing the experiments on the noninteracting models at room temperature.

However, the challenge in the optical domain remains to be the weakness of nonlin-

earity and the difficulties in reaching photon-blockade on each resonators without

inducing any inhomogeneity.

On the other hand, there has been recent investigation in the microwave do-

main to implement synthetic gauge field18,19 and explore many-body effects.42 The

advantage in the microwave domain is the presence of strong nonlinearity provided

by the Josephson junctions. However, the challenges are the operation at very low

temperature which requires dilution fridges and the presence of inhomogeneity in

fabricated arrays of qubits.

In both cases, due to the open nature of photonic systems, preparation and

detection should be performed in a driven regime. This arises many interesting

theoretical questions to investigate many-body features such as incompressibility,

fractional statistics in nonequilibrium systems. For example, new effective field the-

ories should be developed to treat excitations in such bosonic systems. An intriguing

bright future awaits for theoretical and experimental investigation of many-body

physics, both in the optical and the microwave domains.
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