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Hardware-efficient fermionic simulation with a cavity–QED
system
Guanyu Zhu1, Yiğit Subaşı2, James D. Whitfield3 and Mohammad Hafezi1,4

In digital quantum simulation of fermionic models with qubits, non-local maps for encoding are often encountered. Such maps
require linear or logarithmic overhead in circuit depth which could render the simulation useless, for a given decoherence time.
Here we show how one can use a cavity–QED system to perform digital quantum simulation of fermionic models. In particular, we
show that highly nonlocal Jordan–Wigner or Bravyi–Kitaev transformations can be efficiently implemented through a hardware
approach. The key idea is using ancilla cavity modes, which are dispersively coupled to a qubit string, to collectively manipulate and
measure qubit states. Our scheme reduces the circuit depth in each Trotter step of the Jordan–Wigner encoding by a factor of N2,
comparing to the scheme for a device with only local connectivity, where N is the number of orbitals for a generic two-body
Hamiltonian. Additional analysis for the Fermi–Hubbard model on an N × N square lattice results in a similar reduction. We also
discuss a detailed implementation of our scheme with superconducting qubits and cavities.
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INTRODUCTION
Quantum computers are widely touted as a new frontier for
simulating quantum systems.1,2 The simulation of quantum
chemistry,3–7 strongly correlated fermionic systems,8–12 and lattice
gauge theories,13,14 are among the crucial applications.15 How-
ever, apart from ultracold fermionic atoms, all quantum simulation
platforms are based on bosonic/spin degree of freedom. There-
fore, one has to encode the fermionic problem into simulation-
friendly spin models.
In the literature, there are a number of methods for doing so

and we will focus on the methods that require implementing a
non-local map, e.g., Jordan–Wigner (JW) or Bravyi–Kitaev (BK)
mappings.16 Our approach relies on the use of a cavity–QED
system to achieve the non-local coupling directly. This is in
contrast to other ideas for improving the non-locality of the
fermion-spin mapping, such as direct simplification of the
quantum circuit17 or using gate teleportation18 to lower the cost
of the Jordan–Wigner and Bravyi–Kitaev schemes. Another
alternative to the approach taken here is to introduce additional
qubits to achieve improved locality of the spin-representations of
fermonic operators.5,19,20 Lastly, we mention a recently introduced
technique for quantum simulation using plane waves rather than
typical electronic structure basis sets composed of quasi-local
Gaussian orbitals.21 The approach taken there has been shown to
achieve linear circuit depth for a certain class of electronic
systems. We do not pursue subspace encodings and consider
arbitary electronic systems with a focus on approaches that
directly implement the non-local maps rather than circumventing
them.
Here, we present a hardware-efficient scheme to perform digital

fermionic simulations on a physical system made of spins. Our
approach makes use of cavity–QED physics,22–25 where one or

several ancilla cavity modes are used to encode, simulate the
Hamiltonian and measure the desired observables. The selective
non-local coupling of ancillae to a qubit string allows for
implementation of JW and BK mappings in one shot and reduces
the simulation time. More specifically, in exponentiating each term
of the Hamiltonian, our scheme reduces the circuit depth of both
JW and BK to O(1) operations. This improvement reduces the
simulation time, and therefore, mitigates the decoherence effects.
We then present an experimental implementation of our

scheme in a circuit-QED platform,26–38 where experimental
progress on fermionic and quantum chemistry simulation has
been recently achieved.4,7 In particular, we use dispersive coupling
of microwave cavity photons to superconducting qubits30,38 to
generate non-local string operations non-perturbatively. This
digital approach offers better scaling in the collective gate time
than a previous analog scheme where multi-spin interactions are
generated perturbatively,39 resulting in an exponential decrease
with the number of Pauli operators to be implemented. Moreover,
experimental advances have been achieved in probing inhomo-
geneity in resonate frequencies in the context of both super-
conducting qubit-array and resonator-lattice,40,41 and hence pave
the way for the realization of collective many-body gates.
Therefore, our scheme is preferable for implementing large
strings, and it also remedies the disadvantage of circuit-QED
architecture, i.e. low connectivity, compared to ion trap
architectures.42

Furthermore, we compare our scheme to conventional local
schemes for various fermionic models, such as Fermi–Hubbard
model and generic Coulomb Hamiltonian. In these comparisons,
we introduce a parallelization scheme, which further improves the
simulation. Specifically, by parametrically coupling multiple cavity
modes, we further decrease the circuit depth for each Trotter step
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by an additional factor of N. This results in an overall O(N2)
reduction for Jordan–Wigner and Bravyi–Kitaev transformation in
the cases of a Fermi–Hubbard model on an N-by-N lattice and a
quantum chemistry problem with N orbitals, implemented on a
device with local connectivity.

RESULTS
Fermionic encoding with the non-local cavity–QED interaction
Coulomb Hamiltonian and Fermionic encoding. We consider a
generic electronic model with hopping and two-body Coulomb
interaction. The form of the Hamiltonian is given by

H ¼
X
i;j

κij cyi cj þ H:c:
� �

þ
X
i;j;k;l

Vijklc
y
i c

y
j ckcl: (1)

Here, κij is the hopping matrix and Vijkl represents the interaction
matrix. The indices i, j, k and l can label orbitals either in real-space
or the reciprocal-space and can also absorb spin indices.
In order to simulate fermions with qubits, the simplest scheme

is the Jordan–Wigner transformation:

cj ¼ σþ
j

Y
j0<j

σz
j0 ; c

y
j ¼ σ�

j

Y
j0<j

σz
j0 ; (2)

The index j can be used to label sites in any dimension. For
example, the string in 2D can be chosen as a ‘self-avoiding snake’
as illustrated by the red string in Fig. 1. In addition to the JW
transformation, the Bravyi–Kitaev transformation16 also requires
strings of Pauli operators although the form is more complicated
(see Supplemental Information VI). The length of Pauli strings are
on average logarithmically shorter than JW using the
Bravyi–Kitaev transformation. In order to implement the time
evolution with such string operators, we will consider using the
cavity-assisted conditional string operation in the following
sections.

Cavity–QED interaction and controlled-string operation. We con-
sider the quantum non-demolition (QND) interaction43 of a

cavity–QED system in the dispersive regime:

HQND ¼ χaya
X
j

σz
j ; (3)

where χ is the dispersive interaction strength.
We prepare the cavity photon state in the restricted subspace

na = 0, 1. For circuit-QED implementation, the cavity nonlinearity
introduced by the qubits are large enough, such that the cavity
itself can be operated as a qubit. To collectively manipulate a
qubit string, we simply apply the dispersive interaction for a
period of τ. The time evolution operator is expressed as

UðτÞ ¼
Y
j

cosðχτÞ � i sinðχτÞσz
j

� �" #na

: (4)

Here, we used the property that photon and spin operators

commute, and the Pauli-matrix property σz
j

� �2
¼ 1. If we choose

the operation time to be τ = π/(2χ), we end up with

U
π

2χ

� �
¼ 1q � 0j i 0h jaþð�iÞN

Y
j

σz
j � 1j i 1h ja: (5)

The additional phase factor (−i)N depends on the length of the
string and can be canceled by applying an additional phase gate
on the ancilla cavity, and we call the resulting evolution operator
CZ , i.e., a conditional-Z string operator, controlled by the cavity
photon state: (1) If na = 0, no operation is performed; (2) If na = 1, a
string operator Z ¼ Q

j σ
z
j is applied. Such a cavity-controlled

string operation has also been proposed to manipulate and
engineer the topological ground state of the toric-code
model.23,44,45

Exponentiation of the string operators, time evolution, and phase
estimation. In order to perform digital quantum simulation of a
Fermionic Hamiltonian H, one needs to perform Trotter evolution
with small time steps,2 i.e., e−iHΔt. After breaking the Hamiltonian
down to sub-terms H ¼ P

q hq, one exponentiates each of
these sub-terms as e�ihqΔt . The sub-term hq is composed of a
qubit string operator. For example, a hopping term in Eq. (1)
is represented by qubit operators under JW encoding as hij =

κij σþ
i σ

�
j þ H:c:

� �Q
k2string σ

z
k . This can be split into two pieces

hð1Þij ¼ 1
2 κijσ

x
i σ

x
j

Q
k2string σ

z
k and hð2Þij ¼ 1

2 κijσ
y
i σ

y
j

Q
k2string σ

z
k , and

will be exponentiated separately. The conventional approach
realizes the exponentiation of these string terms by a CNOT ladder
(a sequence of nearest-neighbor CNOTs) illustrated in Fig. 2a
(upper panel, see Supplemental Information I for details). Here, we
present a hardware-efficient quantum circuit which uses the
cavity-controlled string operation Eq. (5) as shown in Fig. 2a (lower
panel). The essence is to collect the global parity information into
the cavity ancilla with a single CZ gate and another CZ gate to
erase the parity information after the rotation of the ancilla along
x-axis by an angle 2Δt. Note that this circuit reduces the number of
gates and circuit depth by a factor of N (N being the length of the
string) due to its non-local and highly parallel feature, and hence
greatly reduces the operation time.
To derive the properties of the circuit, we start with the

conditional string operation CZ , and the rotation of the ancilla

Rxð2ΔtÞ ¼ 1q � e�iΔtXa ¼ 1q � cosðΔtÞ1a � i sinðΔtÞXa½ �; (6)

where Xa is the Pauli-X operator of the ancilla photon state. The
three successive gates CZRxð2ΔtÞCZ can be expressed as

CZRxð2ΔtÞCZ ¼ cosðΔtÞ1q � 1a � i sinðΔtÞZ � Xa

¼ e�iΔtZ
� �Xa¼ e�iΔtZ � þj i þh jaþeiΔtZ � �j i �h ja;

(7)Fig. 1 Conditional string operation realized in a cavity–QED system.
The Jordan–Wigner string (red) in the 2D qubit lattice can be chosen
as a snake shape
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where we have used the property Z
2 ¼ 1q . The final expression

represents a conditional evolution with the non-local many-body
Hamiltonian Hstring ¼ Z ¼ Q

j2string σ
z
j , controlled by the ancilla

photon state ±j ia.
In general, arbitrary many-body interactions along the string can

be exponentiated, by choosing the proper single-qubit rotations in
the beginning and end of the circuit (see Fig. 2a). In Fig. 2b,c, we
show explicitly the circuits to implement the exponentiation of the

hopping sub-term hð1Þij ¼ 1
2 κijσ

x
i σ

x
j

Q
k2string σzk and the interaction

sub-term hð1Þijkl ¼ 1
4 Vijklσ

x
i σ

x
j σ

x
kσ

x
l

Q
m2string σ

z
m coming from the Cou-

lomb interaction term in Eq. (1), both under JW encoding. Here, we
have used Hadamard gates to turn certain σz operators into σx with
the identity Hjσ

z
j Hj ¼ σx

j . On the other hand, a typical term in the
Bravy–Kitaev encoding may involve all types of Pauli operators,
e.g., σy

1σ
x
2σ

y
3σ

z
5. This qubit string can be exponentiated with the

circuit in Fig. 2d, where the combined Hadamards and phase gates
(S and S†) realized with a single pulse turn the σz operators into σy.
If one starts the ancilla in the þj ia ( �j ia) state, one only gets

forward (backward) evolution after n Trotter steps, e−inΔtH (einΔtH),
as suggested by Eq. (7). However, if one starts with the ancilla in

state 0j ia¼ 1ffiffi
2

p þj iaþ �j ia
� �

, one gets a conditional evolution CU =

e�iHt þj i þh jaþeiHt �j i �h ja, where t = nΔt. This property can be
applied to quantum phase estimation46,47 for extracting energy
spectrum and state preparation (see Supplemental Information VIII
for details). Note, after the state preparation, one can extract

fermionic correlation function such as Cij ¼ ψ cyi cj
			

			ψ
D E

¼
ψ σþ

i σ
�
j

Q
k σ

z
k

			
			ψ

D E
with conditional string operations. For exam-

ple, the circuit shown in Fig. 2e implements the xx-part of the

correlator, i.e. ψ σx
i σ

x
j

Q
k σ

z
k

			
			ψ

D E
, where setting ϕ = 0 (ϕ = π/2) in

the phase gate gives the real (imaginary) part. The measurement
of dynamical correlator is discussed in Supplemental Information
VII.

Parallelizations with multiple ancillary cavity modes. Another
advantage of the cavity–QED approach is that one can further
parallelize the exponentiation of all the mutually commuting sub-
terms hij using multiple cavity ancillae. This can be realized with
multiple cavities or different modes in the same cavity as
discussed further in the next section. Parallelization is trivial if

Fig. 2 a Arbitrary string operator exponentiated with conventional approach using a CNOT ladder to collect the parity information. The whole
process can be performed collectively using cavity–QED approach with conditional string operation to realize the exponentiation of the string
operator, which reduces the number of gates and the circuit depth by a factor of 1/N. b Exponentiation of a hopping sub-term with the action
of pairs of Hadamard gates on sites i and j. c Exponentiation of an interaction sub-term with the action of pairs of Hadamards on site i, j, k and

l. d Exponentiation of a hopping sub-term in the Bravyi–Kitaev encoding. e Measurement of the static correlator ψ σx
i σ

x
j

Q
k σ

z
k

			
			ψ

D E
with a

Hadamard-test circuit. The expectation value of the correlator can be extracted from the cavity ancilla readout. f Exponentiation of four
hopping terms in parallel with the coupling to four cavity ancillae. In order to switch the “head” and “tail” of each string to Pauli-X operator, we
split the strings into X and Z parts. The CX can be implemented with CZ sandwiched by parallel Hadamards on the qubits. All the gates in the
blue-dashed box are implemented in parallel by multi-mode QND interaction Eq. (13)
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the string operators to be exponentiated do not overlap with each
other. It is also possible to exponentiate multiple overlapping
strings in parallel, namely

Q
ν e

iκΔtSν , where ν labels different
strings. A concrete example is exponentiating hopping terms
between two neighboring rows in parallel which appears in the
Hubbard model (illustrated in Fig. 2f). The detailed derivation can
be found in section “Methods”.

Implementation with circuit–QED architecture
In this section, we focus on the experimental implementation of
the QND interactions of Eq. (3). We also discuss implementation of
parallelization with multiple ancilla modes in the same cavity
either by higher level contribution or alternatively by periodical
modulation of the flux couplers.

Realization with circuit QED. We consider a collection of multi-
level superconducting qudits inductively coupled to a single or
multiple transmission-line cavities or 3D cavities as shown in Fig.
3a. The simplest case with one cavity mode can be described by a
generalized Tavis–Cummings model:48

HcQED ¼ H0 þ V ; H0 ¼ ωayaþP
j

P
l
ϵlj lj i lh jj ;

V ¼ P
j

P
l;l0

gll0 j lj i l0h jjðaþ ayÞ: (8)

Here, a is the annihlation operator for the cavity mode with
frequency ω, lj ij represents the lth level of the jth qudit with
corresponding energy ϵl , and gll′ = g l ϕj jl0h i � gϕll0 is proportional
to the inductive coupling strength g and the phase matrix

element (ϕ being the superconducting phase operator). The
strength g can be made uniform even in the presence of non-
uniform mode function with the flux-tunable inductive coupler,49

as shown in Fig. 3a.
In the dispersive regime, namelyffiffiffiffi
N

p
gll0j j � Δll0j j; whereΔll0 ¼ ϵl � ϵl0 � ω; (9)

(N represents the total number of coupled qudits and Δll′ the
detuning), one can adiabatically eliminate the direct inductive
coupling V between qudits and the cavity. The effective
Hamiltonian after a Schrieffer–Wolff transformation48,50,51 up to
second-order is given by

Heff ¼ H0 þ
P
j;l

χ l a
ya j lj i lh jjþ

P
j;l

κlj lj i lh jj
þP

j≠j0

P
l≠l0

μll0 j lj i l0h jj0þO g4ð Þ: (10)

Apart from H0, the terms app earing in second-order perturba-
tion have three types: (1) The energy shift of level l is given by:

χ l ¼
P

l0≠l χ ll0 ¼
P

l0≠l g
2
ll0

1
Δll0

� 1
Δl0 l

� �
, summed over the contribu-

tions χll′ from virtual transitions to all other levels l′, where the
first term is AC Stark and the second term is Bloch–Siegert shift,
in the absence of rotating-wave approximation; (2) the Lamb

shift κl ¼
P

l0≠l
g2
ll0

Δll0
which only renormalizes the qudit energy

level: ϵl → ϵl + κl; (3) the flip–flop interactions between any
two qudits mediated by virtual photons with strength

Fig. 3 a Schematics of a circuit-QED realization: superconducting qubits coupled to a transmission-line cavity with flux-tunable inductive
couplers. In particular, we consider using fluxonium circuit as our qubit, and operate it in the vicinity of half flux quantum into the main loop
(the right loop between inductor and junction). b The wavefunction is illustrated for EC = 0.5 GHz, EL= 0.75 GHz, Φext= 0.4Φ0 and tunable EJ.
For EJ= 20 GHz (top), the states are trapped deep in the wells corresponding to persistent-current states flowing in opposite directions (with
winding numbers m= 0 and m= 1). The inter-well transitions are forbidden (dashed arrow), and only intra-well transitions (such as 0–2 and
1–3) are allowed (solid arrows). For EJ= 4 GHz (bottom), the well is shallow and all transitions are allowed. c Magnitudes of phase matrix
elements ϕll0j j as a function of EJ (tunable by external flux through the junction loop on the left). At large EJ, ϕ01j j, ϕ03j j and ϕ12j j (dashed lines)
are exponentially suppressed. The parameters are based on ref. 38. d For further parallelization of multiple terms with overlapping strings,
qubits are coupled to multiple ancillary cavity modes through periodically modulating the couplers with multiple tones. The qudit transition
frequencies ϵ2 − ϵ0 and ϵ3 − ϵ1 are up-converted close to multiple cavity frequencies ων to induce multiple QND interactions in parallel
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μll0 ¼
P

l00≠l;l0
gll00 gl00 l0

2
1
Δll0

� 1
Δl00 l

þ 1
Δl0 l00

� 1
Δl00 l0

� �
, which we need to can-

cel out to avoid the induced cross-talk errors in our many-body
gates. One can choose specific superconducting circuits, such as
fluxonium38,48,52,53 focused here (alternatively flux qubit54 or
protected 0-π qubit55,56). In particular, we consider the situation
that phase matrix elements obtain selection-rule property38,53,57 at
large ratio of Josephson and charging energy EJ/EC (e.g. EJ = 20
GHz, with fixed EC = 0.5 GHz from now on): ϕ01 = ϕ12 = ϕ03 = 0 as
shown in Fig. 3c. In the case of fluxonium, this is due to the feature
that the ground and excited states are persistent-current states
with different winding numbers m, which can be seen from their
wavefunctions being trapped in different wells of the Josephson
potential −EJ cos ϕ and have negligible overlap (Fig. 3b). There-
fore, the contribution from χ01 (as well as any other inter-well
virtual transition) is nearly zero (<10−5 at EJ = 20 GHz). A QND
interaction HQND ¼ P

j χa
yaσz

j arises in second-order perturbation
with strength χ = ∑l(χ0l − χ1l)/2j, while the nonzero contributions
are from intra-well virtual transitions to higher levels, such as χ02
and χ13, which has recently been experimentally observed (see ref.
38). On the other hand, the single-excitation flip-flop term j 0j i 1h jj0
disappears (μ01 = 0) due to the forbidden inter-well transitions
(g01 = g12 = g03 = 0, etc.), and the lowest-level contribution is from
j 0j i 2h jj0 . During the simulation process, we only occupy levels 0
and 1 which act as the qubit degree of freedom, therefore the
flip–flop process does not play any role and hence will not
introduce the unwanted cross-talk error in the many-body CZ
gate. When we need to implement single-qubit Hadamard (H) and
phase (S) gates to get Pauli-X and Y (Fig. 2a), we can go to the
small-EJ/EC regime (e.g. EJ = 4 GHz) by quasi-adiabatically tuning
the flux into the junction loop. In this regime, 0–1 transition can be
implemented indirectly via a Raman process (0→ 2→ 1) utilizing
the low-lying Λ-structure,57 as shown in Fig. 3b,c. A direct
transition is also possible since the 0–1 matrix element is sizable
and can be accessed by the classical drive. Alternatively one can
stay constantly at an intermediate parameter regime (such as EJ =
10 GHz) so that selection rules hold while the suppressed but still
non-vanishing 0–1 transition is enabled by enhancing the power
of the classical drive.
Note that due to the condition of dispersive regime Eq. (9), the

QND interaction strength χ has to decrease when the number of
coupled qubits N increases due to resonance enhancement.
According to the constraint g=Δ � 1=

ffiffiffiffi
N

p
Δ � Min Δij

		 		� �
, one can

fix g and increase the detuning magnitude |Δ| and get the
asymptotic scaling χ ¼ g � ðg=ΔÞ � g2=

ffiffiffiffi
N

p
. This scaling is expo-

nentially better than a previous scheme where multi-spin
interactions are generated perturbatively39 with exponential
decreasing interaction strength with the length of the string, i.e.,
O(gN/|Δ|N−1).
For small N [i.e. O(10)], it is possible to remedy the insignificant

decay of maximum interaction strength due to resonance
enhancement by varying the parameters (external flux or EJ) of
individual fluxoniums such that frequency of different qudits (ϵl;j)
are detuned. The QND interaction strength χ will not decrease
significantly because it contains contributions from multiple levels
χ0l and χ1l. One can then avoid the asymptotic 1=

ffiffiffiffi
N

p
scaling by

modular construction of multiple cavities with N ~O(10) qubits
together connected with quantum teleportation as discussed in
Supplemental Information IX. Alternatively, instead of obtaining
the QND interaction perturbatively as the above scheme, it is in
principle possible to directly engineer the QND (cross-Kerr)
interaction such as utilizing nonlinear coupling with Josephson
junctions.30

Although we focus on fluxonium qubits here, one can generate
QND interaction in more general cases for other qubits such as
transmons. In those cases, one can detune the qubit frequency to
avoid unwanted flip–flop interactions [for N ~O(10)], or using a

balance cavity mode as discussed further in Supplemental
Information III.

Coupling to multiple ancillary modes with parametric coupler. In
order to gain further parallelizability and shorten the time
complexity, one can couple the qubits to multiple ancillary cavity
modes as mentioned in the previous section, which certainly
poses additional experimental challenges. One first needs to
selectively address the qubits on different strings with a certain
cavity mode which is usually distributed extensively and touches
all the qubits. Second, one needs to couple the qubits dispersively
to cavity modes with different frequencies. These two challenges
can be solved by one trick, i.e., parametrically modulating the
coupling of the qubits to the transmission-line cavity. One option
is to periodically modulate the flux in the inductive coupler shown
above in Fig. 3b (see e.g. refs. 58,59) with multiple tones, i.e.
gj½ΦðtÞ� =

P
ν
~gν;jcosðfνtÞ, where j labels the qubit and fν

represents the modulating frequencies, with f0 = 0 (static cou-
pling). The scheme is illustrated in Fig. 3d.
The multi-tone modulation technique is mature in microwave-

engineering and turns out to be a valuable computational
resource. The weight ~g0ν;j and driving tones fν are controllable.
We choose fν such that the qubit frequency ϵ is up-converted to a
frequency close to but still off-resonant with the sideband
ancillary tones (fν). In this case, they are dispersively coupled by
the QND interaction HQND =

P
ν

P
j ~χν;ja

y
νaνσ

z
j with strength

~χν;j ¼ ~χν;j02 � ~χν;j13

� �
=2, where ~χν;jll0 ¼ ~g2ν;j=ðϵl � ϵl0 � ων þ fνÞ. Note

that fν can decrease the detuning to make the interaction sizable.
We choose ~gν;j such that each qubit is only coupled to the tones of
the selected strings, as illustrated in Fig. 3d with multiple colors. As
we see, the inductive couplings of qubits 4 and 5 are constant
such that the qubits are only dispersively coupled to the
fundamental mode a0, while the couplings of qubits 1 and 8 are
modulated by three tones and hence connect the qubits to four
cavity modes, etc. It is clear that the number of cavity modes one
can up-convert (or down-convert) to is limited since the up-
converted detuning has to be made different to avoid cross-
talking between different ancillae modes, but one should be able
to couple 10–20 modes. To couple more ancillae, the solution is
again teleportation-based modular architecture discussed in
Supplemental Information IX. As we will discuss in the following
section, for a Fermi–Hubbard model on a N × N square lattice in
real space, the number of modes one needs to couple to is N.
Therefore, for a 100-qubit system which can be realized in the
near future for a short-circuit algorithm still requiring no quantum
error correction, it is possible to realize our parallelization scheme.

Time complexity
In the previous sections, we focused on how to exponentiate a
single term hp in the system Hamiltonian H =

P
p hp. In the

following, we compare the time complexity (circuit depth) of our
cavity–QED approach with the conventional approach of a single
Trotter step e−iHΔt.

Fermi–Hubbard model. As the first example, we consider the
spinful 2D Fermi–Hubbard model in real-space and on an N × N
square lattice. We use qubits on two sub-lattices to encode
fermions with different spin s = ↓ (purple) or s = ↑ (yellow) as
shown in Fig. 4. The spinful Fermi–Hubbard model is a restricted
form of Eq. (1) given by

HHubbard ¼ �κ
X
i;jh i;s

cyi;scj;s þ H:c:
� �

þ U
X
j

nj;"nj;#; (11)

where j→ (nx, ny) is a two-component label for the 2D sub-lattice.
The first and second terms represent hoppings and on-site
Hubbard interaction, respectively. The types of terms and their
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corresponding time complexity is listed below (for more details
see Supplemental Information V).
(1 and 2) On-site Hubbard interaction and Horizontal hopping:

translates to ZZ interaction and 2-local flip–flop interaction
without string in the qubit representation, both of which have O
(1) circuit-depth. (3) Vertical hopping (even and odd): typically
contains a “snake-shape” JW string (Fig. 4) and hence dominates
the time complexity.
With one transmission-line cavity coupled to each pair of rows,

one can parallelize the vertical hopping terms (see Supplemental
Information V for details). For the vertical hopping between the
same pair of rows, one can exponentiate these terms in series,
resulting in the Trotter step circuit depth (time complexity) O(N).
With the multi-mode scheme shown in Figs. 2f and 3d, one can
exponentiate these terms and reduce the depth to O(1). In
contrast, the conventional approach needs O(N2) due to the linear
overhead of implementing the CNOT ladder in Table 1.

The generic Coulomb Hamiltonian. For the generic Coulomb
Hamiltonian described in Eq. (1), which is the relevant model for
quantum chemistry or strongly correlated electronic materials
simulated in reciprocal space, the indices i, j, k, and l are typically
not neighbors. The type of terms that dominate the computa-
tional resource is the four-local interaction term Vijklc

y
i c

y
j ckcl , which

requires a sequence of O(N4) unitary transformations for a system
with N orbitals (i, j, k, l = 1, 2, …, N) in a single Trotter evolution

step due to all possible choices of the four fermion indices. Taking
into account the JW string, which has length of O(N), the Trotter
step circuit depth of the conventional approach becomes O(N5).60

For our cavity–QED approach, we list the circuit depth for the
two approaches. (1) Series: O(N4), due to the reduction of the linear
overhead of the Jordan–Wigner string. (2) Parallel: O(N3), assuming
N ancilla cavity modes. The remaining O(N3) terms cannot be
exponentiated in parallel because they do not commute with each
other (e.g. when the first index i coincide, but the remaining three
indices j, k, and l are all different). However, note that for an actual
quantum chemistry Hamiltonian, although the total number of
terms scales as O(N4), a large number of integrals vanish between
distant orbitals or due to symmetry. The number of non-
commuting terms also scales as O(N3) though similarly sparse.
This can be seen from the example molecules discussed in Table 1
(operator information collected from refs. 6,7), which has typically
only O(N) to less than O(N2) non-commuting terms (equivalent to
the minimum number of commuting groups listed in the table).
Therefore, there is a huge potential for parallelization in practice.

Summary of the comparison between cavity–QED and conventional
approaches. Here, we summarize and compare the various
properties of the cavity–QED scheme versus the conventional
scheme, as shown in Table 2.
In order to compare both schemes, we first compare their gate

time. With the state-of-the-art technology, the second-order QND
interaction strength between qubits and cavity with the form
χ
P

j a
yaσzj , can typically reach about 50–100MHz,30 correspond-

ing to gate time of 20–40 ns. On the other hand, the conventional
approach needs nearest-neighbor CNOT gates between qubits,
coming from the second-order ZZ interaction, 4g02

η

P
i;j σ

z
i σ

z
j (e.g.

due to the third-level contribution in the context of transmon
qubits,61 where η is the nonlinearity of the transmon). The typical
strength of the ZZ interaction is around 50MHz,32 corresponding
to a gate time of 40 ns. Since both types of interactions are of
perturbative nature (up to second order), the gate time in both
cases are of the same order of magnitude. The relevant
parameters are summarized in Table 2. We also include the
asymptotic prefactor

ffiffiffiffi
N

p
(reduces to

ffiffiffiffiffiffiffiffiffiffi
logN

p
with the

Bravyi–Kitaev encoding) of the cavity–QED gate time due to the
dispersive regime condition Eq. (9), which can be remedied by the
modular architecture connecting multiple cavities (Supplemental
Information IX). The average number of strings (cavity ancilla
modes) a single qubit touches simultaneously is of O(10), so one
does not need to worry about cross-talk between the ancillae due
to frequency crowding in these cases either.
We emphasize that having a scheme with a shorter operation

time in each Trotter step enables more evolution steps within the
coherence time of the system, and hence increases the precision

Table 1. Summary of various properties of six different molecules (operator information based on refs. 6,7)

Molecule BeH2 (6 qubits) BeH2 (14 qubits) H2O (14 qubits) HCl (20 qubits) LiH (12 qubits) NH3 (16 qubits)

Hamiltonian Pauli terms 164 1150 1858 4427 631 4973

Number commuting groups 8 43 70 162 18 178

Terms per group 20.5 26.7 26.5 27.3 35.1 27.9

Hamiltonian op. weight 3.5 6.2 6.2 7.7 5.1 6.7

Average qubit participation 12.1 11.8 11.7 10.6 15.1 11.8

The first row lists the number of Pauli terms in the Hamiltonian which can be grouped into sets of mutually commuting groups. The minimum number of such
groups and the average number of terms per group appear in rows two and three, which dictate the minimum Trotter-step circuit depth and number of cavity
ancillary modes needed for parallelization. Row four contains the average number Pauli operators in each term which determines the cavity load, i.e., the
number of qubits interacting with a single cavity mode simultaneously. Finally, the last row lists the average number of terms within each mutually commuting
group that each qubit participates in, which determines the qubit load, i.e. the number of cavity modes interacting with each qubit simultaneously

Fig. 4 Types of terms and Jordan–Wigner strings in a 2D spinful
Fermi–Hubbard model on an N × N lattice. One can consider it as a
checkerboard lattice with two sub-lattices (purple and yellow)
representing two spin species (↓ and ↑) respectively. The ‘even’ and
‘odd’ vertical hoppings differs by the location of the strings, which
are on the left and right sides, respectively
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of the algorithms, such as phase estimation. Besides the
cavity–QED scheme presented in this paper, there are some other
schemes which can reduce the overhead due to the non-local
string operator, such as refs. 17,18. We compare our scheme with
theirs in Supplemental Information X.
Another significant advantage of our scheme over the

conventional scheme is the gate fidelity, in particular, the fidelity
due to the control pulses. In the conventional scheme, in order to
implement N CNOTs in the CNOT ladder, one has to send N
control pulses. Assuming the fidelity is F for each pulse, the overall
fidelity due to imperfect pulse becomes FN as shown in Table 2.
On the other hand, in the case of our many-body gate, one can
actually just use a single control pulse with error F′ to detune the
cavity frequency. In this case, the overall fidelity due to imperfect
pulse is just F′, which does not have an exponential decay.
Therefore, our collective many-body gate has a significant
advantage in terms of quantum control and pulse fidelity.

Numerical simulation in the presence of decoherence
In this section, we numerically simulate and compare different
approaches with two simple but representative experiments: (1) a
2D spinful Fermi–Hubbard model on a 2 × 2 lattice (simulated by 8
qubits). (2) A quantum chemistry problem, i.e., the outer shell
electrons of a BeH2 molecule (simulated by 6 qubits), which has
been simulated with superconducting qubits in a recent
experiment.7

The simulation takes into account decoherence of qubits and
cavity, represented by the jump operators lj ¼ ~lj

ffiffiffiffi
Γj

p
, where Γj is

the corresponding decay rate and ~lj the normalized operator. The
types of jump operators of our numerical simulation is listed in the
caption of Fig. 5, along with the realistic estimation of
experimental parameters chosen according to ref. 31.
In particular, we simulate the Kitaev phase estimation protocol

(see Supplemental Information VIII) for both systems and for
the Fermi–Hubbard model also the measurement of spectral
function A(ω) = −2Im[G(ω)], where G(ω) is extracted from
the Fourier transform of the dynamical correlators including

ψ ciðtÞcyj ð0Þ
			

			ψ
D E

(see Supplemental Information VII). Since both

measurement protocols involve time evolution U(t), the dissipa-
tion of the system will affect the measurement result, as shown in
Fig. 5. We compare four different situations: the ideal situation
without dissipation, the conventional approach, and the

cavity–QED approach in series and in parallel, respectively. Since
each approach needs different operation time per Trotter step, the
effects of dissipation are different.
For the Fermi–Hubbard model, we use JW encoding in all cases

and three transmission line cavities are needed to couple each
pair of rows (four rows in total) in parallel. For the BeH2 molecule,
we use the modified BK encoding discussed in ref. 7. With this
encoding, there are a total of 164 terms, which can be divided into
eight groups, where all the terms in the same group commute
with each other, as shown in Table 1. In this case, one can reduce
the circuit depth to eight by exponentiating all the terms in the
same group in parallel with multiple ancilla modes in the same
central cavity. This would require about 20 tones in the flux
modulation using the trick in Fig. 3d. On the other hand, the series
cavity–QED approach will exponentiate all the terms sequentially
with a single cavity ancilla.
Regarding to the phase estimation protocol in Fig. 5a,c, the

cavity ancilla expectation ZaðtÞh i (Pauli-Z) oscillates in time in the
ideal case, i.e. ZaðtÞh i ¼ cosðEgtÞ, where Eg is the ground-state
energy of the prepared eigenstate. Nevertheless, in the presence
of decoherence, the signal decays significantly in time, while the
peaks in frequency-space signal ZaðωÞh i also shrinks due to
dissipation. For the Fermi–Hubbard model in (a), we prepare the
ground state in the beginning, and one can see that Eg (shown by
the dashed line) can be clearly resolved in the biggest peak in
ZaðωÞh i in the blue and purple curves (ideal dissipationless case).
The purple curve has a Fourier transform over the period 0≤ t≤
1000, namely 10 times long as the others, and hence has much
better resolution. With dissipation, the signal dies out in a short
time. While this peak still has the correct position for the
cavity–QED parallel approach (red dashed), it shifts slightly for
the series approach (green dashed) and becomes obscured in the
conventional approach local (light blue dashed). For the phase
estimation in BeH2 molecule in (c), we see that the parallel
cavity–QED approach (red dashed) approximates the dissipation-
less signal (blue) with almost the same resolution of the ground-
state energy while the height of the peak is reduced. The series
cavity–QED approach (green dashed) has significant broadening
in the resolution, while the conventional local approach has all the
peaks being smeared out and is hence hard to tell the actual
energy.
For the spectral function measurement in panel (b) for

Fermi–Hubbard model, we prepare the initial state as the ground

Table 2. Comparison of the conventional (local) and cavity–QED approaches with Jordan–Wigner and Bravyi–Kitaev encodings

Conventional local approach60 Proposed cavity–QED approach

Jordan–Wigner Bravyi–Kitaev Jordan–Wigner Bravyi–Kitaev

Interaction type g02η�1 P
i;jh i σ

z
i σ

z
j χ

P
j a

yaσzj
Gate time (ns) 40 40

ffiffiffiffi
N

p
40

ffiffiffiffiffiffiffiffiffiffi
logN

p

Circuit depth to exponentiate a single term O(N) O(log N) O(1) O(1)

Pulse fidelity of gate control O(FN) O(Flog N) O(F′) O(F′)
I. 2D Fermi Hubbard model in real space (N × N square lattice)

Trotter step circuit depth/time complexity O(N2) O(N log N) O(N), series O(N), series

O(1), parallel O(1), parallel

II. Generic Coulomb Hamiltonian (N orbitals)

Trotter step circuit depth/time complexity O(N5) O(N4 log N) O(N4), series O(N4), series

O(N3), parallel O(N3), parallel

The interaction strength and gate time are listed. Gate times and interaction strengths are approximate, and are based on refs. 30,32. For the pulse fidelity of
gate control, we assume a single pulse has a fidelity F for the qubit control and F′ for the cavity control. Note that the scaling for Bravyi–Kitaev encoding listed
in this table assumes a non-local cavity ancilla, which can selectively address an arbitrary cluster of connected or disconnected qubits, and in the BK case the
number of qubits in the cluter is O(log N). This is different from the case of a device with only local connectivity where the scaling is essentially the same as the
Jordan–Wigner encoding
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state. The two biggest peaks correspond to the hole (left) and
particle (right) resonance, and the distance is approximately U,
namely the Mott gap. We can see that the dissipation effect leads
to the shrinking and asymmetry of the two peaks. The shrinking is
proportional to the operation time of different approaches. The
asymmetry is due to the fact that the qubit has much larger loss
rate than absorption rate as listed in the figure caption. Due to our
encoding of 0 (1) electron as spin up (down) of the qubit, the
qubit loss induces loss of holes but not particles. Therefore, the
hole peak (left) shrinks more than the particle peak. In practice,
one could choose two different ways of encoding and average the
signal to get rid of this asymmetry.

CONCLUSION AND DISCUSSION
In this article, we have shown that, in the context of cavity/circuit-
QED architecture, the use of the common cavity modes greatly
simplifies the non-local string-like encoding needed for fermionic
simulation, such as Jordan–Wigner and Bravyi–Kitaev transforms.
In particular, we are able to get rid of a polynomial overhead, i.e.,
N2 of the Trotter-step circuit depth in the conventional local
approach, which reduces the time complexity of the simulation for
a given precision and in turn reduces the decoherence effects. The
non-local quantum control and parallelization of multiple ancilla-
controlled processes developed in this paper may have profound
applications in many others areas, such as quantum information
processing, lattice gauge theory simulation and measurement of
entanglement spectrum in quantum many-body systems.62

METHODS
Derivation of parallelizations with multiple ancillae
Here, we show the detailed derivation of multi-ancilae parallelization
mentioned above. We use conditional string-Z operations with multiple

cavity ancilla modes, namely

CZν ¼ 1q � 1a1 � 1a2 � � � � � 0j i 0h jaν�1aνþ1 � � � �
þ Q

j
σzj2stringðνÞ � 1a1 � 1a2 � � � � � 1j i 1h jaν�1aνþ1 � � � � ; (12)

where each ancilla mode aν is dedicated to a particular string ν. This
collective gate can be realized by dispersively coupling qubits simulta-
neously to multiple modes resulting in the QND interaction

H0
QND ¼

X
ν

X
j

~χν;ja
y
νaνσ

z
j : (13)

As explained below, by proper conditional rotations, we can achieve a
generic conditional string-S in different Pauli-bases, i.e. CSν

, where the Zν

string in Eq. (12) is replaced by Sν . We consider the case where all the
strings commute with each other, i.e. Sν ;Sν0


 � ¼ 0. Thus the conditional-

string also commutes, i.e. CSν
;CSν0

h i
¼ 0. Therefore, following the

derivation in Eq. (7), we can reach the identity
Q
ν

CSν

Q
ν0

Rν
0

x ð2κΔtÞ
Q
ν00

CSν00
¼ Q

ν

CSν
Rνx ð2κΔtÞCSν

¼ Q
ν

eiκΔtSν

� �Xa;ν
;

(14)

where Rνx and Xa;ν is the x-axis rotation and Pauli-X operator of the ancilla
mode ν. If all the ancillae are initiated at þj iν , the exponentiation of

multiple strings is achieved in parallel, i.e.
Q

ν e
iκΔtSν .

Now we consider how to convert the conditional-Z into conditional-S.
We illustrate the idea with example shown in Fig. 2f]. This involves turning
the head and tail of each string into Pauli-X operators. To achieve this, we
split the CSν

operator into two parts applied sequentially (order is
arbitrary): the main C

Z
1
ν

string and the C
X
2
ν

part in the ends as shown in the
green box in Fig. 2f. To achieve C

X
2
ν

, we just need to sandwich the C
Z
2
νoperators with Hadamards Hj performed on the qubits in parallel. The

application of all the CZν gates are performed in parallel with multi-mode
QND interaction H0

QND Eq. (13). Therefore, the overall circuit depth of
parallelizing N such hopping terms is of O(1). The generalization to
arbitrary type is shown in Supplemental Information II.

Fig. 5 Numerical simulation of the measurement protocols for different approaches taking into account dissipation effects (summed over 50
quantum trajectories in each curve), with the following jump operators for qubits and cavity and corresponding decay rate (from ref. 31): σ�j
(10 kHz), σþj (0.05 kHz), σzj (50 kHz), a (5 kHz) and a† (~ 0 kHz). a Phase estimation of the 2D Fermi–Hubbard model on a 2 × 2 lattice (simulated
by 8 qubits), with the parameter: κ= 0.1, U= 1, and four electrons in total (half-filling). The upper panel shows the time-domain signal of the
ancilla expectation value, while the lower panel is the Fourier transform of the upper panel in order to extract the ground-state energy. The
actual ground-state energy Eg of this model is shown by vertical dashed lines. Note that all the curves in the lower panel correspond to Fourier
transform of the signal in the period 0≤ t≤ 100, while the purple curve corresponds to the ideal case with no dissipation and being
transformed over a much longer period 0≤ t ≤ 1000 such that the resolution is improved by about 10 times. b The spectral function (extracted
from the dynamical correlation function) of the Fermi–Hubbard model. The separation between the hole and particle resonance peaks signals
the Mott gap. c Phase estimation of the BeH2 molecule (simulated by 6 qubits). Due to the signal decay of the cavity–QED (series) and local
approach, we only perform Fourier transform in the period 0≤ t≤ 10. In the numerical simulation, we first subtract all the diagonal terms in
the Hamiltonian and then shift it back to recover the eigenenergy, mimicking the actual experimental process in ref. 32. One can see all but the
conventional local approach can locate the ground-state energy Eg (dashed line), while the cavity–QED (parallel) approach has almost a
resolution as good as the ideal case with no dissipation, despite the shrink of the peak
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