
Articles
https://doi.org/10.1038/s41567-020-1018-2

1Department of Physics, University of Maryland, College Park, MD, USA. 2Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA. 
3Department of Electrical and Computer Engineering and The Institute for Research in Electronics and Applied Physics, University of Maryland, College 
Park, MD, USA. 4Department of Chemistry and Biochemistry, and Institute for Physical Science and Technology, University of Maryland, College Park, MD, 
USA. ✉e-mail: seif@umd.edu

The microscopic dynamics of physical systems are 
time-reversible, but the macroscopic world clearly does not 
share this symmetry. When we are shown a movie of a mac-

roscopic process, we can typically guess easily whether the movie is 
played in the correct order or in time-reversed order. In 1927, Sir 
Arthur Eddington coined the phrase ‘time’s arrow’ to express this 
asymmetry in the flow of events, arguing that it traces back to the 
second law of thermodynamics1. Almost a century later, advances in 
statistical mechanics have extended our understanding of this prob-
lem to the microscopic regime. There, fluctuations prevent us from 
discerning the direction of time’s arrow with certainty2–4. Instead, the 
probability that a movie is being shown in the correct chronological 
order is determined by the energy that is dissipated during the pro-
cess, as expressed by equation (2) below. This prediction, which has 
been experimentally verified5, is equivalent to the Crooks fluctua-
tion theorem6,7, an important result in modern non-equilibrium sta-
tistical mechanics3,8. The recent success of applications of machine 
learning and artificial intelligence in physics begs the question of 
whether these techniques can speed up scientific discovery9,10. 
Machine learning methods have emerged as exciting tools to study 
problems in statistical and condensed matter physics, such as clas-
sifying phases of matter, detecting order parameters and generating 
configurations of a system from observed data11–27.

Here, we apply machine learning to the problem of time’s arrow, 
within the framework of non-equilibrium statistical mechanics. We 
show that a machine can learn to guess accurately the direction of 
time’s arrow from microscopic data, and (more importantly) that 
it does so by effectively discovering the underlying thermodynam-
ics, identifying dissipated work as the relevant quantity and cor-
rectly establishing its relation to time’s arrow. Remarkably, the main 
machine learning tool used here, logistic regression, was developed 
decades before the derivation of fluctuation theorems by human 
experts28,29. This suggests that a data-driven approach could have 
led to an earlier discovery of these theorems. Moreover, we show 
that the machine can generate representative trajectories for for-
ward and backward time directions correctly. Finally, we design a 
neural network that can detect the underlying process and classify 
the direction of time’s arrow at the same time.

We first introduce the relevant physical laws that govern 
microscopic, non-equilibrium fluctuations, and briefly review the 
machine learning techniques that we will use. We then apply our 
methods to various model physical examples, and study the ability 
of machine learning techniques to learn and quantify the direction 
of time’s arrow.

Thermodynamics and the arrow of time
When small systems undergo thermodynamic processes, fluctua-
tions are non-negligible and the second law is expressed in terms 
of averages. Therefore, the Clausius inequality that relates the work 
W that is performed on a system to the net change in its free energy 
ΔF takes the form

hWi≥ΔF; ð1Þ

where the angular bracket denotes an average over many repetitions 
of the process. These non-equilibrium fluctuations satisfy strong 
constraints that enable us to rewrite such inequalities in terms of 
stronger equalities6,7,30–32, and to quantify the direction of time’s 
arrow as a problem in statistical inference2,3,6,33,34. To frame this 
problem, let us first specify the class of processes that we will study, 
and introduce the notation.

Consider a system that is in contact with a thermal reservoir 
at temperature β−1. The system’s Hamiltonian HλðxÞ

I
 depends on 

both the system’s microstate x and a parameter λ. An external agent 
performs work by manipulating this parameter. Now imagine that 
the system begins in equilibrium with the reservoir, and that the 
agent then varies the parameter according to a schedule λF(t) from 
λF(0) = A to λF(τ) = B. We refer to this as the ‘forward process’. The 
trajectory that describes the system’s evolution can be pictured as a 
movie, and is denoted by {xA→B(t)}, where the time interval 0 ≤ t ≤ τ 
is implied. We refer to this as the ‘forward trajectory’ (Fig. 1a). We 
also imagine the ‘reverse process’, in which the system starts in an 
equilibrium state at λ = B and the agent varies the parameter from 
B to A according to λR(t) = λF(τ − t). The trajectory (movie) for this 
process is denoted by {xB→A(t)}. Finally, consider the time reversal of 
this trajectory, xB!AðtÞ ¼ xB!Aðτ � tÞ

I
, where the asterisk implies 
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negation of momentum coordinates. This time-reversed trajectory 
corresponds to a movie of the reverse process that is played back-
ward in time, and is referred to as the ‘backward trajectory’ (Fig. 1a).

Guessing the direction of time’s arrow can be cast as a game in 
which a player is shown either a forward or a backward trajectory. 
In either case, the player therefore ‘sees’ only the parameter being 
varied from A to B. The player must then guess which process, for-
ward or reverse, was in fact used to generate the trajectory35. The 
player’s score, or accuracy, is the ratio of correct predictions to the 
total number of samples.

To optimize the likelihood of guessing correctly, it suffices for 
the player to know the sign of the quantity W − ΔF, where W is the 
work that is performed on the system and ΔF = FB − FA is the free 
energy difference between the system’s initial and final states, as 
depicted in the movie. Specifically, let P(F∣{x(t)}) denote the likeli-
hood that a given trajectory {x(t)} is obtained by performing the 
forward process, and let P(R∣{x(t)}) denote the likelihood that the 
trajectory is the time reversal of a realization of the reverse process. 
Note that P(F∣{x(t)}) + P(R∣{x(t)}) = 1. In addition, assume that the 
game is unbiased; for example, the choice of performing the forward 
or reverse process in the first place was decided by flipping a fair 
coin. Then the likelihood that the trajectory was generated during 
the forward process is given by3,33,34

PðFjfxðtÞgÞ ¼ 1

1þ e�βðW�ΔFÞ ; ð2Þ

which is greater than (less than) 50% when W − ΔF is positive (neg-
ative). Here, the work that is performed by the external agent is

W ¼
Z τ

0
dt _λ

∂HλðxÞ
∂λ

; ð3Þ

and the change in free energy is given by

ΔF ¼ � 1
β
log

ZB;β

ZA;β

� �
; ð4Þ

where

Zλ;β ¼
Z

dx exp½�βHλðxÞ ð5Þ

is the partition function. In macroscopic systems, the values of the 
work performed on the system that correspond to forward trajec-
tories, WF, and backward trajectories, −WR, are peaked sharply 
around their mean values (Fig. 1b), and the sign of W − ΔF is a reli-
able indicator of the direction of time’s arrow. (Here, WR is the work 
performed during a given realization of the reverse process, and 
therefore for the corresponding backward trajectory the work value 
is −WR.) However, for microscopic systems these distributions can 
overlap substantially (Fig. 1c). Equation (2) shows that the player 
optimizes the chance of success simply by guessing ‘forward’ when-
ever W > ΔF, and ‘reverse’ otherwise, without accounting for any 
further details of the trajectory. Note that if ∣W − ΔF∣ ≫ β–1, then 
determining the arrow of time is easy, but when ∣W − ΔF∣ ≲ β–1, 
the problem becomes more difficult and, in effect, time’s arrow  
is blurred.

Neural networks
To train a computer program to infer the direction of time’s arrow 
from a movie of the system’s trajectory, we first simulate a number 
of trajectories from the forward and the reverse processes, and we 
‘time-reverse’ the latter so that each trajectory is ordered chrono-
logically with λ varying from A to B (see Methods for simulation 
details). We attach a label y = 0 (reverse) or y = 1 (forward) to indicate  
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Fig. 1 | Non-equilibrium physics, time’s arrow and machine learning. a, The system evolves under a Hamiltonian Hλ
I

 that depends on a parameter λ. The 
solid black trajectories show the system’s evolution during the forward (A → B) and reverse (B → A) processes. In the forward (reverse) process, the 
system starts in equilibrium peqAðBÞ;β

I
 and λ is varied from A(B) to B(A), respectively. The dashed blue trajectory fxB!AðtÞg

I
 is the time reversal of the system’s 

evolution during the reverse process. b, The work distribution ρ(W) that corresponds to the forward WF and the backward −WR trajectories. The change 
in the free energy during the forward process is denoted by ΔF. For macroscopic irreversible phenomena, fluctuations are negligible, WF > ΔF > −WR, 
and the distinction between the forward and backward trajectories are clear. c, The work distribution for a microscopic system is similar to that of b, but 
fluctuations are more pronounced than in b and the distinction between the two distributions is less clear. d, A trajectory is represented by a matrix X. 
This matrix is the input to a neural network, which detects the direction of the time’s arrow. The top shows a logistic regression network in which the input 
is flattened and reshaped into a vector, and the output is calculated by applying a non-linear function to a linear combination of the input coordinates. 
The bottom shows a convolutional neural network in which filters are first convolved with the input, which creates feature maps that encode abstract 
information about the local structure of the data. These feature maps are then reshaped and processed through a fully connected layer. The output of the 
network is used to decide the direction of time’s arrow.
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which process was used to generate that trajectory. We then pro-
vide the machine with this collection of labelled trajectories, which 
serves as the training data. A priori, any one of the trajectories could 
have been generated from either the forward or the reverse process, 
and the training stage now consists of using a neural network clas-
sifier to construct a model of the function P(F∣{x(t)}), which gives 
the likelihood that the trajectory was generated by the forward pro-
cess. Although this function is known analytically (equation (2)), 
the machine is not provided with this information. We now sketch 
how the training is accomplished.

As each numerically generated trajectory consists of a discretized 
time series of microstates, we represent the trajectory as a matrix 
X whose rows correspond to different times and whose columns 
correspond to phase-space coordinates. The training stage amounts 
to designing a function that maps any such matrix X onto a real  
number p between 0 and 1, whose value is the machine’s best esti-
mate of the likelihood that the trajectory was generated by the for-
ward process.

In this work, we consider two types of classifiers: logistic regres-
sion, which can be thought of as a single-layer neural network, 
and convolutional neural network (CNN). The input to logistic 
regression is a vectorized trajectory a = vec(X), and the output is 
p = g(Ω⊺a + b), where Ω is a vector of weights, b is the bias, and 
gðzÞ ¼ 1=ð1þ expð�zÞÞ
I

 is the logistic sigmoid function (Fig. 1d, 
top). Compared to the logistic regression, the CNN can compute 
functions that are more complicated36. The input to our CNN is a 
trajectory matrix X, and the output is again a value p. The CNN 
has convolutional layers that extract useful information by tak-
ing advantage of the temporal and spatial structure of the data  
(Fig. 1d, bottom). To train the classifier, we determine optimal 
values of parameters (such as the weights and biases in logistic 
regression) by minimizing the cross-entropy with a gradient-based 
optimization algorithm36 (see Methods for details of training neural 
networks and the CNN architecture).

Case studies
We apply the neural network machinery to detect the direction of 
the time’s arrow, and compare the output of the network with the 
theoretical optimal result of equation (2). We first consider a single 
Brownian particle in a moving potential, and then move on to the 
more complicated problem of a spin chain with nearest-neighbour 
coupling in a magnetic field and discuss how controlling the field 
and the coupling affects the results. The networks learn not only 
to guess the direction of the time’s arrow but also to closely repro-
duce the likelihood function. The sensitivity of the results to the 
choice of the activation function g that is applied to the output of 
the networks is considered (see Supplementary Information and 
Supplementary Fig. 3 for discussion).

Brownian particle in a moving potential. An overdamped 
Brownian particle at temperature β−1 in a harmonic potential  
(Fig. 2a) evolves according to

_x ¼ � k
γ
ðx � λÞ þ ξðtÞ; ð6Þ

where k denotes the strength of the potential, λ is the position of the 
centre of the potential and γ is the damping rate. The noise term ξ(t) 
satisfies hξðtÞξðt0Þi ¼ 2ðβγÞ�1δðt � t0Þ

I
. In the forward protocol, the 

value of λ is changed from A to B at a fixed rate _λ ¼ u
I

. Hence, the 
reverse protocol changes λ from B to A with _λ ¼ �u

I
.

After generating samples of the forward and backward trajecto-
ries by using equation (6) (Fig. 2b,c), we train a classifier to predict 
the label for a given trajectory, as described earlier. In this example it 
is easy to detect the direction of the time’s arrow, as the work distri-
butions have a modest overlap (Fig. 2d). We compare the accuracy 

and the output of a logistic regression classifier with the theoretical 
likelihood that is obtained from equation (2) (Fig. 2e). The remark-
able agreement with the theory can be understood by noting that the 
work W, calculated by numerically integrating _W ¼ �kuðx � utÞ

I
 

for a given trajectory, is a linear function of the elements of the tra-
jectory matrix X. Therefore, logistic regression is well equipped to 
calculate this quantity and reproduce the likelihood function (see 
Supplementary Information for detailed analysis).

Spin chain in a magnetic field. Now let us consider a more com-
plicated, many-particle system and a non-linear work protocol, 
namely a spin chain in a magnetic field and in contact with a ther-
mal reservoir at temperature β−1. This spin chain is described by the 
Hamiltonian

H ¼ JðtÞ
X

i

σiσiþ1 � BðtÞ
X

i

σi; ð7Þ

where σi ∈ {−1, +1} is the spin variable at site i, J(t) is the 
nearest-neighbour coupling strength and B(t) is the magnetic field. 
The dynamics of this system are modelled as a Markov process (see 
Methods). The Hamiltonian aligns the spin in preferred energy 
configurations, whereas thermal fluctuations cause the spins to flip 
randomly. We consider two scenarios. First, the coupling is assumed 
to be constant and the magnetic field is varied in time (Fig. 3a).  
Next, the magnetic field is constant and the coupling is varied  
(Fig. 4a). We refer to the former as the B

I
 protocol and the latter as 

the J
I

 protocol.
In the forward process of the B

I
 protocol, J(t) is constant over 

time, and BðtÞ ¼ B0 cosðπt=τÞ
I

 changes from B0 > 0 at t = 0 to −B0 at 
t = τ (Fig. 3b). At low temperatures and in large magnetic fields, the 
spins are aligned with the direction of the field. As the temperature 
is increased, fluctuations become more prominent (Fig. 3c,d). These 
fluctuations increase the overlap in work distributions, which blurs 
the direction of time’s arrow (Fig. 3e). We train a single classifier by 
using samples of forward and backward trajectories for three differ-
ent temperatures; these samples (trajectories) are generated by the 
Metropolis algorithm. This training scheme, known as multitask 
learning, improves the performance and generalizability of the clas-
sifier37. We observe that the success of logistic regression in learning 
both the correct labels and in approximating the likelihood function 
persists (Fig. 3f). The reason, again, lies in the functional form of 
W, which is evaluated by numerically integrating _W ¼ � _BðtÞPiσi

I
, 

and therefore is proportional to a weighted sum of the elements of 
the input trajectory. As ΔF = 0 in this protocol, logistic regression is 
a perfect model of the likelihood function for all of the temperatures 
(see Supplementary Information for details).

The J
I

 protocol is more complicated and has a ferromagnetic–
antiferromagnetic transition. In this protocol, B(t) is constant in 
time and JðtÞ ¼ J0 cosðπt=τÞ

I
 is varied non-linearly from J0 > 0 

at t = 0 to −J0 at t = τ in the forward process. The logistic regres-
sion classifier does not perform well in this case (Supplementary 
Fig. 1) as _W ¼ _JðtÞPiσiσiþ1

I
 is no longer linearly related to the 

input. However, by using a CNN with periodic boundary condi-
tion, we are able to recover the optimal accuracy and obtain results 
(Fig. 4) that are similar to those for the B

I
 protocol. The convolu-

tion layer in a CNN has filters that can capture the two-body 
nearest-neighbour correlations that are required to calculate the 
work (see Supplementary Information). Note that in this process 
ΔF ≠ 0, which adds to the complexity of the problem.

interpretation and extensions
We now use three approaches to investigate trained networks and to 
develop insight into what they have learned.

First, we use inceptionism techniques38,39 to learn the net-
work’s ideal representative of forward and backward trajectories. 
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Specifically, we use a Monte Carlo approach to transform a ran-
domly selected input trajectory into one for which the networks that 
are trained for B

I
 and J

I
 protocols provide an output of 1 or 0, which 

correspond to forward and backward trajectories, respectively. This 
is in contrast to the previous section, in which we optimized for 
the weights and biases of the network. Among the simulated tra-
jectories in the test set, we choose one with p ≅ 0.5 (ref. 39); this is a 
trajectory for which the network has difficulty assigning the direc-
tion of time’s arrow. We propose random spin flips and accept those 
moves that cause the output to get closer to the desired value of 1 
or 0. In addition, we demand that there be at most one spin flip 
per time step, to ensure that the network ‘dreams’ of trajectories 
that are consistent with our simulations. We find that the networks’ 
ideas of the forward and backward trajectories show strong agree-
ment with the true physical picture (Fig. 5a). We also present an 
alternative gradient-based dreaming algorithm (see Supplementary 
Information and Supplementary Fig. 4).

Second, to assign a physical interpretation to the net-
works’ decision-making process, we project the trajec-
tories onto a two-dimensional reduced phase space that 
corresponds to the collective coordinates f~xð1ÞðtÞg ¼ f

P
iσiðtÞg

I
 

and f~xð2ÞðtÞg ¼ f
P

iσiðtÞσiþ1ðtÞg
I

 (taking period boundary condi-
tions), which represent magnetization and nearest-neighbour cor-
relations, respectively. We also replace the value of ~xð‘ÞðtÞ

I
 within 

each time window of 10 time steps by the sum of the values within 
that window (see Methods for details). By such coarse-graining in 

both phase space and time, we reduce the noise that is due to finite 
size effects and variations over samples. We use these coarse-grained 
trajectories to train logistic regression classifiers for both B

I
 and J

I
 

protocols (see Supplementary Fig. 2 for the performance of these 
classifiers). Finally, we investigate the weights Ω(ℓ) that the networks 
assign to the magnetization (ℓ = 1) and the nearest-neighbour  
correlations (ℓ = 2) of an input trajectory. For the B

I
 protocol  

(Fig. 5b, top), the network cares mostly about the magnetization, 
whereas when the J

I
 protocol is performed (Fig. 5b, bottom), the 

network bases its decision on the nearest-neighbour correlations. 
Moreover, the learned values of Ω(ℓ) agree with our analytical results 
that reproduce the correct likelihood value (see Supplementary 
Information for details). These observations suggest that the  
network learns that the time derivative of the Hamiltonian, and  
by extension the work (equation (3)), is an important feature  
in guessing the direction of time’s arrow. We note that when  
the process is highly irreversible, the distributions of the forward 
and reverse work are well separated. In this case, the network  
determines easily the arrow of time, but does not learn about the 
importance of work and bases its decision on other visible dif-
ferences in the trajectories (see Supplementary Information and 
Supplementary Fig. 5).

Last, by using our knowledge about the structure of the problem, 
we design a neural network that can learn to guess accurately the 
direction of time’s arrow for trajectories that are generated by using 
multiple protocols, when the identity of the protocol is not speci-
fied. Specifically, we use a mixture of experts (MoE), with an output 
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that is the weighted sum of expert networks40. When the protocol is 
not specified, the net forward likelihood is

PðFjXÞ ¼ PðFjX;BÞPðBjXÞ þ PðFjX;J ÞPðJ jXÞ: ð8Þ

The quantities PðFjX;BÞ
I

 and PðFjX;J Þ
I

 are modelled by using neu-
ral networks that are similar to those considered previously for B

I
 and 

J
I

 protocols, respectively. These networks are referred to as experts. In 
addition, we use a CNN to model PðBjXÞ ¼ 1� PðJ jXÞ

I
. This CNN, 

which is called the gating network, learns the protocol from trajecto-
ries. Therefore, we obtain a larger three-headed network by combin-
ing the output of the three neural networks, as in equation (8) (Fig. 6a).  
For the training, we use the pre-trained expert networks for the B

I
 

and J
I

 protocols, and optimize the cross-entropy cost function over 

a

c d e f

+B0

–B0

0 1

0.02

0.01

0

0.02

0.01

0

0.02

0.01

0

–100 0 100 –100 0 100
W W

0

0.5

1.0

0

0.5

1.0

0

0.5

1.0

p
p

p

1

0
1

0

1

0

1

0

1

0

1

0

Cold

Hot

1 3 5 7 9 1 3 5 7 9
Spin Spin

T: 0.82

T: 0.62

T: 0.57

N: 0.80

N: 0.61

N: 0.57

J
b +B0

–B0

B(
t)

t /τ

ρ(
W

)
ρ(

W
)

ρ(
W

)

t/τ
t/τ

t/τ

t/τ
t/τ

t/τ

Fig. 3 | Spin chain in a time-dependent magnetic field. a, A chain of ten spins with periodic boundary condition is placed in a magnetic field. The  
strength of coupling between nearest neighbours J(t) = −1 is fixed, and all of the quantities are in the units of ∣J∣. The forward process starts with spins in 
equilibrium at temperature β−1 with B(0) = +B0 > 0 at time t = 0 and ends at a non-equilibrium state with B(τ) = −B0 at at time t = τ. b, The forward (black)  
and the reverse (blue) protocols B(t). In our examples, B0 = 20 and τ = 500. c, Sample forward trajectories that are encoded in a matrix, in which the black  
and white pixels (±1 entries) denote spins that point up and down, respectively. The rows and columns correspond to time steps and spin positions, 
respectively. d, Sample backward trajectories that are obtained from time reversal of the reverse process. e, The distribution of work ρ(W) for the forward 
(black) and backward (blue) trajectories. f, The theoretical likelihood function (black line) and the output of the neural network p over the test set (grey 
dots) for various temperatures. The values in the keys denote the accuracy of the theory (T) and neural network (N) over 4,000 test trajectories for each 
temperature. In this example, a single classifier is trained simultaneously with sample trajectory data with three different temperatures (12,000 samples  
for each temperature). The temperatures that correspond to the rows in parts c–f are β−1 = 10, 30 and 50 from top to bottom. As the temperature increases, 
the distinction between the forward and backward trajectories is blurred.

NATure PHySiCS | VOL 17 | JANUARy 2021 | 105–113 | www.nature.com/naturephysics 109

http://www.nature.com/naturephysics


Articles NaTurE PHysIcs

sample trajectories from both protocols. We observe that the perfor-
mance of this network is similar to that of the individual networks, as 
the gating network learns to identify the protocol of input trajectories 
accurately (Fig. 6b). Note that the predictions of the gating network 
are more accurate at lower temperatures. This makes sense as the dis-
tribution of the initial states in the two protocols is distinguishable at 
low temperatures, but becomes less so as the temperature is increased.

Although in this work we rediscovered elements of thermody-
namics that had been developed in recent decades, we are interested 
ultimately in answering open questions in thermodynamics. The 
physics of systems that are out-of-equilibrium is an area of inter-
est, with unsolved questions that could be answered by studying 
the dynamics of the systems with machine learning algorithms. For 
instance, identifying the thermodynamic principle that determines 
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the steady state of a system41, an outstanding problem in statisti-
cal physics, and deciding when a non-equilibrium system has an 
effective equilibrium description42 are two examples in which the 
analysis of time-series data by using machine learning could shed 
light on the inner mechanism of the problem.

Moreover, machine learning researchers have shown that 
machine learning techniques can be used to detect the playback 
direction of real-world videos 43,44. These studies are concerned with 
videos of macroscopic objects that are in principle irreversible, and 
for which the arrow of time has a clear direction. In such scenarios, 
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many indicators can reveal the true playback direction, and there-
fore it is difficult to quantify the optimal performance. However, in 
the physical examples, the optimal attainable accuracy of the clas-
sifier is dictated by the laws of physics. Therefore, problems with 
a large number of phase-space coordinates and with complicated 
dynamics, such as the J

I
 protocol for the two-dimensional Ising 

model, can serve as a standardized benchmark for video classifica-
tion algorithms.
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Methods
Training neural networks. To train the classifier, we determine optimal values of 
parameters (such as the weights and biases in logistic regression) by minimizing 
the cross-entropy36

C ¼ � 1
Nsamp

X

m

ymlog ðpmÞ þ ð1� ymÞlog ð1� pmÞ
 

: ð9Þ

The sum is carried over the Nsamp training samples, ym ∈ {0, 1} is the label that is 
attached to the mth trajectory to indicate which process was used to generate the 
trajectory, and pm is the output of the network for that trajectory.

Throughout this work, we always split a given data set into three parts.  
We use 60%, 20% and 20% of the data for training, validating and testing the 
model, respectively. We use a data set with a total of 20,000 samples for the 
Brownian particle. For the spin chain examples (B and J

I
 protocols), we use 

20,000 samples for each temperature. The samples are then split into three sets 
and are used to train, validate and test the models. The validation set is used to 
tune the architecture and hyperparameters of the model, whereas the test data 
are used for an unbiased evaluation of the accuracy of the final model. For the 
training, we use an Adam optimizer with parameters that were suggested in the 
original paper45. We assess the performance of the network by testing it over a 
balanced set of trajectories, that is, half forward and half backward. If pm ≥ 0.5, 
then the algorithm guesses that the trajectory was generated from the forward 
process, otherwise it guesses the reverse process. We consider the accuracy as a 
figure of merit, that is, the ratio of correct guesses to the total number  
of samples.

To reduce overfitting, it is helpful to include a regularization term to reduce 
the difference between the training error and the test error. We consider L2 
regularization α

P
‘Ω

2
‘

I
, that is, adding the sum of squares of all of the weights in the 

network to the cost function. The parameter α is a hyperparameter of the model 
and is tuned by using the cross-validation data.

In addition, for training the CNNs in this work, we use the dropout technique 
to reduce overfitting. Dropout involves deactivating and ignoring certain neurons 
during the training phase. Specifically, a random fraction pdrop of neurons are 
deactivated at every training step46.

We find that our results do not vary substantially with the choice of 
hyperparameters. We choose pdrop = 0.25 for the dropout rate of neurons of the 
convolutional layer in the J

I
 network, and pdrop = 0.5 for the gating network in the 

MoE. The L2 regularization rates α are shown in Supplementary Table 1.

Convolutions. A convolution layer convolves the input with a number of filters, 
and then applies a non-linear function to the output of the filters. Each convolution 
operation with a kernel Ω and bias b maps an input matrix X to another matrix 
Z ¼ Ω *X
I

 that is given by36

Zj;k ¼
X

m;n

Xj ´ sþm;k ´ sþnΩm;n þ b ð10Þ

where s specifies the number of steps that the filter moves in each direction; s 
is called the stride of the convolution and is a hyperparameter that is tuned by 
using the cross-validation data. The output of the convolution layer is obtained by 
applying a non-linear function g element-wise to Z. The convolution layers can be 
repeated many times and combined with pooling layers in which the dimension of 
the output is reduced through a procedure such as averaging. At the end, the output 
of the convolution layer is flattened to form a vector, and that vector is fed into a 
series of fully connected layers to produce the network’s output36.

The CNN that we consider has four 2 × 2 filters with a stride of 1 and with 
periodic boundary condition. We choose the rectifier gðzÞ ¼ maxð0; zÞ

I
 for the 

activation of these filters. The outputs of all of the filters are then combined to 
form a single vector. For the CNN that classifies the J

I
 protocol (Fig. 4), this vector 

is fed into a single neuron with sigmoid activation, whose values determine the 
direction of time’s arrow. For the MoE gating network, this vector is fed into a fully 
connected layer with 50 hidden neurons and the rectifier activation, followed by 
the output neuron with the sigmoid activation.

Generating the data. To generate trajectories, we follow ref. 6 closely. We consider 
a discrete set of time steps t ∈ {0, 1, …, τ}. The value of the control parameter and 
the state of the system at each time step are denoted by λt and xt, respectively. In 
the forward process, the initial state of the system is drawn from equilibrium with 
λ = λ0. The time evolution can be broken into two substeps:

 (i) With the state of the system fixed, the control parameter is changed, as 
denoted by λt → λt+1.

 (ii) At fixed λt+1, the state of the system evolves, as denoted by xt → xt+1.

Here, the second substep is generated by either a stochastic differential equation 
(for the Brownian particle) or a Metropolis algorithm (for spin examples). 
The total work that is performed in this process is

W ¼
Xτ�1

t¼0

½Hλtþ1 ðxtÞ � Hλt ðxtÞ ð11Þ

To produce backward trajectories, the system is initialized in an equilibrium state 
with λ = λτ. The dynamics begin with a change in the system state, followed by a 
change in λ. At the end, the history of the system state is reversed, and the calculated 
work is negated to obtain backward trajectories and their corresponding work values.

Coarse-grained features. To obtain the coarse-grained feature results (Fig. 5), we 
reduce the parameters of the neural network and simplify the task of learning by 
pre-calculating a set of features for the network. Specifically, for the two protocols 
that concern the spin chain in a magnetic field, the coarse-grained features are

~xð1Þs ¼
Xmðsþ1Þ�1

t¼ms

Xn

i¼1

Xt;i; ð12Þ

~xð2Þs ¼
Xmðsþ1Þ�1

t¼ms

Xn

i¼1

Xt;iXt;iþ1; ð13Þ

where m is an integer and s is the scaled time. We use this feature map as the input 
to a logistic regression classifier. Note that the input to the network is a 2τ/m 

dimensional vector ~xð1Þ

~xð2Þ

� �

I

, and the weights that correspond to ~xð‘Þ
I

 are denoted by 

τ/m dimensional vectors Ω(ℓ) for ℓ = 1, 2.
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