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While optical frequency combs naturally emerge in 
mode-locked ultrafast lasers1–3, the use of nonlinear 
parametric processes—particularly the Kerr effect—in 

integrated photonic resonators offers a much more convenient 
and compact route to generate optical frequency combs4–8. Of 
particular significance is the regime of coherent optical frequency 
combs where the intrinsic dispersion and dissipation of a pho-
tonic resonator are counterbalanced by nonlinearity-induced dis-
persion and parametric gain, respectively, and this double-balance 
leads to the self-formation of stationary temporal solutions called 
dissipative Kerr solitons (DKSs)5. DKSs have been demonstrated 
in a variety of single-resonator geometries, and diverse mate-
rial platforms such as silica glass, silicon nitride, and so on5,6,9. 
More recently, DKSs have been explored in photonic molecules, 
that is, a configuration of two coupled resonators, which allows 
the exploration of collective coherence or self-organization of 
solitons as well as solitonic solutions that are inaccessible using a  
single resonator10–13.

In parallel, advances in the field of topological photonics have 
allowed access to new paradigms that can be used to design pho-
tonic devices with novel functionalities14–16. On one hand, topologi-
cal photonic systems use complex arrays of hundreds of coupled 
waveguides or ring resonators17–19. On the other hand, such systems 
exhibit remarkably simple features such as edge states, which are 
dictated only by the global topology and therefore are independent 
of local details of the system. This unique property of edge states 
protects them against local defects and disorders in the system, 
enabling the realization of robust photonic devices such as opti-
cal delay lines17,18,20, lasers21–24, switches25,26, photonic crystal wave-
guides and cavities27–29, fibres30, etc. Lately, topological edge states 
have also been used in conjunction with nonlinear parametric  

processes for the efficient and tunable generation of quantum states 
of light via spontaneous four-wave mixing31–33, optical frequency 
conversion34,35, as well as to explore spatial solitons in coupled 
waveguide arrays36–39.

Here we theoretically investigate the generation of coherent 
optical frequency combs and temporal DKSs in a topological pho-
tonic system consisting of a two-dimensional lattice of coupled 
(micro)ring resonators. We exploit the fact that the topologi-
cal edge states circulate around the boundary of the lattice, and 
because of their unidirectionality, they constitute a travelling-wave 
super-ring resonator formed of multiple single-ring resonators 
(Fig. 1e). We show that pumping the edge state super-ring reso-
nator with a continuous-wave (CW) laser—of optimal frequency 
and power—leads to the self-formation of temporal patterns, par-
ticularly Turing rolls and nested DKSs. More importantly, these 
temporal patterns are phase-locked across all the ring resona-
tors on the edge of the lattice, indicating collective coherence or 
self-organization across more than 40 oscillators. In the regime of 
nested solitons, the spectral output of our device corresponds to 
that of a coherent nested optical frequency comb (Fig. 1f). We find 
that the nested solitons inherit the topological protection of a lin-
ear system and are robust against any defects in the lattice. From 
an application perspective, in the regime of a single nested soli-
ton, the topological frequency comb achieves a mode efficiency of 
>50%, an order of magnitude higher than single-ring frequency 
combs40–42 that are theoretically limited to only ~5%. Our design 
can be readily implemented with the existing nanofabrication 
technology (Supplementary Section 3), and similar topological 
ring resonator systems with nonlinear parametric processes have 
already been realized to enhance and engineer the generation of 
quantum states of light31,32.
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Topological system and simulation framework
Our topological system consists of a square lattice with a site-ring res-
onator located at each of its lattice sites (Fig. 1e)43,44 (Supplementary 
Section 1). The site-ring resonators are coupled to their nearest and 
next-nearest neighbours, using another set of link rings, such that 
a non-zero local synthetic magnetic field for photons with flux π 
threads a half-unit cell, but the flux threading a complete unit cell 
is zero. Close to a given longitudinal mode resonance of the site 
rings, the lattice simulates a Haldane-like anomalous quantum 
Hall model for photons. Accordingly, its power spectrum (or the 
energy-momentum band structure) exhibits a topological edge band 
sandwiched between two bulk bands (Fig. 1f and Supplementary 

Section 1). The edge states propagate all along the boundary of 
the lattice in a single direction (set by the input port44) and there-
fore constitute a travelling-wave super-ring resonator (Fig. 1e and 
Supplementary Fig. 1). The multiple longitudinal modes of the 
super-ring—equally separated in frequency by free spectral range 
(FSR) ΩSR—are clearly evident in the edge band of the power spec-
trum. Furthermore, this structure of an edge band sandwiched 
between two bulk bands repeats in frequency every FSR (longitudi-
nal mode spacing ΩR) of the individual ring resonators. Therefore, 
our topological system effectively involves three dimensions—two 
real dimensions in space and one synthetic dimension in frequency 
that is associated with the longitudinal modes of the ring resonators.
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Fig. 1 | Working of the topological frequency comb. a,b, Schematic of a single-ring resonator (a) and its power spectrum in the linear regime (b).  
c, Temporal and spectral response at the output of the ring resonator in the regime of a single Kerr soliton. The temporal output consists of a series 
of pulses separated by τR, the round-trip time of the ring resonator. The spectral output consists of a series of narrow lines separated by FSR ΩR. d, An 
indicative spatiotemporal intensity distribution in the ring, showing different operating regimes as a function of input pump frequency detuning δωp from 
cold-cavity resonance (Supplementary Fig. 3). e, Schematic of a two-dimensional array of ring resonators that simulates the anomalous quantum Hall 
model for photons and exhibits topological edge modes at its boundary. f, Power spectrum in the linear regime showing edge state resonances (shaded) 
and bulk bands. The edge states extend throughout the boundary of the lattice and constitute a super-ring resonator, with longitudinal mode separation 
ΩSR. The transmission spectrum repeats every FSR ΩR of the ring resonators. When pumped by a CW laser near one of the edge mode resonances, the 
topological super-ring can host nested solitons with indicative spatial intensity profile shown by yellow-coloured pulses. g, Schematic of the temporal and 
spectral output of the topological frequency comb in the regime of a single nested soliton. The output temporal profile consists of a series of soliton pulses 
separated by single-ring round-trip time τR (fast time), modulated by a series of super-soliton pulses separated by the round-trip time τSR (slow time) of 
the edge mode super-ring. The output spectral profile shows a nested comb, that is, a series (comb) of edge mode resonances (longitudinal modes of the 
super-ring; slow frequency) oscillating in each FSR (fast frequency) of the the single-ring resonators.
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To generate an optical frequency comb in this lattice, we couple 
one ring at the edge of the lattice to an input–output waveguide, as 
shown in Fig. 1e. At the input port of this waveguide, we inject a CW 
pump laser with frequency close to one of the longitudinal mode 
resonances of the ring resonators (indexed by an integer μ = 0).  
The intrinsic Kerr nonlinearity of the ring resonators leads to spon-
taneous four-wave mixing and subsequently stimulates the genera-
tion of photons in other longitudinal modes (μ ≠ 0) in the form of a 
frequency comb.

To simulate the generation of an optical frequency comb in 
the lattice, we derive the coupled driven-dissipative nonlinear 
Schrödinger equations, also called Lugiato–Lefever equations6,45,46, 
which dictate the complete spatial, spectral and temporal evolution 
of site-ring fields as
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Here am,μ is the photon field for the site ring at spatial position m 
for a given longitudinal mode μ; J is the coupling strength between 
the ring resonators and is the same for both nearest-neighbour 
(indicated by 〈m,n〉) and next-nearest-neighbour (indi-
cated by 〈〈m,n〉〉) couplings. The hopping phase Ƞ

N
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for nearest-neighbour couplings and Ƞ

N
O

= � for the next- 
nearest-neighbour couplings (Supplementary Section 1). Further,  
γ is the strength of the nonlinear interaction, κex is the coupling 
rate of the input–output (IO) ring (indicated by δm,IO) to the input– 
output waveguide, and κin is the loss rate of the ring resonators; ε 
is the normalized input pump field, which is coupled only to the 
IO ring, and is in the longitudinal mode μ = 0 (indicated by δμ,0).  
Also, ω0,μ is the resonance frequency of the site-ring resonators  
for a longitudinal mode with index μ and includes second-order 
anomalous dispersion D2 such that
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The input pump frequency is denoted by ωp and the pumped lon-
gitudinal mode corresponds to μ = 0 with resonance frequency ω0. 
The coupled equations (1) have been written in a reference frame 
rotating at frequency ΩR/2π such that the FSR of the individual ring 
resonators is an independent parameter (equations (1) and (2)). 
Also, note that we have not made any assumptions regarding the 
spectral position, bandwidth or dispersion of the edge state reso-
nances within a longitudinal mode μ (Supplementary Section 8).

In equation (1), the nonlinear four-wave mixing interaction 
between different longitudinal mode resonances is represented in 
the time domain τ (in [0,τR]), which corresponds to the round-trip 
time within a single-ring resonator47,48. Specifically, in a reference 
frame rotating at frequency ΩR/2π = 1/τR, B̃

N
Ȓ

 represents the spatio-
temporal field within a ring, at lattice location m, and is related to 
the spectral field within the ring as
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We emphasize that the spectral and temporal dynamics of our 
system, as dictated by equation (1), involves two disparate fre-
quency and time scales: (1) fast frequency associated with the lon-
gitudinal mode resonances of individual rings (indexed by μ and 
separated by ΩR) and corresponding fast timescale τ in [0,τR] that 

depicts the spatiotemporal field within individual rings; (2) slow 
frequency (ωslow) associated with the longitudinal mode resonances 
of the super-ring resonator (separated by ΩSR), that is, the frequency 
response close to a given longitudinal mode resonance of the indi-
vidual rings and the corresponding slow time t ≈ 1/J that depicts 
the evolution of fields within the super-ring with round-trip time 
τSR. While equations (1) and (3) directly yield the fast-time and 
fast-frequency response, the Fourier transform of the slow-time (t) 
evolution of am,μ allows us to reconstruct the slow-frequency (ωslow) 
spectrum of the topological comb.

For our numerical simulations, we consider a 12 × 12 lattice of 
site rings and 256 FSRs of individual rings. We use dimensionless 
parameters45,46 such that the relevant frequency (ω0,μ, ωp, κex, κin, 
ΩR and D2) and time (τR and t) scales are normalized by coupling 
strength J, and the fields (am,μ) are normalized by ratio 

√
+�ȁ  (effec-

tively, J = 1 and γ = 1; Supplementary Section 2). We chose κex = 0.050 
and κin = 0.005 such that the individual edge state resonances in the 
edge band are resolved, and D2 = 0.00025.

Turing rolls and collective coherence
To understand the generation of an optical frequency comb in our 
topological device, we first fix the (normalized) input pump field 
at ε = 1.1, and observe the output spectra of the generated photons 
across multiple FSRs (fast frequency, indexed by μ) as we tune the 
input pump frequency in one of the FSRs (μ = 0; Fig. 2a,b). We find 
that the generation of the frequency comb (bright light intensity 
across multiple FSRs) is efficient only when the input pump fre-
quency is close to one of the edge mode resonances. Furthermore, 
as we will show later, on pumping near the edge mode resonances, 
the bright frequency comb is generated only in the ring resonators 
that lie on the edge of the lattice. By contrast, when the input pump 
frequency is in the bulk bands, the generation of light in FSRs other 
than the pumped FSR is very weak and the frequency comb is ineffi-
cient. This enhanced generation of the optical frequency comb in the 
edge band is due to the travelling-wave super-ring resonator formed 
by the edge states that efficiently reinforces the optical frequency 
comb. The bulk states, on the other hand, do not have a well-defined 
direction of flow of photons in the lattice (Supplementary Fig. 1).

Having established that the topological optical frequency 
comb is efficient only when the input pump frequencies excite 
the edge modes, we now focus on pump frequencies near a single 
edge mode of the lattice. Figure 2c shows the total pump power (∑

N∈FEHF

|B
N
Ȋ=�
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)
 in the super-ring resonator as a function of 

pump frequency detuning. To reveal the self-formation of temporal 
features, we plot 

∑
N∈FEHF

|B̃
N
Ȓ

|� (Fig. 2d), that is, the spatiotemporal 
(or fast-time τ) intensity distribution integrated over the rings on the 
edge of the lattice, as a function of the input pump frequency. The 
presence of sharp features in this plot indicates both self-formation 
of temporal (or equivalently, spatial) features within individual ring 
resonators and self-organization of these features across the rings. 
Randomly varying features in this plot indicate randomness in the 
spatial intensity distribution within the rings or a lack of coherence 
between the rings. This plot can be compared with the correspond-
ing plot of a single-ring resonator frequency comb (Fig. 1d and 
Supplementary Fig. 3).

When the input pump frequency is at Ȃȗ

Q

�

= �����+  in 
Fig. 2d, we observe a regularly oscillating pattern along the 
fast-time τ axis, which indicates the formation of Turing rolls5,6 
(Supplementary Fig. 3). To confirm this, we plot the spatiotempo-
ral intensity distribution within each ring of the lattice (Fig. 2e),  
that is, |B̃

N
Ȓ

|�, where m = (mx,my) indicates the location of a ring 
in the lattice (Supplementary Fig. 1). Indeed, all the rings on the 
edge of the lattice exhibit equally spaced pulses, called Turing rolls 
(or perfect soliton crystals)5,6. Also, the light intensity in the bulk of 
the lattice is negligible. Remarkably, we find that the phase of the 
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Turing rolls is locked throughout the edge of the lattice. This shows 
self-organization or collective spectrotemporal coherence between 
all the 44 rings on the edge. In fact, there exists a broad region with a 
bandwidth of ~0.01J, where we observe coherent Turing rolls. From 
Fig. 2c, we also see that the pump power in the super-ring smoothly 
varies in this region of coherent Turing rolls (Supplementary Fig. 3).

For lower pump frequencies (near Ȃȗ

Q

�

 in Fig. 2c,d), we find 
a chaotic region where the pump power rapidly varies as we tune 
the input pump frequency. More importantly, the spatiotemporal 
intensity distribution within each ring, as well as the distribution 
across rings, is now random without any coherence whatsoever. We 
emphasize that the pump frequency is still in the edge band, and 
consequently, the comb intensity is confined to the edge of the lat-
tice and the intensity in the bulk is negligible.

Figure 2g,h shows the output comb spectra for the two pump 
frequencies Ȃȗ

Q

�

 and Ȃȗ

Q

�

. For Ȃȗ

Q

�

, the frequency comb spec-
trum predominantly consists of discrete spectral lines, separated 
by 18 FSRs. As in the case of a single-ring frequency comb, this 
number exactly corresponds to the number of Turing rolls in each 
ring (Fig. 2e). Furthermore, we have confirmed that the number of 
Turing rolls decreases as 

√
ȁ�%

�

 (refs. 6,45,48) (Supplementary Fig. 4).  
At Ȃȗ

Q

�

, that is, in the chaotic region, the discrete lines in the  

primary comb merge together, and there are no distinct features in 
the frequency spectrum.

Because ωslow ≈ J ≪ ΩR, the slow-frequency spectrum of the 
comb is not resolved in Fig. 2g,h, which shows the spectra along 
the fast-frequency axis (FSRs, μ). Therefore, to better visualize 
the slow-frequency response of the topological comb, we plot the 
slow-frequency spectrum within each FSR (Fig. 2i,j). Here ωslow  
(x axis) is calculated as the detuning from the corresponding lon-
gitudinal mode resonance frequency ω0,μ and the input pump fre-
quency, such that ωslow = {(ωμ – ω0,μ) – (ωp – ω0)}/J, where ωμ is the 
frequency of generated light in longitudinal mode μ.

At Ȃȗ

Q

�

, that is, in the region of coherent Turing rolls (Fig. 2i), 
the slow-frequency spectrum within each bright FSR (fast fre-
quency, μ) exhibits a single mode centred around the comb line (a 
cross-section of this plot is shown in Fig. 2g, inset). The oscillation 
of a single edge mode within each oscillating FSR is consistent with 
the observation of uniform spatial intensity distribution on the edge 
of the lattice (Fig. 2e). This can also be inferred from Fig. 2k, which 
shows that the fast-time (τ) intensity distribution at the output 
remains constant with the evolution of slow time t.

At Ȃȗ

Q

�

, that is, in the chaotic region, we observe the oscillation 
of multiple modes in the edge band (ωslow = (–1,1)J) of each FSR. 
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in different FSRs (indexed by μ, the fast frequency). c, Total pump power in the super-ring resonator, for pump frequencies in one of the edge 
state resonances. d, Spatiotemporal (or fast-time) intensity distribution in the ring resonators, integrated over the rings on the edge of the lattice 
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, as a function of pump frequency detuning. This plot can be compared with that of a single-ring resonator, as shown in Fig. 1d. We 
analyse two different pump frequencies, namely, Ȃȗ

Q

�

= �����+ and Ȃȗ

Q

�

= �����+, as indicated in c and d. e–h, Spatial intensity distribution in the lattice 
(e,f) and output comb spectra (g,h) at Ȃȗ

Q

�

 (e,g) and Ȃȗ

Q
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 (f,h), in the regimes of phase-locked Turing rolls and chaos, respectively. The insets in e and 
f show the spatiotemporal intensity distribution in the input–output ring. The insets in g and h show the slow-frequency spectra for a given longitudinal 
mode μ. For plotting the comb spectra, we chose ΩR!=!20. i–l, Slow-frequency spectra (i,j) and slow-time temporal profiles (k,l) at the output for pump 
frequencies Ȃȗ
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 and Ȃȗ
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, respectively.
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This oscillation of multiple edge modes in the chaotic regime is also 
evident from the non-uniformity of the spatial intensity distribu-
tion in the lattice (Fig. 2f), and the dynamics of the output temporal 
profile (Fig. 2l) that randomly varies with slow time t. Furthermore, 
spectral power in the bulk modes (ωslow < −1J and ωslow > 1J) is 
two orders of magnitude smaller compared with those of the edge 
modes. This validates the observation of negligible light intensity in 
the bulk of the lattice (Fig. 2f). Note that the oscillating edge modes 
(Fig. 2j) also show the underlying quadratic dispersion of the ring 
resonators in different FSRs.

Temporal Kerr super-solitons
To show the presence of nested solitons in the topological frequency 
comb, we increase the normalized input pump field to ε = 1.56. From 
the spatiotemporal intensity distribution in the super-ring resona-
tor (Fig. 3a), in addition to the coherent Turing rolls and chaotic 
regions, we observe a new regime (0–0.02J) where the light intensity 
is confined to very narrow regions (thin strands) in the ring resona-
tors. A quick comparison with the analogous spatiotemporal inten-
sity distribution of a single-ring optical frequency comb (Fig. 1d) 
reveals that this region hosts solitons in the topological frequency 

comb. Figure 3b shows the total pump power in the super-ring reso-
nator where—similar to a single-ring comb—we see the emergence 
of kinks in the region where we expect solitons.

We analyse two different pump frequencies, namely, 
Ȃȗ

Q

�

= ������+  and Ȃȗ

Q

�

= ������+ , in this region, as indicated 
in Fig. 3. From the spatial intensity distribution (Fig. 3c), we see 
that at Ȃȗ

Q

�

, the topological frequency comb exhibits nested soli-
tons: the intensity distribution along the super-ring resonator 
(edge) of the lattice is confined to a small region of the edge in the 
form of a super-soliton, and the intensity distribution within each 
ring is also confined to a narrow region in the form of a soliton. 
This nested soliton then circulates along the edge of the lattice in 
an anticlockwise direction as slow time t evolves (Supplementary 
Video 1). Remarkably, the spatiotemporal phase of the solitons in 
individual rings of the super-soliton is locked (Fig. 3c, inset) as this 
nested soliton structure circulates around the edge of the lattice. 
This observation once again highlights the collective coherence or 
self-organization of multiple nonlinear ring resonators on the edge 
of the lattice. The corresponding temporal spectrum (Fig. 3g) at 
the output of the topological frequency comb then shows pulses of  
light that are separated by τSR, the round-trip time of the super-ring 

0

0.2

0.4

0.6

0.8

1.0
a

i j k

b

–100 1000–50 50 –100 1000–50 50

–60

–20

–40

0

C
om

b 
sp

ec
tr

um
 (

dB
)

–60

–20

–40

0

C
om

b 
sp

ec
tr

um
 (

dB
)

–100

100

–50

50

0

2–2 –1 10

0.5

1.0

N
orm

alized intensity0

1

0

1

0

0.5

1.0 N
orm

alized intensity0
0 0.04 0.08 0.12 0.16 0.20 0 0.05 0.10 0.15 0.20

0.2

0.4

0.6

0.8

1.0

Slow-time evolution

Slow-frequency spectrum

0 100 200

P
um

p 
po

w
er

Chaotic region Turing
rollsSolitons

c d

g

h

e f

–40

–20

–60

0

–80

–100

N
orm

alized intensity (dB
)

τ/τ
R

τSR

τSR

δωp4

δωp4

δωp3

δωp4

δωp3

δωp3

δωp3

δωp4

δωp3

(ωp – ω0)/J(ωp – ω0)/J

δt = 100 δt = 118

δt = 104 δt = 120 δtJ

–1 1
ωslow /J

ωslow /JFast frequency, µ Fast frequency, µ

µ
τ/τ

R
τ/τ

R

Fig. 3 | Operation of topological comb in the regime of a nested solitons. a, Spatiotemporal (or fast-time) intensity distribution integrated over edge rings. 
b, Total pump power in the super-ring resonator as a function of the input pump frequency, with input pump field ε!=!1.56. c,d, Spatial intensity profiles in 
the lattice at Ȃȗ

Q

�

, for two different slow times, δt!=!100 (c) and δt!=!118 (d), showing the propagation of a single nested soliton (Supplementary Video 1). 
The inset shows the phase (or position) of the soliton, which is the same for each ring resonator. e,f, Propagation of two nested solitons at pump frequency 
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resonator. Note that our simulations are carried out in a reference 
frame that is rotating at frequency ΩR/2π, that is, co-propagating 
with the solitons in individual rings. Therefore, the solitons in each 
ring are circulating with time period τR, and each super-soliton 
pulse (shown in Fig. 3g) is actually a burst of pulses separated by 
time τR (Fig. 1g).

At input pump frequency Ȃȗ

Q

�

, we observe two sets of nested 
solitons that are simultaneously circulating along the edge of the 
lattice (Fig. 3e,f and Supplementary Video 2). Furthermore, while 
the phases of the individual ring solitons within each nested soliton 
are locked, the corresponding phases in the two nested solitons are 
not the same (Fig. 3e,f, insets). In contrast to a single nested soliton, 
the temporal spectrum at the output of the topological frequency 
comb now consists of two bursts of pulses in each round-trip time 
τSR of the super-ring resonator. At other pump frequencies in the 
super-soliton region, we can also observe three nested solitons.

Next, we discuss the frequency spectrum at the output of the 
topological frequency comb (Fig. 3i,j). In the case of a single nested 
soliton, that is, at Ȃȗ

Q

�

, the output frequency spectrum is—in gen-
eral—smooth, which indicates that it is phase-locked (except for 
few phase jumps; Supplementary Fig. 4). By contrast, in the case of 
two nested solitons, that is, at Ȃȗ

Q

�

, the frequency spectrum shows 
small variations (Fig. 3j). This behaviour of the frequency spectra is 
similar to that observed in single-ring resonator frequency combs 
where the spectrum is phase-locked only when a single soliton 
exists in the ring5,6,45,46.

Furthermore, by resolving the slow-frequency (ωslow) response of 
the topological comb (Fig. 3k), we find multiple edge modes that are 
oscillating within each FSR (Fig. 3i, inset). More importantly, the 
oscillating edge modes are equally spaced within a given FSR and 
across FSRs, that is, the intrinsic (linear) dispersion of the longitudi-
nal modes—of both individual ring resonators and super-ring reso-
nator—has now been exactly cancelled by the dispersion induced 
by the Kerr nonlinearity. Therefore, the frequency spectrum in the 
regime of a single nested soliton indeed corresponds to that of a 
coherent nested frequency comb (Fig. 1g). The slow-frequency 
response also explains the emergence of kinks, as shown in  
Fig. 3i—these are the regions in which the dispersion curves from 
two different edge modes interfere and lead to phase jumps in the 
otherwise coherent frequency comb. This slow-frequency spec-
trum in the soliton regime can be compared with that of the chaotic 
regime (Fig. 2j and Supplementary Fig. 5), where multiple modes in 
the edge band are oscillating but there is no cancellation of disper-
sion and no phase coherence.

A figure of merit for optical frequency combs operating in the 
regime of a single soliton is the mode efficiency at the output of 
the device, that is, the fraction of power that resides in the comb 
lines other than the pumped mode (Supplementary Section 4). For 
single-ring resonator optical frequency combs, the mode efficiency 
in the regime of a single soliton is limited to ~5%, irrespective of 

the length, quality factor or material of the resonator40–42. This is 
because the pulse width of a single soliton is much smaller than the 
round-trip time of the resonator, which leads to a very small tempo-
ral overlap with a CW pump. In comparison, in the regime of a sin-
gle nested soliton of the topological comb, we observe that 53% of 
the total output power (in the waveguide) is contained in the comb 
lines other than the pumped edge mode. This mode efficiency is an 
order of magnitude higher than that of single-ring resonators and is 
due to the fact that a single nested soliton pulse (in the super-ring) 
spans multiple phase-locked ring resonators, with each ring sup-
porting its own single soliton pulse. This enhances the temporal 
overlap of the nested soliton pulse with the pump. We note that a 
single-ring comb can also achieve higher efficiency when multiple 
solitons are present in the ring resonator5. However, in this case, the 
phase (position along the ring) of each soliton pulse is different, and 
therefore, the comb spectrum is not smooth. In the case of a topo-
logical nested soliton, a single ring hosts only a single soliton, and 
the phase of the solitons across multiple rings is exactly the same, 
which leads to a smooth spectrum (Fig. 3g). We note that the theo-
retical limit on the conversion efficiency of the topological nested 
frequency comb (in the regime of a single nested soliton) could be 
higher for other parameter regimes.

In the linear regime, the edge states have been demonstrated to be 
topologically protected against defects in the lattice18,20,44. To inves-
tigate whether the edge states preserve their robustness in the non-
linear regime as well, we explore the propagation of nested solitons 
in the presence of a deliberately located point defect in the lattice. 
Specifically, we detune one of the site-ring resonators on the edge of 
the lattice by 20J (Fig. 4a) such that it is effectively decoupled from 
the rest of the lattice. Figure 4b–d shows the slow-time evolution 
of the observed single nested soliton in this lattice (Supplementary 
Video 3). We see that the nested soliton simply routes around the 
defect as it circulates along the boundary of the lattice, without los-
ing its phase coherence. We do not observe any light pulses that are 
reflected from the defect or scattered into the bulk of the lattice. 
This clearly shows that the nested solitons are indeed topologically 
robust against defects in the lattice.

Discussion and outlook
The emergence of coherent temporal features, such as Turing rolls 
and nested solitons, and the characteristics of a nested frequency 
comb in the topological super-ring resonator closely resemble those 
of a single-ring resonator frequency comb in the regime of anoma-
lous dispersion. This allows us to qualitatively depict the phase 
diagram of the topological frequency comb, as shown in Fig. 5. We 
perform numerical simulations at different pump powers (ε). Using 
spatiotemporal (fast-time) intensity distributions integrated over the 
edge rings (similar to Figs. 2d and 3a), we locate the regions of pump 
frequency detuning that lead to Turing rolls, chaos and nested soli-
tons. In this phase diagram, we have also indicated (upper x axis) the 

Defect

a b c d

Defect

δt = 136 δt = 140 δt = 148

Fig. 4 | Robustness of the topological comb. a, Schematic of the lattice with a deliberately located defect on the boundary. b–d, Robust propagation of a 
single nested soliton around the defect, at different slow times δt!=!136 (b), 140 (c) and 148 (d), without any loss of phase-locking or any scattering into 
the bulk (Supplementary Video 3).
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pump frequency detuning from the respective cold-cavity (linear) 
edge mode resonance (ω0,edge) and normalized it by its bandwidth 
(BWedge). Similar to the case of a single-ring resonator (Fig. 1d and 
Supplementary Fig. 2), we observe Turing rolls at low pump pow-
ers and for pump frequencies near the cold-cavity edge resonance 
(ω0,edge). In this regime, the longitudinal modes of the individual rings 
are phase-locked, which manifests as phase-locking of the Turing 
rolls across rings. However, only a single mode of the super-ring res-
onator is excited (Fig. 2g,i). At pump frequencies further away from 
the cold-cavity edge resonance, we observe a chaotic regime where 
multiple longitudinal modes of the super-ring resonator are excited 
in each longitudinal mode of the single rings. But these modes are 
not phase-locked. Note that in the chaotic regime, the pump fre-
quency and intensity distribution in the lattice still correspond to 
those of the edge states. This clearly indicates that merely exciting 
the edge states of the system does not lead to self-organisation or 
phase-locking. The nested soliton region appears at input pump 
power ε ≈ 1.3 and at pump frequencies that are far red-detuned 
from the cold-cavity edge resonance. In this regime, both sets of 
longitudinal modes (those of single rings and the super-ring) are 
phase-locked (Supplementary Section 6). This phase-locking is 
enabled by the unidirectionality and the approximately linear dis-
persion of the topological edge states (Supplementray Section 8). We 
observe that the soliton region narrows down, and it completely dis-
appears at higher pump powers, probably leading to another chaotic 
regime. We note that this qualitative phase diagram was estimated 
for a given value of dispersion, in one of the edge mode resonances 
near the centre of the edge band.

While we have shown the presence of many features that are 
analogous to a single-ring resonator frequency comb, we have 
only analysed a small subset of parameters that control the topo-
logical frequency comb. Therefore, one can expect the appearance 
of many other known and unknown phases that can emerge from 
the interaction of edge and bulk modes. It would be intriguing, for 
example, to explore breathing Turing rolls and nested solitons, dark 
nested solitons, and platicons in the normal dispersion region6,46. In 
the limit of weak pump powers, our results could pave the way for 
the generation of quantum optical frequency combs and photonic 
cluster states entangled in higher dimensions using frequency–time 
multiplexing49,50. Our system could be translated to other frequency 
regimes of the electromagnetic spectrum, for example, to the micro-
wave domain using circuit quantum electrodynamics platform to 
implement topological arrays of coupled resonators51. One could 
also explore other topological lattice models to engineer the band 

structure and therefore the dispersion of edge and bulk states. In 
fact, one could go beyond Euclidean geometries and explore the 
hierarchy of solitons in non-Euclidean curved space, for example, 
hyperbolic lattices52. Therefore, our results open the route to engi-
neer nonlinear parametric processes, spontaneous formation, and 
self-organization of temporal solitons using synthetic magnetic 
fields and topological design principles.
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S1. SPECTRUM OF THE LINEAR TOPOLOGICAL RING RESONATOR LATTICE

In this section we discuss the tight-binding description of the topological ring-resonator lattice (shown in Fig.1e of the main
text) and its properties in the linear regime. We use a two dimensional square lattice of site rings, coupled using link rings [1, 2].
The resonance frequencies of the link rings are detuned from those of the site rings by one half free-spectral range (FSR, ΩR)
such that the link rings act as waveguides and introduce a non-zero hopping phase when the photons hop between site rings.
[1–4]. Furthermore, near site-ring resonance frequencies, light intensity in the link rings is negligible.

The effective couplings between the site rings are presented in Fig.S1a. While every site ring is coupled to its nearest neighbors
(dashed gray lines), next-nearest neighbor couplings (solid gray lines) are present only in alternating plaquettes (a square made
of 4 sites, for example, the ones shaded in green or yellow). The hopping phase is zero for the next-nearest neighbor couplings,
and is ±π/4 for the nearest neighbor couplings. The direction of nearest-neighbor couplings for which the hopping phase is
+π/4 is indicated by gray arrows in the inset of Fig.S1a. In this configuration, the lattice simulates the anomalous quantum Hall
model for photons with a non-zero local synthetic magnetic flux π threading one half unit cell but a zero magnetic flux through
a complete unit cell of the lattice.

The dynamics of the system close to a longitudinal mode resonance (indexed by µ) of the site rings is described by a Haldane-
like tight-binding Hamiltonian [1, 2, 5]

HL =
∑

m,µ

ω0,µa
†
m,µam,µ − J

∑

〈m,n〉,µ

a†m,µ an,µe
−iφm,n − J

∑

〈〈m,n〉〉,µ

a†m,µ an,µ + h.c. (S1)

Here am,µ is the photon annihilation operator at a (site-ring) spatial position m = (mx,my), where mx and my are the column
and row indices, respectively (see Fig.S1a). ω0,µ is the resonance frequency of the site ring resonator longitudinal mode with the
integer index µ. J is the coupling strength between ring resonators, and is the same for both nearest (indicated by 〈m,n〉) and
next-nearest neighbor (indicated by 〈〈m,n〉〉) couplings. Two lattice sites, represented by indices m and n, are nearest neighbor
coupled along the x−axis when mx = nx ± 1 and my = ny , and along the y−axis when my = ny ± 1 and mx = nx. The
next-nearest neighbor couplings between the two lattice sites requires mx = nx ± 1 and my = ny ± 1. As mentioned above,
next-nearest neighbor couplings are present only in alternate plaquettes. φm,n = ±π

4 is the hopping phase between nearest
neighbor sites m and n, with its sign as shown in the inset of Fig.S1a. We note that this tight-binding description of our system
is valid in the regime J $ ΩR, and in this linear Hamiltonian the photon operators in different longitudinal modes (indexed by
µ) are uncoupled. Moreover, in contrast to the system presented in ref.[1, 2], here the on-site potential is zero, that is, all the site
rings have the same resonance frequency.

To probe this lattice, we couple one ring at the corner (mx,my) = (1, 1) of the lattice to input-output waveguide as shown in
Fig.1e of the main text. We refer to this lattice site index as IO (input-output). For an input field E , the field at the output of the
lattice, Eout, is calculated using the input-output formalism as [6, 7]

Eout = E + i
√
2κexaIO, (S2)

where κex is the coupling rate of the input-output waveguide to the input-output site ring, and |aIO|2 is total energy in the
input-output site ring in the give longitudinal mode.

Figure S1b shows the transmission spectrum of a 12× 12 lattice, near the longitudinal mode µ = 0 with resonance frequency
ω0, as a function of the input light frequency detuning (ω − ω0). Because the unit cell of the lattice consists of two lattice sites
(see Fig.S1), the frequency spectrum of our topological device exhibits two bulk bands, separated by a bandgap (for an infinite
lattice) that hosts edge states [1, 2]. When the input light frequency is in the bulk bands, its spatial intensity distribution in the
lattice is spread through the bulk of the lattice (Figs.S1d,h). Furthermore, the photons do not have a well defined momentum or
direction of propagation in the lattice (Figs.S1e,i). In contrast, when the input light frequency corresponds to the edge band, its
spatial intensity distribution is confined only to the edge of the lattice (Fig.S1f). Moreover, photons in the edge band circulate



2

around the lattice in counter-clockwise direction, and thereby, realize a travelling-wave super-ring resonator (Fig.S1g). Note
that for edge states, the light intensity on the corner rings of the lattice is higher than that on the edge of the lattice because the
corners act as defects in the lattice. Nevertheless, because the edge states are topologically protected, the corners can not scatter
light backward or into the bulk of the lattice. Figure S1c shows the total power (normalized) in the super-ring resonator formed
by edge states. The total power (or energy) in the super-ring resonator is calculated as

∑
m∈edge |am|2. This structure of an edge

band sandwiched between two bulk bands repeats in each FSR (ΩR) of the individual ring resonators.
We also emphasize that our system is time-reversal symmetric and supports a pseudo-spin degree of freedom that corresponds

to the circulation direction of photons in the ring resonators [2–4]. Nevertheless, it has been experimentally demonstrated that
we can excite a single pseudo-spin in the system, and the parasitic coupling between the two pseudo-spins is negligible such
that it effectively breaks time-reversal symmetry for a given pseudo-spin [2, 3, 8]. The edge states corresponding to the two
pseudo-spins circulate around the lattice in opposite directions, analogous to the quantum spin-Hall system. The plots shown
here show the case when photons circulate clockwise in the site-ring resonators.

S2. NUMERICAL SIMULATIONS OF THE TOPOLOGICAL FREQUENCY COMB

To generate optical frequency comb in the topological ring resonator array we rely on the intrinsic Kerr nonlinearity of the
ring resonators. A continuous-wave (CW) pump laser, with frequency close to one of the longitudinal mode resonances (µ = 0),
leads to the generation of photons in other longitudinal modes (µ '= 0) via four-wave mixing. This nonlinear Kerr interaction is
described by the Hamiltonian

HNL = −γ
∑

m,µ

a†m,µ1
a†m,µ2

am,µ3 am,µ4δµ1+µ2,µ3+µ4 , (S3)

where two photons at longitudinal modes µ3 and µ4 annihilate and generate two photons at longitudinal modes µ1 and µ2.
δµ1+µ2,µ3+µ4 indicates conservation of energy and momentum in the four-wave mixing interaction, and γ is the strength of
nonlinear interaction. Note that the nonlinear Kerr interaction is local to a ring resonator, and therefore, couples multiple super-
ring (edge state) resonances.

To simulate our topological frequency comb we use the linear and nonlinear tight-binding Hamiltonians of Eqs.S1,S3 and
derive the coupled Lugiato-Lefever equations (LLEs) [9–11] that describe the dynamics of the topological frequency comb as

dam,µ

dt
= −i (ω0,µ − ΩR µ− ωp) am,µ − J

∑

〈n〉

an,µe
−iφm,n − J

∑

〈〈n〉〉

an,µ

+ iγ
1

τR

∫ τR

0
dτ

(
|ãm,τ |2 ãm,τ

)
e−iω0,µτ − (κex δm,IO + κin) am,µ + δm,IO δµ,0

√
2κexE . (S4)

For our numerical simulations, we rewrite this equation using dimensionless parameters. We multiply both sides of the
equation by

√
γ/J3, and redefine dimensionless parameters as

ω0,µ

J
→ ω0,µ

ωp

J
→ ωp

ΩR

J
→ ΩR

κex

J
→ κex

κin

J
→ κin

J t → t JτR → τR

√
γ

J
a → a

√
2κexγ

J3
E → E . (S5)

We consider a pump field E injected into the lattice in the longitudinal mode µ = 0, and the resulting fields Eout,µ at the output
of the frequency comb are calculated using the input-output formalism as

Eout,µ = E δµ,0 + i
√
2κexaIO,µ. (S6)

The output comb spectrum in different longitudinal modes (the fast frequency) is then calculated as |Eout,µ|2.
In our simulations we scan the pump frequency ωp from higher (0.2J in Fig. 2 and 3 of the main text) to lower frequencies

(−0.05J), in steps of 0.001J in the region of Turing rolls and chaos, and in steps of 0.0005J in the region of nested solitons.
For each pump frequency, we perform 8192 iterations using the fourth-order Runge-Kutta method and the split-step protocol
[9], with a fixed time step of 0.1/J (corresponds to the slow time t). We use the final state (am,µ) calculated for each pump
frequency as initial state for the successive pump frequency. The initial state for first pump frequency is chosen to be of random
amplitudes and phases (both across the rings and across longitudinal modes). We find that the results are largely independent of
the initial conditions. In Fig.S2 we show simulation results for five consecutive runs with different initial conditions (random).
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The first column shows the fast-time response integrated over the super-ring resonator, the second column shows the total pump
power in the super-ring, and the last column shows spatial intensity profile in the lattice for a fixed pump frequency 0.007J(same
as in the main text). In all cases, we observe phase-locked nested solitons, although the phase of the solitons and exact dynamics
of solitons, like the number of nested solitons, vary from run to run, as is also the case for single ring frequency combs.

To calculate the slow frequency response of the frequency comb near each longitudinal mode µ, we let the fields (am,µ)
stabilize for 8192 iterations. We then fourier transform the next 8192 iterations (with fixed time steps of 0.1/J) of the field in the
input-output ring aIO,µ (t) to get aIO,µ (ωslow). The frequency comb spectrum in the output waveguide is then calculated using
the input-output formalism as discussed above. Note that for longitudinal modes other than the pumped mode, the output comb
power is simply 2κex |aIO,µ (ωslow)|2. The temporal field distribution within a ring (fast-time scale) is calculated using fourier
transform over the 256 longitudinal modes (indexed by µ, see Eq. 3 of the main text).

The mode efficiency of the frequency comb is calculated as
∑

µ, µ&=0
ωslow

|Eout,µ (ωslow)|2

∑
µ

ωslow

|Eout,µ (ωslow)|2
, (S7)

where Eout,µ (ωslow) is the field in the output waveguide at longitudinal mode µ and slow-frequency ωslow. Therefore, the
denominator is the total power in the comb, and the numerator is the total power in generated comb lines, that is, excluding the
pumped mode (µ = 0,ωslow = 0).

S3. EXPERIMENTAL REALIZATION OF THE TOPOLOGICAL FREQUENCY COMB

From an experimental perspective, our topological coupled ring resonator design has already been implemented on silicon-on-
insulator platform [2], and has been used to generate spectrally engineered energy-time entangled photon pairs via spontaneous-
four wave mixing [12, 13]. Some of the parameters used in our simulation, such as the (field) coupling rates J/2π and κex/2π =
0.05J/2π, can be tuned easily, to say, 2.5 × 109 s−1, and 125 × 106 s−1, respectively. The required loss rate κin/2π =
0.005J/2π = 12.5× 106 s−1 (intrinsic quality factor of ≈ 8× 106 at telecom wavelengths) can also be achieved on ultra low-
loss silicon-nitride platform [11, 14]. For the results presented in the main text we choose the dispersion parameter D2/2π =
0.00025J/2π = 0.625 MHz, but as we show in Section S5 of the Supplementary Information, it can vary over a wide range.

For example, the ring waveguides could be 800 nm high and 1 µm wide, with total ring length (L) of ∼ 100 µm and
corresponding FSR (ΩR/2π) of ∼ 1400 GHz (with Ng ∼ 2.12). The coupling strengths J/ (2π) = 2.5 × 109 s−1 and
κex/ (2π) = 125 × 106 s−1 can be achieved with coupling gaps in the range of 200-800 nm, which are also accessible using
the deep-UV projection photolithography.

From numerical simulations presented in Fig. 3 of the main text, we see that the normalized pump field E required to
observe nested solitons is ∼ 1.56. The corresponding actual pump power would then be |E|2 J3/ (2κexγ) ∼ 16 W, assuming
γ = cω0n2/n2

0 Aeff L ∼ 3.7 × 1020 W−1s−2. We note that this definition of γ is different from that found in the literature
where it is defined as ω0n2/c Aeff .

A major consideration in the experimental realization of our design is the intrinsic fabrication-induced disorder in the ring
resonance frequencies, coupling strengths, and hopping phases. While here we have shown the robustness of topological Kerr
super-solitons only against discrete defects in the lattice, our topological ring resonator design has been experimentally demon-
strated to be robust against such random disorders that exist in practical systems [8, 13]. Nevertheless, the strength of disorder
sets a lower bound on the coupling strength J because the edge states in our design are robust as long as the disorder strength
is less than the width of the topological bandgap (∼ 2J) [8, 13]. The choice J/2π = 2.5 × 109 s−1 fulfills this criteria as the
disorder strength U/2π ∼ 5 GHz in state-of-the-art photonic ring resonators. However, an increase in the disorder strength,
and thereby, the coupling strength J , will increase the pump power required to access the nested soliton regime, and subse-
quently, may lead to undesirable thermal effects in the system. Nonetheless, because the pump power is distributed across all the
(> 40) rings on the edge of the lattice, we do not expect the thermal effects to be a bigger issue than it is for single-ring combs.
Moreover, thermal effects do not affect the existence of the soliton solutions; they impact experimental access to the soliton
regime when tuning pump power and frequency. A variety of techniques (for example, power kicking, fast frequency ramps,
auxiliary pumping, etc.) could be used to overcome the thermal effects and access the nested soliton regime, as is usually done
for single-ring combs. Furthermore, we note that for a given ratio J/κex, the pump power scales as J2. Therefore, even small
improvements in the strength of disorder, say by a factor of 2, will reduce the required pump power by a factor of 4. Reducing
dispersion of the ring resonators and optimizing the ratio J/κex can lead to a further reduction in the required pump power.
Therefore, we believe our topological frequency comb design can be implemented using existing integrated photonic platforms
and state-of-the-art nanofabrication technology.
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S4. OPTICAL FREQUENCY COMB AND DISSIPATIVE KERR-SOLITONS IN A SINGLE RING RESONATOR

In this section we discuss the generation of an optical frequency comb, and temporal features such as Turing rolls and Kerr
solitons in a single ring resonator, in an all-pass filter geometry (Fig.1a of the main text). This discussion serves to highlight the
similarities between a single-ring resonator frequency comb and our topological frequency comb that uses super-ring resonator
formed by the edge states.

Fig.S3a shows the the normalized pump power in the ring as a function of the normalized input pump frequency detuning
δωp = (ωp − ω0) / (κex + κin). Here ω0 is the cold cavity resonance in the pump FSR, and κex and κin are the coupling and
loss rates respectively. (κex + κin) is the bandwidth of the all-pass filter in the linear regime. This spectrum was calculated
using the Lugiato-Lefever formalism [10, 11, 14]. Fig.S3b shows the corresponding temporal intensity distribution in the ring
as a function of fast-time τ/τR. Because the Lugiato-Lefever formalism uses a frame that is rotating at ΩR = 2π/τR, the
round-trip time of the ring, the temporal intensity distribution is synonymous with the spatial intensity distribution in the ring.

We analyze three input pump frequencies in three different regions, as indicated in Figs.S3a,b. At δωp1 = −0.125, we
observe the formation of Turing rolls in the rings (Fig.S3c). The corresponding frequency comb spectrum, in Fig.S3d, shows
the presence of only a discrete set of longitudinal modes, separated by 12 FSRs. This frequency spacing (12) also corresponds
to the number of Turing rolls in the ring resonator. Furthermore, the region of Turing rolls appears near δωp = 0, and the pump
spectrum in this region shows a smooth behaviour. These plots can be compared with Figs.2c,d,e,g of the main text which show
similar Turing rolls that are phase-locked across each ring on the edge of the lattice, a similar frequency comb spectrum, and
similar smoothly varying pump spectrum in the region of Turing rolls.

At around δωp2 = −2.5, we observe a chaotic region where the pump spectrum varies rapidly as a function of pump frequency.
In this region, the spatial intensity profile in the ring is chaotic and does not show any distinct features (Figs.S3e). Furthermore,
this is not a stationary solution meaning that the profile changes with slow-time evolution. The corresponding frequency comb,
in Fig. S3f, also shows random variations, but in contrast to Turing rolls, all the longitudinal modes are oscillating (Figs.S3f).
These plots can be compared with those of Fig.2f,h,l of the main text where we see a random spatial intensity distribution which
varies from ring to ring, and non-stationary solutions at the output.

At around δωp3 = −5, the pump spectrum shows step-like features. In this region we observe a single soliton in the ring
resonator (Figs.S3g), with a frequency comb spectrum that is coherent and smooth across FSRs (Figs.S3h). This is a stationary
solution meaning that the intensity profile in the ring does not change with slow-time evolution. These plots can be compared
with plots in Fig.3a-d of the main text where we observe similar step-like features in the pump spectrum, and a nested soliton
which is further made of phase-locked solitons in the individual ring resonators.

We note that single-soliton pulse width is much smaller than the round trip time in the ring resonator. Therefore, the temporal
overlap between the single-soliton pulse and the continuous-wave pump is small [15], leading to a low mode efficiency of ∼ 4%.
In the regime of Turing rolls (also called perfect soliton crystals), the presence of multiple pulses in the ring leads to a better
temporal overlap, and therefore, better mode efficiency of ∼ 13%. In contrast, the mode efficiency in the chaotic regime is much
higher ∼ 55% because there are no discrete pulses in the ring, and therefore, the temporal mode overlap with the continuous-
wave pump is significant. Furthermore, optical frequency combs implemented using two coupled cavities, one for recycling
the pump and the other for generating the solitons, have also been shown to achieve an efficiency of 75% [15, 16] or more in
the regime of single solitons. However, these configurations require two cavities with disparate lengths, for example, a ring
resonator and a fiber loop, and are therefore, challenging to integrate on a photonic chip.

S5. NUMBER OF TURING ROLLS AS A FUNCTION OF DISPERSION

For a single ring resonator frequency comb in the anomalous dispersion regime, the number of Turing rolls NRolls decreases
with increasing dispersion as

√
γ/D2, where D2 is the second-order dispersion coefficient [9, 10], and γ is the nonlinear coef-

ficient which, in the Lugiato-Lefever formalism, is effectively normalized to 1 (see Section 2). We observe identical behaviour
in our topological frequency comb. In Fig.S4a we plot the number of Turing rolls in the topological frequency comb as we vary
the dispersion parameter D2, for a fixed input pump field E = 1.1. A fit (solid-line) to the numerically simulated data (open
circles), shows that indeed NRolls ∝ 1/

√
D2.

To show self-organization of the ring resonators on the edge of the lattice across a range of dispersion values, in Figs.S4b,c
we plot the integrated spatio-temporal intensity distributions (integrated over the super-ring resonator) as a function of the input
pump frequency, for D2 = 0.0014 and D2 = 0.0025, respectively. Figs.S4d,e show complete spatial intensity distributions in
the lattice when the input pump frequency is in the region of Turing rolls (ωp − ω0 = 0.1J). Similar to Fig.2 of the main text,
we observe that the Turing rolls in all the ring resonators on the edge are locked to the same spatio-temporal phase. Similarly,
we also observe the presence of nested solitons. Note that the dispersion values used here are 5-10 times of that used in Fig.2
and Fig.3 of the main text.
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S6. PHASE COHERENCE OF THE SUPER-SOLITON FREQUENCY COMB

In this section we show the phase coherence of our topological frequency comb in the regime of super-solitons. FigureS5a
shows the integrated pump power in the super-ring resonator at E = 1.56 (same as Fig.3a of the main text, repeated here
for convenience). Figures S5b,g show the output frequency spectrum (both slow and fast frequencies) of the comb at pump
frequencies δωp3 = 0.007J in the single nested soliton region, and at δωp5 = 0.10J in the chaotic region. As we discussed
in the main text, the comb spectrum in the nested soliton regime (Fig.S5b) shows oscillations of multiple equidistant edge
modes with in a single FSR (µ) of the individual ring resonators. Furthermore, we observe cancellation of linear dispersion
by nonlinearity-induced dispersion across multiple single ring FSRs (indexed by µ, the fast frequency). In contrast, the comb
spectrum in the chaotic region (Fig.S4g) also shows oscillation of multiple modes, but no cancellation of dispersion.

In a single-ring frequency comb, in the single soliton regime, cancellation of dispersion leads to phase coherence such that
the output power varies smoothly across the comb lines [9–11, 14]. To show that our topological frequency comb is also phase
coherent in the regime of single nested soliton, in Figs.S5c-f we plot the spectral power and the phase of two oscillating edge
modes resonances (at ωslow = 0, 0.17J) along the fast-frequency axis. The spectral power indeed varies smoothly across the
comb lines in a region −31 < µ < 31. However, near µ ≈ ±32 and ± 50, and more frequently at higher µ, we observe jumps
in the comb spectrum. From Fig.S5b, we see that these jumps in the spectrum appears when two edge modes interfere because
of residual dispersion (the start-like patterns in Fig.S5b).

The corresponding phase (Fig.S5d,f) of the comb lines in the nested soliton region also varies linearly in the regime −31 <
µ < 31 which shows that our comb is indeed phase-coherent. Nevertheless, we observe phase jumps exactly at locations of
jumps in the comb spectrum (dashed red-lines in Fig.S5e,f). Within regions between two jumps, the phase variation is again
linear. In contrast, the frequency comb in the chaotic region (Fig.S5h-k) exhibits randomly varying power and phase across the
comb lines, indicating that the comb is not coherent. Note that here we have plotted the unwrapped phase to explicitly show its
linear profile.

S7. PUMPING ANOTHER EDGE STATE RESONANCE

In the main text, we presented results for pumping one of the edge state resonances in the middle of the edge band
(≈ [0, 0.2] J). Fig.S6 shows simulation results for pumping another edge state resonance, in the range ≈ [−0.25,−0.05] J
(indicated by dashed rectangle in Fig.S6a). Figure S6b shows the total pump power in the super-ring resonator for this edge
band, and Fig.S6c shows the spatio-temporal (fast time) intensity distribution in the ring resonators, integrated over all the rings
in the super-ring resonator. These plots are very similar to those shown in Fig.2 and Fig.3 of the main text. As before, the spatial
intensity distribution shows a region of Turing rolls that are phase-locked through out the rings on the edge of the lattice, and
a region of nested solitons. Fig.S6d shows a single nested soliton at pump frequency indicated by dashed lines in Figs.S6b,c.
Here, we chose D2 = 0.001, and E = 1.47.

S8. DISPERSION OF EDGE STATES

In our numerical simulations, we include second-order anomalous dispersion D2 for the ring resonance frequencies ω0,µ.
As we mentioned in the main text, the dispersion of the edge states resonances (longitudinal modes of the super-ring resonator)
within a single FSR of the individual ring resonators is completely determined by the tight-binding Hamiltonian of Eq.S1. Figure
S7a shows the energy eigenvalues for this Hamiltonian, calculated for a 12 × 12 lattice of ring (site) resonators. Figure S7b
shows a zoom-in of the eigenvalues in the edge band (≈ (−1,+1) J). While the edge states in the center of the edge band can
be well described by a linear dispersion, as is usually accepted in the condensed-matter community, we see that the edge state
resonances closer to the bulk bands do exhibit significant nonlinear dispersion.

We use a third-order polynomial to fit the edge state resonances (shown in Fig.S7b as solid-line) such that ω0,ν = ω0,ν0 +

ΩSR (ν − ν0) +
Dedge

2
2 (ν − ν0)

2 + Dedge
3
6 (ν − ν0)

3. Here ω0,ν are the edge state resonance frequencies indexed by ν, ν0 is the
resonance in the center of the edge band (here 72nd eigenvalue), Dedge

2 and Dedge
3 are the second- and third-order dispersion

coefficients, respectively. For the 12×12 lattice, we find ΩSR = 0.2328J , Dedge
2 = −0.0062J , and Dedge

3 = −0.0123J . Figure
S7c shows integrated dispersion that is Dedge

2
2 (ν − ν0)

2 + Dedge
3
6 (ν − ν0)

3. Therefore, we find that the dispersion of the edge
states is in fact dominated by the third-order dispersion Dedge

3 . Furthermore, Dedge
2 /ΩSR , −26 × 10−3, and Dedge

3 /ΩSR ,
−53× 10−3.

Figures S7d-f show corresponding results for a 60 × 60 lattice. In this case, we find ΩSR = 0.0508J , Dedge
2 = −5.938 ×
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10−5J , and Dedge
3 = −11.598 × 10−5J . Note that the ratios Dedge

2 /ΩSR , −1.2 × 10−3, and Dedge
3 /ΩSR , −2.3 × 10−3.

These are an order of magnitude smaller compared to that of the 12×12 lattice, suggesting that the effective nonlinear dispersion
of the edge states decreases with increasing lattice size. This is because edge state resonances in the center of the edge band
exhibit linear dispersion, and the nonlinear dispersion originates only from regions closer to the bulk bands. With increasing
lattice size, the relative contribution of the regions closer to the bulk bands decreases. Note that the width of the edge band is
, 2J , irrespective of the size of the lattice.
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FIG. S1. a Effective tight-binding model of the lattice and indexing scheme for a lattice of size 6×6. A unit cell of the lattice, consisting of two
sites, is shaded in light blue. The insets show hopping phases within a plaquette, and the band structure of a semi-infinite lattice (finite along
one axis, periodic boundary conditions along the other) [2]. Here kΛ is the phase between neighboring unit cells along the axis with periodic
boundary conditions. b Linear transmission spectrum for a 12×12 lattice, and c total power (normalized) in the super-ring resonator formed
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the edge band, at ω − ω0 = 0.112J , and h,i in the right bulk band, at ω − ω0 = 2.081J . The peaks in the edge band of Fig.S1b,c are the
longitudinal modes of this super-ring resonator. The plots here show only the site ring resonators.
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FIG. S5. a Total pump power in the super-ring resonator as a function of the pump frequency detuning δωp (same as Fig. 3b of the main
text, repeated here for convenience). b Slow-frequency spectrum in the regime of nested solitons (same as Fig. 3k of the main text). c-f
Power spectrum and unwrapped phase of the comb along fast-frequency (µ), at two edge state resonances with slow-frequencies as indicated
on the figure. The power spectrum is smooth, except for kinks where different edge modes interfere because of dispersion. The phase varies
linearly, with phase jumps exactly at locations of kinks in the power spectrum (shown by dashed red lines). g-k Corresponding results for
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