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A topological source of quantum light
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Quantum light is characterized by distinctive statistical 
distributions that are possible only because of quantum mechanical 
effects. For example, single photons and correlated photon pairs 
exhibit photon number distributions with variance lower than 
classically allowed limits. This enables high-fidelity transmission 
of quantum information and sensing with lower noise than 
possible with classical light sources1,2. Most quantum light 
sources rely on spontaneous parametric processes such as down-
conversion and four-wave mixing2. These processes are mediated 
by vacuum fluctuations of the electromagnetic field. Therefore, 
by manipulating the electromagnetic mode structure, for example 
with dispersion-engineered nanophotonic systems, the spectrum 
of generated photons can be controlled3–7. However, disorder, 
which is ubiquitous in nanophotonic fabrication, causes device- 
to-device spectral variations8–11. Here we realize topologically 
robust electromagnetic modes and use their vacuum fluctuations 
to create a quantum light source in which the spectrum of 
generated photons is much less affected by fabrication-induced 
disorder. Specifically, we use the topological edge states realized in 
a two-dimensional array of ring resonators to generate correlated 
photon pairs by spontaneous four-wave mixing and show that they 
outperform their topologically trivial one-dimensional counterparts 
in terms of spectral robustness. We demonstrate the non-classical 
nature of the generated light and the realization of a robust source of 
heralded single photons by measuring the conditional antibunching 
of photons, that is, the reduced likelihood of photons arriving 
together compared to thermal or laser light. Such topological effects, 
which are unique to bosonic systems, could pave the way for the 
development of robust quantum photonic devices.

Spontaneous four-wave mixing (SFWM) is a third-order nonlinear 
process in which two pump photons at frequency ωp are annihilated, 
and two daughter photons, called signal and idler, are generated at 
frequencies ωs and ωi. The spectra of the generated signal and idler 
photons as well as their correlations are dictated by energy and momen-
tum conservation relations, 2ωp = ωs + ωi and 2kp = ks + ki, where k 
indicates the momenta of the respective fields. The spectrum is further 
constrained by the electromagnetic mode structure: that is, the density 
of states or, equivalently, the dispersion relation ω(k), which governs 
the propagation of the pump, signal and idler photons. Recently, the  
use of nanophotonic systems such as toroidal and ring resonators  
has provided a compact and scalable route to manipulate the electro-
magnetic mode structure and hence to implement spectrally engineered  
sources of correlated photons2–4. For example, coupled ring resonator 
arrays can be used to control the number of spectral modes7 as well as 
to enhance the rate of photon pair generation, without compromising 
their bandwidth6,12. However, nanophotonic systems are invariably 
disposed to fabrication disorder, which can alter the dispersion of the  
photonic modes in an unpredictable fashion8–10 and can result in  
randomness in the spectrum of photons generated by different devices. 
This randomness limits the scalability of such sources for practical 
applications in quantum communication and information processing, 
which often require multiple sources with identical spectra, for example 
in multi-photon interference11.

At the same time, the introduction of topological protection in 
photonic systems has led to the development of a new class of devices 
that are inherently robust against disorder13–19. This robustness can be 
attributed to the presence of unidirectional, back-reflection-free edge 
states in these systems. Edge states are characterized by topologically 
invariant integers20–22, and photonic transport through these states is 
therefore protected against local disorder14,19,23. Edge states have been 
used to demonstrate, for example, robust optical delay lines16,23, recon-
figurable photonic pathways19 and topological lasers24,25. However, such 
demonstrations have so far been confined to the classical regime.

In this work, we use topology for spectral engineering of the quantum 
fluctuations of the electromagnetic vacuum and implement a robust 
source of correlated photon pairs generated by SFWM. In particular, we 
exploit the linear dispersion associated with edge states for efficient phase- 
matching and show that the photon pair generation is enhanced when the 
pump, as well as the signal and idler fields, corresponds to edge modes of  
the system. We demonstrate correlations between the signal and idler  
photons beyond what is possible with classical sources and show conditional  
antibunching of photons, confirming the quantum nature of our source 
and its operation as a source of heralded single photons. More importantly, 
using measurements over many devices, we show that the robustness of 
such topological spectral engineering manifests as a robustness in the spec-
trum of generated photons and that our topological source outperforms a 
similarly designed topologically trivial source of correlated photons. From 
a fundamental perspective, our scheme is similar to recent theoretical pro-
posals26,27 that investigated second- and third-order nonlinearity in topo-
logical edge states, respectively. These particle-non-conserving topological 
photonic systems have no fermionic counterparts.

Our system consists of a two-dimensional (2D) square lattice of ring 
resonators, positioned at the lattice sites, for which the non-interacting 
part of the photon dynamics is governed by the integer quantum Hall 
model (Fig. 1a)15,16. A uniform synthetic magnetic field is synthesized 
by using link rings to couple the neighbouring site rings such that a 
photon hopping from one lattice site to its neighbour experiences a 
position- and direction-dependent hopping phase. The tight-binding 
Hamiltonian describing the linear evolution of the pump, signal and 
idler photons in the system is given as
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Here μ ∈ {p, s, i} refers to the pump, signal or idler fields, and μam ,
†  is the 

corresponding photon creation operator at a lattice site m = (mx, my), 
with frequency ωμ. Jm,n is the hopping rate of photons between lattice 
sites m, n and is non-zero only for the nearest-neighbour sites. 
φ φ δ δ= +mm n y m n m n, , 1 ,x x y y  is the hopping phase between lattice sites  
and results in a uniform synthetic magnetic field flux φ per plaquette 
(highlighted by the dashed white line in Fig. 1a). The energy spectrum 
of this Hamiltonian can be probed using transmission spectroscopy. 
For the chosen magnetic field flux φ = π/2, the transmission spectrum 
consists of two edge bands at ωμ− ω0μ ≈ ±1.5J, separated by a bulk 
band centred at ωμ− ω0μ ≈ 0 (Fig. 1c). The edge bands are occupied by 
the topological edge states, which are confined to the lattice boundary 
and circulate around the lattice in clockwise and anticlockwise directions,  

1Joint Quantum Institute, NIST/University of Maryland, College Park, MD, USA. 2IREAP/Department of Electrical and Computer Engineering, University of Maryland, College Park, MD, USA. 3US 
Army Research Laboratory, Adelphi, MD, USA. 4Department of Physics, University of Maryland, College Park, MD, USA. *e-mail: mittals@umd.edu

5 0 2  |  N A t U r e  |  V O L  5 6 1  |  2 7  S e P t e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0478-3
mailto:mittals@umd.edu


Letter reSeArCH

respectively (Fig. 1a)16. Furthermore, edge states are well described  
by a linear dispersion relation (Fig. 1d)15,22. In contrast, states in  
the bulk band occupy the bulk of the system and do not have a well- 
defined momentum. Note that this edge/bulk band structure repeats 
after every free spectral range (FSR)—that is, the frequency spacing 
between consecutive longitudinal modes of the individual ring resona-
tors (Fig. 1b). Consequently, the pump, signal and idler fields can 
occupy different longitudinal modes with resonance frequencies 
denoted by ω0μ.

To generate correlated photon pairs in this system, we use the 
third-order nonlinearity of silicon and realize SFWM. This nonlinear 
four-photon interaction is described by the Hamiltonian

∑η= −H a a a a a a a a( ) (2)
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where η is the strength of the SFWM and depends on the material and 
ring waveguide properties28,29. The signal and idler modes are initially 
in the vacuum state when the input pump photons enter the system. 
However, the nonlinear interaction coherently adds or removes photon  
pairs from these vacuum modes and leads to generation of non- 
classical fields with intensity and spectral correlations between signal 
and idler photons26. Furthermore, because of energy conservation, 
correlated signal and idler photon pairs are generated in longitudinal 
modes (of individual resonators) located symmetrically on either side 
of the pump mode28,29. We choose signal and idler modes a single FSR 
above and below the pump mode, with resonance frequencies denoted 
by ω0s, ω0i and ω0p, respectively (Fig. 1b). This choice allows us to effec-
tively filter out the pump photons at the device output and also min-
imize the phase-mismatch arising from the waveguide and material  
dispersion3,4.

In our experiment, we pump the lattice in one of the longitudinal 
modes using a tunable continuous-wave laser and measure the spec-
trum of generated photons. Figure 2a plots the linear pump transmission 
spectrum (see Extended Data Fig. 3 for more details) and Fig. 2b plots 
Γ(ωs, ωp), the intensity of generated signal photons at frequency ωs as we 
tune the pump frequency ωp. For a continuous-wave pump, measurement 
of Γ(ωs, ωp) is equivalent to a measurement of the joint-spectral inten-
sity which is commonly used to characterize the spectral correlations 
between generated photons (see Extended Data Fig. 4 and refs 11,29). First, 
we observe that the maximum number of photons is generated when 
the lattice is pumped in the clockwise edge band, at ωp − ω0p ≈ −1.5J. 
Second, with a clockwise edge band pump, the spectrum of generated sig-
nal photons is predominantly confined to the clockwise edge band. This 
limited spectral distribution of signal photons can be seen more clearly 
with a normalized spectrum, the horizontal cross-section of Γ(ωs, ωp), at 
ωp−ω0p ≈ −1.5J (Fig. 2i). Furthermore, as a consequence of energy con-
servation, idler photons also exhibit a similar narrow spectrum centred  
at the clockwise edge band: that is, ωi − ω0i = 2(ωp − ω0p) − (ωs − ω0s) ≈  
−1.5J (Fig. 2j). This enhanced and spectrally limited generation of  
correlated photon pairs in the edge band is a result of the linear dispersion 
of edge modes which naturally satisfies the phase-matching criteria, and 
of good spatial overlap between the pump, signal and idler photons when 
they are confined to the lattice boundary. Our simulation results for the 
generated photon spectra agree well with our experimental observation 
(Fig. 2k). We observe a similar spectrally limited generation of correlated 
photons when the pump frequency is in the anticlockwise edge band 
(Fig. 2c–e). However, the propagation distance from the input to the 
output port is much shorter for the anticlockwise edge modes than for the 
clockwise edge modes, and therefore the intensity of generated photons 
is much weaker (Fig. 1a).
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Fig. 1 | Schematic of the experimental set-up. a, Scanning electron 
microscope (SEM) image of an 8 × 8 lattice of site-ring resonators (cyan), 
coupled using link rings (yellow). Photons acquire a non-zero phase φ 
when they circulate around a plaquette of four site rings and four link rings 
(highlighted by the dashed white line). Insets show two site rings coupled 
by a link ring, and a plaquette. The paths followed by clockwise (CW) 
and anticlockwise (ACW) edge modes are highlighted in red and green, 
respectively. b, The transmission spectrum of the device repeats after one 
FSR. Correlated signal and idler photons are generated in longitudinal 
modes (of individual resonators) located symmetrically around the pump 
mode (centred at ω0p). We choose the two modes one FSR above and 
below the pump mode, centred at frequencies ω0s and ω0i, for collection 

of signal and idler photons. c, Simulated transmission (T) spectrum of 
an 8 × 8 lattice, in a given band. Two edge bands (shaded red and green) 
are separated by a bulk band (shaded blue). d, Simulated dispersion 
curve showing linear dispersion for the edge modes. Here k is the photon 
momentum and Λ is the lattice constant such that kΛ is the phase between 
two neighbouring site rings on the edge. Efficient phase-matching occurs 
when the pump as well as signal and idler frequencies correspond to edge 
modes. e, Schematic of the pump and the spectral measurement set-up. 
EDFA, erbium-doped fibre amplifier; PC, polarization controller. f, SEM 
image of a topologically trivial 1D array of ten site-ring resonators (cyan), 
coupled using link rings (yellow).
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In contrast to edge modes, bulk modes do not have a well-behaved 
dispersion (see Fig. 1d), and their intensity distribution in the lattice 
changes even for very small changes in the excitation frequency16. 
Therefore, in the bulk band, there is a phase mismatch between the 
pump, signal and idler photons, and their spatial overlap is also limited. 
As a result, the SFWM efficiency is low, and photon pairs are generated 
throughout the transmission band of the lattice (Fig. 2f–h). Moreover, 
the experimental and simulation results for the bulk band pump do 
not match. This is because our experimental system has fabrication 
disorder, and the bulk band is not robust against disorder. In contrast, 
good agreement between the observed and simulated results for the 
edge states indicates their robustness against disorder.

To characterize the non-trivial nature of correlations between gen-
erated photons, we measure the second-order cross-correlation func-
tion, τg ( )s,i

(2) , which is the normalized probability of detecting signal 
and idler photons separated by time τ (see Methods and refs 2,5). For 
two uncorrelated sources, g(2) = 1 for all τ. In contrast, we observe a 
maximum ≈g 80s,i

(2)  at τ = 0 (Fig. 3a). We integrate τg ( )s,i
(2)  over the peak 

at τ = 0 to obtain the ratio of coincidence to accidental counts (CAR), 
which is analogous to the signal-to-noise ratio of a source. Our source 
achieves a CAR ≈ 42 (Fig. 3c), higher than other similar sources using 
single resonators4,5 and coupled resonators6, for which CAR values of 
approximately 30 and 10 were reported, respectively. This clearly indi-
cates that the signal and idler photons are strongly correlated: that is, 
the detection of a signal photon heralds the arrival of an idler photon 
and vice versa. Furthermore, we verified that the coincidence count 
rate between signal and idler photons increases as the square of the 
pump power (Fig. 3b) and CAR drops inversely with the coincidence 
rate (Fig. 3c), as expected for SFWM interaction3–5.

Next, using a Hanbury Brown–Twiss set-up, we measure the condi-
tional (heralded) autocorrelation function, τg ( )a,h

(2) , for signal photons, 
conditioned on the detection of idler photons (see Methods and refs 2,5).  
Classical light sources are characterized by ≥g (0) 1a

(2)  where the  
inequality holds for sources with bunched photons (such as thermal light),  
and =g (0) 1a

(2)  when there are no correlations between arrival times of 
photons (as in lasers). Quantum light sources, such as single photons, 
are distinguished by <g (0) 1a

(2) , which means that the photons are anti-
bunched. We observe a conditional = .g (0) 0 20(8)a,h

(2) , which shows 

antibunching and confirms that we have realized a topological source 
of heralded single photons (Fig. 3d).

Edge states are topologically protected, quasi-one-dimensional (1D) 
waveguides confined to the lattice boundary. Therefore, to benchmark 
the robustness of these edge channels, we compare them with the top-
ologically trivial 1D coupled resonator optical waveguides (CROWs; 
Fig. 1f)23,30. The main advantage of CROWs over single-ring devices 
is that they increase the length of SFWM interaction and therefore the 
intensity of generated photons, without reducing their bandwidth6,7,12. 
However, unlike edge states, CROWs are not protected against disorder, 
which can affect the photonic mode structure (see ref. 9 and Extended 
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Fig. 2 | Spectral distribution of the generated photons. a, Measured 
transmission spectrum for an 8 × 8 lattice. The edge and bulk bands are 
highlighted in colour. b, Γ(ωs, ωp), the intensity (normalized to unity) of 
generated signal photons at frequency ωs as a function of pump frequency 
ωp. The maximum number of photons are generated when the pump as 
well as the signal and idler frequencies are in the clockwise edge band  
(ω − ω0 ≈ −1.5J). c, Spectrum (normalized to unity) of signal (S) photons, 
that is, horizontal cross-section of Γ(ωs, ωp), at ωp ≈ 1.5J. With the pump 
in the anticlockwise edge band, the spectrum of generated signal photons 
is also limited to the anticlockwise edge band. d, Spectrum of idler (I) 

photons, with the pump in the anticlockwise edge band. Because of  
energy conservation, idler photons are also generated predominantly  
in the anticlockwise edge band. e, Simulation results for the spectrum  
of generated photons match well with experimental observations.  
f–h, Corresponding results for the pump in the bulk band. The signal 
and idler photons are generated throughout the spectrum of the lattice. 
Also, the simulation results do not match the observation because of the 
fabrication disorder in the experimental system. i–k, Signal and idler 
spectra when the system is pumped along the clockwise edge band, again 
showing spectrally confined generation of photons in the edge band.
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Fig. 3 | Source characterization. a, Histogram for the cross-correlation 
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(2)  between signal and idler photons, with a pump power of 
approximately 1.4 mW. b, Coincidence count rate at the device output 
(adjusted for coupling losses), as a function of pump power. c, CAR as a 
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(2) . The error 
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counts. Solid lines are fits to the data and the dashed line is to guide the 
eye.
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Data Fig. 2) and result in device-to-device variations in the spectrum 
of generated photons. In the following, using measurements over many  
devices, we show that the topological robustness of our source  
manifests as a robustness in the spectrum of generated photons, out-
performing the trivial 1D devices.

Figure 4a–c shows Γ(ωs, ωp), that is, the spectrum of generated pho-
tons as a function of pump frequency, for three different 2D devices, 
and Fig. 4d shows the mean measured over seven devices (additional 
data in Extended Data Fig. 1). These devices were designed to be 
identical, but fabrication disorder leads to random variations in the 
ring resonance frequencies, coupling strengths as well as hopping 
phases. Nevertheless, as we saw earlier, for all devices the maximum 
number of photons is always generated in the clockwise edge band 
(ωs − ω0s ≈ −1.5J), with pump frequency also in the clockwise edge 
band (ωp − ω0p ≈ −1.5J). Therefore, in the clockwise edge band region 
(highlighted by dashed white lines), Γ(ωs, ωp) is very similar for all 
devices. In contrast to edge bands, the spectrum of generated pho-
tons in the bulk band differs from one device to the other because it is  
susceptible to disorder.

Figure 4e–g show similar measurements on three different topolog-
ically trivial 1D devices, and Fig. 4h shows the mean measured over 
seven devices. As expected, Γ(ωs, ωp) varies markedly from device to 
device, meaning that the spectral correlations between the pump and 
the generated photons are completely random because of the random-
ness in the photonic mode structure induced by fabrication disorder. 
Therefore, given a 1D device, the spectrum of generated photons is 
not known a priori for any pump frequency. To further quantify and 
compare the spectral correlations in 2D and 1D devices, we calculate 

the similarity S between Γ(ωs, ωp) measured on two different devices 
(n, n′), defined as

∬
∬ ∬

Γ Γ ω ω

Γ ω ω Γ ω ω
=′

′

′

( )
S

d d

d d d d
n n

n n

n n
,

p s
2

p s p s

For the 2D devices, we chose the frequency integration interval to cover 
the clockwise edge band region [−1.75J, −1.25J] which is robust against 
disorder and where the maximum number of photons are generated. 
For the 1D devices, we choose the mid-band region [−0.25J, +0.25J] 
where the pump transmission is maximum (see Extended Data Fig. 2), 
and for a fair comparison with 2D devices, we choose the same band-
width of 0.5J as we did for the edge region. These regions of interest are 
highlighted by white dashed lines in Fig. 4a–h. For the 2D system, the 
average similarity S̄  across all devices is 0.26(2), whereas for the 1D 
system it is only 0.06(2) (Fig. 4i, j). These measurements demonstrate 
the advantage offered by the topological robustness of our 2D system 
in engineering the photonic mode structure and consequently the spec-
trum of generated photons.

The observed robustness and similarity in our 2D topological devices 
are remarkable given the fact that our system suffers from strong on-site 
potential disorder, comparable to the edge bandwidth23. To put our 
work into perspective, we numerically compare a 1D and topological 
2D system, for slightly smaller disorder (Fig. 5). The average similarity 
for the 2D topological system is more than 90% and decreases only 
marginally as the system size increases. In comparison, for the 1D 
CROW, the similarity decreases rapidly with system size, approaching 
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photons. a–c, Measured Γ(ωs, ωp), for three different 2D topological 
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in Extended Data Fig. 1). The plots are very similar in the clockwise 
edge band region (marked by the solid white box), where the maximum 
generation of photons occurs. e–g, Measured Γ(ωs, ωp), for three different 
1D devices; h, the mean, measured over seven such devices (additional 
plots in Extended Data Fig. 1). There is no region of plot that is similar 

across all devices. The highlighted region shows the mid-band,  
|ωμ − ω0μ| < 0.25J, where transmission is maximum (see Extended Data 
Fig. 2). i, j, Similarity (S) of Γ(ωs, ωp) between the edge band regions of 
different 2D devices (i) and mid-band regions of 1D devices (j). Because 
of the topological robustness, edge bands achieve a much higher similarity 
across devices. The error in the similarity measurement for each device 
pair is less than 3%, and is not shown in the figure.
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40% for 60-ring devices. The robustness of topological systems is also 
evident in the standard deviation of the similarity across different 
devices, which is considerably smaller than that of 1D CROWs. This 
indicates that with moderate disorder, high-visibility two-photon and 
multi-photon interference11 should be possible with photons generated 
by different 2D topological sources.

In summary, we have demonstrated a topological source of quantum 
correlated photon pairs in which the spectral correlations are robust 
against fabrication disorder. This is a step towards on-chip, scalable 
sources of heralded and entangled photons with identical spectra, for 
applications in quantum information processing and quantum com-
munications. Although this demonstration uses devices with relatively 
high propagation loss (of the order of 1 dB cm−1), recent developments 
of ultra-low-loss photonic platforms (of the order of 10−3 dB cm−1)31,32 
could lead to orders of magnitude improvement in the source bright-
ness. Moreover, such low-loss platforms would enable quantum-limited 
topological amplifiers, for which the four-wave mixing gain is required 
to exceed the propagation losses26.

On a more fundamental level, we have demonstrated a robust route 
to manipulating the structure and vacuum fluctuations of the electro-
magnetic modes by using topological photonics. This could have 
far-reaching implications in engineering light–matter interactions in 
the quantum regime. We expect intriguing consequences to emerge 
from application of these ideas to physical phenomena such as sponta-
neous emission, super- and sub-radiance, and the Casimir effect.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-018-0478-3.

Received: 5 December 2017; Accepted: 5 July 2018;  
Published online 10 September 2018.

 1. Shields, A. J. Semiconductor quantum light sources. Nat. Photon. 1, 215–223 
(2007).

 2. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Single-photon sources and 
detectors. Rev. Sci. Instrum. 82, 071101 (2011).

 3. Sharping, J. E. et al. Generation of correlated photons in nanoscale silicon 
waveguides. Opt. Express 14, 12388–12393 (2006).

 4. Clemmen, S. et al. Continuous wave photon pair generation in silicon-on-
insulator waveguides and ring resonators. Opt. Express 17, 16558–16570 
(2009).

 5. Förtsch, M. et al. A versatile source of single photons for quantum information 
processing. Nat. Commun. 4, 1818 (2013).

 6. Davanço, M. et al. Telecommunications-band heralded single photons from a 
silicon nanophotonic chip. Appl. Phys. Lett. 100, 261104 (2012).

 7. Kumar, R., Ong, J. R., Savanier, M. & Mookherjea, S. Controlling the spectrum of 
photons generated on a silicon nanophotonic chip. Nat. Commun. 5, 5489 
(2014).

 8. Topolancik, J., Ilic, B. & Vollmer, F. Experimental observation of strong photon 
localization in disordered photonic crystal waveguides. Phys. Rev. Lett. 99, 
253901 (2007).

 9. Mookherjea, S., Park, J. S., Yang, S.-H. & Bandaru, P. R. Localization in silicon 
nanophotonic slow-light waveguides. Nat. Photon. 2, 90–93 (2008).

 10. Sapienza, L. et al. Cavity quantum electrodynamics with anderson-localized 
modes. Science 327, 1352–1355 (2010).

 11. Spring, J. B. et al. Chip-based array of near-identical, pure, heralded single-
photon sources. Optica 4, 90–96 (2017).

 12. Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits 
of cavity-enhanced all-optical wavelength conversion. Nat. Commun. 2, 296 
(2011).

 13. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photon. 8, 
821–829 (2014).

 14. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of 
unidirectional backscattering-immune topological electromagnetic states. 
Nature 461, 772–775 (2009).

 15. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines 
with topological protection. Nat. Phys. 7, 907–912 (2011).

 16. Hafezi, M., Mittal, S., Fan, J., Migdall, A. & Taylor, J. M. Imaging topological edge 
states in silicon photonics. Nat. Photon. 7, 1001–1005 (2013).

 17. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 
196–200 (2013).

 18. Chen, W.-J. et al. Experimental realization of photonic topological insulator in a 
uniaxial metacrystal waveguide. Nat. Commun. 5, 5782 (2014).

 19. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a 
photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

 20. Kraus, Y., Lahini, Y., Ringel, Z., Verbin, M. & Zilberberg, O. Topological  
states and adiabatic pumping in quasicrystals. Phys. Rev. Lett. 109, 106402 
(2012).

 21. Hafezi, M. Measuring topological invariants in photonic systems. Phys. Rev. Lett. 
112, 210405 (2014).

 22. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological 
invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

 23. Mittal, S. et al. Topologically robust transport of photons in a synthetic gauge 
field. Phys. Rev. Lett. 113, 087403 (2014).

 24. St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. 
Nat. Photon. 11, 651–656 (2017).

 25. Bahari, B. et al. Nonreciprocal lasing in topological cavities of arbitrary 
geometries. Science 358, 636–640 (2017).

 26. Peano, V., Houde, M., Marquardt, F. & Clerk, A. A. Topological quantum 
fluctuations and traveling wave amplifiers. Phys. Rev. X 6, 041026 (2016).

 27. Shi, T., Kimble, H. J. & Cirac, J. I. Topological phenomena in classical optical 
networks. Proc. Natl Acad. Sci. USA 114, E8967–E8976 (2017).

 28. Chen, J., Levine, Z. H., Fan, J. & Migdall, A. L. Frequency-bin entangled comb of 
photon pairs from a silicon-on-insulator micro-resonator. Opt. Express 19, 
1470–1483 (2011).

 29. Ong, J. R. & Mookherjea, S. Quantum light generation on a silicon chip using 
waveguides and resonators. Opt. Express 21, 5171–5181 (2013).

 30. Yariv, A., Xu, Y., Lee, R. K. & Scherer, A. Coupled-resonator optical waveguide: a 
proposal and analysis. Opt. Lett. 24, 711–713 (1999).

 31. Bauters, J. F. et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt. 
Express 19, 3163–3174 (2011).

 32. Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible 
platforms based on silicon nitride and hydex for nonlinear optics. Nat. Photon. 
7, 597–607 (2013).

Acknowledgements This research was supported by AFOSR-MURI FA9550-
14-1-0267, YIP-ONR, Sloan Foundation and the Physics Frontier Center at the 
Joint Quantum Institute. We thank V. V. Orre for help with the experimental 
set-up, A. Karasahin for help with the SEM, T. Huber and D. Englund for 
discussions and Q. Quraishi for providing the nanowire detectors.

Reviewer information Nature thanks V. Peano and the other anonymous 
reviewer(s) for their contribution to the peer review of this work.

Author contributions S.M. and M.H. conceived the idea. S.M. performed the 
numerical simulations and the experimental measurements. E.A.G. contributed 
to source characterization. M.H. supervised the project. All authors contributed 
to analysing the data and writing the manuscript.

Competing interests The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41586-
018-0478-3.
Reprints and permissions information is available at http://www.nature.com/
reprints.
Correspondence and requests for materials should be addressed to S.M.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional 
claims in published maps and institutional affiliations.

10 20 30 40 50 60

1.0

0.8

0.6

0.4

0.2

S

Number of rings

Edge

1D

Fig. 5 | Similarity scaling as a function of device size. The simulated 
similarity, for moderately disordered (V = 0.5J) 2D and 1D systems, is 
shown as a function of the number of resonators travelled from the input 
to the output port. Because of topological protection, the 2D system 
achieves much higher similarity than the trivial 1D system. The results 
are averaged over 50 realizations of disorder. The error bars represent 
the standard deviation of similarity across different realizations. The solid 
lines are to guide the eye.

5 0 6  |  N A t U r e  |  V O L  5 6 1  |  2 7  S e P t e M B e r  2 0 1 8
© 2018 Springer Nature Limited. All rights reserved.

https://doi.org/10.1038/s41586-018-0478-3
https://doi.org/10.1038/s41586-018-0478-3
https://doi.org/10.1038/s41586-018-0478-3
http://www.nature.com/reprints
http://www.nature.com/reprints


Letter reSeArCH

MEthods
Simulation of signal/idler spectra. In this section, we describe the method used 
to simulate the spectrum of the generated signal and idler photons in response to a 
strong pump field. We follow the approach described in refs 28,29. The linear, uncou-
pled evolution of the pump, signal and idler fields is governed by the Hamiltonian 
HL, given by equation (1) and repeated here for convenience, as

∑ ω= − +μ μ μ μ μ
φ

μ μ
φ− +H a a J a a a a( e e )

m n
m m m n m n

i
n m

i
L

,
0 ,

†
, , ,

†
, ,

†
,

m n m n, ,

where μ ∈ {p, s, i} corresponds to the pump, signal or idler fields. The nonlinear 
SFWM process which couples the pump, signal and idler fields is described by the 
Hamiltonian (equation (2))

∑η= −H a a a a a a a a( )
m

m m m m m m m mNL ,s
†

,i
†

,p ,p ,p
†

,p
†

,s ,i

Note that this Hamiltonian is local in lattice site index m. We assume that the 
pump field is much stronger than the signal and idler fields and therefore the evo-
lution of the pump field is very well described by the linear Hamiltonian. However, 
the pump field depletes because of the intrinsic waveguide scattering losses (κin), 
which we include in our simulation. Using the input–output formalism and the 
rotating-wave approximation, we can write the coupled equations describing the 
steady-state pump field amplitudes, for frequency ωp, as

ω κ δ δ κ δ κ− = − − + −i a i H a a a a[ , ] ( ) 2 (3)m p m m m m m mp , L ,p in ,p ,I ,O ex ,p ,I ex in,p

Here κex is the coupling strength of the lattice to input/output waveguides and ain,p 
is the input pump field. The input and output waveguides are coupled to the lattice 
at sites indexed by I, O.

Given the pump field amplitudes calculated using equation (3), we can write 
the coupled equations describing the steady-state signal and idler fields amplitudes 
in the lattice as

ω κ δ δ κ

δ κ

− = + − − +

−

μ μ μ μ μ

μ

i a i H H a a a

a

[ , ] ( )

2

m m m m m m

m I

, L NL , in , ,I ,O ex ,

, ex in,

where μ ∈ {s, i}. These equations include the nonlinear FWM interaction 
Hamiltonian of equation (2) which couples the signal and idler fields to the pump 
fields. Also, for a particular choice of frequencies ωp and ωs, energy conservation 
fixes the idler frequency ωi.

Using these coupled equations for the pump, signal and idler frequencies, we 
calculate their field amplitudes in the lattice. Then the signal/idler fields at the 
output of the lattice are calculated using the input–output formalism as

κ=μ μa a2out, ex O,

where O is the index denoting the lattice output site. We can now define the spectral 
correlation function (SCF) Γ(ωs, ωp) = |aout,s|2. This is essentially the spectrum of 
generated signal photons as a function of pump frequency. Note that because of 
the energy conservation relation 2ωp = ωs + ωi, this SCF fully characterizes the 
spectral correlations of the SFWM process. In other words, using Γ(ωs, ωp), we can 
easily calculate Γ(ωs, ωi), the joint-spectral intensity of the signal and idler photons.
Experimental set-up. The devices used in this experiment were fabricated using 
CMOS-compatible silicon-on-insulator technology. The ring resonator waveguides 
are approximately 510 nm in width and 220 nm in height, and at telecom wave-
lengths (approximately 1,550 nm) support only a single mode with transverse 
electric field. The coupling strength J between the resonators was measured to 
be 32(1) GHz and the FSR was about 1,035 GHz. The on-site disorder potential 

V, which is a result of the different ring resonance frequencies, was estimated to 
be 27.5 GHz, and the disorder on the hopping phase was 0.1. Additional details 
of the fabrication process and disorder characterization are available in refs 16,23.

To generate correlated photons using the SFWM process, we pumped the lattice 
with a telecom band, tunable, continuous-wave laser. The output of the laser was 
amplified using an erbium-doped fibre amplifier (EDFA), and a tunable bandpass 
filter was used to cut down the spontaneous emission generated during amplifica-
tion. The pump was coupled to the lattice using grating couplers, with a coupling 
loss of about 5 dB per coupler. At the output of the lattice, tunable bandpass filters 
were used to remove the pump band, with a rejection exceeding 120 dB. The signal 
and idler photons were collected from bands separated by ±1 FSR from the pump 
band, respectively. To measure the spectrum of generated signal and idler photons, 
we used two monochromators with a frequency resolution of about 6 GHz along 
with two superconducting nanowire single photon detectors (PhotonSpot). The 
second-order correlation function measurements were done with a time-correlated 
single photon counting system (HydraHarp).
Source characterization. We use second-order correlation measurements to char-
acterize our source2,5. The temporal correlations between signal and idler photons 
are analysed using the cross-correlation function τg ( )s,i

(2)  which is given as

τ
τ

=g
P
PP

( )
( )

s,i
(2) s,i

s i

Here Ps,i is the probability of detecting a signal photon at time t followed by the 
detection of an idler photon in the time interval [t + τ − τc/2, t + τ + τc/2], and 
τc (here 50 ps) is the coincidence time-window. Ps and Pi are the probabilities of 
detecting individual signal or idler photons, and the product PsPi is the probability 
of detecting accidental coincidences. We observe that τ ≈g ( ) 80s,i

(2)  around τ = 0, 
which implies that the generation of signal and idler photons is strongly correlated. 
The mean of τg ( )s,i

(2)  around τ = 0 corresponds to actual coincidence counts, 
whereas its mean at τ| | � 0 corresponds to accidental counts (PsPi). Their ratio 
(CAR) is commonly used as a measure of the signal-to-noise ratio of a source. We 
measure a maximum CAR ≈ 42 when gs,i

(2) is averaged over 300 ps (the width of 
the correlation peak).

The quantum nature of a source can be demonstrated by the second-order 
autocorrelation function τg ( )a

(2) , which is a measure of antibunching of photons2,5. 
Quantum sources are distinguished by <g (0) 1a

(2) , which suggests that the nor-
malized probability of getting two simultaneous photons is low. In the case of 
correlated photon pairs, the quantum nature is revealed when we measure the 
conditional autocorrelation function τg ( )a,h

(2)  for signal photons heralded (condi-
tioned) by the detection of idler photons. For this measurement, we use the 
Hanbury Brown–Twiss (HBT) set-up in which we place a beam-splitter in the path 
of signal photons, and the outputs of the beam-splitter are connected to two detec-
tors (s1 and s2). The idler photons impinge on a third detector (i) which heralds 
the arrival of signal photons. Then the conditional autocorrelation function τg ( )a,h

(2)  
for signal photons, conditioned on the detection of idler photons, is defined as

τ
τ

=g
P
P P

( )
( )

a,h
(2) s ,s ,i

s ,i s ,i

1 2

1 2

Here τP ( )s ,s ,i1 2
 is the probability of detecting two heralded signal photons separated  

by a time τ and Ps i1,2
 is the probability of detecting individual heralded signal 

photons. These probabilities are normalized by the probability of idler (heralding) 
photons. Therefore, = =g P(0) 0 (0)a,h

(2)
s ,s ,i1 2

 indicates that the probability of having  
two pairs of signal and idler photons at the same time is zero. We measure 

= .g (0) 0 20(8)a,h
(2)  , which is a signature of a good source of heralded single photons.

Data availability. The data that support the findings of this study are available 
from the corresponding author on reasonable request.
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Extended Data Fig. 1 | Spectral correlations. a–c, Measured Γ(ωs, ωp) on three different 2D devices; d–g, measured Γ(ωs, ωp) on four different 1D 
devices, in addition to those presented in Fig. 3. Clockwise edge bands for the 2D devices and mid-band for the 1D devices are highlighted.
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Extended Data Fig. 2 | Transmission spectra of 2D and 1D devices.  
a, b, Measured transmission spectra for (a) different 2D and (b) different 
1D devices. The shaded regions highlight the edge and the bulk bands for 
the 2D system and the mid-band for the 1D system. For the 2D devices, 
the clockwise and the anticlockwise edge bands show reduced variations 

in the transmission compared with that in the bulk band. These spectra 
have been shifted along the frequency axis to superpose them, using an 
algorithm based on transmission and delay measurements, as detailed in 
ref. 23.
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Extended Data Fig. 3 | Transmission spectrum of a 2D device across 
three FSRs. Measured transmission spectrum in the pump, signal and 
idler FSRs, corresponding to Fig. 2. ∆ν is the frequency relative to 
the longitudinal mode resonance, and Ω is the FSR. The shape of the 

transmission spectrum in these FSRs is almost identical. The small 
variation in the overall transmission across bands is mainly because of the 
frequency response of the grating couplers.
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Extended Data Fig. 4 | Joint spectral intensity. a, The measured Γ(ωs, ωp) 
(see Fig. 2): that is, the intensity of generated signal photons at frequency 
ωs as a function of pump frequency, ωp. Each point on this plot represents 
a particular ωs and ωp. Using energy conservation, we can calculate the 
corresponding idler frequency at each point as ωi = 2ωp − ωs. Therefore, 
we can easily rescale the y axis of the plot and calculate the joint-spectral 
intensity (JSI; see refs 11,29) between the signal and idler frequencies, as 
shown in b. Note that this rescaling works only for a continuous-wave 
pump because for a pulsed pump source, the above energy conservation 

relation holds only up to the spectral bandwidth of the pump, signal 
and idler photons. Also, this measurement inherently assumes that the 
generated signal and idler photons are correlated. Using CAR and direct 
measurements of the signal and idler spectra (in Figs. 2, 3), we verified that 
the signal and idler photons are indeed correlated. The main advantage of 
such a spectral correlation measurement between the pump and the signal 
(or idler) photons is that it is fast and, for a continuous-wave pump, is 
equivalent to the JSI measurement.
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