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Importance of the Spectral gap in Estimating Ground-State Energies
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The field of quantum Hamiltonian complexity lies at the intersection of quantum many-body physics
and computational complexity theory, with deep implications to both fields. The main object of study is
the LOCALHAMILTONIAN problem, which is concerned with estimating the ground-state energy of a local
Hamiltonian and is complete for the class QMA, a quantum generalization of the class NP. A major chal-
lenge in the field is to understand the complexity of the LOCALHAMILTONIAN problem in more physically
natural parameter regimes. One crucial parameter in understanding the ground space of any Hamiltonian
in many-body physics is the spectral gap, which is the difference between the smallest two eigenvalues.
Despite its importance in quantum many-body physics, the role played by the spectral gap in the com-
plexity of LOCALHAMILTONIAN is less well understood. In this work, we make progress on this issue by
considering the precise regime, in which one estimates the ground-state energy to within inverse exponen-
tial precision. Computing ground-state energies precisely is a task that is important for quantum chemistry
and quantum many-body physics. In the setting of inverse-exponential precision, there is a surprising result
by Fefferman and Lin that the complexity of LOCALHAMILTONIAN is magnified from QMA to PSPACE,
the class of problems solvable in polynomial space (but possibly exponential time). We clarify the reason
behind this boost in complexity. Specifically, we show that the full complexity of the high-precision case
only comes about when the spectral gap is exponentially small. As a consequence of the proof techniques
developed to show our results, we uncover important implications for the representability and circuit
complexity of ground states of local Hamiltonians, the theory of uniqueness of quantum witnesses, and
techniques for the amplification of quantum witnesses in the presence of postselection.
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I. INTRODUCTION

Several exotic phenomena in our world occur only at
very low temperatures, most notably, those occurring in
condensed matter such as superconductivity, superfluid-
ity, and the fractional and integer quantum Hall effects.
Beyond these examples in condensed-matter physics, the
low-energy physics of systems of several interacting par-
ticles is of interest in several fields such as particle
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physics, atomic, molecular, and optical physics, chemistry,
and quantum computing. Accordingly, finding effective
descriptions of ground states of many-body Hamiltonians
is a very natural and important task in physics.

Given the prevalence and importance of this task, a
natural question is that of the computational difficulty of
solving this task in naturally occurring situations. Ques-
tions such as the hardness of solving a computational task
belong to the domain of computational complexity theory.
A good proxy for the difficulty of obtaining ground-state
descriptions is the difficulty of solving a weaker prob-
lem, namely that of computing ground-state energies of
many-body Hamiltonians. This question is studied in the
domain known as “Hamiltonian complexity” (see, e.g.,
Ref. [1]), an area of research at the intersection of quantum
many-body physics and computational complexity theory.

This area of research originated from Kitaev’s result that
the LOCALHAMILTONIAN problem, which is the problem
of computing the ground-state energy of a local Hamil-
tonian, is QMA-complete [2] (we refer a reader unfamil-
iar with complexity-theoretic language to Sec. I A). The
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complexity class QMA is the quantum generalization of
NP. Kitaev’s result may be viewed as an analogue of
the seminal Cook-Levin theorem [3,4] in computer sci-
ence, generalized to the setting of quantum constraint
satisfaction problems. Despite the tremendous amount of
progress in understanding the power of local Hamiltoni-
ans, many important questions remain, such as whether the
task remains hard under less-demanding notions of approx-
imation error [5–7] and whether there exist short classical
descriptions of ground states of local Hamiltonians (see,
e.g., Refs. [5,8,9]), among others.

One important question about LOCALHAMILTONIAN is
the role played by the spectral gap. The spectral gap is a
traditionally important quantity in the context of ground-
state properties of any physical system and is defined as
the difference between the smallest two eigenvalues of the
Hamiltonian. Many important families of Hamiltonians in
physics have the “gap property,” meaning that the spec-
tral gap in the limit of large system size n → ∞ is lower
bounded by a constant. Important conjectures in physics
are concerned with the existence of the gap property for
certain Hamiltonians [10,11], a problem that is known
to be undecidable in general [12]. Furthermore, the exis-
tence of a spectral gap implies various tractability results
for the ground states of Hamiltonians. For instance, in
one dimension, the gap property significantly restricts the
entanglement structure of ground states through the area
law of entanglement, implying efficient classical represen-
tations of the same [13], and further, classically efficient
algorithms to compute the ground-state energy [14,15].
It is not known whether these properties hold for higher
dimensions.

Despite the physical importance of the spectral gap, its
role in the context of the LOCALHAMILTONIAN problem
itself is much less clear. In particular, it is not known
whether LOCALHAMILTONIAN is QMA-complete in the
presence of nontrivial lower bounds on the spectral gaps,
even when the lower bound is �(1/poly(n)) [16,17].
Meanwhile, if the spectral gap is promised to be lower
bounded by a constant, there are no-go results [18,19]
that rule out any QMA-hardness proof that proceeds by
generalizing the clock construction technique. This tech-
nique underlies all known QMA-completeness results, in
analogy with the theory of NP-completeness, where the
Cook-Levin theorem plays a foundational role. Therefore,
Hamiltonians with any nontrivial lower bounds on the
spectral gap can be less complex than the general case.

In this work, we take an initial step towards answering
the question of the role played by the spectral gap in the
LOCALHAMILTONIAN problem. To do so, we study QMA
in the precise setting, i.e., the class PreciseQMA. In the
precise setting, the completeness (the minimum probabil-
ity of accepting a correct statement) and soundness (the
maximum probability of accepting an incorrect statement)
of the protocol are separated by a quantity called the

promise gap that scales inverse exponentially in the size
of the input. For the LOCALHAMILTONIAN problem, this
translates to computing the ground-state energy to within
inverse-exponential precision in the system size.

Computing ground-state energies to inverse-exponential
precision is not an artificial task. This task corresponds
to computing polynomially many digits of the answer,
which is very desirable in some cases [20]. Algorithms
whose runtimes scale as polylog(1/ε) for additive error ε
can compute quantities to inverse-exponential precision in
polynomial time, and such algorithms have been found for
Hamiltonian simulation and linear systems [21–23]. There
are also situations where precise knowledge of the ground-
state energy of a Hamiltonian is essential. For example,
in quantum chemistry, chemical reactivity rates depend
on the Born-Oppenheimer potential-energy surface for the
nuclei. Each point on this surface is an electronic ground-
state energy for a particular arrangement of the nuclei.
Small uncertainties in the ground-state energy can expo-
nentially influence the calculated rate k via Arrhenius’s law
k ∝ exp[−β�E], where�E is an energy barrier and β the
inverse temperature (see, e.g., Ref. [24]). Another example
is in condensed-matter physics, where algorithms such as
the density matrix renormalization group routinely com-
pute several digits of the ground-state energy (see, e.g.,
Ref. [25]). Precise knowledge of the ground-state energy
can enable one to identify the locations of quantum phase
transitions by identifying nonanalyticities [26]. Interest-
ingly, the class of Hamiltonians for which the energy can
be precisely measured correspond to Hamiltonians that can
be fast forwarded [27].

Fefferman and Lin [28] studied the complexity of the
class PreciseQMA, and showed the mysterious result that
it equals PSPACE. This is surprising since QMA ⊆ PP
[29–31] (also see Fig. 1 below for reference), and an alter-
native characterization of the class PP is PreciseBQP, the
precise analogue of BQP (the class of problems efficiently
solvable on quantum computers). Since PreciseBQP can
handle inverse-exponentially small promise gaps and con-
tains QMA, one might have expected that adding the
modifier Precise- to QMA would not have changed the
power of the class by much.

We provide an explanation for this seemingly unex-
pected boost in complexity from QMA, which is a subset of
PP, to PreciseQMA, which equals PSPACE [32]. Specif-
ically, we find that in order for the precise version of
LOCALHAMILTONIAN, i.e., PRECISELOCALHAMILTONIAN,
to be PSPACE-hard, the spectral gap of the Hamiltonian
must necessarily shrink superpolynomially with the size
of the system n (measured by the number of qudits in the
system). We give strong evidence that if the spectral gap
shrinks no faster than a polynomial in the system size, i.e.,
if the spectral gap is bounded by �(1/poly), the complex-
ity of the problem is strictly less powerful. In particular,
we show that this problem characterizes the complexity
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FIG. 1. Major complexity classes featuring in this work.
PSPACE, NPPP, and PP can be defined purely in terms
of quantum computation, and are equal to PreciseQMA,
PreciseQCMA, and PreciseBQP, respectively. All inclusions
except P ⊆ BPP are believed to be strict.

class PP, which is a subset of PSPACE and is widely
believed to be distinct from PSPACE. If the problem were
PSPACE-hard, the so-called counting hierarchy, defined
as CH = PP ∪ PPPP ∪ · · · [33], would collapse, which
is considered an unlikely possibility. Our results therefore
bring out the importance of the spectral gap, a quantity not
well understood so far in Hamiltonian complexity.

Another main result of ours concerns the question of
existence of polynomial-size quantum circuits to prepare
ground states of local Hamiltonians. This is an impor-
tant question that has implications in circuit complexity
of ground states of natural Hamiltonians and is directly
related to whether natural Hamiltonians can be efficiently
cooled down to zero temperature. In complexity-theoretic
language, the question may be phrased in terms of the
power of classical versus quantum witnesses in Merlin-
Arthur proof systems, or, more formally, the so-called
QMA versus QCMA question. The (in)equivalence of
these classes is an important open question in quantum
complexity theory and many-body physics, which has
remained unsettled despite recent progress in the ora-
cle setting (see, e.g., Refs. [8,9]). The precise version of
QCMA, or PreciseQCMA, is known to be equal to NPPP

(see, e.g., Refs. [34,35]), indicating a separation between
PreciseQCMA and PreciseQMA (= PSPACE) unless
the counting hierarchy collapses. Interestingly, we show
strong equivalence results for the PreciseQMA versus
PreciseQCMA question in the presence of spectral gaps.

Our results and proof techniques we develop here also
have consequences for other areas of quantum compu-
tation, complexity theory, and many-body physics. Our
second main result mentioned earlier roughly says that in
the precise regime, the promise of an inverse-polynomial

lower bound on the spectral gap is equivalent to the
promise that there exists a polynomial-size circuit to pre-
pare the ground state. This leads to an interesting con-
jecture we make in Sec. I D, which could have a bearing
on the performance of near-term quantum algorithms for
quantum chemistry and on the circuit complexity of var-
ious low-energy states, which is an important question
in many-body physics and gravitational and high-energy
physics [36,37]. We obtain some additional evidence for
the conjecture in Sec. V by showing that some implica-
tions of the conjecture are correct. Furthermore, our results
can shed light on an attempt to give a quantum-inspired
reproof [38,39] of the celebrated IP = PSPACE result
[40] via interactive protocols for the class PreciseQMA.
Our results also allow us to rule out sufficiently strong
error-reduction techniques for the class postQMA.

This paper is structured as follows. In the rest of Sec. I
we give an introduction to the basic notions of complexity
theory used in this work (which an experienced reader may
skip), state and refer to the main results, give a high-level
overview of the proof techniques and their implications,
and discuss the relation of our results to other work in
the literature. In Sec. II, we give the definitions of some
other complexity classes and define some new classes that
appear in this work. We also define natural problems com-
plete for these classes. We then formally state the results
pertaining to the class PP in Sec. III and PSPACE in
Sec. IV. We also consider the complexity of related classes
in Sec. V, after which the Appendices have detailed proofs
of our claims.

A. Preliminaries

Here, we give a very brief introduction to the
complexity-theoretic definitions and terminology in this
work. The reader is referred to a textbook (e.g., Refs. [41,
42]) for a more pedagogical exposition. We are generally
concerned with decision problems, where the answer is
either “YES” or “NO.” These problems can be cast as
follows: given an instance x, the task is to decide if it
belongs to the class of YES instances (x ∈ Ayes), or to the
class of NO instances (x ∈ Ano). In principle, there can be
problems where certain instances (for example, ill-defined
ones) belong neither to Ayes nor Ano. In such cases, we
either allow an algorithm to answer arbitrarily, or we sup-
plant the problem with a promise that such instances never
occur. These are called promise problems.

In complexity theory, one is typically interested in the
resources taken to solve various classes of decision prob-
lems. Furthermore, one is interested in how the resource
cost scales with the size of the problem to be solved, which
is quantified in terms of the length of the input, often
denoted n. In this work, we use the notation poly(n) to
denote any function that can be upper bounded by O(nc)

for some constant c = �(1). We also denote exp(n) to
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be any function 2poly(n). We omit the dependence on n,
which in our work is taken to be the number of qudits.
The results in this work are applicable generally to qudits
of any dimension d ≥ 2, but we often work with qubits in
our proofs.

We first define the class BQP (bounded-error quantum
polynomial time), which is the class of problems solvable
in polynomial time (in n) on a quantum computer with
bounded error. The error here is measured via the parame-
ters c (minimum probability of saying “YES” if the answer
is YES) and s (maximum probability of saying “YES” if
the answer is NO). More formally, we have the following
definition.

Definition 1 (BQP[c, s]): The class BQP[c, s] is the class
of promise problems A = (Ayes, Ano) such that, for every
instance x, there is a uniformly generated circuit Ux of size
poly(n) acting on state |0⊗m〉 for m = poly(n), with the
property that upon measuring the first bit at the output, o,
also called the decision qubit, we have

(a) if x ∈ Ayes, then Pr(o = 1) ≥ c,
(b) if x ∈ Ano, then Pr(o = 1) ≤ s.

In the above, we imagine that a quantum computer
applies a circuit Ux that acts on a standard initial state, mea-
sures the first bit at the output, and says YES (“accepts”)
or NO (“rejects”), depending on whether the bit is mea-
sured to be in state |1〉 or |0〉. The choice of the bit to
measure at the output is arbitrary. The term uniformly
generated circuit means that, given an instance x, there
is a polynomial-time classical algorithm to generate a
description of the circuit Ux to be applied.

Definition 2: We define BQP = ⋃
c−s≥1/poly BQP[c, s].

The class BQP is the quantum generalization of the
class BPP (bounded-error probabilistic polynomial time),
the class of problems solvable in polynomial time by a
randomized classical computer.

We now come to the class QMA (quantum Merlin
Arthur), which is a quantum generalization of NP. We
imagine two parties, Merlin (the prover) and Arthur (the
verifier). The prover would like to convince the verifier
that a certain problem instance x is a YES instance. The
prover, who is computationally unbounded, can supply
any state |ψ〉 on w = poly(n) qubits to the verifier as a
“proof” or “witness.” The verifier can apply any circuit of
their choice acting on some m qubits they possess and the
witness state, and accept or reject based on the outcome
of a decision bit. The class QMA is the class of prob-
lems such that a YES answer can be reliably verified in
this way and in case the answer is NO, no matter what
state is sent by the (possibly cheating) prover, the verifier
rejects with high probability. Just like with BQP, QMA is
defined with respect to parameters c and s, which are called
completeness and soundness, respectively.

Definition 3 (QMA[c, s]): The class QMA[c, s] is the class
of problems A = (Ayes, Ano) with the property that, for
every instance x, there exists a uniformly generated cir-
cuit Ux with the following properties: Ux is of size poly(n)
and acts on an input state |0〉⊗m, together with a proof (or
witness) state |�〉 of size w supplied by an arbitrarily pow-
erful prover. Both m and w are bounded by polynomials in
n. Upon measuring the decision qubit o of the output reg-
ister, the verifier accepts if o = 1, and rejects otherwise.
We say that A = (Ayes, Ano) is a QMA[c, s] problem if and
only if

(a) if x ∈ Ayes, then there exists |�〉 such that
Pr(o = 1) ≥ c,

(b) if x ∈ Ano, then for all |�〉, Pr(o = 1) ≤ s.

The class QMA is defined as
⋃

c−s≥1/poly QMA[c, s].
To characterize the complexity of a problem, we give

“upper” and “lower” bounds on the complexity of the prob-
lem. Upper bounds are statements of the form “X ∈ Y,”
which means that problem X can be solved with access
to a solver for the complexity class Y. For example, Shor
[43] proved that FACTORING ∈ BQP, which means that
quantum computers can factor integers in polynomial time
(since quantum computers may be viewed as “solvers for
the class BQP”). Lower bounds are statements of the form
“X is Y-hard.” This means that problem X is as hard as any
problem in Y. Such statements are often shown via reduc-
tions. One assumes the existence of an oracle, a black box
that can solve any instance of problem X in one timestep.
A reduction is a mapping from a complexity class Y to a
problem X with the property that any problem in Y can be
solved by querying the oracle for X . If such a reduction
exists, it implies that the problem X is at least as hard as
any problem in class Y. If a problem X is both in class
Y and is Y-hard then it means that the upper and lower
bounds to the problem match. This means that problem
X is the hardest in the class it belongs to, namely Y. In
this case, we say “X is Y-complete” or “X is complete for
Y.” We also denote by YZ the class of problems solvable
by a Y machine with access to an oracle for any problem
in Z.

Lastly, we depict the known inclusions between com-
plexity classes in Fig. 1. We also describe here the classes
not mentioned so far. The class P is the class of problems
efficiently solvable on classical computers, while NP is the
class of problems for which a YES answer may be verified
efficiently, via a protocol involving a classical prover and
classical verifier. The class QCMA is analogous to QMA,
except that the prover sends a classical witness instead
of a quantum one. As for PP, it suffices to know that it
equals PreciseBQP, a precise version of BQP. The class
NPPP is a subset of PPPP, since NP ⊆ PP. These classes
belong to the counting hierarchy (CH), which is defined
as CH = PP ∪ PPPP ∪ · · · [33]. All of these classes are
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in PSPACE, the class of problems solvable on classical
computers that use polynomial space (but which are free
to use exponential time).

B. Results

We describe a general problem we study here, called
(δ,�)-LOCALHAMILTONIAN. Informally, it is the prob-
lem of estimating the ground-state energy of a given
k-local Hamiltonian acting on n qudits to additive
error at most δ, when promised that the spectral gap
is at least � (see precise definitions in Sec. II). In
the absence of any bound on the spectral gap (i.e.,
� = 0), the problem (1/poly(n), 0)-LOCALHAMILTONIAN
is, by definition, the same as k-LOCALHAMILTONIAN,
which is complete for QMA for k ≥ 2 [2,44,45].
Meanwhile, (1/exp(n), 0)-LOCALHAMILTONIAN is, by
definition, PRECISE-k-LOCALHAMILTONIAN [28], which is
complete for PreciseQMA. We henceforth suppress the
dependence on the number of qudits n in the notation exp
and poly for the rest of the paper.

To our knowledge, Aharonov et al. [16] were the
first to study the k-LOCALHAMILTONIAN problem in the
presence of a spectral gap. Specifically, they consid-
ered (1/poly, 1/poly)-LOCALHAMILTONIAN and showed
it to be complete for the class PGQMA (polynomially
gapped QMA). The definition of PGQMA, which is given
in Sec. II, depends on a notion of a spectral gap for proof
systems, distinct from that for Hamiltonians. For complex-
ity classes associated with proof systems such as QMA,
QCMA, and the variants we study in this work, the spectral
gap corresponds to the gap in the highest and second-
highest accept probabilities of the optimal witness and the
next-optimal orthogonal witness. A priori, the two notions
of a spectral gap have no relation with each other. We
show that the two notions are equivalent for various cases
(δ and � each behaving as 1/poly or 1/exp), by show-
ing that (δ,�)-LOCALHAMILTONIAN is complete for the
appropriate spectral-gapped QMA class.

To understand the relation between the gapped QMA
classes and the regular versions without a spectral
gap, we focus on the precise regime, so that δ =
1/exp henceforth for the rest of this section. By
specifying the spectral gap to be �(1/poly), we get
the problem (1/exp, 1/poly)-LOCALHAMILTONIAN. We
show in Lemma 1 below that this problem is in a
class we call PrecisePGQMA (precise polynomially
gapped QMA), which is the precise analogue of PGQMA.
We also show (Lemma 2 below) that PrecisePGQMA ⊆
PP, implying that PrecisePGQMA is likely different
from PreciseQMA, which equals PSPACE. Specifi-
cally, assuming that PP �= PSPACE, there is a sep-
aration between PrecisePGQMA and PreciseQMA.
The PP upper bound on PrecisePGQMA is opti-
mal: we show that (1/exp, 1/poly)-LOCALHAMILTONIAN

is PP-hard (Lemma 4 below). Thus, we tightly
characterize the complexity of the class by showing that
PrecisePGQMA = PP and prove that (1/exp, 1/poly)-
LOCALHAMILTONIAN is its associated complete problem.

The results in the previous paragraph show that the
PSPACE-hardness result of Ref. [28] relies on the fact
that the spectral gaps of the associated Hamiltonians can
decay rapidly with the system size. This raises the ques-
tion of the maximum scaling of the spectral gap required
in order to retain PSPACE-hardness. This is an impor-
tant question since if the PSPACE-hardness results only
apply when there is no promise whatsoever on the spectral
gap, it would indicate that PSPACE-hardness of PRECISE-
k-LOCALHAMILTONIAN is artificial. We rule out this possi-
bility by showing that if the spectral gap is bounded below
by 1/exp, i.e., if we consider the problem (1/exp, 1/exp)-
LOCALHAMILTONIAN, the problem remains PSPACE-
hard. Specifically, we show in Theorem 2 below that this
problem is complete for a class called PreciseEGQMA
(precise exponentially gapped QMA). Next, we show that
PreciseEGQMA equals PSPACE (Theorem 10 below),
implying that instances with �(1/exp) spectral gaps are
no less complex than the general case.

Lastly, we consider the analogues of these classes
when the witness is classical, which gives us the
classes QCMA (quantum classical Merlin Arthur),
PreciseQCMA, PrecisePGQCMA (precise polynomi-
ally gapped QCMA), and PreciseEGQCMA (precise
exponentially gapped QCMA). The complete prob-
lems for these classes are the appropriate versions of
the LOCALHAMILTONIAN problem under the additional
promise that there is an efficient classical description of a
circuit to prepare a low-energy state, as we show in Theo-
rems 3 to 6 below. We define this problem in Sec. II A and
denote it (δ,�)-GS-DESCRIPTION-LOCALHAMILTONIAN,
which is the problem of computing the ground-state
energy to additive error δ, given the promise that there
exists a polynomial-size circuit to prepare a low-energy
state and promised that the spectral gap of the Hamilto-
nian is at least �. As stated in Corollary 1 below, we
show that PrecisePGQCMA has the same complexity
as PrecisePGQMA, implying that in the precise setting,
once there is a �(1/poly) promise on the spectral gap, a
further promise that there exists an efficient circuit to pre-
pare a low-energy state is redundant. We comment more
on this result in Sec. I D.

In Table I, we give an overview of the parameter
dependence of the complexity of the two main problems
studied in this work, namely (δ,�)-LOCALHAMILTONIAN
and (δ,�)-GS-DESCRIPTION-LOCALHAMILTONIAN. The
problems are completely characterized by the appro-
priately gapped versions of QMA or QCMA, or their
precise variants. The complexity class in any cell in
the table is a subset of all the classes below it in
the same column, since these classes correspond to
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TABLE I. Complexity of variants of the LOCALHAMILTONIAN problem as a function of the parameters δ, the promise gap, and �,
the spectral gap. The problem is complete for the class mentioned in each cell. For reference, we mention in curly brackets the theorem
number corresponding to the results proved in this work. The question mark corresponding to the entry EGQMA indicates that the
result is a conjecture and the notation “=R” denotes equivalence under randomized reductions (defined in Sec. V C).

(δ,�)-GS-DESCRIPTION-LOCALHAMILTONIAN (δ,�)-LOCALHAMILTONIAN

Spectral gap (�) δ = 1/poly δ = 1/exp δ = 1/poly δ = 1/exp

1/poly PGQCMA {5}
(=R QCMA {2})

PrecisePGQCMA
{7} (= PP {9})

PGQMA PrecisePGQMA {1}
(= PP {8})

1/exp EGQCMA
(=R QCMA {2})

PreciseEGQCMA
{6} (= NPPP {11})

EGQMA(?) PreciseEGQMA {2}
(= PSPACE {10})

0 QCMA {3} PreciseQCMA{4}
(= NPPP)

QMA PreciseQMA
(= PSPACE)

weaker promises on the spectral gap. Similarly, the
complexity class associated with (δ,�)-GS-DESCRIPTION-
LOCALHAMILTONIAN is a subset of that associated with
(δ,�)-LOCALHAMILTONIAN, because the former problem
is associated with an extra promise. While we have
given evidence that PrecisePGQMA �= PreciseQMA, it
is unknown whether the same holds for the question
PGQMA ?= QMA. Similarly, while we have proved that
PreciseEGQMA = PreciseQMA, it would be interesting
to see if a similar result holds for EGQMA.

C. Techniques

Here, we give an overview of the primary techniques
used in proving our results.

Imaginary-time evolution and the power method.—To
show the containment PrecisePGQMA ⊆ PP, we use a
technique called the “power method” [46]. The broad idea
behind the algorithm is that if a matrix A is promised to
have a spectral gap between the largest two eigenvalues,
the behavior of Ad for large d is dominated by the largest
eigenvalue. We give a PP algorithm to compute Tr(Ad)

for an exponentially large matrix A and d = poly(n) for a
wide class of matrices A. This wide class includes sparse
matrices and matrices representing local observables as
special cases. The PP algorithm uses the Feynman sum-
over-paths idea [47] to express the trace as a sum over 2poly

many terms, each of which is a product over quantities of
the form 〈x|R|y〉 for some matrix R whose entries are effi-
ciently computable. A PP algorithm can decide whether
the sum over 2poly many terms, each term computable in
polynomial time, is above or below a threshold.

The power method is closely related to another tech-
nique called the “cooling algorithm,” inspired by a brief
discussion by Schuch et al. [48]. The idea is that let-
ting a system evolve in imaginary time can produce an
unnormalized state close to the ground state. Imaginary-
time evolution is a linear, albeit nonunitary, operation
and produces an unnormalized state ρ ′ in general. Schuch
et al. relied on a quantum characterization of PP, namely

postBQP. The class postBQP [49] is the class of prob-
lems solvable in polynomial time on a quantum computer
with access to the resource of postselection, which is
the ability to condition on exponentially unlikely events.
Aaronson [49] showed that any linear operation, even
nonunitary ones, may be simulated in postBQP. The
algorithm of Schuch et al. [48] proposes to decompose
the imaginary-time evolution operation exp[−βH ] into a
series of local operations exp[−βHi] using Trotterization,
and implementing each local operation using the resource
of postselection. Unfortunately, the state-of-the-art error
bounds for Trotterization of imaginary-time evolution [50]
give, at best, a multiplicative error that is exponential in
n (see also Refs. [51,52]), and hence this technique does
not work in the precise regime. We prove a more general
statement about precise computation of ground-state local
observables for Hamiltonians with a spectral gap using
exact imaginary time evolution as opposed to a Trotter-
ized version. Specifically, we give a PPP algorithm that
provably works not just for 1/poly precision, but also
1/exp precision in computing local observables in addi-
tion to the Hamiltonian. Our technique is closely related
to the power method, since the core of the algorithm
is to compute expectation values of powers of the
Hamiltonian.

Small-penalty clock construction.—Our second major
technical contribution is a modification of the clock con-
struction that we call the small-penalty clock construction.
One of the ways this technique is useful is as follows.
As mentioned earlier and as will be described in detail
in Sec. II, it is possible to consider spectral-gapped ver-
sions of both the LOCALHAMILTONIAN problem and the
class QMA and their variants. We have already discussed
the (natural) notion of a spectral gap for Hamiltonians.
For QMA and related classes, the spectral gap is related to
the difference in accept probabilities between the optimal
and next-optimal witnesses. Our technique allows us to
bridge the notion of spectral gap in both cases by construct-
ing spectral-gap-preserving reductions. In other words, the
small-penalty clock construction allows us to prove that
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the Hamiltonians resulting from the construction inherit a
spectral gap related to the gap in accept probabilities in the
circuit, for several variants of QMA. This ability is used
in the proofs of Theorems 2 to 6 below. An interesting
feature of the modified clock construction is that it also
allows us to show that, when there is a classical witness
(i.e., a QCMA computation), the resulting Hamiltonian
has a classical description for a state with energy close to
the ground-state energy. Another related application of the
small-penalty clock construction is that it also allows us
to show complexity lower bounds like in Lemmas 4 and 6
below. In these cases, we directly reduce from PP to the
appropriate gapped version of the LOCALHAMILTONIAN
problem instead of a reduction from the corresponding
-QMA class.

We now spell out what enables the small-penalty clock
construction to show the above results. As mentioned
before, the clock construction and its variants encom-
pass all current proofs of hardness for QMA and related
classes. Typically, this consists of mapping a circuit
to a Hamiltonian H = Hinput + Hprop + Hclock + Houtput.
Roughly speaking, each term locally enforces that the com-
putation is a valid step of a QMA protocol by adding
energy penalties to undesirable states. The “witness reg-
ister,” where a quantum prover may input any quantum
state, is left unpenalized and the Hamiltonian therefore has
no terms acting on the witness register. The role of Houtput
is to ensure that witnesses and computations that lead to
a low accept probability at the output get a high energy
penalty. In the absence of the penalty term at the output, the
ground-state space of the Hamiltonian is well known and
is given by the subspace of the so-called “history states,”
each with the same energy. The output penalty term Houtput
is what breaks the degeneracy and helps create a promise
gap, and we henceforth refer to this as simply the penalty
term without qualification.

However, the addition of the penalty term makes the
eigenstates of the Hamiltonian difficult to analyze, since
the magnitude of the penalty can be large, i.e., �(1) in
strength. In this work, we often choose the output penalty
terms to have small strength. This might seem like a
strange choice to make since one is typically interested
in making the promise gap as large as possible. However,
since we are dealing with instances where the promise gap
is already exponentially small, our choice is not too costly.
The advantage this gives us is that the ground-state energy
tracks the effect of the output penalty more faithfully. More
concretely, the smallness of the penalty term allows us to
use tools like the Schrieffer-Wolff transformation [53,54],
which can be viewed as a rigorous formulation of degen-
erate perturbation theory. We review the Schrieffer-Wolff
transformation in Appendix A.

Spectral gap in the adjacency matrix.—For the proof of
Theorem 10 below, we show a reduction [55] from a nat-
ural PSPACE-complete graph problem to an instance of a

problem known as (1/exp, 1/exp)-SPARSEHAMILTONIAN
[56]. This problem is a generalization of (1/exp, 1/exp)-
k-LOCALHAMILTONIAN, allowing for the Hamiltonian to
be any sparse Hamiltonian with a spectral gap ≥ 1/exp.
Sparse Hamiltonians are Hermitian matrices that can be
exponentially large, with at most poly(n) nonzero entries
per row in some basis and an efficient algorithm for com-
puting any entry of the matrix. They are a generalization
of local Hamiltonians.

The PSPACE-complete graph problem may be descr-
ibed as SUCCINCTGRAPHREACHABILITY, which is a deci-
sion problem about whether there is a path from one
vertex to another in a succinctly described graph of expo-
nential size (also see Ref. [27]). We show that one can
always construct a PSPACE-bounded Turing machine
such that the resulting Hamiltonian after the reduction
always has a spectral gap that is at least 1/exp(n). We
do this through an explicit analysis of the eigenvalues
of the Hamiltonian, which are related to the lengths of
cycles and paths of the graph constructed from the Tur-
ing machine. Next, we give a PreciseEGQMA upper
bound to (1/exp, 1/exp)-SPARSEHAMILTONIAN, i.e., the
problem in the presence of a spectral gap, establishing that
PSPACE ⊆ PreciseEGQMA.

D. Discussion

Our first main result was that the addition of even an
inverse-polynomially small spectral gap takes the com-
plexity of precisely estimating the ground-state energy of
a local Hamiltonian from PreciseQMA = PSPACE to
PrecisePGQMA = PP. Note that this result also implies
a difference between the case of no spectral gap and a con-
stant spectral gap. Therefore, we have given a provable
setting where the difference in complexity between two
problems is attributable entirely to the spectral gap.

Our second main result concerned a modification of
the same problem of precisely estimating the ground-state
energy of a local Hamiltonian promised to have an inverse-
polynomial spectral gap. When additionally promised that
there exists a classical description of a circuit to pre-
pare a state whose energy is exponentially close to the
ground-state energy, our results show that the complex-
ity of the problem does not get weaker. Specifically, we
show that the class PrecisePGQCMA is equivalent to
PrecisePGQMA.

The above equivalence result is in sharp contrast with
the belief PreciseQCMA �= PreciseQMA in the non-
spectral-gapped case. This inequality follows from the
conjecture that NPPP �= PSPACE, which, if false, would
lead to a collapse of the counting hierarchy. The inequal-
ity PreciseQCMA �= PreciseQMA rules out the pos-
sibility of there being polynomial-size circuits to pre-
pare ground states of local Hamiltonians to exponen-
tial precision, since otherwise the prover could simply
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supply a description of such a circuit. Our equivalence
result that PrecisePGQMA = PrecisePGQCMA is con-
sistent with the following intriguing conjecture about the
circuit-complexity of ground states of low-energy Hamil-
tonians, although it does not imply the conjecture.

Conjecture 1: Consider any Hamiltonian H on n qubits
with ground-state energy E1 and a 1/poly spectral
gap. Then there exists a low-energy state |ψ〉 satisfying
〈ψ |H |ψ〉 ≤ E1 + 2−poly(n) that can be prepared by an effi-
cient quantum circuit, namely a state of the form |ψ〉 =
U|0〉m, where m and the size of U are both polynomials
in n.

Note that Conjecture 1 implies the following results: (i)
PrecisePGQMA = PrecisePGQCMA, (ii) PGQMA =
PGQCMA, and (iii) PGQCMA = QCMA. We prove (i)
and give strong evidence for (iii) in Corollary 2 below
by showing that PGQCMA =R QCMA. These results do
not imply Conjecture 1 because the reductions do not
imply anything about the classical witnesses. We also
note that the quantum circuits referred to in Conjecture
1 may be hard to find—the conjecture is only concerned
with the existence of such circuits, and not with whether
these circuits can be obtained by an efficient algorithm.
In complexity-theoretic language, these circuits may be
nonuniform. This is why Conjecture 1 is not in contra-
diction with Ref. [57], which argues that finding efficient
matrix-product-state representations of Hamiltonians with
a �(1/poly) spectral gap can be hard.

If Conjecture 1 were true, it would also explain the
observed success of quantum algorithms such as the vari-
ational quantum eigensolver (VQE) [58,59], which seek
to solve a much simpler problem of preparing low-energy
states of translation-invariant many-body Hamiltonians
with energy 1/poly close to the ground-state energy. A
large class of translation-invariant Hamiltonians have a
spectral gap that is either a constant,�(1) (gapped phases),
or vanishing in the system size as �(1/n1/D) (gapless
phases described by conformal field theories in D dimen-
sions). Therefore, Conjecture 1 applies to both these cases
and would imply the existence of polynomial-size circuits
to prepare states with high overlap with the ground state.
Such circuits are generally found in the VQE algorithm
if one optimizes over sufficiently many parameters. This
behavior is in line with other instances where a lower
bound on the spectral gap implies tractability of the ground
state in various senses [13,15,60,61].

Coming to the case of exponentially small spectral gaps,
we have shown that PreciseEGQMA = PreciseQMA.
This implies that PreciseEGQMA �= PreciseEGQCMA
unless the counting hierarchy collapses. Therefore, we give
a class of local Hamiltonians (in the proof of Lemma
12 below) with exponentially small spectral gaps, whose

ground states have exponentially large circuit complex-
ity. This is a result of independent interest, and it might
be interesting to study whether these Hamiltonians can be
classified as quantum spin glasses, which are believed to
be hard to cool down to zero temperature [62].

In another intriguing line of work, Aharonov and Green
[38] and Green et al. [39] have given interactive pro-
tocols for precise quantum complexity classes with a
computationally bounded prover P and a computation-
ally bounded verifier V , denoted IP[P ,V]. A goal of
this line of work is to give a quantum-inspired proof of
the result IP = PSPACE [40] by giving an interactive
protocol for PreciseQMA [39] (which equals PSPACE)
with a BPP verifier. This has been successful so far with
PreciseBQP and PreciseQCMA (which equals NPPP)
but not yet with PreciseQMA. From the result of Ref. [38]
and our result that PrecisePGQMA = PP, there is an
IP[PreciseBQP, BPP] protocol for PrecisePGQMA.
Our results indicate that the spectral gap might play an
important role in extending such an interactive protocol
to PSPACE. Namely, such an extension would need to
be able to work with inverse-exponentially small spectral
gaps.

In addition, the class postQMA [35,63] is the class
where there is a quantum prover and a postBQP veri-
fier, where one may condition (postselect) on exponentially
unlikely outcomes. This class has been shown to be equal
to PreciseQMA [35], so an alternative approach men-
tioned by Green et al. [39] to reprove the result IP =
PSPACE is to exhibit an IP[postQMA, BPP] protocol
for postQMA. To complete such a proof, it would suf-
fice to prove a witness-preserving amplification technique
like in QMA [31,64] that additionally handles postselec-
tion. Witness-preserving amplification is a technique for
improving the promise gap of an interactive protocol by
modifying the verifier’s strategy while keeping the witness
fixed. We show in Lemma 9 below that, assuming that
PP �= PSPACE, the soundness of a postQMA protocol
cannot be reduced beyond a particular point without requir-
ing the witness to grow larger or requiring the postselection
success probability to shrink. Therefore, we obtain evi-
dence that a witness-preserving amplification technique for
postQMA should differ significantly from the technique of
Marriott and Watrous [31], since in the latter, repeating the
verifier’s circuit suffices to get any soundness parameter
s ≤ 2−poly.

So far, we have considered the spectral-gap promise
to be applicable to both YES and NO instances of the
problems defined. We can also define asymmetric prob-
lems where only the YES instances are promised to have a
spectral gap. The motivation for considering such
asymmetric promises is that they are related to complex-
ity classes where the accepting witness is promised to
be unique, such as the class UQMA [16]. The problems
with asymmetric promises can only be harder than their
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symmetric analogues, since the promise is weaker. We
show that, for both�(1/poly) and�(1/exp) spectral gaps
in the
precise setting, there is no difference between symmetric
and asymmetric promises on the spectral gaps. Specifi-
cally, we show in Theorem 11 below that the classes with
asymmetric promises are of the same complexity as those
with symmetric promises.

We remark here that the promise of a spectral gap
above a unique ground state is distinct from assuming
that we have a UQMA instance. The reason is that, for
LOCALHAMILTONIAN, the presence of a spectral gap does
not imply that there is a unique accepting witness, it only
implies a unique ground state. In case the ground-state
subspace is polynomially degenerate, the PP algorithm
continues to work to produce estimates of the ground-state
energy.

Lastly, we add that results shown in the precise regime
do not always imply analogous results in the non-
precise regime. For example, our work gives evidence
that PrecisePGQCMA �= PreciseQCMA, but in the non-
precise regime we can show that PGQCMA =R QCMA.
In this respect, inequivalence results in the high-precision
regime resemble oracle separation results in complexity
theory, which is a mature area of research with sev-
eral important results [65–67]. While oracle separations
do not constitute strong evidence for the inequivalence
of two complexity classes, they are useful in ruling out
proof techniques that work relative to oracles, or “rel-
ativize.” Similarly, inequivalence results in the precise
regime can rule out proof techniques from extending to
the precise regime. For example, a purported proof that
QCMA = QMA must not work in the precise regime; oth-
erwise, we would obtain PreciseQCMA = PreciseQMA,
or PSPACE = PP, which is believed to be unlikely.

E. Related work

The study of Hamiltonian complexity [1,44,45,68–73]
has given rise to many techniques and important results
applicable in quantum many-body physics, such as
Refs. [12,57,74–80]. The clock construction has also been
analyzed in detail recently [81–83].

The study of exponentially small promise gaps in the
context of quantum classes can be traced to Watrous [84],
who defined PQP and showed its equivalence with
postBQP, which equals PP [49]. In the precise setting,
one can sometimes give far stronger evidence for the
(in)equivalence of complexity classes than in the anal-
ogous bounded error setting, as is the case for precise
versions of the questions of QCMA versus QMA [28] and
QMA(2) versus QMA [28,85–87]. There has been work
on quantum interactive proof systems with exponentially
small promise gaps, such as in the context of QMA(2)
[87], or with even smaller gaps, such as in Refs. [88–90].

Fefferman and Lin [28,91] studied the precise regime of
QMA, showing it to equal PSPACE, leading to other
works concerning precise classes [35,92]. Gharibian et al.
[34] considered quantum generalizations of the polyno-
mial hierarchy, where precise classes and spectral gaps are
relevant to the definitions and proof techniques.

Aharonov et al. [16] were the first to consider the
complexity of the LOCALHAMILTONIAN problem in the
presence of spectral gaps, motivated by the question of
uniqueness [93] for randomized and quantum classes.
They showed the equivalence of UQCMA and QCMA,
and that of UQMA and PGQMA, using similar techniques
as Valiant and Vazirani [93] in their proof of equiva-
lence of UNP and NP. Jain et al. [17] defined the class
FewQMA and showed that it is contained in PUQMA, giv-
ing a technique to reduce the dimension of accepting
witnesses.

More recently, González-Guillén and Cubitt [18] stud-
ied the spectral gap of a large class of Hamiltonians that
encode history states in their ground state and showed that
the spectral gap is upper bounded by O(1/poly). A similar
result was obtained by Crosson and Bowen [19] using dif-
ferent techniques. These works are mainly concerned with
the existence of a �(1) spectral gap, whereas our results
distinguish between 1/poly and 1/exp spectral gaps.

Finally, Ambainis [94] studied the problem of esti-
mating spectral gaps and local observables and gave a
PQMA[log] upper bound for these problems, while also
giving PQMA[log]-hardness results (also see Ref. [95]).
The class PQMA[log] is the class of problems solvable in
polynomial time by making logarithmically many (adap-
tive) queries to a QMA oracle. Gharibian and Yirka [95]
showed that PQMA[log] ⊆ PP and extended previous hard-
ness results to more natural Hamiltonians. Gharibian et al.
[96] also gave a very natural complete problem for the
class PQMA[log] in the context of computing local observ-
ables in ground states. Novo et al. [97] have recently
studied the closely related problem of sampling from
the distribution obtained by making energy measurements
and obtained various interesting hardness results, under
different notions of error.

II. DEFINITIONS AND COMPLETE PROBLEMS

We have seen the definition of BQP in terms of the class
BQP[c, s] with general parameters c and s. The Precise-
version of BQP can be defined similarly.
Definition 4: We define PreciseBQP = ⋃

c−s≥1/exp
BQP[c, s].

This class is known to be equal to PP (see, e.g.,
Ref. [34]).

We now give an equivalent definition of QMA in
terms of the eigenvalues of an operator called the accept
operator. We then define a very general class called
Gapped QMA, GQMA[c, s, g1, g2], which has several
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parameters. By specifying these parameters, we can define
the major complexity classes in this work. The complexity
classes corresponding to classical witnesses (QCMA and
its derivatives) are defined analogously.

The alternative definition of QMA is in terms of
the “accept operator” Q(Ux) = 〈0|⊗mU†

x�outUx|0〉⊗m on
the witness register, where �out is the projector on to
the accept state (|1〉o). For any state |�〉 provided as a wit-
ness, quantity 〈�|Qx|�〉 is the accept probability of the
circuit. We henceforth suppress the dependence of Q on
the unitary Ux and the instance x. The eigenvalues of Q,
λ1(Q) ≥ λ2(Q) ≥ · · · , are important quantities to consider
since the accept probability of any input proof state is a
convex combination of these eigenvalues. The alternative
definition of QMA in terms of the operator Q is as follows.

Definition 5 (Alternative definition of QMA[c, s]): We
say that A = (Ayes, Ano) is a QMA[c, s] problem if and only
if, for every instance x, there exists a uniformly gener-
ated circuit Ux of size poly(n) acting on m + w = poly(n)
qubits, with the properties that

(a) if x ∈ Ayes, then λ1(Q) ≥ c,
(b) if x ∈ Ano, then λ1(Q) ≤ s,

where Q = Q(Ux) is as above.
Note that we are typically interested in the behavior of

the maximum accept probability, which equals the largest
eigenvalue of Q. We are also interested in the lowest eigen-
value of a Hamiltonian H for the LOCALHAMILTONIAN
problem and its variants. Therefore, we order eigenvalues
in nonincreasing order for accept operators and in nonde-
creasing order for Hamiltonians. For the same reason, we
define the spectral gap differently for accept operators and
Hamiltonians. For a Hamiltonian, we define the spectral
gap to be the difference in the smallest two eigenvalues
E2 − E1. For accept operators, the spectral gap is the differ-
ence between the highest two eigenvalues λ1(Q)− λ2(Q).
This is equal to the difference in the accept probabilities of
the optimal witness and the next-optimal witness orthog-
onal to it. It will usually be clear from the context which
spectral gap we are referring to.

Now let us define the class GQMA[c, s, g1, g2]. It cor-
responds to a promise on the operator Q having a spectral
gap of at least g1 in the YES case, and at least g2 in the NO
case.

Definition 6 (Gapped QMA): Class GQMA[c, s, g1, g2] is
the class of promise problems A = (Ayes, Ano) such that, for
every instance x, there exists a polynomial-size verifier cir-
cuit Ux acting on poly(n) qubits and its associated accept
operator Q such that

(a) if x ∈ Ayes, then λ1(Q) ≥ c and λ1(Q)− λ2(Q) ≥
g1.

(b) if x ∈ Ano, then λ1(Q) ≤ s and λ1(Q)− λ2(Q) ≥ g2.

This definition is a generalization of the class PGQMA
defined by Aharonov et al. in Ref. [16].
Definition 7: We define PGQMA = ⋃

c−s,g1,g2≥1/poly
GQMA[c, s, g1, g2].

To see the relation of this class with QMA, note that, by
setting g1 = g2 = 0, the promise on spectral gaps becomes
vacuous, since λ1(Q) ≥ λ2(Q) by definition. Therefore, we
get the equality GQMA[c, s, 0, 0] = QMA[c, s].
Definition 8 (Exponentially gapped QMA): We define

EGQMA =
⋃

c−s≥1/poly
g1,g2≥1/exp

GQMA[c, s, g1, g2].

We now come to precise versions of these classes, where
the completeness-soundness gap c-s can be exponentially
small, giving us more powerful classes. The first of these is
PreciseQMA, which was defined in Ref. [28] and shown
to be equal to PSPACE.
Definition 9: We define PreciseQMA = ⋃

c−s≥1/exp
QMA[c, s].

This definition should be compared to the precise ver-
sion of GQMA, which comes in two varieties: the spectral
gaps can either be polynomially small (PrecisePGQMA)
or exponentially small (PreciseEGQMA).
Definition 10 (PrecisePGQMA): The class Precise
PGQMA, short for precise polynomially gapped QMA,
is the class with exponentially small promise gaps and
polynomially small spectral gaps:

PrecisePGQMA =
⋃

c−s≥1/exp
g1,g2≥1/poly

GQMA[c, s, g1, g2].

Definition 11 (PreciseEGQMA): The class Precise
EGQMA, short for precise exponentially gapped QMA,
has both the promise gap and spectral gap exponentially
small:

PreciseEGQMA =
⋃

c−s≥1/exp
g1,g2≥1/exp

GQMA[c, s, g1, g2].

We now come to complexity classes in which the prover
sends a classical witness but the verifier remains quantum.
The classicality of the witness can be enforced by mea-
suring the qubits sent by the prover in the computational
basis and interpreting qubits in the computational basis
as classical bits. If the verifier is only allowed to make
measurements at the end, we use the standard protocol for
deferring measurements: we apply a “copy operation” Uc
that has controlled-NOT gates from the qubits in the wit-
ness register to an ancilla register in state |0〉w. We leave
the qubits in the witness state unmeasured. This modified
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circuit has the property that it preserves the accept proba-
bilities of input witness states that are in the computational
basis. Furthermore, the eigenstates of the modified accept
operator acting on the register can be taken to be computa-
tional basis states. This allows us to define QCMA and its
derivatives in terms of the accept operator and also allows
us to consider a gapped version of QCMA.

Definition 12 (GQCMA[c, s, g1, g2]): We say that A =
(Ayes, Ano) is a GQCMA[c, s] problem if and only if, for
every instance x, there exists a uniformly generated circuit
Ux of size poly(n) acting on m + w = poly(n) qubits, with
the properties that

(a) if x ∈ Ayes, then λ1(Q) ≥ c and λ1(Q)− λ2(Q) ≥
g1.

(b) if x ∈ Ano, then λ1(Q) ≤ s and λ1(Q)− λ2(Q) ≥ g2.

where Q = Q(UxUc) is the accept operator of the modified
circuit with the copy operation Uc described above.

Definition 13: The derived classes of GQCMA are
given by

(a) QCMA[c, s] = GQCMA[c, s, 0, 0],
(b) QCMA = ⋃

c−s>1/poly QCMA[c, s],
(c) PreciseQCMA = ⋃

c−s>1/exp QCMA[c, s],
(d) PGQCMA = ⋃

c−s>1/poly, g1,g2>1/poly GQCMA[c, s,
g1, g2],

(e) PrecisePGQCMA = ⋃
c−s>1/exp, g1,g2>1/poly

GQCMA[c, s, g1, g2],
(f) EGQCMA = ⋃

c−s>1/poly, g1,g2>1/exp GQCMA
[c, s, g1, g2],

(g) PreciseEGQCMA = ⋃
c−s>1/exp, g1,g2>1/exp

GQCMA[c, s, g1, g2].

A. Complete problems

We now come to the definitions of problems that are
complete for these classes. The classic problem complete
for the class QMA is the LOCALHAMILTONIAN problem
[2,44,45]. We define a k-local observable to be a Hermitian
operator A that can be written as a sum over operators Ai

supported on k qudits at most: A = ∑poly(n)
i Ai. We assume

that each term has bounded operator norm ‖Ai‖ ≤ poly(n).
The task in the LOCALHAMILTONIAN problem is to esti-
mate the ground-state energy of a local Hamiltonian. The
decision version of the problem is as follows.

k-LOCALHAMILTONIAN[a, b]

Input: A description of a k-local Hamiltonian H =∑
i hi on n qubits with hi � 0, two numbers a

and b with b > a.
Output: YES if the ground-state energy E1 ≤ a,

NO if E1 ≥ b, promised that one of them is the
case.

Henceforth, we omit the phrase “promised that one of
them is the case” because we will be exclusively consid-
ering promise problems unless otherwise specified. Kitaev
[2] showed that 5-LOCALHAMILTONIAN[A, B] with b − a =
�(1/poly) is QMA-complete, which was improved to k =
3 and then k = 2 in Refs. [44,45]. The parameter δ :=
b − a, the promise gap, is a measure of the accuracy to
which the solution is desired. We define the problem in
terms of δ only, as follows.
Definition 14: We define δ-k-LOCALHAMILTONIAN :=⋃

b−a≥δ k-LOCALHAMILTONIAN[A, B].
We now come to the gapped and precise versions of the

problem, which turn out to be complete for their respec-
tive -QMA variants. We also suppress the notation k in the
name of the problem, though there is formally a depen-
dence on k. In this work, our hardness results hold for
k ≥ 3 and it may be possible to improve our results to hold
for k = 2.

LOCALHAMILTONIAN[a, b, g1, g2]

Input: Description of a k-local Hamiltonian H = ∑
i hi

with hi � 0, numbers a, b, g1, and g2 with b > a.
Output: YES if the ground-state energy E1 ≤ a and any

state orthogonal to the ground state has energy
≥ E1 + g1,
NO if E1 ≥ b and any state orthogonal to the
ground state has energy ≥ E1 + g2.

In both the YES and NO cases above, we see that the
Hamiltonian has a unique ground state and a spectral gap
of at least g1 in the YES case and g2 in the NO case. The
above problem with promise gap δ = b − a and spectral
gap � = min[g1, g2] is defined as follows.
Definition 15: We define

(δ,�)− LOCALHAMILTONIAN

:=
⋃

b−a≥δ
g1,g2>�

LOCALHAMILTONIAN[a, b, g1, g2].

In the nonprecise regime, the problem (1/poly, 1/poly)-
LOCALHAMILTONIAN was shown to be complete for
PGQMA for k ≥ 2 [16].

We now focus on the precise regime, i.e., δ =
�(1/exp). From the results of Ref. [28], we know
that (1/exp, 0)-LOCALHAMILTONIAN is PreciseQMA-
complete for k ≥ 3. We have the following results.

Theorem 1: It holds that (1/exp, 1/poly)-LOCAL
HAMILTONIAN is PrecisePGQMA-complete.

Theorem 2: It holds that (1/exp, 1/exp)-LOCAL
HAMILTONIAN is PreciseEGQMA-complete.
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By virtue of these theorems, we can talk about
the complexity of the classes PrecisePGQMA and
PreciseEGQMA interchangeably with their complete
problems. The proofs of these theorems are given in
Appendices B and C. The hardness results rely on the
small-penalty clock construction, where the size of the
penalty term is either �(1/poly) or �(1/exp). The upper
bounds are shown in Lemmas 15 and 16 below and rely
on a modification of the standard phase-estimation proto-
col used to show that k-LOCALHAMILTONIAN is in QMA.
Specifically, we consider the modified protocol of Ref. [28]
used for PRECISE-k-LOCALHAMILTONIAN and observe that
the spectral gaps in the energies translate to separations in
the accept probabilities.

Finally, we turn to complete problems for QCMA
and its derivatives. The first problem, GS-DESCRIPTION-
LOCALHAMILTONIAN, concerns finding the ground-state
energy of a k-local Hamiltonian when there is a
polynomial-size circuit to prepare a state close to the
ground state (which constitutes a classical description of
the ground state).

GS-DESCRIPTION-LOCALHAMILTONIAN[a, b, g1, g2]

Input: Description of a k-local Hamiltonian H =∑
i hi, numbers a, b ≥ a + δ, polynomials

T(n), m(n), together with the promise that there
exists a circuit V of size T such that V|0m〉 =
|ψ〉 satisfies 〈ψ |H |ψ〉 ≤ E1 + δ3/f (n)2 for
some polynomial f (n) ≥ ‖H‖.

Output: YES if the ground-state energy of H satisfies
E1 ≤ a and the spectral gap of H is at least g1,
NO if E1 ≥ b and the spectral gap of H is at
least g2.

Definition 16: We define

(δ,�)-GS-DESCRIPTION-LOCALHAMILTONIAN

:=
⋃

b−a≥δ
g1,g2≥�

GS-DESCRIPTION-LOCALHAMILTONIAN

× [a, b, g1, g2].

As in the case of (δ,�)-LOCALHAMILTONIAN, if we take
� = 0, we get a version without any promise on the spec-
tral gap. This is a close relative of the following problem
proved to be QCMA-complete for δ = �(1/poly) [98].

δ-LOWCOMPLEXITY-LOWENERGYSTATES

Input: Description of a k-local Hamiltonian H =∑
i hi, numbers a, b, and polynomials T(n),

m(n), with b ≥ a + δ.

Output: Output: YES if there exists a circuit of size ≤
T(n) that acts on |0m〉 to prepare a state |ψ〉
with energy 〈ψ |H |ψ〉 ≤ a,
NO if any state |ψ〉 obtained by applying
a circuit of size T(n) on |0m〉 has energy
〈ψ |H |ψ〉 ≥ b.

This latter problem has a weaker promise than (δ, 0)-
GS-DESCRIPTION-LOCALHAMILTONIAN. This is because a
NO instance of δ-LOWCOMPLEXITY-LOWENERGYSTATES
is automatically a NO instance of (δ, 0)-GS-DESCRIPTION-
LOCALHAMILTONIAN, since any state necessarily has
energy ≥ b. Meanwhile, a NO instance of (δ, 0)-
GS-DESCRIPTION-LOCALHAMILTONIAN need not be a
NO instance of δ-LOWCOMPLEXITY-LOWENERGYSTATES,
since, for the latter, there is no guarantee of a circuit
to prepare a state with energy close to the ground-state
energy.

Despite having a stronger promise on (δ, 0)-GS-
DESCRIPTION-LOCALHAMILTONIAN (which only makes
the problem less complex), our small-penalty clock con-
struction allows us to prove the same hardness result for
both δ = 1/poly and δ = 1/exp.

Theorem 3: It holds that (1/poly, 0)-GS-DESCRIPTION-
LOCALHAMILTONIAN is QCMA-complete.

Theorem 4: It holds that (1/exp, 0)-GS-DESCRIPTION-
LOCALHAMILTONIAN is PreciseQCMA-complete.

For the latter theorem in the precise regime, we use
the small-penalty clock construction with an exponentially
small energy penalty. Lastly, when we add the promise of
spectral gaps, we have the following results.

Theorem 5: It holds that (1/poly, 1/poly)-GS-DESCRIP-
TION-LOCALHAMILTONIAN is PGQCMA-complete.

Theorem 6: It holds that (1/exp, 1/exp)-GS-DESCRIP-
TION-LOCALHAMILTONIAN is PreciseEGQCMA-
complete.

Theorem 7: It holds that (1/exp, 1/poly)-GS-DESCRIP-
TION-LOCALHAMILTONIAN is PrecisePGQCMA-
complete.

The upper bounds in Theorems 3 to 7 follow from a pre-
cise version of phase estimation, together with the promise
that there is a classical description of a circuit to prepare a
low-energy state. The lower bounds either follow directly
through a small-penalty clock construction or through a
reduction from a class that contains the relevant class.
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III. PROBLEMS CHARACTERIZED BY PP

In this section, we discuss the complexity of the classes
PrecisePGQMA and PrecisePGQCMA, both of which
turn out to equal PP.

Theorem 8: It holds that PrecisePGQMA = PP.

Theorem 9: It holds that PrecisePGQCMA = PP.

We describe here the overall strategy for proving these
results. First, we adapt the one-bit phase estimation circuit
in Ref. [28] to show that it is possible to compute ground-
state energies of sparse Hamiltonians with a spectral gap
in the corresponding GQMA class. In particular, we have
the following result.

Lemma 1: It holds that (1/exp, 1/poly)-LOCAL-
HAMILTONIAN ∈ PrecisePGQMA.

Next, we use the “power method” [46] to give a PP
algorithm for any problem in PrecisePGQMA.

Lemma 2 (One half of Theorem 8): It holds that
PrecisePGQMA ⊆ PP.

Proof. Suppose that we have a GQMA[c, s, g1, g2]
instance. Then we should give a PP algorithm to pre-
cisely compute the maximum eigenvalue λ1 of the accept
operator Q associated with the instance, under the promise
that the spectral gap of Q is bounded below by an inverse
polynomial. In particular, the spectral gap of the accept
operator, given by λ1 − λ2, is at least min[g1, g2] =: �.
Consider the power method to compute the maximum
eigenvalue and eigenvector of a positive semidefinite oper-
ator Q. This method relies on the observation that, upon
taking positive powers of the operator Q and estimating its
trace, the quantity is dominated by the maximum eigen-
value of Q. In the following, we suppress the dependence
of λi on Q:

Tr(Qq) =
∑

i

λ
q
i

= λ
q
1

(

1 +
(
λ2

λ1

)q

+ · · ·
)

≤ λ
q
1 + λ

q
1(2

w − 1)
(

1 − �

λ1

)q

. (1)

Here w is the size of the witness register. On the other hand,
we have Tr(Qq) ≥ λ

q
1. Therefore, in the YES case, we have

Tr(Qq) ≥ cq, (2)

while in the NO case,

Tr(Qq) ≤ sq + sq(2w − 1)
(

1 − �

λ1

)q

. (3)

By the promise of the spectral gap, we must have λ1 ≥ �,
since otherwise the second largest eigenvalue of Q would
be λ2 < 0. The difference in the two cases is

cq − sq − sq(2w − 1)
(

1 − �

λ1

)q

= cq − sq − sq(2w − 1)exp
[

q log
(

1 − �

λ1

)]

≥ cq − sq − sq2wexp
[

− q�
λ1

]

= sq
((

1 + c − s
s

)q

− 1
)

− sq2wexp
[

− q�
λ1

]

≥ sq
(

q(c − s)
s

− 2wexp
[

− q�
λ1

])

≥ sq
(

c − s − 2wexp
[

− q�
λ1

])

, (4)

since q ≥ 1 and s ≤ 1. If we pick q = �(λ1/�) log (2w+1/

(c − s))� = O(poly), we can ensure that the term
2wexp[−q�/λ1] is at most (c − s)/2. Thus, the difference
in Tr(Qq) between the YES and NO cases is at least

sq c − s
2

= �(2−poly). (5)

In the last line above we assumed that sq ≥ cq/2w+1 =
�(2−poly) for some polynomial. In case this assumption
is not true, we would nevertheless still have a difference of
at least cq − 2wsq > cq/2 ≥ �(2−poly) in between the YES
and NO cases when measuring Tr(Qq).

This observation suggests that a PP algorithm can
decide between the YES and NO cases by computing
Tr(Qq) for some large enough polynomial q. This is
possible because a PP algorithm can compute a sum
of 2poly terms, where every term is efficiently com-
putable in polynomial time. We prove this in Appendix E
(Lemma 22). �

The above result implies that, since (1/exp, 1/poly)-
LOCALHAMILTONIAN is in PrecisePGQMA, a PP
algorithm can precisely compute ground-state energies of
local Hamiltonians with a �(1/poly) spectral gap. A sim-
ilar technique can also be used to show a slightly more
general result.

Lemma 3: Given a local Hamiltonian H and a local
observable A, along with a promise that ‖A‖ = O(poly)
and the spectral gap of H is lower bounded by�(1/poly),
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a PPP algorithm can decide if the ground-state local
observable 〈E1| A |E1〉 is either ≤ a or ≥ b, for b − a =
�(2−poly), where |E1〉 is the ground state of H.

This lemma is proved in Appendix E. Note that both
of these results include the case � = �(1), the important
case of constant spectral gaps.

We complete the characterization of the power of
PrecisePGQMA with the following result.

Lemma 4: It holds that (1/exp, 1/poly)-LOCAL-
HAMILTONIAN is PP-hard.

For this proof, we use the small-penalty clock con-
struction, albeit one for class PreciseBQP as opposed
to class PreciseQMA. In this aspect, it resembles the
clock construction of Aharonov et al. [74], where it was
used to show BQP universality of the model of adiabatic
quantum computing. We use the technique of applying
�(1/poly) small penalties at the output so as to preserve
the lower bound of �(1/poly) on the spectral gap shown
in Ref. [74]. In sum, Lemmas 1, 2, and 4 together imply
Theorems 1 and 8.

We now come to class PreciseQCMA and its complete
problem, (1/exp, 0)-GS-DESCRIPTION-LOCALHAMILTON-
IAN, where we are promised that there is an efficient
circuit to prepare a low-energy state. We know that
PreciseQCMA = NPPP [35], which lies in the second
level of the counting hierarchy. Since PrecisePGQMA is
characterized by PP, the promise of having a spectral gap
is only slightly stronger than the promise of an efficient
circuit to prepare the ground state.

Consider now the gapped version of the problem,
(1/exp, 1/poly)-GS-DESCRIPTION-LOCALHAMILTONIAN,
where there is a 1/poly spectral gap in addition to the
promise of an efficient circuit to prepare the ground state.
This characterizes the class PrecisePGQCMA, for which
the proof technique is similar to PrecisePGQMA.

We first show that the gapped version of GS-
DESCRIPTION-LOCALHAMILTONIAN is in the correspond-
ing GQCMA class, and, in particular, that the following
result holds.

Lemma 5: It holds that (1/exp, 1/poly)-GS-DESCRIPTION-
LOCALHAMILTONIAN ∈ PrecisePGQCMA.

The PP-hardness of the problem follows by the same
argument as in the proof of Lemma 4.

Lemma 6: It holds that (1/exp, 1/poly)-GS-DESCRIPTION-
LOCALHAMILTONIAN is PP-hard.

We give a unified proof of Lemmas 4 and 6
in Appendix B. Since PrecisePGQCMA ⊆ Precise
PGQMA = PP, this implies the following result.

Corollary 1: It holds that PrecisePGQMA = Precise
PGQCMA = PP.

IV. PROBLEMS CHARACTERIZED BY PSPACE

In this section, we discuss the complexity of class
PreciseEGQMA, which turns out to equal PSPACE. This
result indicates that the complexity of the local Hamilto-
nian problem does not jump immediately in the presence
of a tiny, nonzero spectral gap. This means that there is a
notion of robustness of the complexity of the problem with
respect to the spectral gap.

Theorem 10: It holds that PreciseEGQMA = Precise
QMA (= PSPACE).

Proof. The containment PreciseEGQMA ⊆ Precise
QMA follows trivially since any PreciseEGQMA
instance is automatically a PreciseQMA instance. We
show the other direction, PreciseEGQMA ⊇ Precise
QMA, in two steps. Our proof relies on the complexity of
the following problem.

SPARSEHAMILTONIAN[a, b, g1, g2]

Input: A succinct description of a Hermitian matrix
of size 2poly(n) × 2poly(n), with at most d =
poly(n) many entries in each row and two
numbers a and b, with b > a. The magnitude
of each entry is bounded by k = poly(n).

Output: YES if the smallest eigenvalue E1 ≤ a and the
spectral gap of the matrix is at least g1,
NO if E1 ≥ b, and the spectral gap of the
matrix is at least g2.

We define (δ,�)-SPARSEHAMILTONIAN to be⋃
b−a≥δ, g1,g2≥�SPARSEHAMILTONIAN[a, b, g1, g2] and con-

sider the problem with parameters δ,� = �(1/exp).
First, in Lemma 7 below, we prove that (1/exp, 1/exp)-
SPARSEHAMILTONIAN is PSPACE-hard, or, equivalently,
PreciseQMA-hard. Next, we show in Lemma 8 below
that (1/exp, 1/exp)-SPARSEHAMILTONIAN may be solved
in PreciseEGQMA. The theorem then follows. �

Lemma 7: It holds that (1/exp, 1/exp)-SPARSEHAMILT-
ONIAN is PSPACE-hard.

The reduction is from any problem in PSPACE to an
instance of co-(1/exp, 1/exp)-GAPPED-SPARSEHAMILTO-
NIAN, which is the complement of the problem, in the
sense that the YES and NO instances are reversed. Since
PSPACE is closed under complement, this still gives the
desired hardness result. The broad idea is to represent
a PSPACE computation as an exponentially large, but
sparse, graph. The smallest eigenvalue of the adjacency
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YES case, original graph YES case, modified graph

NO case, original graph NO case, modified graph

(a) (b)

(c) (d)

FIG. 2. Schematic of the original and modified graphs for both YES and NO cases. The original graph in both YES and NO cases
consists of vertices with in degree and out degree at most 1, due to the fact that the Turing machine is reversible. The start vertex sx is
marked in blue, the accept vertex tx in green, and the reject vertex in orange. The modified graphs have self-loops on all vertices except
the start and the accept vertices. They have additional vertices 1, 2, . . . , t(n) without self-loops. All modifications are in maroon. (a)
YES case, original graph. (b) YES case, modified graph. (c) NO case, original graph. (d) NO case, modified graph.

matrix of this graph encodes information about whether
the computation accepts or rejects.

Proof of Lemma 7. We use a proof technique adapted from
an unpublished manuscript by Fefferman and Lin [91].
First, we use the fact that PSPACE with reversible oper-
ations in every step still equals PSPACE: revPSPACE =
PSPACE [99]. Indeed, it is known that SPACE[s(n)] =
revSPACE[s(n)] [100] with an overhead in time that is
exponential in the space, s(n). Let t(n) be this upper bound
on the running time of the Turing machine, so that we
can restrict our attention to the class revSPACE[s(n)] ∩
TIME[t(n)] = SPACE[s(n)]. Any computation on a
reversible Turing machine may be viewed as traversing
a directed configuration graph, where each vertex of the
graph is determined by the state of the head and the
list of symbols on the input and work tapes [Figs. 2(a)
and 2(c)]. When such a Turing machine is restricted to

use space polynomial in the input length n, the number of
vertices in the graph is upper bounded by an exponential,
2poly(n). Consider the adjacency matrix of the graph, Ax.
The description of this exponentially large matrix is suc-
cinct because it only requires specifying the input x and
the rules of the Turing machine.

We modify the configuration graph Gx → G′
x so that the

smallest eigenvalue of the matrix A†
x
′
A′

x is 0 in the NO
case and bounded away by an exponentially small amount
in the YES case. We do this modification in a way that
ensures that the matrix has a spectral gap lower bound of at
least �(1/exp). This is done as follows. First, we modify
the configuration graph of the Turing machine by adding
self-loops to all vertices except for the start and accept con-
figurations sx and tx. We then add a sequence of vertices
{1, 2, . . . , t(n)} from the accept configuration tx, with the
directed edges tx → 1 → 2 → · · · → t(n) → sx, as shown
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in Figs. 2(b) and 2(d). The adjacency matrix of this mod-
ified directed graph G′

x is A′
x, and we are interested in the

eigenvalues and spectral gap of A†
x
′
A′

x, which is Hermitian
and sparse, and also has a succinct representation.

We now analyze this construction. The proof relies on
an explicit computation of the eigenvalues for the vari-
ous subgraphs of the modified configuration graph. In the
NO case, the graph G′

x has a path of vertices ending in
the reject state [Fig. 2(d)]. This path contains the starting
configuration sx. Let  be the graph distance between sx
and the reject state. Since we have added the edges tx →
1 → · · · → t(n) → sx, these vertices and the vertices lead-
ing to the accept state are also part of the path (the Turing
machine does not explore these vertices in practice). All
vertices in this path except for tx, sx, and i : i ∈ [t(n)] have
self-loops on them. As we show in Lemma 25 below,
there is a zero eigenvalue in the NO case, with a spec-
tral gap above the zero eigenvalue. The spectral gap is
lower bounded by �(1/2

max) = �(2−poly), where max is
the number of vertices in the longest subgraph.

In the YES case, the subgraph containing the start-
ing vertex is a cycle, with self-loops on all ver-
tices except for tx, sx, and the intermediate ver-
tices i. In each case, the eigenvalues for any sub-
graph are given by 2 − 2 cos((2k − 1)π/(2+ 1)) =
4 sin2((2k − 1)π/(4+ 2)), k ∈ [] [91], where  is the
number of vertices in the subgraph. The smallest eigen-
value is therefore given by the longest subgraph and this
eigenvalue is nondegenerate if no two subgraphs have the
same number of vertices. This is why we have added the
sequence of edges tx → 1 → · · · → t(n). The role played
by these vertices is to elongate the length of the sub-
graph containing the start and accept configurations by
t(n). This ensures that no other subgraph has a length
equal to the longest subgraph [since t(n) is the upper
bound on the total number of vertices in the graph before
elongation]. Therefore, the smallest two eigenvalues are
given by 4 sin2((2k − 1)π/(4+ 2)), which are separated
by �(t(n)−2) = �(2−poly).

To summarize, in the YES case we have E1 ≥ 2−poly

and E2 − E1 ≥ 2−poly. In the NO case, we have E1 =
0 and E2 ≥ 2−poly. Therefore, we have a promise gap
of 2−poly and spectral gap 2−poly in both the YES and
NO instances. Furthermore, the matrix A†

x
′
A′

x has entries
of magnitude at most 2, and is 3-sparse because of the
bounded degree of the configuration graph. Since the min-
imum eigenvalue is small in the NO case and large in
the YES case, we have a reduction to co-(1/exp, 1/exp)-
SPARSEHAMILTONIAN. Because of the fact that PSPACE
is closed under complement, we get PSPACE-hardness of
(1/exp, 1/exp)-SPARSEHAMILTONIAN. �

Lemma 8: It holds that (1/exp, 1/exp)-SPARSEHAMILTO-
NIAN ∈ PreciseEGQMA.

The proof of this is mostly the same as the proof
of containment of (1/exp, 1/exp)-LOCALHAMILTONIAN
in PreciseEGQMA and is also given in Appendix C.
The only difference is that we have a sparse Hamiltonian
instead of a local Hamiltonian. This distinction turns out
not to matter, however, because of quantum algorithms
for Hamiltonian evolution that work well with sparse
Hamiltonians [21].

V. OTHER RELATED CLASSES

In this section, we discuss implications of our proof
techniques for other complexity classes. The first con-
cerns a technique for amplifying the promise gap in QMA
and related classes, called in-place amplification, due to
Marriott and Watrous [31]. The second is about the com-
plexity of related classes when the spectral gap promise
only applies to one kind of instance (YES instances,
for example). We also complete a discussion of the
results in Table I by characterizing the complexity classes
PGQCMA, EGQCMA, and PreciseEGQCMA.

A. Amplification for postQMA

We first define the class postQMA.

Definition 17 (postQMA): Class postQMA[c, s] is the
class of promise problems A = (Ayes, Ano) that can be
decided in the following way. Apply a uniformly gen-
erated quantum circuit U of size poly(n) on a state |x〉
encoding the input, together with a proof state of size w(n)
supplied by an arbitrarily powerful prover. Postselect the
first l = poly(n) qubits at the output onto the |0〉l state,
and measure the first qubit of the remaining register at
the output, called the decision qubit (o). The postselection
probability is �(2−f (n)) for a polynomial f (n).

(a) If x ∈ Ayes, there exists |ψ〉 such that Pr(o = 1) ≥ c,
(b) If x ∈ Ano, for all |ψ〉, Pr(o = 1) ≤ s.

Morimae and Nishimura [35] defined this class
and showed that postQMA := postQMA[1/3, 2/3] =
PreciseQMA = PSPACE. This result is similar to the
result postBQP = PreciseBQP(= PP). They raised the
question of whether one can do a Marriott-Watrous-type
in-place amplification for this class, which, for instance,
means boosting the parameters c and s to be c = 1 −

FIG. 3. One-qubit phase-estimation circuit. The symbol H
denotes the Hadamard gate.
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2−poly, s = 2−poly without changing the size of the wit-
ness. If one is allowed to change the witness size, one
can simply ask for polynomially many copies of the wit-
ness and run the verification in parallel to get the required
parameters. The benefit of in-place amplification is that
it allows for good completeness and soundness parame-
ters without blowing up the witness size, which turns out
to be useful in the proof of QMA ⊆ PP. In-place ampli-
fication for postQMA would also be useful to show that
IP = PSPACE [38,39]. Here we give a negative result for
a sufficiently strong in-place amplification for postQMA.

Lemma 9 (Upper bound for in-place amplified
postQMA): If f (n) = O(w(n)) then postQMA[1 −
2−t(n), 2−u(n)] ⊆ PP for u(n) > w(n)+ 1 and any polyno-
mial t(n) > 1.

Proof. Consider a postQMA[1 − 2−t(n), 2−u(n)] language.
Replace the witness state in the amplified protocol by
a maximally mixed state 1/2w. Now, since the over-
lap of any witness state with the maximally mixed state
is 2−w, the postselection success probability is at least
�(2−f (n)−w(n)). Furthermore, in the YES case, the prob-
ability of accepting the string x (conditioned on success) is

Pr(o = 1) ≥ 2−w(n)(1 − 2−t(n)). (6)

In the NO case, no matter what state is in the witness
register, the accept probability is

Pr(o = 1) ≤ 2−u(n). (7)

In PreciseBQP = PP, we can distinguish between these
two cases if 2−w − 2−t−w > 2−u, i.e., if 1 − 2−t > 2w−u,
for which it suffices to have u(n) > w(n)+ 1 and
t > 1. �

This result implies that the completeness-soundness gap
for postQMA cannot be boosted beyond a point without
incurring a blowup in the size of the witness or by reducing
the success probability of postselection.

B. Asymmetric promises on the spectral gap and
uniqueness

Motivated by a possible connection to the study of
unique witnesses for quantum complexity classes, we con-
sider the complexity class GQMA[c, s, g1, 0]. Here, there
is no promise on the spectral gap for NO instances. In the
YES case, we have λ1(Q) ≥ c and λ2 ≤ λ1 − g1 ≤ 1 − g1.
If we choose the spectral gap g1 to be larger than 1 − s,
we see that λ2 ≤ s, ensuring that in the YES case, there is
exactly one accepting witness [101]. The existence of one
accepting witness is exactly the promise that defines the
class UQMA.

Definition 18 (Unique QMA [16]): The class UQMA[c, s]
is the class of promise problems A = (Ayes, Ano) such that,
for every instance x, there exists a polynomial-size veri-
fier circuit Ux acting on m = poly(n) qubits and an input
quantum proof on w = poly(n) qubits, and the associated
accept operator Q has the properties that

(a) if x ∈ Ayes, then λ1(Q) ≥ c and λ2(Q) ≤ s.
(b) if x ∈ Ano, then λ1(Q) ≤ s.

Definition 19: We define UQMA := ⋃
c−s≥1/poly UQMA

[c, s].
The earlier statement can be rephrased as “an instance

of GQMA[c, s, 1 − s, 0] is a UQMA[c, s] instance.” In the
reverse direction, we can see that a UQMA[c, s] instance
necessarily has a spectral gap λ1 − λ2 ≥ c − s, and there-
fore is an instance of GQMA[c, s, c − s, 0]. This hints at,
but does not prove, an equivalence between the promise
of uniqueness and that of an asymmetric spectral gap
of �(1/poly). Aharonov et al. [16] proved a stronger
result by showing that class UQMA is equivalent to class
PGQMA under randomized reductions (defined below),
where PGQMA is the class with spectral gaps for both the
YES and the NO cases.

In the precise regime, we show the following results
for the asymmetric variants of PrecisePGQMA and
PreciseEGQMA.

Theorem 11: It holds that

PrecisePGQMA =
⋃

c−s≥1/exp,
g1≥1/poly

GQMA[c, s, g1, 0]

and

PreciseEGQMA =
⋃

c−s≥1/exp,
g1≥1/exp

GQMA[c, s, g1, 0].

The proof of Theorem 11 is given in Appendix G and
hinges on the problem of computing ground-state energies
when there is a spectral gap only for the YES case, i.e.,
LOCALHAMILTONIAN[a, b, g1, 0]. Since the problem with
an asymmetric gap can only be more complex than the
symmetric case, the nontrivial part of this theorem is to
show that this problem has the same PP upper bound as
the symmetric case. This is not straightforward since the
power method we described before does not necessarily
work for the NO case, since there is no spectral gap. We
work around this by making use of the technique of Ambai-
nis [94] of identifying spectral gaps, which is possible in
PP [95].
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C. Complexity of PGQCMA, EGQCMA, and
PreciseEGQCMA

In this subsection we show that classes PGQCMA and
EGQCMA are both equivalent to QCMA under random-
ized reductions, which we now define.

We say that a problem A is random reducible to problem
X if every instance a of A can be mapped to a random set
of polynomially instances xi of X , such that

(a) if a ∈ Ayes, then Pri(xi ∈ Xyes) ≥ 1/poly,
(b) if a ∈ Ano, then Pri(xi ∈ Xyes) = 0.

A class Y is random reducible to another class Z if every
problem in Y is random reducible to some problem in Z
(and vice versa), and is denoted “=R.”

To show that PGQCMA =R QCMA and EGQCMA =R
QCMA, we make use of class UQCMA (unique QCMA),
which has been defined in Ref. [16], and was shown to be
equal to QCMA under randomized reductions.

Definition 20 (UQCMA[c, s] [16]): The class UQMA[c, s]
is the class of promise problems A = (Ayes, Ano) such that,
for every instance x, there exists a polynomial-size verifier
circuit Ux acting on m = poly(n) qubits and an input clas-
sical proof on w = poly(n) qubits, whose associated accept
operator Q has the properties that

(a) if x ∈ Ayes, then λ1(Q) ≥ c and λ2(Q) ≤ s,
(b) if x ∈ Ano, then λ1(Q) ≤ s.

Definition 21: We define UQCMA := ⋃
c−s≥1/poly

UQCMA[c, s].
Aharonov et al. [16] showed that UQCMA =R QCMA

using generalizations of techniques in Ref. [93] to com-
plexity classes with randomness. In order to show that
PGQCMA =R QCMA and EGQCMA =R QCMA, we
show that the following result holds.

Lemma 10: It holds that PGQCMA =R UQCMA.

Since PGQCMA ⊆ EGQCMA ⊆ QCMA, the equiva-
lence of EGQCMA with QCMA follows.

To show Lemma 10, we observe that the proof of
PGQMA =R UQMA in Ref. [16] works for classical wit-
nesses. For completeness, we give a self-contained proof
here.

Proof of Lemma 10. First, we show the direction UQCMA
⊆ PGQCMA. We observe that in a YES instance of
UQCMA[c, s], λ1 ≥ c and λ2 ≤ s. Thus, a YES instance
already has a spectral gap of g1 ≥ c − s and is a YES
instance of PGQCMA. In the NO case, we modify the ver-
ifier’s strategy so that it creates a spectral gap. The verifier
expects an additional qubit we call the “flag qubit” from
the prover, which is measured in the beginning just like the
other qubits of any QCMA proof. The associated accept

operator now has twice as many eigenvalues because it acts
on a space with one larger qubit.

The verifier’s protocol is as follows. If the state of the
flag qubit is |0〉, the verifier continues with the original
protocol. This gives the same eigenvalues for the accept
operator as the original protocol. If the state of the flag
qubit is |1〉, the verifier accepts with probability s + (c −
s)/poly if the state of the rest of the witness qubits is |1〉⊗w.
If the state of the rest of the witness register is anything
else, the verifier rejects. In the latter case (when the state of
the flag qubit is |1〉), the accept operator has one eigenvalue
at s + (c − s)/poly and 2w − 1 eigenvalues with eigen-
value 0, each case corresponding to some state in the wit-
ness. The modified verifier is a PGQCMA instance with
completeness c, soundness s + (c − s)/poly, and spectral
gaps g1 ≥ c − s and g2 ≥ (c − s)(1 − 1/poly). Therefore,
UQCMA ⊆ PGQCMA.

For the other direction, we give a randomized reduc-
tion PGQCMA ⊆R UQCMA. Consider a YES instance
of PGQCMA[c, s, g1, g2]. We know that λ1 ≥ c and λ2 ≤
λ1 − g1, but we do not know if λ2 ≤ s, as is required for the
instance to be a UQCMA instance. The idea in Ref. [16] is
to make a query to a UQCMA[cj , sj ] oracle with complete-
ness cj = c + (j + 1)g1/2 and soundness sj = c + jg1/2,
for j chosen randomly from {0, 1, . . . , �2g1/(1 − c)�}. In
the NO case, all the queries are valid queries to a UQCMA
oracle and return the correct answer (NO). In the YES
case, since the completeness and soundness in each query
differ by g1/2, there is at least one j where λ1 ≥ cj and
λ2 ≤ sj [102]. Therefore, this is a randomized reduction to
UQCMA. �

Therefore, we obtain the following result.

Corollary 2: It holds that PGQCMA =R QCMA and
EGQCMA =R QCMA.

Our final result concerns the class PreciseEGQCMA.
Just like we have PreciseEGQMA = PreciseQMA, we
can show that exponentially small spectral gaps are no less
complex in the case of classical witnesses. We show that
the following result holds.

Lemma 11: It holds that PreciseEGQCMA = Precise
QCMA.

Proof. The direction PreciseEGQCMA ⊆ Precise
QCMA is trivial. For the other direction, we take a
PreciseQCMA[c, s] instance and give a PreciseEGQ
CMA[c, s, g1, g2] instance with an exponentially small
spectral gap. This is done by modifying the verifier so
that no two witnesses yi and yj are accepted with the
same probability. First, we choose the verifier’s gate set
so that the accept probability of any witness y is given
by kx,y/2l(n), for kx,y ∈ [2l(n)], where l(n) is the size of
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the verifier’s circuit [103]. The modified verifier rejects
the instance straightaway with probability yb/2poly, where
yb is a number in [2w − 1] when interpreting the witness
y in binary and the polynomial is at least l(n)+ w(n)+
log2(1/(c − s)). If the verifier does not reject at this step,
they run the original verification protocol. The overall
accept probability when given y is given by py = kx,y(1 −
yb/2poly)/2w. Since the polynomial satisfies poly ≥ l(n)+
w(n)+ log2(1/(c − s)), the completeness and soundness
are given by c′ ≥ c − 2−w(n)(c − s) and s′ = s, which are
still separated by 2−poly.

We now claim that the resulting accept probabilities are
distinct for distinct witnesses, and hence separated by an
amount �(2−poly). This is easily seen for two distinct yi
and yj such that kx,yi = kx,yj . If kx,yi �= kx,yj then, for pyi =
pyj , we need

kx,yi − kx,yj = 2w

2l+w+poly
(yjb − yib), (8)

which cannot be satisfied by integers yjb and yib in [2l]. �
The same technique also works to give a more direct

proof of EGQCMA = QCMA.
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APPENDIX A: THE SCHRIEFFER-WOLFF
TRANSFORMATION

In this section, we give a brief introduction to the
Schrieffer-Wolff transformation [53], which is an impor-
tant tool in some of our subsequent proofs. We follow the
exposition in Ref. [54], specialized to our context.

In the context relevant for us, we usually have an
“unperturbed” Hamiltonian H0 and a “perturbation” H1,
together forming the full Hamiltonian H = H0 + H1.
The (possibly degenerate) ground-state subspace of H0,
denoted S0, has energy λ0 and is separated from the rest
of the spectrum by a gap �. We are interested in the cases
when Hamiltonian H1 has small strength relative to the gap
�, in the sense ‖H1‖ =: ε < �/2. This ensures that all
eigenvalues of H0 are shifted by an amount smaller than
�/2 under the perturbation. Therefore, the low-energy
subspace of H , given by

S =
{

|ψ〉 : 〈ψ |H |ψ〉 ∈
[

λ0 − �

2
, λ0 + �

2

]}

, (A1)

has the same dimension as that of H0. We denote the pro-
jectors on to S0 and S by P0 and P, respectively. As long as
ε < �/2, we have ‖P − P0‖ < 1, which captures the fact
that the dimensions of the two subspaces are the same.

Since the dimensions of the two subspaces are the same,
there exists a unitary U that maps the subspace S0 to S:

UPU† = P0 with U =
√
(2P0 − 1)(2P − 1). (A2)

We are interested in the effective Hamiltonian in subspace
S0, given by

Heff = P0U(H0 + H1)U†P0. (A3)

The Schrieffer-Wolff transformation allows one to express
the generator V = log(U), and consequently, Heff, as a con-
vergent series in the perturbation H1. We first write H1
as H d

1 + H o
1 , where H d

1 is block diagonal in subspace S0
and H o

1 is block off-diagonal. Let the eigenstates of H0 be
given by {|i〉}, with corresponding energies {Ei}. We define
I0 = {i : Ei = λ0}, which is the set of indices correspond-
ing to the ground-state space. The first few terms of the
Schrieffer-Wolff expansion are given by

Heff = H0P0 + P0H1P0

+ 1
2

P0

∑

i∈I0,j /∈I0

( 〈i|H1|j 〉
Ei − Ej

|i〉〈j | H1

+ 〈j |H1|i〉
Ei − Ej

H1 |j 〉〈i|
)

P0 + O(‖H1‖3). (A4)

In our work, we use the first-order expansion of the
Schrieffer-Wolff series. The series converges absolutely as
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long as ‖H1‖ ≤ �/16 [54]. We can upper bound the error
caused by truncating the formal series to first order:

‖Heff − H0P0 − P0H1P0‖

≤ O(1)
∥
∥
∥
∥P0

∑

i∈I0,j /∈I0

( 〈i|H1|j 〉
Ei − Ej

|i〉〈j | H1

+ 〈j |H1|i〉
Ei − Ej

H1 |j 〉〈i|
)

P0

∥
∥
∥
∥

≤ O(1)
∥
∥
∥
∥

∑

i∈I0,j /∈I0,k∈I0

1
Ei − Ej

(〈i|H1|j 〉〈j |H1|k〉 |i〉〈k|

+ 〈j |H1|i〉〈k|H1|j 〉 |k〉〈i|)
∥
∥
∥
∥

≤ O
(

1
�

)
∥
∥
∥
∥
∥
∥

∑

i∈I0,k∈I0

(〈i|H 2
1 |k〉 |i〉〈k| + 〈k|H 2

1 |i〉 |k〉〈i|)
∥
∥
∥
∥
∥
∥

= O
(

1
�

)

‖2P0H 2
1 P0‖

≤ O
(
ε2

�

)

. (A5)

Here we have used the fact that |Ei − Ej | > � for states
i ∈ I0, j /∈ I0.

APPENDIX B: MODIFIED CLOCK
CONSTRUCTIONS WITH SPECTRAL GAPS

In this section, we present the small-penalty clock con-
struction and use it to prove the main hardness results in
this work. We first illustrate the technique by proving the
following lemma.

Lemma 12: It holds that (1/exp, 1/exp)-LOCAL-
HAMILTONIAN is PreciseEGQMA-hard.

Proof. Consider a GQMA[c, s, g1, g2] instance x, where
the verifier’s circuit Ux acts on m = poly(n) qubits apart
from the proof state. We assume that the circuit has T =
poly(n) gates. The idea behind the technique is valid
generally, but for concreteness, we focus on the clock
construction of Kempe et al. [44], which proves QMA-
hardness of k-LOCALHAMILTONIAN for k ≥ 3. The clock
Hamiltonian takes the form

H = Hinput + Hprop + Houtput + Hclock. (B1)

The first term Hinput ensures that the ground state of Hinput
coincides with the input state to the circuit. The term on
the proof register is identity, allowing for any witness state

given by the prover to be input into the verifier’s circuit. It
is given by

Hinput =
m∑

i=1

|1〉〈1|i ⊗ 1proof ⊗ Hclockinit. (B2)

In the above, the term Hclockinit ensures that the clock is
properly initialized to the |1〉clock state. Next, Hprop is a
Hamiltonian that ensures that the ground state is “propa-
gated” correctly with each gate applied by the verifier:

Hprop =
T∑

i=0

−Ui+1 ⊗ |i + 1〉〈i|clock − U†
i+1 ⊗ |i〉〈i + 1|clock

+ 1 ⊗ (|i〉〈i|clock + |i + 1〉〈i + 1|clock). (B3)

The ground-state subspace of Hprop contains valid “partial”
computations until step i ≤ T, namely Ui · · · U2U1|ψ0〉 on
any initial state |ψ0〉 for all i. The term Houtput penalizes
states that have any nonzero probability of saying “NO” at
the output qubit o of the circuit:

Houtput = ε |0〉〈0|o ⊗ |T〉〈T|clock . (B4)

Lastly, Hclock ensures that states in the clock register that
do not encode a valid time step are penalized. The Hamil-
tonians Hclock and Hclockinit both depend on the details of the
particular clock construction. Our analysis does not depend
on these details and is largely independent of the way the
clock register encodes the time. We refer the reader to
Ref. [44] for an explanation of their construction.

First consider just the Hamiltonian H0 = Hinput +
Hprop + Hclock, which is the clock Hamiltonian without a
penalty term at the output. The ground-state space of H0 is
exactly given by the subspace S0 of history states:

S0 = span{|φh〉 : |φ〉arbitrary}, where

|φh〉 := 1√
T + 1

T∑

i=0

Ui · · · U0|0m〉 ⊗ |φ〉 ⊗ |i〉clock

with U0 = 1. Any state having zero support on S0 has an
energy at least �(1/T3) [74], implying that the gap above
the zero energy subspace is � = �(1/T3).

Now, let us add in the term H1 = Houtput, with
‖Houtput‖ = ε. We choose ε < �/16, unlike the regular
clock construction where ε is usually taken to be �(1).
As long as ε < �/2, we can restrict our attention to the
zero energy space of H0, since H1 can change eigenvalues
by at most ε. We use the Schrieffer-Wolff transformation
tool as described in Appendix A to obtain a description
of the Hamiltonian in the low-energy subspace. Subspace
S0 is the ground-state space of states with energy 0. Since
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‖H1‖ = ε, the associated low-energy subspace of H =
H0 + H1 is

S = span{|�〉 : 〈�|H |�〉 ∈ [−ε, ε]}, (B5)

the subspace with energies in [−ε, ε]. In our case H0P0 =
0 in the ground subspace spanned by history states |φh〉,
and the matrix elements of P0H1P0 are given by

〈φh|P0H1P0|ψh〉
= 〈φh|H1|ψh〉

= 1
T + 1

( T∑

i=0

〈0|m ⊗ 〈φ| ⊗ 〈i|clockU†
0 · · · U†

i

)

H1

×
( T∑

j =0

Uj · · · U0|0m〉 ⊗ |ψ〉 ⊗ |j 〉clock

)

= 1
T + 1

( T∑

i=0

〈0|m ⊗ 〈φ| ⊗ 〈i|clockU†
0 · · · U†

i

)

× ε |0〉〈0|o ⊗ |T〉〈T|clock

×
( T∑

j =0

Uj · · · U0|0m〉 ⊗ |ψ〉 ⊗ |j 〉clock

)

= 1
T + 1

〈0|m ⊗ 〈φ| ⊗ 〈T|U†ε |0〉〈0|o
⊗ |T〉〈T|clock U|0m〉 ⊗ |ψ〉|T〉clock

= ε

T + 1
〈0|m ⊗ 〈φ|U† |0〉〈0|o U|0m〉 ⊗ |ψ〉

= ε

T + 1
〈0|m ⊗ 〈φ|U†(1 −�out)U|0m〉 ⊗ |ψ〉, (B6)

where �out is the projector onto the accepting state |1〉o.
Continuing, we have

〈φh|P0H1P0|ψh〉 = ε

T + 1
(〈φ|ψ〉 − 〈φ|Q|ψ〉), (B7)

meaning that the first-order correction P0H1P0 is sim-
ply related to the accept operator Q, which was defined
as Q(U) = 〈0|⊗mU†�outU|0〉⊗m. Let the eigenstates of Q
be |φ1〉, |φ2〉, . . . , |φ2w〉 with eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λ2w . We use the associated history states |φih〉 as a basis for
subspace S0. In this basis, the first-order correction P0H1P0
is diagonal:

P0H1P0 = ε

T + 1

∑

i

(1 − λi)
∣
∣φih

〉〈
φih

∣
∣ . (B8)

We conclude that in the ground space of the original
Hamiltonian H0, the full Hamiltonian H has eigenvalues
ε(1 − λi)/(T + 1)± O(ε2/�), where the quantity λi is the

accept probability of the verifier’s circuit given |φi〉 as the
witness. This is the same conclusion we would obtain by
applying degenerate perturbation theory, except that the
error bound is rigorous. We now analyze the YES and NO
cases to obtain a lower bound on the promise gap. In each
case, we also lower bound the spectral gaps in the resulting
Hamiltonian.

In the YES case the ground-state energy is E1 ≤ ε(1 −
c)/(T + 1), as can be seen from the fact that the history
state |φh〉 corresponding to an accepting witness |φ〉 would
have energy ε(1 − 〈φ|Q|φ〉)/(T + 1) ≤ ε(1 − c)/(T + 1).
Our small-penalty clock construction and the Schrieffer-
Wolff transformation comes in handy for the NO case.
We see in the NO case that the ground-state energy is
at least E1 ≥ ε(1 − s)/(T + 1)− O(ε2/�). Therefore, the
promise gap is at least ε(c − s)/(T + 1)− O(ε2/�) =
�(1/exp) as long as ε/� = o((c − s)/(T + 1)).

In the above, if we had chosen ε = �(1) instead of
ε < �/16, the NO case would have given us a bound E1 ≥
�(1 − s)/T3. This would mean that one would have to
amplify the completeness and soundness c, s to near unity
in order to get a nontrivial promise gap. However, such
an amplification can, in general, shrink the spectral gap
of the accept operator. Independently, a large penalty term
ε = �(1) could also reorder some eigenvalues, meaning
that the spectral properties of the resulting clock Hamilto-
nian would not faithfully track those of the original accept
operator.

The spectral gap in the YES or NO case is E2 − E1 ≥
ε(λ1(Q)− λ2(Q))/(T + 1)− O(ε2/�). We take ε = o
(�(c − s)/(T + 1)) = o((c − s)/T4), which is exponen-
tially small if c − s is. As long as ε/� = o(min[g1, g2]/
(T + 1)), both the YES and NO cases will have an expo-
nentially small spectral gap. In summary, the choice

ε = min [g1, g2, (c − s)]
nT4 = �(1/exp) (B9)

suffices to have a promise gap and spectral gaps bounded
below by �(1/exp). This proves PreciseEGQMA-
hardness of (1/exp, 1/exp)-LOCALHAMILTONIAN and one
half of Theorem 2. �

We generalize the above proof technique to the case of
GQCMA-hardness of GS-DESCRIPTION-LOCALHAMILTO-
NIAN. In addition to showing a promise gap and a spectral
gap, we should show that the resulting Hamiltonian has a
classical description of a circuit to prepare a low-energy
state. We show the following general lemma.

Lemma 13: It holds that (δ,�)-GS-DESCRIPTION-
LOCALHAMILTONIAN is GQCMA[c, s, g1, g2]-hard for any
δ,� satisfying both of the following conditions:

(i) δ = O((c − s)2/poly(n)) for some polynomial,
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(ii) if c − s = o(min[g1, g2]) then any � satisfies � =
O((c − s)min[g1, g2]/poly(n)); otherwise, � = 0.

Proof. To prove GQCMA-hardness, we give a reduc-
tion from GQCMA[c, s, g1, g2] to GS-DESCRIPTION-
LOCALHAMILTONIAN[a, b, g′

1, g′
2]. We are promised that

the input witnesses are computational basis states (this can
be assumed without loss of generality), corresponding to
the classical witness sent by the prover. We would like to
show that there exists a circuit V to prepare a state δ-close
in energy to the ground state of the clock Hamiltonian in
both the YES and NO cases.

Consider again the small-penalty clock construction,
with the clock Hamiltonian (B1). Let the norm of the
penalty term be ‖Houtput‖ = ε. When ε = 0, the ground-
state space is given by valid history state computations
corresponding to computational basis witness states. The
spectral gap above this subspace is at least �(1/T3). The
addition of the penalty term changes the energies to ε(1 −
λk)/(T + 1)+ O(ε2T3), where λk is the accept probability
upon input computational basis state |yk〉 as the witness.
Consider the history state associated with witness |yk〉:

|ykh〉 := 1√
T + 1

T∑

i=0

Ui · · · U0|0m〉 ⊗ |yk〉 ⊗ |i〉clock.

(B10)

This state has energy 〈ykh |H |ykh〉 = ε(1 − λk)/(T + 1) and
is therefore O(ε2T3)-close in energy to the true ground
state. Therefore, as long as ε2T3 < O((b − a)3/f (n)2),
a classical description of a circuit that prepares |ykh〉
is a valid ground-state description. The circuit may
be described by specifying yk and a circuit that
prepares the history state |φh〉 upon any quantum
input |φ〉. This latter circuit first prepares the state
[1/(

√
T + 1)]

∑T
i=0 |0m〉|i〉clock and then applies the uni-

taries Uj · · · U0 controlled on the clock being in time step
j [98].

The same promise gap and spectral gap analyses as in
the proof of Lemma 12 hold. In the YES case, the Hamil-
tonian has ground-state energy ≤ ε(1 − λ1)/(T + 1) ≤
ε(1 − c)/(T + 1). In the NO case, the ground-state
energy is at least ε(1 − λ1)/(T + 1)− O(ε2T3) ≥ ε(1 −
s)/(T + 1)− O(ε2T3). The promise gap between the
ground-state energy for YES and NO cases is δ ≥
ε(c − s)/(T + 1)− O(ε2T3). We make the choice ε =
�((c − s)/T4) to ensure that the promise gap is �((c −
s)2/T5). This choice is consistent with the choice ε2T3 ≤
O((b − a)3/f (n)2) made above.

Let us now analyze the spectral gap of the result-
ing Hamiltonian. Using the Schrieffer-Wolff expansion to
obtain the eigenvalues of the Hamiltonian for small ε,
we have � ≥ ε(λ1 − λ2)/(T + 1)− O(ε2T3). The spec-
tral gap is at least [ε/(T + 1)] min[g1, g2] as long as

ε2T3 = o([ε/(T + 1)] min[g1, g2]). Using the choice of
ε above, this means that the spectral gap is �(((c −
s)/T5) min[g1, g2]) as long as c − s = o(min[g1, g2]). Oth-
erwise, the best bound on the spectral gap is � ≥ 0.
Observing that T = poly(n) by assumption, we obtain the
lemma. �

The lemma allows us to show the following.

Corollary 3 (Second half of Theorems 3 to 6): It holds
that

(a) (1/poly, 0)-GS-DESCRIPTION-LOCALHAMILTO-
NIAN is QCMA-hard,

(b) (1/exp, 0)-GS-DESCRIPTION-LOCALHAMILTO-
NIAN is PreciseQCMA-hard,

(c) (1/poly, 1/poly)-GS-DESCRIPTION-LOCAL-
HAMILTONIAN is PGQCMA-hard,

(d) (1/exp, 1/exp)-GS-DESCRIPTION-LOCAL-
HAMILTONIAN is PreciseEGQCMA-hard.

For the problem with δ = 1/exp,� = 1/poly, we do
not give a direct reduction from a PrecisePGQCMA
instance. Instead, we show PP-hardness through the char-
acterization of PP in terms of the class PreciseBQP.
From the PP upper bound to PrecisePGQCMA, we
obtain PrecisePGQCMA-completeness of the problem
(1/exp, 1/poly)-GS-DESCRIPTION-LOCALHAMILTONIAN.
The argument is similar for PrecisePGQMA-hardness of
(1/exp, 1/poly)-LOCALHAMILTONIAN.

Lemma 14 (Lemmas 4 and 6 restated): It holds that

(a) (1/exp, 1/poly)-GS-DESCRIPTION-LOCALHAMIL-
TONIAN is PP-hard,

(b) (1/exp, 1/poly)-LOCALHAMILTONIAN is PP-hard.

Proof. We give a reduction from any problem in
PreciseBQP to (1/exp, 1/poly)-GS-DESCRIPTION-LOCAL
HAMILTONIAN, which is also an instance of (1/exp, 1/
poly)-LOCALHAMILTONIAN. Since PreciseBQP is the
class of problems that can be decided by quan-
tum circuits with a promise gap c − s = �(1/exp), it
can also be thought of as “PreciseQMA without an
input witness.” The Hamiltonian is constructed out of
the PreciseBQP computation as H = Hinput + Hprop +
Houtput + Hclock, where the terms are now

Hinput =
m∑

i=1

|0〉〈0|i ⊗ Hclockinit, (B11)
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Hprop =
T∑

i=0

−Ui+1 ⊗ |i + 1〉〈i|clock − U†
i+1 ⊗ |i〉

× 〈i + 1|clock + 1 ⊗ (|i〉〈i|clock + |i + 1〉
× 〈i + 1|clock), (B12)

Houtput = ε |0〉〈0|o ⊗ |T〉〈T|clock . (B13)

The only difference from Eqs. (B2) to (B4) is that Hinput
does not have support on an unpenalized proof regis-
ter, since PreciseBQP does not rely on a proof state
given as input. This is analogous to the clock construc-
tion of Ref. [74], which was instrumental in the proof that
adiabatic quantum computation is universal for BQP.

We again let Hamiltonian H0 be Hinput + Hprop + Hclock
and H1 = Houtput. The ground state of H0 is now nondegen-
erate (unique) and given by the history state

|0h〉 := 1√
T + 1

T∑

i=0

Ui · · · U0|0m〉 ⊗ |i〉clock. (B14)

Let us denote the ground-state space of H0 and the pro-
jector onto it by �0. As for H1, the ground space �1 is
spanned by states belonging to subspaces L and L′, with

L = |1〉o ⊗ |T〉clock, (B15)

L′ = span {|ψ〉} ⊗ span {|0〉clock, |1〉clock, . . . , |T − 1〉clock},
(B16)

with |ψ〉 arbitrary.
We observe that, when ε = 0, the Hamiltonian exactly

corresponds to Hfinal of Aharonov et al. [74]. Aharonov
et al. [74] showed that this Hamiltonian H0 has a spectral
gap of � = �(1/T3) in the full Hilbert space. Further-
more, the ground state of H0 corresponds to the history
state of the BQP computation (PreciseBQP in this case),
which starts off in a fixed, known state |0m〉.

In the YES case, the ground-state energy of H = H0 +
H1 can be bounded above by ε(1 − c)/(T + 1). For the NO
case, we again use the expression for the perturbed ener-
gies in the ground-state space coming from the Schrieffer-
Wolff transformation. Specifically, in the NO case, we have
E1 ≥ ε(1 − s)/(T + 1)− O(ε2/�), where � is the spec-
tral gap above the ground state, just as in the proof of
Lemma 12. The promise gap is lower bounded by

ε
1 − s
T + 1

− ε
1 − c
T + 1

− O
(
ε2

�

)

. (B17)

Therefore, as long as ε/� = o((c − s)/(T + 1)) and ε =
�(2−poly), the promise gap is at least �(ε(c − s)/(T +
1)) = �(2−poly). The spectral gap for the unperturbed
Hamiltonian H0, which is the same as the final Hamil-
tonian in Ref. [16], is at least �(1/T3). Therefore, we

pick ε = (c − s)/(nT4), which ensures that the conditions
above are satisfied.

Coming to the spectral gap of the full Hamiltonian, we
observe that, since the original Hamiltonian had a spec-
tral gap of �(1/T3) and perturbation H1 is exponentially
small, the eigenvalues can change at most by ‖H1‖ = ε,
preserving the spectral gap. So far, we have a reduc-
tion from any PreciseBQP instance to an instance of
(1/exp, 1/poly)-LOCALHAMILTONIAN.

It remains for us to see that there is an efficient circuit
that can prepare a state close in energy to the ground state.
By the justification in the proof of Lemma 13, we know
that choosing the output penalty term to be exponentially
small causes the history state of computation |0h〉 to be
exponentially close to the ground state in energy. We have
also seen the existence of a polynomial-size circuit that
prepares the history state given a description of the input
(which here is |0m〉 for PreciseBQP). Note that, when
ε = 0, the ground state is unique and has a �(1/poly)
spectral gap above and therefore taking ε exponentially
small does not pose a problem with spectral gaps. �

The difference between the proof of Lemma 14 and the
proof of Lemma 12 is that it is the perturbation ε that cre-
ates the spectral gap in the proof of Lemma 14, while in
the proof of Lemma 12, the spectral gap already exists in
the unperturbed Hamiltonian. This is why we can afford to
take ε exponentially small here, which is needed to obtain
an instance with a promise gap.

Thus, we have seen PP-hardness of (1/exp, 1/poly)-
LOCALHAMILTONIAN. The PrecisePGQMA-hardness of
the problem follows from the fact that PrecisePGQMA ⊆
PP (Lemma 2).

Corollary 4: It holds that (1/exp, 1/poly)-LOCALHAMIL-
TONIAN is PrecisePGQMA-hard.

Similarly, the PP-hardness of (1/exp, 1/poly)-GS-
DESCRIPTION-LOCALHAMILTONIAN and the result Precise
PGQCMA ⊆ PrecisePGQMA = PP together imply the
following result.

Corollary 5: It holds that (1/exp, 1/poly)-GS-DESCRIP-
TION-LOCALHAMILTONIAN is PrecisePGQCMA-hard.

Lastly, the remaining case is (1/poly, 1/exp)-GS-
DESCRIPTION-LOCALHAMILTONIAN with δ = 1/poly, � =
1/exp, for which we argue that an instance with spec-
tral gap � = �(1/poly) is also an instance with � =
�(1/exp). Therefore, (1/poly, 1/exp)-GS-DESCRIPTION-
LOCALHAMILTONIAN is PGQCMA-hard, and, since
PGQCMA =R EGQCMA, EGQCMA-hard under ran-
domized reductions. For the case of (1/poly, 1/exp)-
LOCALHAMILTONIAN, we do not currently have a hardness
result. This is because, in performing a reduction
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from EGQMA, we get an instance of (1/poly, 0)-
LOCALHAMILTONIAN and do not get any promise on the
spectral gap that results.

APPENDIX C: PRECISE PHASE ESTIMATION OF
GAPPED HAMILTONIANS

In this section, we show that the (1/exp,�)-
LOCALHAMILTONIAN problems with either 1/poly or
1/exp spectral gaps defined in Sec. II A are in the corre-
sponding PreciseGQMA class. Together with the results
of the previous section, this proves Theorems 1 and 2.

Lemma 15: It holds that (1/exp, 1/poly)-LOCALHAMILT-
ONIAN ∈ PrecisePGQMA.

Lemma 16: It holds that (1/exp, 1/exp)-LOCALHAMILT-
ONIAN ∈ PreciseEGQMA.

The proof relies on phase estimation to infer energies of
a local Hamiltonian. The standard phase estimation circuit
requires exp(n) many gates in order to infer the eigenval-
ues to 1/exp precision. However, since we want to show
containment in a Precise- class, we can use the power of
being able to distinguish between two cases with expo-
nentially close accept probabilities. It turns out that phase
estimation with a single ancillary qubit is enough to dis-
tinguish between the YES and NO cases, as shown in
Ref. [28]. Moreover, we show that the circuit preserves
spectral gaps of the Hamiltonian: if two eigenstates have
energies separated by some amount then the phase esti-
mation circuit also has a gap in the accept probabilities
corresponding to these input states.

Below we give a unified proof of Lemmas 8,
15, and 16. Specifically, we show PrecisePGQMA
(PreciseEGQMA) containment of the problem (1/exp,
�)-GAPPEDSPARSEHAMILTONIAN with � = 1/poly (� =
1/exp).

Lemma 17: Problem GAPPEDSPARSEHAMILTONIAN[a, b,
g1, g2] has a GQMA[c, s, g′

1, g′
2] protocol with spectral

gaps g′
1 = �(g2

1/poly) and g′
2 = �(g2

2/poly) and promise
gap c − s = (b − a)2/poly.

Proof. The strategy is to ask the prover for the ground
state of the sparse Hamiltonian. The verifier then performs
phase estimation on the witness state with a single ancil-
lary qubit, as illustrated in Fig. 3, and uses the power to
decide between two cases with exponentially close accept
probabilities. This power effectively enables computation
of the phase of e−iHt to exponential precision, despite hav-
ing a single ancilla qubit in the phase estimation circuit
(see Ref. [28] for more details). If t ≤ π/(2‖H‖), all eigen-
states of H would correspond to a unique phase and a
unique accept probability for the circuit. We know an upper

bound dk on ‖H‖ through the Gershgorin circle theorem
because we are assured that the magnitude of the entries is
≤ k and the sparsity is d. Therefore, it suffices to choose
t ≤ π/(2dk).

In order to perform phase estimation to exponentially
small error, we need to apply a controlled-e−iHt rotation
to error ε = 1/exp. This is possible due to Hamiltonian
simulation algorithms for sparse Hamiltonians, whose cir-
cuit size scales as poly(n) log(1/ε) [21], which is poly-
nomial in n, as desired. The accept probability of the
circuit upon input an eigenstate |Ei〉 of the Hamiltonian is
(1 + cos(Eit))/2. The promise gap can be lower bounded
by an inverse exponential, as has been analyzed previ-
ously [28].

We can also show a spectral gap in the accept opera-
tor, or, equivalently, a gap in the accept probabilities of the
circuit for the optimal state and any state orthogonal to it.
Since the phase estimation circuit does not apply the exact
controlled-e−iHt unitary but a unitary Ux exponentially
close to it, the eigenstates of Q = 〈0|�inU†

x�outUx�in|0〉
are not exactly the eigenstates of e−iHt (or of H ). However,
since ‖e−iHt − Ux‖ ≤ ε, the eigenvalues of Q are exponen-
tially close to the accept probabilities of the eigenstates |Ei〉
of H . The difference in accept probabilities can be bounded
by ε.

The difference in the ideal accept probabilities
of the ground state and the first excited state is
(cos(E0t)− cos(E1t))/2. Applying Taylor’s theorem to
cos(E1t) around the point E0t, we get

cos(E1t) = cos(E0t)− sin(E0t)t(E1 − E0)

− cos(E0t)
t2(E1 − E0)

2

2
+ sin(E0t)

h3

6
(C1)

for some h ∈ [0, (E1 − E0)t]. Therefore,

cos(E0t)− cos(E1t) = sin(E0t)t(E1 − E0)

+ cos(E0t)
t2(E1 − E0)

2

2

− sin(E0t)
h3

6

≥ t2(E1 − E0)
2

2
− t3(E1 − E0)

3

6
≥ �(t2(E1 − E0)

2), (C2)

where in the second line we have used the fact that
E0t, E1t < π/2, and in the third line we have used the
fact that (E1 − E0)

3t3 = O(t(E1 − E0)). Therefore, the
ideal accept probabilities also have a gap of �((E1 −
E0)

2/‖H‖2) = �(�2/poly) as long as ε ≤ O(t2�2/n) =
O(�2/poly). Now, when the applied unitary differs from
the ideal one by ε in operator norm distance, the gap in
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the accept probabilities differs from the ideal accept prob-
abilities by 2ε. We therefore choose ε sufficiently small,
i.e., we choose, say, ε = �(t2(E1 − E0)

2/2n), which is still
�(2−poly), as needed.

To see the existence of a promise gap, note that E0 ≤ a
in the YES case and E1 ≥ b in the NO case, giving c − s =
�(t2(b − a)2 − 2ε) = �((b − a)2/poly). This proves the
lemma. �

As corollaries, we obtain Lemmas 8, 15, and 16, since a
local Hamiltonian is also a sparse Hamiltonian.

APPENDIX D: PHASE ESTIMATION IN THE
PRESENCE OF EFFICIENT CIRCUIT

DESCRIPTIONS

In this section, we show that the problem (δ,�)-GS-
DESCRIPTION-LOCALHAMILTONIAN is in GQCMA with
appropriate bounds on the promise and spectral gaps (The-
orems 3 to 7).

We first deal with the case of zero spectral gap.

Lemma 18 (One half of Theorems 3 and 4): It holds
that

(a) (1/poly, 0)-GS-DESCRIPTION-LOCALHAMILTONIAN
∈ QCMA,

(b) (1/exp, 0)-GS-DESCRIPTION-LOCALHAMILTONIAN
∈ PreciseQCMA.

Proof. For the upper bound, we describe a QCMA or
PreciseQCMA protocol. We are promised that in both
the YES and NO cases there exists a classical descrip-
tion of a circuit V of polynomial size that will create a
state with energy close to the ground-state energy. Specifi-
cally, the energy of this state is ε-close to the ground-state
energy, for ε < (b − a)3/f (n)2 for a polynomial f (n) ≥
‖H‖. For QCMA, we have b − a ≥ �(1/poly), while for
PreciseQCMA, b − a ≥ �(1/exp). The verifier asks the
prover to give this description (which is promised to exist).
The verifier then creates a state |ψ〉 with low energy by
applying V to |0m〉. The verifier measures the energy of this
state via the one-bit phase-estimation protocol outlined in
Appendix C, which involves applying a controlled-e−iHt

for time t ≤ π/(2‖H‖).
The proof that this verification protocol works is slightly

more involved than the QMA[c, s] case. This is because,
in the case of QMA a verifier can assume without loss
of generality that the prover sends the optimal eigenstate
as a witness. However, in the case of GS-DESCRIPTION-
LOCALHAMILTONIAN, we are only promised the existence
of an efficient circuit to prepare a state close in energy
to the ground state, and not the ground state itself [104].
Despite this complication, we can still show that a state
close in energy to the ground state behaves similarly

with respect to the accept probabilities of the QCMA[c, s]
verifier.

In the YES case, there is a description V that produces
a state |ψ〉 with energy close to the ground-state energy
[i.e., with energy ≤ E1 + ε < a + (b − a)3/poly(n)]. We
show in Lemma 19 below that the accept probability of
the verifier upon performing one-bit phase estimation on
state |ψ〉 is at least cos2(bt/2)+�((b − a)2/poly). In
the NO case, the optimal strategy for the prover is to
send the description of a circuit that makes a state as
close as possible to the ground state, since the accept
probabilities are monotonic in energy and there exists no
other state with smaller energy, by definition. Even if the
prover sends the verifier a circuit that exactly prepares the
ground state |E1〉, its energy in the NO case is already
≥ b. This means that the verifier will accept with proba-
bility at most (1 + cos E1t)/2 ≤ (1 + cos bt)/2. Therefore,
there is a separation in the accept probabilities in the
YES and NO cases of c − s = �((b − a)2/poly), which
is �(1/poly) for b − a = �(1/poly) and �(1/exp) for
b − a = �(1/exp). �

Lemma 19: If a state |ψ〉 has energy 〈ψ | H |ψ〉 = 〈E〉 ≤
E1 + 5(b − a)3/(24f (n)2) for some polynomial f (n) ≥
‖H‖ then in the YES case, the accept probability of the
state upon phase estimation with one bit of precision is
〈p〉 ≥ cos2(bt/2)+ δ, where δ = �(5(b − a)2/24f (n)2).

Proof. We are given a state |ψ〉 with energy 〈E〉. Let
pj = |〈Ej |ψ〉|2 be the weight of the energy eigenstate Ej .
Then we know that p1E1 + p2E2 + · · · + p2nE2n = 〈E〉.
The probability of accepting |ψ〉 in the one-bit phase
estimation circuit is given by 〈p〉 = p1 cos2(E1t/2)+
p2 cos2(E2t/2)+ · · · + p2n cos2(‖H‖t/2), where ‖H‖ =
E2n . Given the constraint on the energy 〈E〉, we show
in Lemma 20 below that 〈p〉 ≥ cos2(E1t/2)(1 − x)+
cos2(‖H‖t/2)x, where x := (〈E〉 − E1)/(‖H‖ − E1). Now
in order to have 〈p〉 ≥ cos2(bt/2)+ δ, it suffices to have

x ≤ cos2(E1t/2)− cos2(bt/2)− δ

cos2(E1t/2)− cos2(‖H‖t/2)

= cos(E1t)− cos(bt)− 2δ
cos(E1t)− cos(‖H‖t)

. (D1)

It is therefore sufficient if

x ≤ (b − a)t
2

(

bt − b3t3

6

)

− δ, (D2)
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since

(b − a)t
2

(

bt − b3t3

6

)

− δ ≤ (b − a)t sin(bt)− 2δ
2

≤ (b − a)t sin(bt)− 2δ
cos(at)− cos(‖H‖t)

≤ cos(at)− cos(bt)− 2δ
cos(at)− cos(‖H‖t)

≤ cos(at)− cos(bt)− 2δ
cos(E1t)− cos(‖H‖t)

,

(D3)

where we have used the inequalities sin(bt) ≥ bt −
b3t3/6, E1 ≤ a, cos(at)− cos(bt) ≥ (b − a)t sin(bt), and
2 ≤ cos(at)− cos(‖H‖t). We now require δ ≥ (b −
a)t sin(bt)/4 , so that condition (D2) translates to x ≤
(b − a)t(bt − b3t3/6)/4.

Let us choose t = min[1/f (n), 1/b] = 1/f (n), since
otherwise b ≥ f (n) ≥ ‖H‖ and the instance is trivial. We
thus know that ‖H‖t ≤ 1 ≤ π/2, t ≥ 1/f (n), and bt < 1.
We also assume that in the YES case ‖H‖ − E1 ≥ b − a.
This is because otherwise a verifier can compute Tr(H)/2n

efficiently given the Hamiltonian and accept straightaway
if Tr(H)/2n ≤ b. This works since E1 ≤ Tr(H)/2n, and by
the promise, E1 ≤ b =⇒ E1 ≤ a. Therefore, without loss
of generality, one can assume that the nontrivial instances
satisfy b ≤ Tr(H)/2n ≤ ‖H‖, or ‖H‖ − E1 ≥ b − a.

Therefore, since 〈E〉 ≤ E1 + 5(b − a)3/(24f (n)2), we
have

〈E〉 ≤ E1 + 5(b − a)2(‖H‖ − E1)

24f (n)2
(D4)

=⇒ x ≤ (b − a)2

4f (n)2
5
6

= (b − a)2

4f (n)2

(

1 − 1
6

)

≤ (b − a)2

4f (n)2

(

1 − b2t2

6

)

≤ (b − a)
4f (n)

b
f (n)

(

1 − b2t2

6

)

≤ (b − a)t
4

(

bt − b3t3

6

)

, (D5)

as required. To sum up, we have shown that 〈E〉 ≤ E1 +
5(b − a)3/(24f (n)2) implies that δ ≥ (b − a)t sin(bt)/4 ≥
(b − a)2(1 − b2t2/6)/(4f (n)2) ≥ 5(b − a)2/(24f (n)2). �

Lemma 20: For probabilities pj , j ∈ [2n], satisfying∑
j pj Ej ≤ 〈E〉 and numbers E1 ≤ E2 ≤ · · · ≤ E2n sat-

isfying Ej t ∈ [0,π/2], the quantity
∑

j pj cos2(Ej t/2) is
bounded below by cos2(E1t/2)(1 − x)+ cos2(E2n t/2)x,
where x is given by (〈E〉 − E1)/(E2n − E1).

Proof. Since the function f (x) = − cos2(xt/2) is convex
for xt/2 ∈ [0,π/2), we have

f (E1)(E2n − Ej )+ f (E2n)(Ej − E1)

E2n − E1
≥ f (Ej ). (D6)

Therefore,

pj
f (E1)(E2n − Ej )+ f (E2n)(Ej − E1)

E2n − E1
≥ pj f (Ej )

(D7)

=⇒ f (E1)(E2n − 〈E〉)+ f (E2n)(〈E〉 − E1)

E2n − E1

≥
∑

j

pj f (Ej ) (D8)

=⇒
∑

j

pj cos2
(

Ej t
2

)

≥ cos2
(

E1t
2

)
E2n − 〈E〉
E2n − E1

+ cos2
(

E2n t
2

) 〈E〉 − E1

E2n − E1
,

(D9)

which completes the proof. �
We now turn to the cases where in addition to the

promise of an efficient circuit to prepare a low-energy state,
the Hamiltonian is promised to have a spectral gap �. For
this case, we can show the following result.

Lemma 21: Problem GS-DESCRIPTION-LOCALHAMILTO-
NIAN[a, b, g1, g2] ∈ GQCMA[c, s, g′

1, g′
2] for c − s = �

((b − a)2/f (n)2) and min[g′
1, g′

2] ≥ 5�2/(36f (n)), where
f (n) is a polynomial upper bound to ‖H‖, and � =
min[g1, g2] ≥ (b − a)3/f (n)2.

Proof. We analyze the same algorithm as the nongapped
case and show that the verification protocol, with slight
modifications, preserves the spectral gap. In particular, in
the first step of the original protocol, the verifier straight-
away accepts if Tr(H)/2n ≤ b or if the upper bound to
the norm of the Hamiltonian, f (n), satisfies f (n) ≤ b. We
modify this to requiring the verifier to accept only if, in
addition to the previous conditions, measurement of the
witness register yields the all-zeroes string 0w (where w is
the size of the witness register). This has the effect of cre-
ating a spectral gap, since in this case only the all-zeroes
state is accepted and all other computational basis states
are rejected.

If the first step does not cause the verifier to accept, the
verifier assumes that the witness state is a description of
the circuit V to prepare a low-energy state |ψ〉. The verifier
then proceeds to prepare this state and measure its energy
using the one-bit phase-estimation protocol. As shown in

040327-26



IMPORTANCE OF THE SPECTRAL GAP IN ESTIMATING... PRX QUANTUM 3, 040327 (2022)

the proof of Lemma 18, the protocol has a promise gap
c − s = �

(
(b − a)2/f (n)2

)
.

We now analyze the spectral gap. Let us denote by y
the quantity (〈E〉 − E1)/(E2 − E1) and by x the quantity
(〈E〉 − E1)/(E2n − E1) ≤ y. Any state with energy 〈E〉 :=
〈H 〉ψ ≤ E1 + (b − a)3/f (n)2 ≤ E1 +� has a large over-
lap with the ground state:

|〈ψ |E1〉|2 ≥ 1 − 〈E〉 − E1

E2 − E1
= 1 − y. (D10)

Therefore, any state |φ〉 orthogonal to |ψ〉 must have an
overlap with the ground state that satisfies |〈φ|E1〉|2 ≤
y. This means that the accept probability for any wit-
ness orthogonal to that corresponding to the ground-state
description is

〈pφ〉 =
∑

j

pj cos2
(

Ej t
2

)

≤ y cos2
(

E1t
2

)

+ (1 − y) cos2
(

E2t
2

)

. (D11)

On the other hand, the accept probability of the optimal
witness is at least (Lemma 19)

〈pψ 〉 ≥ (1 − x) cos2
(

E1t
2

)

+ x cos2
(

E2t
2

)

. (D12)

The difference in these two is a lower bound for the spectral
gap of the accept operator:

g1, g2 ≥〈pψ 〉 − 〈pφ〉

≥ cos2
(

E1t
2

)

(1 − x − y)

+ cos2
(

E2t
2

)

(x + y − 1)

= 1 − x − y
2

(cos(E1t)− cos(E2t))

≥ 1 − 2y
2

(E2 − E1) sin(E2t). (D13)

Now, we know from the promise that y = (〈E〉 − E1)/

(E2 − E1) ≤ (b − a)3/f (n)2� ≤ 1/3, and E2 ≥ E1 +� ≥
�. Also, we have chosen t ≥ 1/f (n) for a polynomial

f (n) ≥ ‖H‖. Therefore,

min[g′
1, g′

2] ≥ �

6
sin(�t)

≥ �

6

(

�t − �3t3

6

)

≥ �

6

(
�

f (n)
− �3

6f (n)3

)

= �2

6f (n)

(

1 − �2

6f (n)2

)

≥ 5�2

36f (n)
, (D14)

since � ≤ ‖H‖ ≤ f (n). �
This proves the following results.

Corollary 6 (One half of Theorems 5 to 7): It holds
that

(a) (1/poly, 1/poly)-GS-DESCRIPTION-LOCALHAMILT-
ONIAN ∈ PGQCMA,

(b) (1/exp, 1/exp)-GS-DESCRIPTION-LOCALHAMILT-
ONIAN ∈ PreciseEGQCMA,

(c) (1/exp, 1/poly)-GS-DESCRIPTION-LOCALHAMILT-
ONIAN ∈ PrecisePGQCMA.

APPENDIX E: DETAILS OF THE PP ALGORITHM

In this section we complete the proof of Lemma 2
by expanding upon the PP algorithm. We also prove
Lemma 3 by giving a PPP algorithm to precisely com-
pute ground-state local observables of�(1/poly)-spectral-
gapped Hamiltonians.

Lemma 22: A PP algorithm can decide whether
Tr[QqA] ≤ a′ or ≥ b′ when input thresholds a′ and b′ for
matrices Q and A of size 2poly(n) × 2poly(n) satisfy the fol-
lowing properties (we use the symbol R to denote both
matrices Q and A in the following).

1. The norm of matrix R is upper bounded by a poly-
nomial in n.

2. Matrix R may be written as a polynomial of degree
d = poly(n) in terms of matrices Ri, i ∈ [m], in the
computational basis for m = poly(n), such that

(a) the matrix elements of each matrix Ri are com-
putable to precision δ in time polynomial in n
and log(1/δ).
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Proof. The quantity Tr(QqA) may be expressed as

∑

x

〈QqA〉x =
∑

x

∑

x1,x2,...,xq

〈x|Q |x1〉〈x1| Q|x2〉 × · · ·

× 〈xq−1|Q
∣
∣xq

〉〈
xq

∣
∣ A|x〉. (E1)

If Q is a polynomial of degree d in terms of matrices
R1, . . . , Rm for m = poly(n), we can write it as

Q =
∑

i1,i2,...,im∈[d]
i1+i2+···+im≤d

pi1i2···imRi1
1 Ri2

2 · · · Rim
m , (E2)

where each tuple (i1, . . . , im) specifies a monomial. The
number of terms in the polynomial is bounded above by
(d + 1)m = exp[m log(d + 1)] = O(exp[poly(n)]). We
write a term of Eq. (E2) below, 〈xj |Q|xj +1〉, as

〈xj |Q|xj +1〉 =
∑

i1,i2,...,im∈[d]
i1+i2+···+im≤d

pi1i2···im〈xj |Ri1
1 |zj ,1〉

× 〈zj ,1|Ri2
2

∣
∣zj ,2

〉〈
zj ,2

∣
∣ · · · 〈zj ,m−1|Rim

m |xj +1〉.
(E3)

We can further insert resolutions of the identity in Eq. (E3)
to get a sum over yet more terms. Each term in the result-
ing sum is a product over polynomially many quantities of
the form 〈w1|Rs|w2〉 for some computational basis states
|w1〉, |w2〉 and an index s ∈ [m]. Each of these can be com-
puted in polynomial time. The number of terms in the final
sum of the form in Eq. (E2) below is still bounded above
by 2poly.

From the assumption, the matrix elements of matrices
Ri can be computed to additive error 2−g(n) in time scaling
as O(g(n)). We therefore choose g(n) to be such that the
total additive error resulting from the 2poly many paths in
Eq. (E2) below is negligible compared to (b′ − a′)× 2poly,
where the second term (2poly) corresponds to the number
of terms in the sum. This can be ensured by taking g(n) to
be a sufficiently large polynomial.

Equation (E2) below is a sum over T = O(2poly) many
terms fi, each of which may be computed in polynomial
time. Each term of Eq. (E2) may be interpreted as a
path in a Turing machine. Therefore, a PP machine can
decide whether

∑T
i=1 fi is ≤ a′ or ≥ b′ for some thresh-

olds a′, b′ ≥ a′ +�(2−poly) input to the PP machine. This
is seen as follows. Each term fi is an efficiently com-
putable real-valued function of the trajectory xi

0, xi
1, . . . , xi

K .
Let amax be an upper bound to the norm of A. The PP
machine selects a uniformly random trajectory and com-
putes fi. It accepts with probability 1

2 − fi/(2n+1amax) > 0
and rejects otherwise. The overall acceptance probability
is [1/T]

∑
i(

1
2 − fi/(2n+1amax)). In the YES case, this is

at least 1
2 − a′/(2n+1Tamax), while in the NO case, it is at

most 1
2 − b′/(2n+1Tamax). Since we at least have a separa-

tion of 2−n−1/T ×�(b′ − a′) = �(2−poly(n)) between the
YES and NO instances, this is a valid PP algorithm. �

Lemma 22 applies to the proof of Lemma 2 because
the accept operator Q in that proof is a degree-(2T + 3)
polynomial in matrices with efficiently computable entries.

For the proof of Lemma 3, we show in Lemma 23
below that beginning from the maximally mixed initial
state, imaginary time evolution for “time” −iβ produces
a thermal state with high enough overlap with the ground
state for a suitable β. Computing local observables in
the obtained thermal state then suffices to get exponen-
tially good estimates of ground-state local observables
for gapped systems. We make the choice of a maximally
mixed initial state in the above because it is guaranteed to
have at least overlap 2−n with the ground state.

Lemma 23: For a Hamiltonian H with spectral gap
at least �, let ρβ be the thermal state at temperature
1/(2β). Also, let |E1〉 be the ground state of H, and let
A be any local observable satisfying ‖A‖ ≤ poly(n). Then,
for β = �(n�−1), the thermal expectation value satisfies
|Tr[ρβA] − 〈E1|A|E1〉| ≤ 2−poly.

Proof. Let the eigenstates of the Hamiltonian be given by
|Ei〉, i ∈ [2n], with the eigenvalues Ei arranged in non-
decreasing order. Consider the initial state ρ = 1/2n and
apply the linear operation exp(−βH), which performs
imaginary time evolution for “time” −iβ:

ρ → ρ ′ = exp(−βH)ρ exp(−βH) (E4)

up to normalization. The maximally mixed initial state ρ =
1/2n = ∑

i |Ei〉〈Ei| /2n transforms to the state ρβ , given by

ρβ = ρ ′

N
= 1

N e−βH
∑

i

1
2n

|Ei〉〈Ei| e−βH

= 1
2nN

∑

i

e−2βEi |Ei〉〈Ei| . (E5)

This state is the same as the thermal state e−2βH at tempera-
ture 1/(2β) up to normalization. The normalization factor
N = Trρ ′ is given by

∑
i e−2βEi/2n. The overlap of the
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normalized state with the ground state is thus

Tr[ρβ |E1〉〈E1|] = e−2βE1

2nN
= e−2βE1

∑
i e−2βEi

=
(

1 +
∑

i�=1

e−2β(Ei−E1)

)−1

. (E6)

Since Ei − E1 = � = �(1/nc), if β is taken to be �(nd)

with d ≥ c + 1, we have e−2β(Ei−E1) ≤ exp[−2nd−c]. This
means that the overlap is at least 1/(1 + exp[n log 2 −
2nd−c]) ≥ 1 − exp[n log 2 − 2nd−c], which means that
the trace distance between the normalized states is ε =
O(exp[−nd−c]). Therefore, the choice β = �(n�−1) suf-
fices to ensure that the resulting (normalized) state ρβ
is exponentially close to the ground state. Therefore, the
thermal expectation value of any local observable A with
polynomially bounded spectral norm is also exponentially
close to the ground-state expectation value 〈E1|A|E1〉. �

We now show the following lemma about computing
unnormalized thermal expectation values, which is the
core subroutine of our PPP algorithm.

Lemma 24: A PP algorithm can decide whether
Tr[e−2βH A] ≤ a′ or ≥ b′ when given as input a sparse
Hamiltonian H, a number β ≥ 0, a local observable A,
and thresholds a′ and b′.

Proof. We express the unnormalized thermal expectation
value as a sum over several paths as follows:

Aβ = Tr[e−2βH A] (E7)

=
∑

x,y

〈x|e−2βH |y〉〈y| A|x〉

≈
∑

x,y

〈x|
(

1 − 2βH + 2(βH)2 + · · · + (−2βH)K

K!

)

× |y〉〈y|A|x〉 =: A′
β (E8)

=
K∑

k=0

1
k!

∑

x0,x1,...,xk

〈x0| − 2βH |x1〉〈x1| − 2βH |x2〉

× · · · × 〈xk−1| − 2βH |xk〉〈xk| A|x0〉. (E9)

=
T∑

i=1

fi.

This expression is reminiscent of a Euclidean path inte-
gral, although there are some differences. In a Euclidean
path integral, one Trotterizes the map exp(−βH) ≈

(
∏

i exp(−βHi/r))r and uses the fact that each term of
Hamiltonian Hi is local in order to compute terms in the
series. In contrast, here we have used the Taylor expansion
for exp(−βH) and have inserted resolutions of the identity
in order to compute the terms 〈x|H k|y〉. Using the Taylor
series allows us to get exponentially small additive error,
which is not guaranteed by Trotterization.

Before we move on, let us analyze the additive error in
Eq. (E8). It is given by

ε ≤ (2β‖H‖)K+1

(K + 1)!
‖A‖ × O(1). (E10)

By choosing K > 2βe‖H‖ + f (n) for some polynomial
f (n) = O(β‖H‖/n) and f (n) = �(n), we can ensure that
the error is bounded above by ‖A‖exp[−f (n)]:

K + 1 ≥ 2βe‖H‖ + f (n) (E11)

=⇒ (K + 1) log(K + 1)

≥ (K + 1) log(2βe‖H‖)

+ (K + 1) log
(

1 + f (n)
2βe‖H‖

)

≥ (K + 1) log(2βe‖H‖)+ (K + 1)
f (n)

2βe‖H‖

− K + 1
2

(
f (n)

2βe‖H‖
)2

≥ (K + 1) log(2βe‖H‖)+�(f (n)).

Here we have used the facts that log(1 + x) ≥ x − x2/2 for
small x and that f (n) = o(β‖H‖). Therefore,

log
(
(2β‖H‖)k+1

(K + 1)!

)

≤ −�(f (n)), (E12)

giving ε ≤ O(‖A‖exp[−f (n)]). (E13)

This completes the proof. �

Proof of Lemma 3. From Lemma 23, we know that the
normalized state is exponentially close to the true ground
state. Therefore, deciding whether the ground state has
Tr[|�〉〈�| A] ≤ a or ≥ b is equivalent to deciding whether
the unnormalized state has expectation value Tr[ρ ′A] ≤
a′ = Nest(a + ‖A‖ε) or ≥ b′ = Nest(b − ‖A‖ε), where
Nest is an estimate of the normalization of the state and
ε the trace distance between the ground state and the ther-
mal state. To maintain a gap between the YES and NO
cases, we need ε < 2−u(n)/‖A‖ for some polynomial u,
which can be satisfied by taking nd−c in Lemma 23 to be
≥ u(n)+ log ‖A‖. The norm of A is bounded above by a
polynomial in n and therefore is a subleading term.
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Since the thresholds a′ and b′ depend on the normaliza-
tion, we should compute the normalization N beforehand.
Since the normalization is a special case of Eq. (E7) with
A = 1, we can use the PP procedure to decide if N ≤
a1 or N ≥ a2 for some a1, a2 with a2 − a1 = �(1/exp).
Performing binary search over the interval (0, 1] with poly-
nomially many queries to the PP oracle, we can estimate
the normalization to exponentially small additive error,
giving an estimate Nest.

Therefore, we have shown that a PPP machine can do
all the above: compute the normalization and then compute
the thermal expectation value for a low-temperature state.
Since we have also shown that setting β = (n/�) suffices
to get exponentially small error, we have shown that the
problem is in PPP. �

This technique is also applicable to Hamiltonians or
Hermitian operators that are not necessarily local, or even
sparse. For example, it can apply to Hermitian operators of
the kind in Lemma 22.

APPENDIX F: TURING MACHINE
CONSTRUCTION FOR PSPACE-HARDNESS

In this section, we complete the proof of Lemma 7.

Lemma 25 (Lower bound on spectral gap for the
PSPACE-hard construction): In the NO case, the con-
struction in the proof of Lemma 7 has a spectral gap of
�(−2

max), where max is the number of vertices in the largest
subgraph of G′

x.

Proof. Recall the form of the graph G′
x in the NO case,

reproduced here in Fig. 4(a). We first restrict our attention
to the subgraph of G′

x containing the start and accept
configurations. The matrix A†

x
′
A′

x, when restricted to this
subspace, is further composed of three subspaces, each
corresponding to a subgraph, as shown in Fig. 4(b). We
write A†

x
′
A′

x = G1 ⊕ G2 ⊕ G3. The block G1 corresponds to
the vertices leading to tx (not including tx). The block G2
corresponds to the vertices {tx} ∪ {1, . . . , t(n)}. Lastly, G3
is the block with the vertices starting from sx and leading
to the reject state, which are the configurations visited by
the Turing machine. We have

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 1
1 2 1

1 2
. . .

. . . . . . 1
1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

1×1

,

G2 = 12×2 ,

and G3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1
1 2 1

1 2
. . .

. . . . . . 1
1 2 1

1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

3×3

.

(a) (b)

FIG. 4. (a) Graph G′
x with adjacency matrix A′

x, adapted from Fig. 2(d). (b) Graph with (weighted, directed) adjacency matrix A†
x
′
Ax.

Vertices with two self-loops can be thought of as a single self-loop with weight 2.
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It may be seen that there is a zero eigenvector
(0, 0, . . . , 0, 1, −1, 1, . . . , (−1)3)T, with the zeros corre-
sponding to subspaces G1 and G2. We now lower bound
the next-smallest eigenvalue. Let

rn(λ) := det[G3 − λ1n]

= det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − λ 1
1 2 − λ 1

1 2 − λ
. . .

. . . . . . 1
1 2 − λ 1

1 1 − λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×n

,

(F1)

pn(λ) := det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 − λ 1
1 2 − λ 1

1 2 − λ
. . .

. . . . . . 1
1 2 − λ 1

1 1 − λ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

n×n

.

(F2)

The polynomial pn(λ) can be computed exactly [91], and
is given by pn(2 − 2 cos θ) = (sin((n + 1)θ)− sin(nθ))/
sin θ = cos((n + 1

2 )θ)/cos(θ/2). We can obtain rn(λ) in
terms of pn(λ), rn(λ) = (1 − λ)pn−1(λ)− pn−2(λ), giving
us

rn(λ) = fn(θ) = (2 cos θ − 1)
cos((n − 1/2)θ)

cos(θ/2)

− cos((n − 3/2)θ)
cos(θ/2)

, (F3)

where θ = cos−1(1 − λ/2), or λ = 2 − 2 cos θ . The eigen-
values of G3 are related to the roots of the characteristic
polynomial fn(θ) = 0. We can see that θ = 0 is always
a root of the polynomial, giving us the zero eigenvalue
(λ = 2 − 2 cos θ = 0) for the NO case.

Now, it remains to be shown that the next smallest eigen-
value is bounded away from zero. First consider G1, whose
eigenvalues are the roots of the characteristic equation
det

[G1 − λ11

]
. The eigenvalues of G1 can be computed

in a similar fashion to those of G3 and are given by
4 sin2(kπ/2(1 + 1)), k ∈ [n]. The smallest eigenvalue of
G1 is therefore at least �(1/1

2). It is also easily seen that
G2 � 0.

We now come to G3. As we have seen, G3 has a zero
eigenvalue. In order to show a spectral gap for G3, we show
that the next root of polynomial f3(θ)must occur at least a
distance �(3

−2) away. The roots of G3 are given by [105]

λj = 2 + 2 cos
(
π j
3

)

, j ∈ [3]. (F4)

Setting j = 3 gives the zero eigenvalue and j = 3 − 1
the first nonzero eigenvalue. The spectral gap of G3 is
therefore

λ3−1 = 2 − 2 cos
(
π

3

)

= 4 sin2
(
π

23

)

≥ π2

2
3

− O
(
π4

4
3

)

= �(1/2
3). (F5)

Finally, we consider other subgraphs that do not con-
tain the start vertex. Just like the analysis of the YES case,
the eigenvalues for these are bounded away from 0 by
−2, where  is the number of vertices in the subgraph.
We have therefore lower bounded the value of the nonzero
eigenvalue in each case, showing that the spectral gap is
�(−2

max) = �(2−poly). �

APPENDIX G: COMPLEXITY OF PrecisePGQMA
AND PreciseEGQMA WITH ASYMMETRIC

SPECTRAL GAPS

We show here that the promise of asymmetric spec-
tral gaps does not change the complexity class for
both PrecisePGQMA and PreciseEGQMA, proving
Theorem 11.

Proof of Theorem 11. It is easy to see that GQMA[c, s, g1,
g2] ⊆ GQMA[c, s, g1, 0] simply by ignoring the promise
on the NO instance. It remains to show that the same upper
bounds as the symmetric case hold for the asymmetric case
too. For the case of c − s = �(1/exp), g2 = �(1/exp),
we observe that one can also ignore the promise on the
YES instance and obtain containment in PreciseQMA =
PSPACE, which equals PreciseEGQMA.

It remains to give an upper bound for the class⋃
c−s≥�(1/exp), g1≥�(1/poly) GQMA[c, s, g1, 0]. We give a

PP algorithm for any instance from this class, which
implies equivalence of the two classes.

We are given a description of a circuit, with the promise
that the YES case has �(1/poly) spectral gap for the
accept operator Q. We want to decide if λ1(Q) is ≥ c (YES)
or ≤ s (NO). The overall PP algorithm is as follows.

1. Use the PQMA[log] algorithm of Ambainis [94] to
determine whether an instance has spectral gap� ≥
g1 (YES) or ≤ g1/2 (NO) for g1 = �(1/poly).

2. If the spectral gap is g1 or larger, run the algorithm
in Lemma 22 with Hamiltonian 1 − Q and accept
or reject according to the answer returned by the
algorithm.

3. Otherwise, reject.
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We claim that the algorithm of Ambainis works not just for
local Hamiltonians, but also for accept operators like Q.
This is because the QMA queries in Ambainis’s algorithm
pertain to whether the ground-state energy (or the mini-
mum eigenvalue 1 − λ1 in this case) is smaller or larger
than a threshold. A QMA verifier can compute the eigen-
value of the accept operator given an eigenstate, using
phase estimation. Therefore, all queries to the oracle about
1 − λ1 are still valid QMA queries. Also, the final query in
Ambainis’s algorithm is for the operator (1 − Q)⊗ 1 +
1 ⊗ (1 − Q) on two registers, restricted to the antisym-
metric subspace. Since a QMA verifier can also perform
a projection onto the antisymmetric subspace, Ambainis’s
algorithm (i.e., the first step) works to estimate the spectral
gap of Q in PQMA[log].

Now, since PQMA[log] ⊆ PP [95], the overall algorithm
is a valid PP algorithm, since the two queries can be
made in parallel. To see the correctness, we see that if the
instance has a YES answer then it has a spectral gap of
at least g1 by virtue of the promise. In this case the spec-
tral gap algorithm would return YES. This ensures that the
PP algorithm in Lemma 22 works correctly and returns
the correct answer E1 ≤ a (YES) or E1 ≥ b (NO). The
algorithm outputs YES since the instance has low energy.

In the NO case, there may or may not be a spectral
gap. If the spectral gap � ≤ g1/2 is not large enough,
the spectral gap algorithm returns NO. We reject in this
case. If the spectral gap algorithm returns YES then
the spectral gap is at least � ≥ g1/2 (this includes the
cases when the spectral gap is in the window [g1/2, g1],
which is outside of the promise in the spectral gap
algorithm). This means that the algorithm in Appendix E
will work, and return the correct output (NO). Therefore,
we see that

⋃
c−s≥�(1/exp), g1≥�(1/poly) GQMA[c, s, g1, 0] =

PrecisePGQMA. �
We remark that it can be seen that LOCALHAMILTONIAN

[a, b, g1, 0] with b − a = �(1/exp) is PrecisePGQMA-
complete when the spectral gap g1 is 1/poly and
PreciseEGQMA-complete when g1 is 1/exp.
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