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Rydberg arrays merge the collective behavior of ordered atomic arrays with the controllability
and optical nonlinearities of Rydberg systems, resulting in a powerful platform for realizing photonic
many-body physics. As an application of this platform, we propose a protocol for quantum non-
demolition (QND) photon counting. Our protocol involves photon storage in the Rydberg array,
an observation phase consisting of a series of Rabi flops to a Rydberg state and measurements, and
retrieval of the stored photons. The Rabi frequency experiences a

√
n collective enhancement, where

n is the number of photons stored in the array. Projectively measuring the presence or absence of a
Rydberg excitation after oscillating for some time is thus a weak measurement of photon number.
We demonstrate that the photon counting protocol can be used to distill Fock states from arbitrary
pure or mixed initial states and to perform photonic state discrimination. We confirm that the
protocol still works in the presence of experimentally realistic noise.

Quantum non-demolition photon counting is a key
paradigm in quantum optics with direct applications in
quantum information processing and quantum network-
ing. Photon counting is most simply performed by cap-
turing photons with a detector which converts each pho-
ton to an electrical signal [1, 2], but this process destroys
the quantum state of the photons. Methods of QND
photon counting circumvent this issue in various ways,
preserving the quantum state of the photons after the
measurement [3–14]. This is ideal for applications like
quantum networking and state preparation which make
further use of the photonic state after the measurement.

Rather than directly measuring the photon number, it
is sometimes preferable to make a series of weak mea-
surements via projective measurement of an alternative
observable which is more readily accessible experimen-
tally. Many weak measurements performed sequentially
can progressively collapse the system into an eigenstate
of the photon number with high fidelity [4–7, 15, 16]. So
long as the series of weak measurements does not de-
stroy the quantum coherence of the photons, it serves as
an effective QND measurement of the photon number.

Methods for QND photon counting have been stud-
ied in a wide variety of experimental platforms, includ-
ing cold atomic gases [3], microwave cavities [4–8], opti-
cal cavities [9, 10], superconducting circuits [11, 12, 17],
waveguides [13, 18], and nonlinear metamaterials [14].
These proposals each carry drawbacks and advantages
relative to one another, and can be ideal in different sit-
uations. Protocols which encode photon number in a
phase, for instance, are well-suited for resolving small
photon numbers, but are only well-defined within a sin-
gle period of the phase [5]. Some proposals approach
the task of non-destructively counting itinerant photons
[10, 13, 14, 17–20], while others require confinement to a
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FIG. 1. The level structure of each atom in the array, as well
as the collective states of the array. The dashed line indicates
the shift in the Rydberg level |r′〉 due to the presence of a
Rydberg excitation |r〉. This disrupts the EIT condition by
pushing the |e〉 to |r′〉 transition far off resonance, making the
system fully reflective in the presence of an |r〉 excitation.

cavity [3–9, 11, 12]. The protocol which we study in this
work has no fundamental limitation in discerning large
or small photon numbers and is able to count itinerant
photons by storing them in a Rydberg array in free space.

Rydberg atoms, due to their intrinsic controllability
and strong dipole-dipole and van der Waals interactions,
have become a prototypical system for facilitating inter-
actions between photons [21–25] and, empowered by the
development of Rydberg arrays, simulating many-body
physics [26–32]. The quantum optical properties of dis-
ordered ensembles of Rydberg atoms are well-known [33–
36], but the quantum optics of ordered Rydberg arrays is
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less well-understood and has been the subject of much
recent theoretical [37–40] and experimental [41] work.
Ordered atomic arrays have been shown to exhibit emer-
gent behaviors arising from cooperative interactions, such
as acting as near-perfect mirrors [42–44], emitting light
in fixed, geometrically determined directions [39], and—
most importantly for this work—storing light with sig-
nificantly increased fidelity [45]. Rydberg arrays combine
these collective phenomena with strong optical nonlinear-
ities, making for a powerful platform for the realization
of photonic many-body physics [46] and, as we study in
this work, QND photon counting.

Our protocol consists of three stages: (I) storing a
photonic pulse in the array, (II) measuring the num-
ber of photons n contained therein, and (III) retrieving
the stored pulse. The photon number is progressively
pinned down through a series of observation cycles, each
of which consists of a partial Rabi flop to a Rydberg spin
wave state followed by a direct measurement of the pres-
ence of a Rydberg excitation. The frequency of the Rabi
flop is enhanced by a factor of

√
n from the single-atom

Rabi frequency, making it possible to discern arbitrary n.
The outcome of the Rydberg measurement along with the
known evolution time thus serves as a weak measurement
of photon number n.

Our main result is that, in the absence of dephasing
noise during the observation stage, we can perform QND
detection of n photons with fidelity limited only by stor-
age and retrieval error in time tγ=0 ∼

√
n/Ω, where Ω is

the single atom Rabi frequency and γ is the dephasing
rate. In the presence of dephasing noise, our detection
is no longer completely non-demolition and takes time
tγ>0 ∼ γn/Ω2. We discuss later precisely how destruc-
tive the protocol is in the presence of noise.

The physical system.—We consider an ordered two-
dimensional array of atoms with subwavelength spacing,
where each atom has the level structure shown in Fig. 1.
Lowercase letters label single-atom states, while upper-
case letters label collective states of the many-body sys-
tem. In particular, |g〉 is a ground state, |e〉 is an excited
state, |s〉 is a metastable shelving state, and |r〉 and |r′〉
are Rydberg states. In a later section, we will propose
particular levels in Yb to realize these states.

|G〉 is the many-body ground state in which all atoms
are in the state |g〉. |Sn〉 is the symmetrized collec-
tive state with n excitations of individual atoms to |s〉:
|Sn〉 = 1√

NCn

∑N
ij=1 σ̂

(i1)
sg · · · σ̂(in)

sg |G〉, where σ̂ij := |i〉〈j|.
Similarly, |Rn〉 is the symmetrized spin wave state with
n − 1 atoms excited to |s〉 and one atom excited to the

Rydberg state |r〉: |Rn〉 = 1√
n

∑N
i=1 σ̂

(i)
rs |Sn〉. We assume

that the entire array is within a blockade radius, so that
further excitations to |r〉 are forbidden by the blockade.

The protocol.—In Stage I, an initial photonic state cou-
ples to the |g〉 − |e〉 transition and is stored in the array
using an auxiliary classical control field acting on the

|s〉− |e〉 transition [45]. The initial photonic state is sent
through a beamsplitter so that it is normally incident
upon the array symmetrically from both sides, as is nec-
essary for optimal storage efficiency [45]. We denote the
photonic state as a superposition of number states |n〉,
|ψph〉 =

∑N
i=1 cn |n〉. N is the number of atoms in the

array and therefore the upper bound on the number of
excitations which can be stored in the array. Photon
storage is performed on the |g〉 − |e〉 − |s〉 Λ-subsystem
as described in [45]. Storage maps the state of the ar-
ray from |G〉 to

∑
n cn|Sn〉, where the amplitudes cn are

inherited from |ψph〉. Each photon is therefore stored as
an excitation from |g〉 to |s〉.

Stage II consists of two operations on the collective
state: (1) Rabi flops between the states |s〉 and |r〉 and
(2) projective measurement of the presence of a Ryd-
berg excitation (see Fig. 2). To drive the collective os-
cillation, we couple |si〉 to the Rydberg state |ri〉 via

the rotating frame Hamiltonian Ĥ = Ω
∑N
i=1 σ̂

(i)
rs + h.c.,

where Ω is the Rabi frequency of the transition and the
sum is over all atoms in the array. This induces a cou-
pling between the collective states |Sn〉 and |Rn〉 which
depends explicitly on the number of stored photons n:
〈Sn|Ĥ|Rn〉 =

√
nΩ =: Ωn. The objective of this stage is

to indirectly and progressively measure the photon num-
ber n by directly and repeatedly measuring the pres-
ence of a Rydberg excitation after evolution under Ĥ
for some known time. Each observation cycle consists
of a driven oscillation for time τi and a projective mea-
surement of the collective state yielding the measure-
ment outcome mi ∈ {Rydberg, No Rydberg}, building
over time a measurement record through cycle T denoted
MT = {(τi,mi)}i=1,...,T . In Appendix C, we discuss how
to choose times {τi} to expedite convergence.

Our measurements project the array into the subspace
with or without a Rydberg excitation in |r〉, conditioned
on the outcome of the measurement. We are able to ef-
ficiently perform such a measurement by tuning to EIT
and applying a weak classical probe light. EIT is ap-
plied to the |g〉 − |e〉 − |r′〉 subsystem, with the |s〉 − |r〉
subsystem acting as a ‘switch’. Thus in the absence of
a Rydberg excitation, the EIT condition is satisfied and
the array is transmissive, but in the presence of a Ryd-
berg excitation the EIT condition is disrupted and the
array is once again near-perfectly reflective [39]. This
measurement takes finite time which is limited by the
width of the EIT transparency window. We note that
a similar mechanism was used in [47, 48] for performing
photon subtraction with atomic clouds.

Stage III consists of retrieval of the stored photons.
Assuming that the measured photon number was n, the
array must be in the state |Sn〉 to retrieve the photons. If
the preceding measurement instead projected the state to
|Rn〉, we can simply drive for time τ = π/2Ωn and arrive
at |Sn〉, so long as the measurement has converged to
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FIG. 2. a) The three stages of the protocol. Stage II is the focus of this work. b) Driven oscillation between the collective
states |Sn〉 and |Rn〉, where the red atom is in the Rydberg state and the dashed line depicts the blockade radius. The
traffic light reflects the fact that the array permits the probe light to pass only when there is no Rydberg excitation present.
This is because the array is tuned to EIT, which is disrupted by a Rydberg excitation. c)-d) Projective measurement in the
{Rydberg, No Rydberg} basis, the results of which are stored in the measurement record Mi. The two sides of the array indicate
the possible measurement outcomes. The measurement is performed by shining weak classical light on the array, indicated
by the yellow arrow. e) The measurement record is used to infer the state of the system. Here we schematically depict an
intermediate inference based on a small measurement record Mi which has not yet converged to a Fock state.

n. Retrieval can then be performed as in [45]. The final
photonic state comes out symmetrically from both sides
of the array and can be combined onto a single path using
a beamsplitter.

Measurement dynamics.—The focus of our analysis is
Stage II of the protocol. The measurement dynamics
of the system during this stage determine the protocol’s
capabilities and effectiveness. This stage also raises the
question of how to best choose driving times τi.

The dynamics under driving are described by the fol-
lowing Hamiltonian written in the basis of collective exci-
tations: Ĥcoll =

∑
n Ωn (|Rn〉〈Sn|+ |Sn〉〈Rn|) . We begin

in the state |ψ(0)〉 =
∑
n cn|Sn〉 with amplitudes cn in-

herited from the stored light pulse. Driving under Ĥcoll

for time τ yields |ψ(τ)〉 =
∑
n cn(cos(Ωnτ)|Sn〉 −

i sin(Ωnτ)|Rn〉). Performing the Rydberg measurement
as described in the previous section results in two
possible outcomes: |ψS〉 = 1

pS

∑
n cn cos (Ωnτ)|Sn〉 or

|ψR〉 = 1
pR

∑
n cn sin (Ωnτ)|Rn〉, with probabilities pS =∑

n |cn cos (Ωnτ)|2 and pR =
∑
n |cn sin (Ωnτ)|2. The

amplitudes cn are therefore updated by a factor propor-
tional to cos (Ωnτ) or sin (Ωnτ) as a result of the measure-

ment, so that c
(1)
n ∼ cn sin (Ωnτ) or c

(1)
n ∼ cn cos (Ωnτ),

depending on the measurement outcome. This reflects
the partial information learned about the photon num-
ber from a single measurement of the collective state.

After each measurement, the system is once again in a

state of the form |ψ〉 =
∑
n c

(i)
n |Xn〉, where X ∈ {S,R}.

Further iterations of unitary evolution and measurement
will continue to update the amplitudes, so that after the

ith observational cycle the amplitudes are given by {c(i)n }.
For an arbitrary pure or mixed initial state (see next
section), the state converges to a single photon number
state as the protocol iterates, analogous to the progres-
sive state collapse observed in [5], with the outcome al-

ways the distillation of a single photon number state.

Generalization to mixed states.—The analysis of the
preceding sections readily generalizes to mixed intial pho-
tonic states. The dynamics in this case are governed
by the master equation ρ̇(t) = −i[Ĥcoll, ρ], under which
the populations of ρ evolve independently of the coher-
ences in the Fock basis. This implies that any two den-
sity matrices ρ and ρ′ which satisfy ρii(0) = ρ′ii(0) will
also satisfy ρii(t) = ρ′ii(t). In particular, for any mixed
state ρ(0) there exists some pure state ρ′(0) such that
ρii(0) = ρ′ii(0) and therefore ρii(t) = ρ′ii(t). This has
several important implications for the performance of the
protocol which are discussed in Appendix B.

Initial state inference.—An important application of
QND photon counting is state inference—gleaning in-
formation about the initial photonic state from the
measurement record MT = {(τi,mi)}i=1,...,T . Con-
sider the set of distributions of photon number states
with maximum photon number N , which we denote
{Pα}N . Each distribution Pα = (p0, . . . , pN ) ∈ {Pα}N
describes a class of potential initial photonic states
which share the same populations. Note that we can-
not discern within these classes, as the protocol is in-
sensitive to coherences between number states. Bayes’
Theorem yields the probability that the initial state
was described by Pα, conditioned on the measurement

record MT : Pr(Pα|MT ) = Pr(MT |Pα)Pr(Pα)∑
α′ Pr(MT |Pα′ )Pr(Pα′ )

, where

Pr(Pα) is a prior over the set of initial distributions.
Pr(MT |Pα) the quantity which we must compute to
find Pr(Pα|MT ). Because different number states are
not mixed through the protocol, this expression can be
written Pr(MT |Pα) =

∑
n pnPr(MT |n), where Pr(MT |n)

is the probability of observing the measurement record
MT given initial state |Sn〉. This is readily given by
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Pr(MT |n) =
∏

(τi,mi)∈MT
Pr(mi; ti|n), where

Pr(mi; ti|n) =

{
cos (Ωnτi)

2
, mi = mi−1

sin (Ωnτi)
2
, mi 6= mi−1

(1)

and m0 = No Rydberg.
Performance in the presence of noise.—Dephasing is a

significant form of noise in Rydberg array experiments
[49], therefore we study the protocol in the presence
of dephasing noise and propose potential modifications
which improve performance under high noise. In par-
ticular, we study the evolution of the density matrix
ρ(t) of the system under the master equation ρ̇(t) =
−i[Ĥ, ρ] + γ

(∑
i n̂iρn̂i −

1
2{n̂i, ρ}

)
, where the jump op-

erators |ri〉〈ri| =: n̂i = n̂†i = n̂†i n̂i represent dephasing on
the state |r〉 at the ith atom. This model is very similar
to that studied in [47], and reproduces several features
found therein.

This noise model can be understood as a continuous
description of the process in which the environment mea-
sures where the Rydberg excitation is located within the
spin wave, thereby removing the measured site from the
coherent and symmetric superposition. Given enough
time, such processes will remove all sites from the spin
wave, resulting in a state which is entirely decohered.
This is reflected in an exponential decay in the ampli-
tude of the driven oscillation between |Sn〉 and |Rn〉.

In the presence of noise, it is necessary to modify the
likelihood Pr(MT |n) appearing in the state inference to
include dephasing. This reflects the fact that we are seek-
ing to match observations with a different underlying sig-
nal. We denote the likelihood in the presence of noise by
Pr(MT |n, γ). As in the absence of noise, this quantity
is a product: Pr(MT |n, γ) =

∏
(mi,ti)∈MT

Pr(mi; ti|n, γ).

We can calculate Pr(mi; ti|n, γ) numerically (see Fig. 3),
working in a truncated Hilbert space which, due to site
permutation symmetry, is of dimension linear in n. The
details of this approach can be found in Appendix A. This
can be done in practice because the dephasing rate γ can
be measured for a particular experimental realization of
the protocol and therefore enters as a known parameter.

Modifications in the presence of noise.—The previous
section describes the simplest extension of our protocol to
a noisy environment, and we may improve performance
in the presence of noise by modifying the protocol more
dramatically.

Within our noise model, the evolution of the system
is particularly sensitive to the measurement outcome.
When a Rydberg excitation is detected, the array is pro-
jected into the Rydberg sector, and further time evolu-
tion continues the approach of the system to its long-
time steady state. In contrast, when no Rydberg exci-
tation is detected, the decoherence between |r〉 and |s〉
is effectively ‘reset’. Going too long without measuring
No Rydberg therefore leads to a weakened signal, which
slows Fock state distillation and state inference. This

slow-down can be avoided by ejecting the Rydberg atom
when a Rydberg excitation is detected, returning the sys-
tem to the No Rydberg sector of the Hilbert space with
one fewer atom. In doing so, we prevent the detection
time from scaling as γn/Ω2 rather than

√
n/Ω, at the

cost of losing a number of photons throughout the pro-
tocol.

In the regime where γ is large, oscillations rapidly de-
cay, and we are no longer able to use frequency as a
probe of photon number. However, the photon number
is also imprinted on the steady state values of the pop-
ulations in the Rydberg and No Rydberg sectors, which
are n

n+1 and 1
n+1 , respectively. These values emerge be-

cause the master equation drives the density matrix to
the maximally mixed state in the Fock basis, which has
n Rydberg states for each No Rydberg state, which was
also described in [47]. The steady-state populations are
captured by Pr(MT |n, γ), so no modifications to the state
inference procedure are necessary to probe this signals.
However, this signal is much weaker than the frequency
signal, with detection time scaling as n3/γ. The detec-
tion is also no longer QND as the atomic state will have
largely decohered.

Detection Time.—In this section, we discuss how the
time necessary to resolve the photon number scales with
the parameters of the problem. To proceed quanti-
tatively, we consider the Fisher information Fn(t) =

E
[(

∂
∂n log f(t;n)

)2]
, where f(t;n) stands for the various

signals—noiseless oscillation frequency, noisy oscillation
frequency, and steady-state populations—from which we
can infer the parameter n. In our case, we have two pos-
sible measurement outcomes Rydberg and No Rydberg,

so that Fn(t) = fmi 6=mi−1(t;n)
(
∂
∂n log fmi 6=mi−1(t;n)

)2
+

fmi=mi−1(t;n)
(
∂
∂n log fmi=mi−1(t;n)

)2
. The subscript

denotes whether the probability is that of measuring the
same or opposite outcome as that previously measured.
We define the detection time t∗ via Fn(t∗) = 1, as this
is when we have sufficient information to discern n from
n+ 1.

In the absence of noise, we have fmi=mi−1(t;n) =

cos2(
√
nΩt) and fmi 6=mi−1

(t;n) = sin2(
√
nΩt). Using

these values, we find that Fn(t) = t2Ω2/n so that t∗ =√
n/Ω in the absence of noise.

In order to approximate the convergence time in the
presence of noise, we assume that we can approximate
the signal as noiseless, so long as we perform the mea-
surement in a short time relative to the inverse of the
dephasing rate T = 1/γ. In practice, we would choose
a time αT where α < 1 is a positive constant, but here
we simply use T as we are only interested in scaling be-
haviors. Then for a single measurement we once again
find Fn(T ) = T 2Ω2/n. However, in time t, we are able
to make t/T measurements. To account for this, we mul-
tiply by a shot noise factor t/T = tγ. We then find that
Fn(t) = tΩ2/γn so that t∗ = γn/Ω2 in the presence of
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FIG. 3. An example experiment in which the state inference converges to n = 2. We have set Ω = 2π×2.5 MHz and γ = 2π× .3
MHz. We take the detection time to be τEIT = .3 µs, the inverse of the EIT transparency window 1/τEIT = Ω2/Γc ≈ 2π × 0.5
MHz, where Γc = 2π × 12 MHz is the subradiant linewidth. [38]. a) The populations in the Rydberg and No Rydberg sectors
as a function of time. This is the signal upon which the photon number is imprinted. The gray boxes correspond to Rydberg
measurements during which Ω is turned off but dephasing persists. The dashing of the wavy arrow indicates the result of the
Rydberg measurement. b) The fidelity of retrieving the full 2-photon pulse. Notice that the retrieval fidelity decays during the
driven oscillation as well as the Rydberg measurement. c) The state inference as a function of observation cycle. The initial
inference (T = 0) is uniform because we have chosen a uniform prior over n = 1–4. d) The Rydberg populations of various
n during the first observation cycle. Notice that the state inference in c) simply reflects the values of these probabilities at
t = 0.10 µs as this is the only information available after the first observation cycle.

noise.
Finally, we consider the case in which γ is large and we

only have access to the signal imprinted on the steady-
state populations, rather than on the oscillation fre-
quency. In this case we would like to wait long enough to
approximately approach the steady-state populations be-
fore making each measurement. The characteristic time
scale is still T , though in this case we would choose a
time αT where α > 1 in practice. Once again we sim-
ply take this time to be T to capture the scaling behav-
ior. The signal in this case is fS(t;n) = 1/(n + 1) and
fR(t;n) = n/(n+ 1), where the subscripts correspond to
No Rydberg and Rydberg because the signal is a func-
tion of the current measurement outcome only, not the
previous. In this case, we find that Fn(T ) = 1/n(n+1)2.
Multiplying by the shot noise factor tγ, we have Fn(t) =
tγ/n(n+ 1)2 and t∗ = n(1 + n)2/γ ∼ n3/γ.

Experimental considerations.—We now discuss two po-
tential implementations of our protocol in ytterbium
atoms trapped in an array of optical tweezers. Yb is
a particularly attractive atomic platform because it has
a long wavelength telecom transition (studied in [50] and
proposed for use in Rydberg arrays in [37]), and because
trapping of its Rydberg states in the same tweezer as the
ground state has been recently demonstrated, extending
trap lifetimes to ∼ 50− 100 µs [51].

One of the implementations which we study uses
171Yb, and the other 174Yb. These implementations only
differ in the states assigned to |g〉 and |s〉. In 171Yb,
|g〉 and |s〉 are assigned to two hyperfine 3P0 states:

|g〉 := |3P0, ↓〉 and |s〉 := |3P0, ↑〉, where the arrow repre-
sents the nuclear spin. In 174Yb, they are assigned to two
members of the 3PJ triplet: |g〉 := |3P0〉 and |s〉 := |3P2〉.

In both implementations, we assign |e〉 := |3D1〉, mak-
ing use of the 3P0 ↔3D1 telecom transition referenced
above, which is approximately 1.4 µm. This wavelength,
λeg, sets an upper bound on the array spacing d. Choos-
ing levels such that λeg is large therefore allows for
larger tweezer spacing without sacrificing efficiency. The
Rydberg levels are assigned as |r〉 := |6sns 3S1〉 and
|r′〉 := |m′pn′s 3PJ〉, where m′, n′ and J are chosen
to maximize the matrix element from |s〉 while avoiding
dipole-dipole population exchange between |r〉 and |r′〉.

There is a potential complication to using hyperfine
states in 171Yb for photon storage. As discussed in [45],
hyperfine structure opens the possibility of atoms decay-
ing to multiple ground states, thus weakening the sub-
radiance which underpins much of the valuable physics
hosted by ordered arrays. Maximal subradiance can be
(at least partially) restored by applying large Zeeman
shifts, or potentially by engineering patterns of entangle-
ment in the many-body states which suppress emmission
which is not subradiant [52].

Discussion and outlook.—In summary, we have pre-
sented a noise-resilient protocol to non-destructively
count arbitrary numbers of free space photons using an
ordered array of Rydberg atoms. We have shown that
this protocol is effective in distilling arbitrary pure and
mixed initial states to a single Fock state and in per-
forming initial state inference. Within our analysis, the
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overall efficiency of the protocol is limited by the storage
and retrieval efficiencies as well as dephasing during the
observation stage. There is strong theoretical evidence
that the storage and retrieval errors are significantly sup-
pressed in our array geometry [45], and the dephasing er-
rors may in some cases be suppressed by further cooling
the system.

In principle, the experiment could instead be per-
formed using a disordered atomic ensemble without sig-
nificant changes to the protocol. However, disordered en-
sembles do not enjoy the strongly enhanced storage and
retrieval efficiencies of ordered arrays. A disordered en-
semble with a relatively high optical depth per blockade
radius (ODb) of 10-12 has an optimal combined storage
and retrieval efficiency of ∼ 50% [53], compared to an
array of 16 = 4 × 4 atoms with an optimal combined
storage and retrieval efficiency above 98% [45]. It could
however be beneficial to consider the experiment taking
place in a cavity instead of in free space. This could fur-
ther enhance the storage and retrieval efficiency of the
array or even make disordered ensembles a more viable
experimental platform.

Another interesting extension would be to consider
photonic density matrix tomography. Because dis-
placed Fock states are tomographically complete [54–
56], one would only need to introduce the additional
operation of displacements in phase space, given by

D(α) = eαâ
†−α∗â where â† =

∑
n

√
n+ 1 |Sn+1〉〈Sn|

and â =
∑
n

√
n |Sn〉〈Sn+1|. This can be easily imple-

mented on the stored excitations in our protocol via the

couplings Ĥx = Ω
∑
j σ̂

(j)
s,g + σ̂

(j)
g,s ≈ Ω

√
N − n

(
â† + â

)
and Ĥy = iΩ

∑
j σ̂

(j)
s,g − σ̂

(j)
g,s ≈ iΩ

√
N − n

(
â† − â

)
,

where the second equality in each holds in the limit
N − n � 1. Any D(α) can be implemented by succes-
sively applying Ĥx for time tx and Ĥy for time ty, with
α = Ω

√
N − n(itx − ty).
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Appendix A: Efficient Numerical Algorithm

In this section, we present a construction of the trun-
cated basis which can be used to efficiently solve the
many-body problem defined by the master equation:

ρ̇(t) = −i[Ĥ, ρ] + γ

(∑
i

n̂iρn̂i −
1

2
{n̂i, ρ}

)
, (A1)

where Ĥ = Ω
∑N
i=1 σ̂

(i)
rs + h.c. and n̂i := |ri〉〈ri|. In order

to solve this equation numerically, we want to write down
the Lindbladian L[·] = −i[Ĥ, ·]+γ

(∑
i n̂i · n̂i −

1
2{n̂i, ·}

)
as a superoperator L[·] =: iH[·] + γD[·] in an efficiently
constructed basis. We will find that the size of this basis
grows linearly in n, which we take to be fixed. We use

the notation of [57], where density matrices are written as
superkets with double brackets |ρ⟫ =

∑
i,j ρij |i〉〈j|, su-

perbras are defined as ⟪ρ| = |ρ⟫†, and the inner product
is given by ⟪µ|ν⟫ = Tr

[
µ†ν
]
.

We want to find the matrix forms H and D of our
superoperators, where Hµν := ⟪µ|H|ν⟫ and similarly
for Dµν . To do this, we will exploit the symmetry of
the Lindbladian. The initial state |S〉〈S| is symmet-
ric under permutation of the atomic sites, and L re-
spects this symmetry, so we can restrict our basis to only
permutation-symmetric states. We can further recognize
that both the initial state and the Lindbladian are sym-

metric with respect to Ogg :=
∑N
i=1 σ̂

(i)
gg , in the sense

that Ogg |S〉〈S| = |S〉〈S| and [Ogg, Ĥ] = [Ogg, n̂i] = 0.
This allows us to block diagonalize L in terms of the σ̂gg
population:

|ρssj ⟫ = N ss
j

∑
perms

(σ̂ss)
⊗n−j

(σ̂sg ⊗ σ̂gs)⊗j (σ̂gg)
⊗N−n−j

,

|ρrsj ⟫ = N rs
j

∑
perms

σ̂rs ⊗ (σ̂sg ⊗ σ̂gs)⊗j (σ̂ss)
⊗n−j−1

(σ̂gg)
⊗N−n−j

,

|ρsrj ⟫ = |ρrsj ⟫†,
|ρrgj ⟫ = N rg

j

∑
perms

σ̂rg ⊗ (σ̂sg)
⊗j−1

(σ̂gs)
⊗j

(σ̂ss)
⊗n−j

(σ̂gg)
⊗N−n−j

,

|ρgrj ⟫ = |ρrgj ⟫†,
|ρrrj ⟫ = N rr

j

∑
perms

σ̂rr ⊗ (σ̂sg ⊗ σ̂gs)⊗j (σ̂ss)
⊗n−j−1

(σ̂gg)
⊗N−n−j

,

|ρrs,grj ⟫ = N rs,gr
j

∑
perms

σ̂rs ⊗ σ̂gr ⊗
(
σ̂sg
)⊗j( σ̂gs)⊗j−1 (σ̂ss)

⊗n−j−1
(σ̂gg)

⊗N−n−j
,

|ρsr,rgj ⟫ = |ρrs,grj ⟫†,
|ρrs,srj ⟫ = N rs,sr

j

∑
perms

σ̂rs ⊗ σ̂sr ⊗ (σ̂sg ⊗ σ̂gs)⊗j (σ̂ss)
⊗n−j−2

(σ̂gg)
⊗N−n−j

,

|ρrg,grj ⟫ = N rg,gr
j

∑
perms

σ̂rg ⊗ σ̂gr ⊗ (σ̂sg ⊗ σ̂gs)⊗j−1 (σ̂ss)
⊗n−j

(σ̂gg)
⊗N−n−j

,

(A2)

where the sum is over permutations of the on-site den-
sity matrices across sites and σ̂µν := |µ〉〈ν|. j = 0, . . . , n
indexes the blocks of the Hamiltonian superoperator
H =

⊕n
j=0H(j) and the N are normalization constants

such that ⟪ρi|ρi⟫ = 1. This basis also diagonalizes Dµν
entirely.

We can explicitly express H(j)
µν in terms of the normal-

ization coefficients of the basis states:
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Low Noise Medium Noise High Noise

FIG. 4. Rydberg oscillation dynamics in the presence of noise with n = 5, N = 10, and Ω = 2π × 2.5 MHz. Notice that the
populations approach the steady-state values of n

n+1
= 5/6 and 1

n+1
= 1/6.

H(j) = Ωn



0 −
Nssj
Nrs
j

Nssj
Nsr
j

−
Nssj
Nrg
j

Nssj
Ngr
j

0 0 0 0 0

−(n−j)Nrsj
Nss
j

0 0 0 0
Nrsj
Nrr
j

Nrsj
Nrs,gr
j

0
Nrsj
Nrs,sr
j

0

(n−j)Nsrj
Nss
j

0 0 0 0 −
Nsrj
Nrr
j

0 −
Nsrj
Nsr,rg
j

−
Nsrj
Nrs,sr
j

0

−
jNrg
j

Nss
j

0 0 0 0 0 0
Nrg
j

Nsr,rg
j

0
Nrg
j

Nrg,gr
j

jNgr
j

Nss
j

0 0 0 0 0 −
Ngr
j

Nrs,gr
j

0 0 −
Ngr
j

Nrg,gr
j

0
Nrrj
Nrs
j

−
Nrrj
Nsr
j

0 0 0 0 0 0 0

0
jNrs,gr
j
Nrs
j

0 0
(j−n)Nrs,gr

j

Ngr
j

0 0 0 0 0

0 0 −
jNsr,rg
j
Nsr
j

(n−j)Nsr,rg
j

Nrg
j

0 0 0 0 0 0

0
(n−j−1)Nrs,sr

j
Nrs
j

−(n−j−1)Nrs,sr
j

Nsr
j

0 0 0 0 0 0 0

0 0 0
jNrg,gr
j

Nrg
j

−
jNrg,gr
j

Ngr
j

0 0 0 0 0


(A3)

Because the truncated basis diagonalizes D, we have a
particularly simple matrix representation of D(j):

D(j) = −γ



0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0
0 0 1

2 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0 0 0
0 0 0 0 1

2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1


. (A4)

Notice that the only populations in ρ are given by |ρss0 ⟫
and |ρrr0 ⟫. It is therefore only necessary to solve for the
dynamics in the j = 0 block of ρ in order to calculate
Pr(MT |n, γ). We numerically solve the master equation
for n = 5 and N = 10 and a variety of dephasing rates
γ, the results of which are displayed in Fig. 4.

Appendix B: Generalization to Mixed States

In this section, we continue the discussion of the gener-
alization of the protocol to mixed initial photonic states.
It is straightforward to see that the measurement dynam-
ics of the protocol are insensitive to coherences between
states of different photon number. Consider the evolution
of the density matrix of the system ρ under the unitary
dynamics generated by Ĥcoll, governed by the master
equation ρ̇(t) = −i[Ĥcoll, ρ]. Clearly these dynamics do
not couple states with different photon numbers, which
implies the insensitivity to coherences of the dynamics of
the populations. This means that the populations of two
initial density matrices with the same populations and
different coherences will evolve in the same way under
the protocol. In particular, this implies that the popula-
tions of any density matrix will evolve in the same way as
the diagonal density matrix with the same populations.
This has two important implications.
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First, it explains why it is not possible to choose drive
times τi which steer the state of the system toward a
particular photon number state. Because the evolution
of the populations is indistinguishable from that of a clas-
sical mixture ρclass =

∑
n pn |n〉〈n|, the dynamics serve to

distill the state |n〉 with probability pn = |cn|2, regardless
of the measurement pattern chosen. However, different
measurement patterns may lead to faster convergence to
|n〉, as is discussed Appendix C.

Second, it implies that the path to convergence
recorded in the measurement record does not directly
encode any information beyond the final value to which
the protocol converged. This is because the populations
evolve as if the density matrix were a classical mixture, so
the measurement dynamics are consistent with a single
|n〉 being sampled from this distribution at the begin-
ning of the protocol. However, it is still possible to learn
something about the initial populations of other number
states via the prior. As an example, consider a uniform
prior taken over P1 = (0, 0.9, 0.1) and P2 = (0, 0.1, 0.9).
If an experiment converges to n = 1, we know that P1 was
more likely and therefore it is likely that there was little
initial population in n = 2, even though all we directly
measured was that there was initially some population in
n = 1.

Appendix C: Adaptive Optimization Strategy

In this section, we illustrate through a minimal exam-
ple that optimizing the drives times {τi} is exponentially
difficult. In order to precisely define the optimal strategy
for choosing drive times {τi}, it is necessary to first fix a
figure of merit. We here consider the accuracy of the ini-
tial state inference as given by the maximum likelihood
estimate (MLE) generated by the measurement record.
The expected value of the MLE over experimental real-

izations is called the fidelity and denoted by F . More
explicitly, for a set of potential initial photon number
distributions {Pα}N and T observation cycles, we have

FT =
∑
MT

max
Pα

Pr(MT |Pα)Pr(Pα). (C1)

It is natural to consider whether a local-in-time
strategy—that is, choosing each τi independently to max-
imize each Fi—might yield a globally optimal set of times
{τi}i=1,...,T with respect to the fidelity after some fixed
number T of observation cycles, FT . This task is appro-
priate for the regime in which the measurement time is
large compared to the standard deviation of the oscilla-
tion time, so that a fixed number of observation cycles
approximately corresponds to fixed total time. We have
demonstrated numerically that such a local strategy is
not in general optimal.

In a toy state discrimination task wherein the protocol
had two observation cycles (T = 2) to distinguish be-
tween two potential initial states P1 = (0, 13 ,

1
3 , 0,

1
3 , 0)

and P2 = (0, 0, 0, 1, 0, 0), the local strategy led after

the first cycle—F local
1 = 96.59%, Fglobal

1 = 96.52%—
but was overtaken in the second cycle—F local

1 = 99.84%,

Fglobal
1 = 99.89%.
This demonstrates that allowing for τi which yield sub-

optimal values of intermediate Fi avails measurement
patterns with higher values of FT at the conclusion of
the protocol, so that the local-in-time strategy is not op-
timal. However, these differences can be quite small, as
in this toy example.

For a set number of observation cycles T , the optimal
strategy—that which maximizes FT—can still in princi-
ple be evaluated numerically. However, the absence of
an optimal local-in-time strategy implies that the cost of
finding the globally optimal strategy grows exponentially
in the number of observation cycles T .
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