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One-dimensional systems exhibiting a continuous symmetry can host quantum phases of matter
with true long-range order only in the presence of sufficiently long-range interactions. In most
physical systems, however, the interactions are short-ranged, hindering the emergence of such phases
in one dimension. Here we use a one-dimensional trapped-ion quantum simulator to prepare states
with long-range spin order that extends over the system size of up to 23 spins and is characteristic of
the continuous symmetry-breaking phase of matter. Our preparation relies on simultaneous control
over an array of tightly focused individual-addressing laser beams, generating long-range spin-spin
interactions. We also observe a disordered phase with frustrated correlations. We further study the
phases at different ranges of interaction and the out-of-equilibrium response to symmetry-breaking
perturbations. This work opens an avenue to study new quantum phases and out-of-equilibrium
dynamics in low-dimensional systems.

The exploration of new phases of matter has long
been a frontier of physics. Quantum phases are partic-
ularly interesting, featuring nonlocal and macroscopic
properties that have no classical counterpart [1]. One-
dimensional quantum systems have captured special at-
tention because they can often be efficiently described
using various computational or analytic approaches.
[2–5]. The microscopic form and range of the in-
teraction between constituent particles directly deter-
mine the macroscopic properties and phases that such
systems can exhibit. Perhaps the best example is
the Mermin-Wagner theorem [6], which forbids low-
dimensional short-range interacting systems with a con-
tinuous symmetry from exhibiting long-range order at
any finite temperature.
One dimensional systems with long-range interac-

tions, in contrast, can manifest phases with long-range
order [3, 7–17]. A prime example is a chain of spin
1/2 particles featuring long-range ferromagnetic inter-
actions that have a continuous rotational U(1) symme-
try. Absent magnetic fields, the chain can possess an
exotic phase where the spins exist in a superposition
of collective states in the symmetry plane with no pre-
ferred orientation, yet due to the spontaneous breaking
of the continuous symmetry, they host sizeable magnetic
correlations across the entire chain [3, 7]. Such a con-
tinuous symmetry-breaking (CSB) phase of matter has
never been observed in a one-dimensional system.

∗ lei.feng@duke.edu ; or.katz@duke.edu
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Chains of trapped atomic ions are a pristine one-
dimensional spin system, featuring high isolation from
the environment, high-fidelity measurement and prepa-
ration of individual spins, and fully-connected spin-spin
interactions whose strength and range can be controlled
by optical fields [18–23]. There have been proposals for
observing CSB in trapped ion systems [3, 7], requir-
ing simultaneous control over each optical field address-
ing individual ions in a long and closely-spaced crystal,
which to date has been beyond experimental reach.

Here we report on continuous symmetry breaking in
a one-dimensional trapped-ion quantum simulator. Us-
ing simultaneous individual control of a linear array of
23 optical beams addressing individual ions, we prepare
the system in a CSB phase, manifesting long-range spin-
spin correlations. Individual control over the spins en-
ables the precise engineering and measurement of the
interactions between spins as well as the study of non-
equilibrium dynamics under symmetry-breaking pertur-
bations. These results represent a frontier in the control
of quantum phases and open new avenues in studying
low-dimensional quantum systems.

The trapped-ion crystal under study is comprised of
twenty-seven 171Yb+ ions confined in a linear Paul trap
on a chip [24–26], as illustrated in Fig. 1a. A fluores-
cence image of the crystal is shown in Fig. 1b. Each ion
stores an effective spin comprised of two “clock” levels in
its electronic ground-state (|↑z〉 ≡ |F = 1,M = 0〉 and
|↓z〉 ≡ |F = 0,M = 0〉) [27]. We use a uniformly-spaced
and array of tightly focused laser beams, together with
an orthogonal wide global beam to simultaneously drive
Raman transitions between the spin states of individual
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Figure 1. Trapped-ion crystal. a, Illustration of a one-dimensional crystal of 27 ions, confined in a linear Paul trap on a
chip. A linear array of 23 tightly focused and individually controlled laser beams simultaneously generates site-dependent
fields and a programmable interaction between the trapped-ion spins; an additional beam, propagating parallel to the trap
surface, illuminates the entire ion chain from the side to facilitate these processes based on Raman-transitions (not shown).
b, Fluorescence image of a crystal composed of 27 171Yb+ ions. c, Experimental reconstruction of the spin-spin interaction
matrix Jij of the 23 spins between the five nearest neighbors. The bars are horizontally aligned with the ion crystal image
in b, and the colors indicate the interaction between spins at different distances |i − j| (see Methods for the full modeled
interaction).

ions. The Raman addressing is sensitive to the motion
along the wavevector difference between the individual
and global addressing Raman beams [18]. The elec-
trostatic trapping potential is configured to align the
middle 23 ions with the array of individual addressing
beams. The two pairs of non-illuminated edge ions fa-
cilitate the alignment of the 23 middle ions. The spins
are initialized and measured using optical pumping and
state-dependent fluorescence techniques [27] and the
collective motional modes of the ion chain that medi-
ate their interaction are cooled using sideband cooling
[28]. Single-spin rotations enable the orientation of each
spin along any axis on the Bloch sphere for initialization
or measurement.

We deform the spin Hamiltonian as a function of time
for different initial states to prepare different quantum
phases of matter. Specifically, we ramp down a stag-
gered transverse-field Hamiltonian and ramp up an ef-
fective long-range XY Hamiltonian [18] (see Methods),

so that the total time-dependent Hamiltonian is

H = s

2
∑
i<j

Jij

(
σ̂

(i)
+ σ̂

(j)
− + σ̂

(i)
− σ̂

(j)
+

)
+ (1− s)

∑
j

hj σ̂
(j)
z ,

(1)
where s = s(t) is a time-dependent parameter chang-
ing from 0 to 1 during the time interval from t = 0
to t = T and σ̂(j) are the Pauli operators of the jth
ion. Here hj = (−1)jh is a uniform-magnitude mag-
netic field that alternates between adjacent spins. Each
interaction amplitude Jij is positive and describes the
flip-flop rate between the ith and jth spins.

Simultaneous time-dependent control of the Raman
beams enables the generation of the staggered-field
Hamiltonian. This control also allows the selection of
a subset of N spins in the middle of the crystal that
can interact with one another while remaining decou-
pled from the rest of the spins in the crystal: switching
off the beam addressing the n-th ion nulls its hopping
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Figure 2. Preparation of quantum phases. a, Adiabatic ramp profiles of the effective XY Hamiltonian, s(t) and of
the staggered magnetic field Hamiltonian, 1 − s(t), as a function of time t. b,c, Measured spin-spin correlations Cij =
〈σ̂+
i σ̂
−
j + σ̂−i σ̂

+
j 〉 developed during the ramp for the subset of N = 7 interacting spins (−3 ≤ i, j ≤ 3) are indicated with small

dark blue spheres; the other ions (light blue) are not addressed by optical fields and their spin states do not participate in
the dynamics. b, Initializing the spins in the highest excited state of the staggered-field Hamiltonian along the z direction
leads to a low-temperature state of the ferromagnetic XY Hamiltonian at the end of the ramp. The positive correlations
between all interacting spins indicate the continuous symmetry breaking (CSB) phase. c, Initializing the spins in the ground
state of the staggered-field Hamiltonian prepares a low-temperature state of the antiferromagnetic XY Hamiltonian.

amplitude Jin to all other ions i. The individual con-
trol also enables experimental reconstruction of the in-
teraction matrix Jij , as shown in Fig. 1c for the first
five-nearest neighbors (|i − j| ≤ 5). Here the measured
long-range interaction decreases slowly as a function of
the inter-spin spacing [18], as modeled in the Methods
section. The Hamiltonian evolution is also accompa-
nied by decoherence induced by the optical drive, see
Methods for details.

To induce long-range correlations, we first initial-
ize the spins in the Néel state in the z basis, corre-
sponding to the highest excited state of the staggered-
field Hamiltonian. We then ramp the Hamiltonian
with the profile of s(t) shown in Fig. 2a. After the
ramp, we immediately measure the transverse correla-
tions Cij = 〈σ̂(i)

+ σ̂
(j)
− + σ̂

(i)
− σ̂

(j)
+ 〉. We first consider the

time evolution for a subset of N = 7 interacting spins
(−3 ≤ i, j ≤ 3) shown in Fig. 2b. As the staggered field

decreases and the interaction increases, correlations de-
velop between all the interacting spins in the x−y plane,
indicating the CSB phase. On the other hand, when the
spins are initialized in the ground state of the staggered-
field Hamiltonian, shorter-range order develops in the
x − y plane after evolving under the same ramp [3, 7].
Fig. 2c presents the formation of alternating and fast-
decaying correlations between the N = 7 interacting
spins, indicating a disordered phase known as the XY
phase [3, 7].

We focus on the CSB phase and study the corre-
lations at the end of the ramp for a different num-
ber of interacting spins in the same ion chain, shown
in Fig. 3a. Dark-blue spheres indicate the set of in-
teracting ions which are illuminated by the addressing
beams. In all configurations, we observe sizeable and
positive correlations Cij between the interacting spins.
To quantify the spatial dependence of the long-range or-
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Figure 3. Long-range order. a, The measured correlation matrix Cij of the prepared CSB phase for a subset of N = 7,
11, 15, 19, and 23 interacting spins. Dark blue spheres indicate the ions that are illuminated by the addressing beams. b,
Spatially averaged correlations CN (l) = 1

N−l

∑
j
Cj,j+l as a function of the interaction distance l for different subsystem

sizes N . The correlations in the CSB phase (grayish purple) saturate asymptotically at a nonzero value of 0.062±0.005 in
the N, l� 1 limit (dashed line), manifesting long-range order. In contrast, the staggered correlations of the disordered phase
(magenta) decay quickly to zero. The shape and brightness of the symbols indicate the number of interacting spins N . c,
The purple data for the order parameter of the CSB phaseM(N) [see Eq. (2)] saturates asymptotically at a sizeable nonzero
value of 0.35±0.08, while the average transverse magnetization in the x−y plane (pale symbols) is small, as expected from the
continuous U(1) symmetry in a finite system. Data in a and b as well as the purple data in c correspond to the interaction
matrix that is partially shown in Fig. 1c. The black data in c corresponds to the interaction matrix that is partially shown
in Extended Data Fig. 1 and that exhibits a shorter interaction range. The black data for the order parameter saturates
asymptotically at 0.36 ± 0.18. Solid lines in b, c are fits to an exponential decay function with an additional offset.

der, we present the spatially-averaged spin correlations
CN (l) = 1

N−l
∑
j Cj,j+l for different system sizes N as

a function of the interaction distance 1 ≤ l ≤ N − 1 in
Fig. 3b . The averaged correlations for different system
sizes in the CSB phase nearly overlap and saturate to a
nonzero value in the N � 1 and l � 1 limit indicated
by the purple dashed line. In contrast, the spatially-
averaged correlations of the disordered phase alternate
in sign and quickly decay to zero.
We further quantify the averaged correlation of the

CSB phase by extracting the order parameter

M(N) =
√

1
N(N − 1)

∑
i6=j

Cij , (2)

as shown in Fig. 3c. The order parameterM(N) clearly
saturates at a nonzero value, indicating the emergence
of long-range order. On the other hand, the average
spin magnetizations in the x− y plane are nearly zero,

as expected from the underlying U(1) symmetry. The
average magnetization along z in the CSB phase, and
the average magnetization in all three direction in the
disordered phase are presented in Extended Data Fig. 4.

The CSB phase is expected to persist in a system
described by the XY Hamiltonian as long as the inter-
actions have a sufficiently long range [3, 7]. To verify
this, we tune the optical Raman fields to repeat the ex-
periment with shorter-range interactions corresponding
to the experimentally-reconstructed interaction matrix
Jij shown in Extended Data Fig. 1. Following a sim-
ilar protocol (see Methods), we prepare a spin state
that exhibits long-range correlations, with a nonzero,
yet smaller, order parameter for the CSB phase, shown
in Fig. 3c. These results highlight the robustness of
the CSB phase for different configurations and the key
role played by the long-range interaction in realizing the
emergent long-range order.

The simultaneous individual control over the Raman
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Figure 4. Out-of-equilibrium dynamics. Following the
preparation of the CSB phase for N = 19 spins, we per-
turb the state by rotating the spins in the x − y plane by
a spin-dependent angle θ at τ = 0. a, Measured spin-spin
correlations 〈σ̂(i)

x σ̂
(j)
x 〉 developed during the evolution by the

effective XY Hamiltonian for time τ . At τ = 0 (top left),
spins within the right or within the left side of the chain fea-
ture positive correlations, while correlations between spins
on different sides are negative. The middle spin has a near-
zero correlation with the rest of the chain. At τ = 0.14 ms
(top right), the inter-correlations between the two sides de-
cay quickly while the intra-correlations within each side are
maintained. At later times (bottom) the entire chain devel-
ops positive correlations except for the middle spin which
becomes anti-correlated to the rest of the chain. b, Aver-
age correlation as a function of time. The dots in different
colors correspond to the correlation averaged within the cor-
responding colored contours shown in a (top left). Exponen-
tial fits with an offset (solid lines) are applied to guide the
eye. The data in this figure corresponds to the interaction
matrix partially shown in Extended Data Fig. 1.

fields provides a probe of the CSB phase’s dynamical
response to different perturbations. We observe the re-
sponse of a perturbed CSB phase under the effective XY
Hamiltonian in a system of N = 19 spins. We perturb
the prepared CSB phase by rotating the spin of the indi-
vidual ions by a variable angle θj about the z axis while
maintaining them in the x − y plane. We invert the
spins to the right of the center (j > 0) (θj = π) while
leaving the spins to the left of the center (j < 0) unper-
turbed (θj = 0). The central spin (j = 0) is rotated by
θ0 = π/2. This operation breaks the global U(1) sym-
metry of the state while preserving the symmetry in the
left and right subsystems.

Fig. 4 shows the measured correlations 〈σ̂(i)
x σ̂

(j)
x 〉 as

a function of the evolution time τ from state prepa-
ration at τ = 0. Initially, the spins within each side
(i, j < 0 or i, j > 0) of the crystal have positive correla-
tions, while the correlations between spins on different
sides are negative, as shown in Fig. 4a. During the
evolution, the inter-correlations between the two sides
decay faster than the intra-correlations within each side.
At longer evolution times, the two sides of the crystal
overcome the perturbation and develop positive corre-
lations, while the middle spin develops anti-correlations
with the rest of the chain. In Fig. 4b, we show the
full time evolution of the system by plotting the aver-
aged correlation Cn =

∑
{i,j} Cij for {i, j} taken within

the colored contours labeled as n = 1, 2, 3 in Fig. 4a.
This demonstration shows our capability for further in-
vestigation of the properties of the symmetry-breaking
phase.

In summary, we observe a continuous symmetry-
breaking phase with long-range order in a one-
dimensional spin chain, manifested at different interac-
tion ranges. Besides we show the preparation of a dis-
ordered phase with fast-decaying staggered correlations.
As a teaser on the study of non-equilibrium dynamics,
we show the full time evolution of the perturbed CSB
phase. This work opens new avenues for studying quan-
tum phases of matter in low-dimensional systems.

Note added.—While completing this project, we be-
came aware of a complementary demonstration of CSB
in a two-dimensional Rydberg array [29].
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Methods
INTERACTION HAMILTONIAN

We generate spin-spin interactions using Raman tran-
sitions that virtually excite collective motion of the ions.
The beam that globally addresses the ion chain traverses
an acousto-optical modulator (AOM) that is simulta-
neously driven with two radio-frequency (RF) signals,
splitting the optical beam into two components with
distinct tones. These two tones drive simultaneously
the first red and blue sideband transitions in the disper-
sive regime with symmetric detunings ∆ of the Raman
beatnote from the highest-frequency mode of the ion
chain. We control the radial electrostatic potential to
spectrally separate the two sets of radial modes and to
align the wavevector difference of the Raman fields to
the addressed set. In this configuration, we realize the
Ising Hamiltonian HXX(t) = s(t)

∑
ij Jij σ̂

(i)
x σ̂

(j)
x . The

time dependence of the Ising Hamiltonian is realized
by varying the Rabi frequencies of the ions by a factor
of
√
s(t); this is achieved by controlling the power of

N ≤ 23 RF signals feeding a multi-channel AOM which
modulates the amplitude of the individually-addressing
beams, while turning off all other (23−N) channels.

We apply an effective transverse field at each spin by
shifting the frequency of the beam addressing the jth ion
as a function of time by fj = 2s(t)B+2(1−s(t))(−1)jh.
This combination generates the transverse field Hamil-
tonian that is composed of two terms: a spatially-
uniform transverse field HB = s

∑
j Bσ̂

(j)
z and a stag-

gered field Hh = (1− s)
∑
j h(−1)j σ̂(j)

z .

The longer-range configuration with the interaction
matrix in Fig. 1c corresponds to ∆ ≈ 2π × 20 kHz,
B = 2π × 1.6 kHz, h = 2π × 0.9 kHz, and a ramp time
of T = 2.55 ms. The average nearest-neighbor interac-
tion strength is J̄ = 1

N−1
∑
i Ji,i+1 = 2π × 0.09 kHz.

The second configuration with the interaction matrix in
Extended Data Fig. 1 corresponds to ∆ ≈ 2π× 55 kHz,
B = 2π × 6.5 kHz, h = 2π × 4.2 kHz, a ramp time of
T = 0.54 ms, and J̄ = 2π × 0.5 kHz.

The applied transverse field overwhelms the Ising in-
teraction because B � J̄ . Using the definition of the
raising and lowering spin operators, σ̂(i)

± = 1
2 (σ̂(i)

x ±iσ̂(i)
y )

we can represent the Ising interaction in a frame ro-
tating at the Larmor frequency of the uniform field by
σ̂

(i)
x σ̂

(j)
x ≈ 1

2 (σ̂(i)
+ σ̂

(j)
− + σ̂

(i)
− σ̂

(j)
+ ), bestowing fast oscilla-

tions to the σ̂(i)
± σ̂

(j)
± terms. This construction produces

the effective XY Hamiltonian described in the main text.

EXPERIMENTAL RECONSTRUCTION OF THE
Jij MATRIX

We measure each Jij element by turning on the two
beams addressing the ith and jth ions while turning
off all other beams in the array. The ions are initial-
ized in the state |↑(i)

z ↓(j)
z 〉 for j > i, and adjust the

transverse field to zero (fi = fj = 0). We apply a
constant-amplitude pulse with a Rabi frequency that is
scaled by g = 1.3 in the first configuration (interaction
matrix in Fig. 1) and by g = 1 in the second configura-
tion (interaction matrix in Extended Data Fig. 1) and
measure the population oscillations. We fit the average
staggered magnetization 1

2 〈σ̂
(i)
z − σ̂(j)

z 〉 to the function
exp (−g2Γijt) cos(πg2Jijt) using Jij and Γij as fitting
parameters. The measured values of Γij are given in
Extended Data Fig. 2, and an example of the recon-
struction is shown in Extended Data Fig. 3.

NUMERICAL CALCULATION OF THE Jij
MATRIX

We calculate the interaction matrix Jij that results
from applying a spin-dependent optical dipole force with
the Raman lasers, following Refs. [18, 30]. These lasers,
generate coupling between the spins and the collective
motional modes along a single radial direction, virtually
exciting phonons that mediate the spin-spin interaction

Jij =
∑
k

ηikηjkΩiΩj
2(∆ + ω1 − ωk) . (3)

The spin-motion coupling matrix is represented by the
Lamb-Dicke parameters ηnk = 0.08bnk, where bnk is the
normal model matrix element describing the coupling
between spin n and motional mode k [26]. We numer-
ically calculate the matrix bnk and the frequencies of
the motional modes ωk, listed in decreasing order, for
the applied trapping potentials; we consider a quadratic
trapping potential in the radial direction with center-
of-mass frequency ω1 = 2π × 3.3 MHz and an axial po-
tential of V (x) = 250 × x4 − 0.1 × x2 where x is the
coordinate along the chain axis in millimeters and V is
the axial electrostatic potential in electron volts. This
potential yields a nearly uniform-spaced ion chain for
the inner 23 ions with a spacing of 3.75µm. Ωi repre-
sents the equivalent resonant carrier Rabi frequency at
ion i, and we assume a spatially uniform profile.

In Extended Data Fig. 5 we present the numerically
calculated averaged interaction J(l) = 1

N−l
∑
i Ji,i+l as

a function of the distance l for the two configurations
(circles), where J̄ ≡ J(1). We also present the aver-
age experimentally-measured interaction (open squares)
where the bars reflect the total spread of values between
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Extended Data Fig. 1. Partial reconstruction of the interaction matrix in the second experimental configuration.
The experimentally reconstructed Jij matrix is shown for a second experimental configuration up to five nearest neighbors.
The full modeled interaction is detailed in the Methods section and is shown in Fig. Extended Data Fig. 5. This matrix
exhibits long-range interaction, which is nevertheless shorter than the interaction in Fig. 1c.

different pairs, excluding points for which the error in
the reconstructed value exceeded the actual measured
value (only for several elements with l = 5 in the second
configuration which appear in Extended Data Fig. 1 as
zero). The agreement between the measured value and
the calculated values are in a good agreement. We fit
the theoretical values to the fitting function

J(l) = J̄e−β
′(l−1)l−α

′
, (4)

which we adapt from Ref. [31]. The fitted parameters
are α′ = 0.44, β′ = 0.19 for the first configuration (pur-
ple line) and α′ = 1, β′ = 0.19 for the second configu-
ration (black line).
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2a b

Extended Data Fig. 2. Decoherence rate matrix. The measured decoherence rate matrix Γij is extracted from the
reconstruction protocol for the up to five nearest neighbors (see Methods). a, The measured relaxation accompanying the
interaction matrix in the first configuration (Fig. 1c) with g = 1.3. b, The measured relaxation accompanying the interaction
matrix in the second configuration (Fig. Extended Data Fig. 1).

a b c

d e f

Extended Data Fig. 3. Demonstration of the reconstruction protocol. We measure the interactions between the i = -6
ion with its up to five-nearest neighbors, by turning on the a single pair of beams addressing two ions a time. Specifically
(i, j) = (-6,-5) in a, (-6,-4) in b, (-6,-3) in c, and (-6,-2) in d and (-6,-1) in e, as indicated by a dark blue sphere. We fit
the staggered magnetization ms = 1

2 〈σ
i
z − σjz〉 to the function y = cos(πg2Jijt)e−g

2Γijt to extract the interaction strength
Jij and the decoherence rate Γij . The interaction rate as a function of the inter-ion spacing is shown in f. The fitted Jij for
i = −6 (circles). The black line corresponds to the fit function in Eq. (4) with fitting parameters α′ = 0.44, β′ = 0.19. The
exemplary data in this figure corresponds to the interaction matrix in Fig. 1c with a scaling factor g = 1.3; see Methods.
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Disordered

Disordered
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a b c

Extended Data Fig. 4. Average magnetization. The measured regular and staggered magnetization along the x (a), y
(b), and z (c) axes for the first configuration (with interaction matrix in Fig. 1c).

Extended Data Fig. 5. Modeled long-range interaction. We calculate the spin-spin interaction based on a simple model
of the trap potential for the two experimental configurations. The filled circles indicate the numerically calculated values
with no free parameters. The solid lines are fits to the numerical results with a profile of J(l) = J̄e−β

′(l−1)l−α
′
. The fitted

parameters are α′ = 0.44, β′ = 0.19 for the first configuration (purple) and α′ = 1, β′ = 0.19 for the second configuration
(black). Open squares are the experimental data in the two experimental configurations, where the bars represent the spread
of measured values of all pairs at a specific spacing l.
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