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The standard circuit model for quantum computation presumes the ability to directly perform gates between
arbitrary pairs of qubits, which is unlikely to be practical for large-scale experiments. Power-law interactions
with strength decaying as 1/rα in the distance r provide an experimentally realizable resource for information
processing, whilst still retaining long-range connectivity. We leverage the power of these interactions to imple-
ment a fast quantum fanout gate with an arbitrary number of targets. Our implementation allows the quantum
Fourier transform (QFT) and Shor’s algorithm to be performed on a D-dimensional lattice of qubits in time that
scales (poly)logarithmically in the number of qubits, using interactions with α � 2D. As a corollary, we show
that power-law systems with α � 2D are difficult to simulate classically even for short times, under a standard
assumption that factoring is classically intractable. Complementarily, we develop a technique to give a general
lower bound—linear in the size of the system—on the time required to implement the QFT and the fanout gate
in systems that are constrained by a linear light cone. This allows us to prove an asymptotically tighter lower
bound for long-range systems than was possible with previously available techniques.
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In the circuit model for quantum computation, the depth
of a quantum circuit is given by the number of layers of
nonoverlapping quantum gates it contains. In typical quan-
tum systems, coherence times are a limitation, so low-depth
circuits prioritized for the regime of noisy intermediate-scale
quantum computers are more desirable [1]. Various proposed
models of quantum computation are equivalent up to polyno-
mial overhead, making the definition of the complexity class
BQP insensitive to the model of computation [2–5].

However, these models can differ in the precise complexity
of operations. As a drastic example, suppose we are given
access to a fast unbounded fanout gate represented by the
map |x〉|y1〉|y2〉 . . . �→ |x〉|y1 ⊕ x〉|y2 ⊕ x〉 · · · where the ⊕
operator denotes bitwise XOR (bit yi is flipped if x = 1 and
not flipped otherwise). This operation is a reversible analog of
a gate that copies x to registers y1, y2, . . . . By “unbounded,”
we mean that there is no limit on the number of bits that can
be targeted by this operation.

The unbounded fanout gate makes it possible for constant-
depth circuits to perform a number of fundamental quantum
arithmetic operations [5]. Furthermore, unbounded fanout can
also reduce the quantum Fourier transform (QFT)—a subrou-

*guoa@umd.edu

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

tine of a large class of quantum algorithms, including most
famously Shor’s algorithm for integer factorization [6]—to
constant depth as well. In fact, it enables implementing the
entirety of Shor’s algorithm by constant-depth circuits with
access to a polynomial amount of classical pre- and postpro-
cessing [7].

While the unbounded fanout gate is clearly a powerful
resource for quantum computation, its efficient implementa-
tion in physically realizable architectures has not been studied
in great depth. In the standard circuit model—where one
may apply single-qubit and two-qubit gates from a standard
gate set on arbitrary nonoverlapping subsets of the qubits—a
fanout gate on n qubits can be implemented optimally in
�(log n)-depth [8,9]. One may also consider the Hamiltonian
model, in which one may apply single-qubit and two-qubit
Hamiltonian terms. In particular, in the Hamiltonian model
with all-to-all unit-strength interactions, one can implement
the fanout gate in constant time [10,11]. However, the as-
sumption of being able to directly apply interactions between
two arbitrarily distant qubits does not hold in practice for
large quantum computing architectures [12–15]. Mapping
these circuits to restricted architectures inevitably leads to
overheads and potentially even different asymptotic scaling.
In D-dimensional nearest-neighbor architectures, for exam-
ple, the unbounded fanout gate can only be implemented
unitarily in depth �(n1/D) [16]. And while there exist pro-
tocols that can implement the fanout gate in constant depth on
these architectures [17], these proposals require intermediate
measurements along with classical control—a resource that
may be inaccessible in certain near-term experimental systems
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[18]. The overheads resulting from such physical restrictions
could therefore limit the potential asymptotic speed-up from
a fast quantum fanout.

Systems with power-law interactions, however, present an
opportunity for realizing these speed-ups. Specifically, for a
lattice of qubits in D dimensions, the interaction strengths
between pairs of qubits separated by a distance r are weighted
by a power-law decaying function 1/rα . These long-range
interactions are native to many experimental quantum systems
and have attracted interest as potential resources for faster
quantum information processing. Examples of long-range
interactions include dipole-dipole and van der Waals inter-
actions between Rydberg atoms [19,20], and dipole-dipole
interactions between polar molecules [21] and between defect
centers in diamond [20,22]. Previous papers have explored the
acceleration of quantum information processing using strong
and tunable power-law interactions between Rydberg states
[23–29], which can implement k-local gates that control or
target simultaneously k � 10 qubits. Those gates still have
a finite spatial range and can therefore only give a constant-
factor speed-up over nearest-neighbor architectures. Recently,
Refs. [30–33] gave protocols that take advantage of power-law
interactions to quickly transfer a quantum state across a lat-
tice. As we will show, it is also possible to leverage the power
of these interactions to implement quantum gates asymptoti-
cally faster than is possible with finite-range interactions [34].

In this Letter, we propose a protocol for implementing
the unbounded fanout gate quickly using engineered Hamil-
tonians with power-law interactions. As an application of
this protocol, we show that simulating strongly long-range
systems with α � 2D for logarithmic time or longer is
classically intractable, if factoring is classically hard. As a
complement to our upper bounds on the fanout time, we also
develop a technique that allows us to prove the tightest-known
lower bounds for the time required to implement the QFT and
unbounded fanout in a general lattice architecture.

Protocol for fast fanout using long-range interactions. To
perform a fanout gate on n logical qubits, we employ as
subroutines modified versions of the state transfer protocols
from Refs. [30] and [35] to generate a many-body entangled
state in O(polylog(n)) time using long-range interactions with
α < 2D.

As an intermediate step, both state-transfer protocols
“broadcast” a single-qubit state into the corresponding Green-
bergerHorneZeilinger (GHZ)-like state,

(ψ0|0〉 + ψ1|1〉) ⊗ |00 . . . 0〉 �→ ψ0|00 . . . 0〉 + ψ1|11 . . . 1〉,
(1)

where ψ0, ψ1 ∈ C and |ψ0|2 + |ψ1|2 = 1. In the case of
Ref. [30], this long-range broadcast is achieved by performing
a sequence of cascaded controlled-NOT (CNOT) gates—
similar to the standard gate-based implementation of the
unbounded fanout gate. The CNOT gate from qubit i to qubit j
can be implemented by a Hamiltonian Hi j = hi j |1〉〈1|i ⊗ Xj

acting for time t = π/(2hi j ), up to a local unitary. Apply-
ing a Hamiltonian H (t ) = ∑

i j Hi j (t ), which variously turns
on/off interactions between pairs of qubits at different times,
allows one to implement the broadcast in Eq. (1).

By using Hamiltonians with long-range interactions hi j

satisfying ||hi j || � 1/rα
i j , it is possible to implement the

Algorithm 1. Implementing fanout with long-range interactions.

1: Initialize ancillary qubits: |ai〉 ← |0〉 for i = 1 to n
2: CNOT(|d1〉 → |a1〉)�

Apply broadcast operation as shown in Eq. (1) to ancillae:
3: LONGRANGEBROADCAST(|a1〉 → |a2〉, . . . , |an〉)�

parfor indicates that for-loop can be implemented in parallel
4:parfor i = 2 to n do
5: CNOT(|ai〉 → |di〉) � Transfer fanout to data qubits
6: end parfor�

Apply broadcast operation in reverse to uncompute ancillae
7: REVERSELONGRANGEBROADCAST(|a2〉, . . . , |an〉 → |a1〉)
8: CNOT(|d1〉 → |a1〉)

broadcast operation asymptotically faster than with short-
range interactions—a statement that we will prove rigorously
later in the text. For a system of n qubits, Refs. [30] and [35]
showed that this broadcast time depends on the power-law
exponent α and the dimension of the system D as follows:

tGHZ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(n0) α < D
O(log n) α = D
O(logκα n) α ∈ (D, 2D)
O(eγ

√
log n) α = 2D

O(nmin(α/D−2,1)) α > 2D,

(2)

for constants γ = 3
√

d and κα = log 4/ log(2D/α). We term
the broadcast time tGHZ, since it corresponds to the GHZ-state-
construction time when ψ0 = ψ1 = 1/

√
2. This long-range

broadcast is not the same as fanout because it requires that all
intermediary qubits (besides the first qubit) be initialized in
the |0〉 state. However, as we now show, it is possible to adapt
the broadcast protocol to implement the fanout gate in time
tGHZ using n ancillary qubits.

Consider a system of n data qubits arranged on a
D-dimensional lattice. Furthermore, assume there are n an-
cillary qubits, each located adjacent to one of the original
qubits. We denote the qubits as |d1〉, |d2〉, . . . , |dn〉 and
|a1〉, |a2〉, . . . , |an〉 for data and ancilla, respectively. Suppose
we want to perform fanout with |d1〉 as control, and that all
ancillae are guaranteed to be in state |0〉. Then the sequence of
operations in Algorithm 1 (also depicted graphically in Fig. 1)
implements the fanout operation.

In addition to accomplishing fanout, this protocol returns
the ancillary qubits to the |0〉 state. Modulo the O(n) short-
range operations that can be done in parallel in a single time
step, the protocol requires time 2tGHZ. Hence, it can imple-
ment the fanout gate in time that is constant for α < D,
polylogarithmic for D � α < 2D, and polynomial for α >

2D.
We briefly comment on the constant-depth implementa-

tion of the QFT and Shor’s algorithm using the unbounded
fanout gate. An n-qubit QFT circuit can be performed with
O(n log n) gates to 1/poly(n) precision [36]. Using un-
bounded fanout, the circuit can be reduced to constant depth
with O(n log n) ancillary qubits [5]. We note that including
these ancillae in the lattice would not change the asymp-
totic scaling of our protocol for α < 2D, since tGHZ is
O(polylog(n)) in this regime.
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FIG. 1. A protocol for a fast unbounded quantum fanout gate
using long-range interactions, depicted here for a 1D lattice. The
layout consists of a chain of data qubits, along with their adjacent
ancillary qubits that are initialized to |0〉. (a) The first step is a local
controlled-NOT (CNOT) gate from |d1〉 to |a1〉. (b) The application
of the long-range “broadcast” from |a1〉 to the rest of the ancillary
qubits |ai〉 creates a GHZ-like state in Eq. (1) for the ancillary qubits
together with the first data qubit. (c) We apply CNOT gates from
ancillary qubit |ai〉 to the data qubit |di〉, which can be done in
parallel. After this step, we reverse process (b) and process (a) to
return the ancillary qubits to |0〉 (not redrawn here).

We also remark on the potential ways of performing the
fast fanout gate experimentally. One method would be to
use two different qubit realizations for the data and ancillary
qubits, with the former interfacing with the latter through
local interactions. For example, one may consider a system
of fermionic alkaline-earth atoms, with each atom’s electron
on the clock transition acting as an ancillary qubit, its nuclear
spin as the data qubit, and with long-range Rydberg-Rydberg
interactions between electrons. In this heterogeneous case, the
n CNOT gates between the data and ancilla qubits of our pro-
tocol would be straightforward to implement in parallel [37].
Alternatively, one may consider implementing the protocol
entirely in a system of Rydberg atoms using power-law inter-
actions of different strengths. This could be done using a gate
based on van der Waals interactions (α = 6) to implement the
short-range CNOT gates between data and ancilla qubits, and
then rotating into a new basis in order to implement the long-
range broadcast interaction using dipole-dipole interactions

(α = 3). We provide more discussion on the implementation
of the protocol in the Supplemental Material [38].

Intractability of classical simulation of strongly long-range
systems. As a corollary, the protocol shows that strongly
long-range interacting systems with α < 2D evolving for
time polylogarithmic in n or longer are difficult to simulate
classically in the worst case. The argument operates by a
complexity-theoretic reduction from integer factoring, a prob-
lem that is assumed to be difficult for classical computers
with the ability to use random bits (FACTORING /∈ BPP). This
assumption suggests that the simulation of strongly long-
range systems could provide an avenue towards a potentially
useful experimental demonstration of quantum computational
advantage.

The argument proceeds as follows. The time required to
implement the fanout gate using Algorithm 1 is O(polylog(n))
for α < 2D. It is possible to implement Shor’s order-finding
algorithm in time O(tFO) using a small amount of classical
preprocessing (polynomial in n) [5,39]. Using the ability to
sample from the output of the order-finding algorithm to
error ε < 0.4 < 4/π2, classically efficient postprocessing
can output a factor of an n-bit integer with probability 	(1)
[6]. Therefore, if it were possible to efficiently sample from
the output distribution in strongly long-range systems for
evolution-time t = O(log n), then it would be possible to
factor n-bit integers efficiently as well. The best classical
algorithm currently known for factoring an n-bit integer takes
runtime exp[O(

√
n log n)] [40] and the problem is widely

believed to be classically intractable. This stands in contrast
to systems with finite-range interactions in 1D, for which
efficient classical simulation is possible up to any time sat-
isfying t � O(log n) [41]. Under the complexity assumption
mentioned above (FACTORING /∈ BPP), we have shown that
this result is not fully generalizable to strongly long-range
interacting systems [42].

Lower bounds on the time required to implement QFT
and fanout. In previous sections, we found upper bounds to
the time required to implement fanout—and by corollary, the
QFT. As a way to benchmark our long-range protocol, we
now proceed to discuss lower bounds for implementing fanout
and the QFT. Recall that the protocol in Algorithm 1 can
implement fanout in time tGHZ, which scales as O(polylog(n))
for long-range systems with α < 2D. In this section, we
show that such fast asymptotic runtimes cannot be achieved
in architectures with strict locality constraints.

In Ref. [43], Maslov showed that a specific way of
implementing the QFT requires 	(n) depth on the 1D nearest-
neighbor architecture, although this does not rule out other
QFT implementations with potentially sublinear depth. Here,
we devise a technique that yields a lower bound of 	(n1/D) for
the time required to perform a QFT in the Hamiltonian model.
This result strengthens and generalizes Maslov’s bound to
higher dimensions and to the Hamiltonian model. In addition,
we show that the same lower bound applies even to circuits
that perform the QFT approximately.

Our 	(n1/D) lower bound holds for any lattice system
with finite velocities of information spreading, which include
short-range interactions (i.e., finite-ranged or exponentially
decaying) and power-law interactions with α > 2 in one
dimension or α > 2D + 1 for D > 1 [33,44,45]. Combined
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with our results above, this implies that systems with strongly
long-range interactions can implement the QFT and fanout
asymptotically faster than more weakly interacting systems.

The intuitive idea behind our proof is that the QFT unitary
can spread out operators in a certain precise sense, a task
that can be bounded by the “Frobenius-norm light cone” of
Ref. [32]. The fact that this light cone imposes a finite speed
limit on information propagation in short-range interacting
systems implies that the minimum time t2(r) required for
operator-spreading is proportional to the distance between
qubits r. This constrains the implementation time for the
QFT, denoted tQFT, by 	(n1/D), from which the circuit-depth
lower bound follows. The same Frobenius-norm bound also
constrains the time required to implement the approximate
QFT (AQFT).

We consider the 4n-dimensional vector space of n-qubit
operators for which the set of Pauli operators {I, X,Y, Z}⊗n

forms a basis. We quantify operator spreading outside a region
of radius r as follows. Taking an operator |O) initially sup-
ported on site 1, we measure the weight of its time-evolved
version, |O(t )), on sites at distance r (and beyond) using a
projection operator Qr , which projects onto strings of Pauli
operators that act nontrivially on at least one site at distance
r or greater. We measure the weight of this projected opera-
tor |Or ) := Qr |O(t )) via the (squared) normalized Frobenius
norm ||Or ||2F := Tr(O†

r Or )/2n, which coincides with the Eu-
clidean norm over the operator space, (Or |Or ) [46]. We define
t2(r) to be the minimal time after which ||Or ||2F is able to
achieve a predetermined constant value [32].

We show that operators spread by the action of the QFT
can have high weight on distant regions, which implies that
tQFT � t2(r). Recall that the QFT operator on n qubits is
defined as UQFT := ∑2n−1

y,z=0 |y〉〈z|ωyz/
√

2n, where |y〉 (|z〉) is an
n-qubit state that encodes the binary representation of y (z) and
ω = e2π i/2n

. Then the following lemma holds:
Lemma. Let UQFT be the QFT operator on n qubits ar-

ranged in a D-dimensional lattice such that the first and
nth qubits are located a distance r = �(n1/D) apart. Then
U †

QFTZ1UQFT =: Z ′
1 is an operator with at least constant

weight at distance r.
We defer the (short) proof of this Lemma to the Supple-

mental Material [38]. As a result of the Lemma, tQFT follows
the light cone defined by the normalized Frobenius norm,
which is at least as stringent as the Lieb-Robinson light cone.
This leads directly to the following theorem:

Theorem. For systems with finite-range or exponentially-
decaying interactions in D dimensions, the time required to
implement the QFT unitary is lower bounded by tQFT =
	(r), where r = �(n1/D) is the distance between the first and
nth qubits.

For systems with long-range interactions, the Lieb-
Robinson light cone gives the following bounds [33,47–49]:

tQFT =

⎧⎪⎪⎨
⎪⎪⎩

	(1), α = D
	(log r), α ∈ (D, 2D]
	(rα−2D), α ∈ (2D, 2D + 1]
	(r), α > 2D + 1.

(3)

The Frobenius light cone gives the following (tighter) bounds
[50,51]:

tQFT =
⎧⎨
⎩

	
(
r

2α−2D
2α−D+1

)
, α ∈ (D, 2D]

	(rα−1), α ∈ (1, 2], D = 1
	(r), α > 2, D = 1.

(4)

We note that the lower bounds in the Theorem also apply to
the fanout time, tFO, through the observation that fanout also
performs operator spreading (using X1 instead of Z1). We em-
phasize that these bounds pertain to the Hamiltonian model,
where commuting terms can be implemented simultaneously
and state transfer could in theory be done in o(1) time for
sufficiently small α.

We observe that the QFT can implement quantum state
transfer as well. The goal of state transfer is to find
a unitary V such that V (|ψ〉 ⊗ |0〉⊗n−1) = |0〉⊗n−1 ⊗ |ψ〉
[30,52]. The unitary V = H⊗nUQFT (where H represents
the single-qubit Hadamard gate) satisfies this definition of
state transfer.

For the AQFT, the lower bound follows in a similar fash-
ion. The circuit that implements the QFT approximately
with error ε can be represented by a unitary ŨQFT such
that ‖UQFT − ŨQFT‖ � ε [39]. In the Supplemental Ma-
terial [38], we show that the operator Ũ †

QFTZ1ŨQFT also
has large support on sites beyond distance r as well, im-
plying that the lower bounds in Eqs. (3) and (4) also
hold for the AQFT.

Conclusions and Outlook. In summary, we have developed
a fast protocol for the unbounded fanout gate using power-law
interactions. For α � 2D, the protocol can perform the gate
parametrically faster than is possible with short-range interac-
tions. In particular, for experimentally realizable dipole-dipole
interactions with α = 3 in two and three dimensions, as well
as van der Waals interactions with α = 6 in three dimensions,
the fast fanout protocol allows the quantum Fourier transform
and Shor’s algorithm to be performed in time that scales
subpolynomially in the number of qubits. As a corollary, we
showed that the classical simulation of strongly long-range
systems with α < 2D for time t = O(polylog(n)) is at least
as difficult as integer factorization, which is believed to be
intractable in polynomial time classically.

To benchmark our protocol, we developed a new and gen-
eral approach for lower-bounding the time required to perform
a given quantum algorithm that is independent of its imple-
mentation as a quantum circuit. In particular, we derive a
	(n1/D) lower bound on the time required to implement quan-
tum fanout–as well as the exact and approximate QFTs—for
all systems constrained by a linear light cone. In doing so, we
used the state-of-the-art Frobenius bounds from [32,50,51],
which have been shown to be tighter than the Lieb-Robinson
bound in the regimes of α in which they hold. While the Lieb-
Robinson bound has been shown to be saturable for all α � D
(up to logarithmic factors), the corresponding result for the
Frobenius bound remains unknown. For higher dimensions,
the conjectured Frobenius light cone is t = 	(rα−D) for D <

α < D + 1 [51]. If this generalization of the Frobenius bound
were to hold, our lower bounds on the circuit complexity of
the QFT and fanout would immediately generalize.
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As a final remark, we have derived our lower bounds on
tQFT under the assumption that the first and last qubits of
the QFT are separated by a distance of r = �(n1/D). How-
ever, other mappings of computational qubits to lattice qubits
could potentially lead to faster implementations. For exam-
ple, consider the mapping onto a one-dimensional chain of
qubits wherein the second half of the chain is interleaved in
reverse order with the first half [53]. Applying the QFT to a
product state in this layout results in a state with two-qubit
correlations that decay exponentially in the distance between
the qubits. In this case, our lower bound techniques cannot
rule out the possibility of tQFT = o(n) for short-range inter-
acting Hamiltonians. This suggests that tQFT could depend
strongly on qubit placement. Given that the QFT is typically
used as a subroutine for more complex algorithms, it may
not always be possible to reassign qubits without incurring
costs elsewhere in the circuit. Still, it would be interesting
to investigate whether careful qubit placement could yield a
faster QFT.
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