
ABSTRACT

Title of Dissertation: Many-body entanglement dynamics and computation
in quantum systems with power-law interactions

Andrew Yang Guo
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Alexey V. Gorshkov
Department of Physics
University of Maryland

Professor Brian Swingle
Department of Physics
Brandeis University

Quantum many-body systems with long-range interactions—such as those that decay

as a power-law in the distance between particles—are promising candidates for quantum

information processors. Due to their high degree of connectivity, they are potentially ca-

pable of generating entanglement more quickly than systems limited to local interactions,

which may lead to faster computational speeds. The questions of the nature of the speed-

ups they can achieve—as well as how to program these long-range systems to achieve such

speed-ups—are, therefore, of prime theoretical interest.

To understand the nature of the speed-ups achievable, it is natural to consider the dual

question, which is what are the fundamental speed limits in quantum many-body systems?

Given that most systems relevant to quantum computation operate in the non-relativistic

regime—where information typically propagates at velocities far below the threshold set

by the speed of light—the absence of an absolute speed limit seems to allow for unbounded

rates of information transfer. However, in 1972, Lieb and Robinson restored a notion of

locality in systems with local interactions by proving a bound that led to light-cone-like re-



gions outside which information propagation is exponentially suppressed [1]. The question

of whether similar bounds could be proven for long-range systems has remained open—

until recently.

In this thesis, we will describe results related to the now-fuller picture of the fundamen-

tal rates of information propagation in power-law-interacting systems. First, we consider

the regime of “strongly long-range” interactions, for which velocities can grow unbound-

edly with system size. We will present Lieb-Robinson-type bounds for these systems and

also outline a protocol that can transfer quantum states as fast as these bounds will allow.

we will also discuss the implications of these bounds for quantum information scrambling.

The second part of the thesis will study how protocols for transferring quantum states

quickly can be used to perform multi-qubit gates. In particular, we will demonstrate how

the power of long-range interactions allows one to implement the unbounded fanout gate

asymptotically faster than systems with local interactions. This result also implies the

hardness of simulating the dynamics of long-range systems evolving for superlogarithmic

times, and demonstrates the potential for insights from quantum many-body physics to lead

to a more powerful toolbox for quantum computation.

Finally, we will address the question of fundamental speed limits in quantum systems

that are open to the environment. A priori, it may seem surprising that such speed limits

may exist, since non-unitary processes may break locality constraints. However, we show

that under certain assumptions such as linearity and Markovianity of the bath, one can

restore a notion of locality using Lieb-Robinson-type bounds. We use the resulting bounds

to constrain the entanglement structure of the steady states of open long-range systems, a

first step towards proving the area law for such systems.
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Chapter 1

Introduction

At the heart of every quantum computer lies a many-body quantum system. These systems

can inhabit a rich and complex class of states with exotic and interesting properties in their

own right. One of the fundamental properties that delineate them from classical systems

is their ability to experience entanglement. Extending beyond the standard correlations

allowed by classical probability theory, entanglement provides a source of quantum infor-

mation and enables the remarkable performance of quantum computing. Indeed, a quantum

computation can be viewed as the dynamics of a many-body system whose evolution to an

entangled state encodes a computational problem. As such, the rate at which a many-body

system can generate entanglement directly informs how quickly this computation can be

performed in practice.

Most many-body systems relevant to modern quantum technologies can be viewed to

operate in a non-relativistic regime, where typical velocities of information propagation are

far below the threshold set by the speed of light. In this regime, an absolute speed limit is

lacking due to the absence of causality inherent in the Schrödinger equation. As such, a

fundamental question in quantum many-body physics is, what are the fastest rates at which

entanglement can spread in such systems?

The first bounds on these rates were shown by Elliot Lieb and Derek Robinson in
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1972 [1]. Since then, much progress has been made on sharpening these bounds [2, 3]

and proving them for specific classes of systems [4, 5, 6, 7]. In addition to bounding

the rate of entanglement generation, these bounds are also connected to a diverse array

of phenomena, including the decay of correlations in the ground state [8], generation of

topological order [9, 10], efficiency of classical/quantum simulation [11, 4], hardness of

bosonic sampling tasks [12], heating rates in periodically driven Floquet systems [13, 14],

and signatures of quantum chaos [15, 16].

The ability of quantum computers to generate entanglement is central to their ability to

achieve speed-ups in problems that are believed to be intractable for classical computers.

Solving hard problems quickly has been the selling point of quantum computers since

1994, when Peter Shor discovered his algorithm for fast integer factorization [17]. While

in practice the computational speed of a quantum computer is inherently determined by

parameters of the hardware that realizes the computer, the “software” can also play an

important role. In particular, the choices of algorithms and protocols used to perform the

various gates and subroutines in the quantum circuit can affect the asymptotic runtimes.

It can therefore be advantageous to study the theoretically optimal rates of entanglement

generation in general models that are universal to all quantum computers, regardless of the

underlying hardware.

In terms of quantum hardware, today’s quantum devices are indeed quite limited. They

contain small numbers of qubits that decohere quickly. Furthermore, many of the preva-

lent models also rely on restricted qubit layouts such as a 2D planar grid architecture [18],

whereas the standard circuit model of quantum computing assumes one may apply single-

qubit and two-qubit gates on arbitrary non-overlapping subsets of the qubits. Since the as-

sumption of being able to directly apply interactions between two arbitrarily distant qubits

does not hold in practice for large quantum computing architectures [19, 20, 21, 22, 23],

computational overheads are incurred when mapping circuits to these restricted connectiv-

ities. These overheads affect the asymptotic scaling of quantum algorithms and can even
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negate certain types of quantum advantage1. As such, these hardware constraints motivate

the need to study both novel architectures as well as new ways of generating entanglement

quickly.

In terms of novel architectures for quantum computing, systems that possess long-

range interactions provide promising candidates. They have higher degrees of connec-

tivity, which allows them to perform non-local coupling between qubits. In particular,

power-law interactions—those that decay as a power-law 1/rα in the distance r between

particles, for some α > 0—provide a natural way of augmenting the power of quantum

systems. These not-so-local interactions are native to many experimental quantum systems

and include dipole-dipole and van der Waals interactions between Rydberg atoms [24, 25],

dipole-dipole interactions between polar molecules [26], defect centers in diamond [27,

25], and magnetic atoms [28]. Such systems have attracted interest due to their ability to

act as quantum sensors [29] and clocks, in addition to their potential as resources for faster

quantum information processing.

Recently, Refs. [6, 30, 31, 32] gave protocols that take advantage of power-law interac-

tions to quickly transfer a quantum state across a lattice. As we will show later, it is also

possible to leverage the power of these interactions to implement quantum gates asymptot-

ically faster than is possible with finite-range interactions. Furthermore, the Lieb-Robinson

bounds discussed earlier, which bound the rate of transferring quantum states or engineer-

ing many-body entangled states, can also lead to new tools for lower-bounding the runtimes

of quantum algorithms. These two applications combined demonstrate the power of many-

body physics to enhance the computational toolkit for quantum information science.

In Chapter 2, we provide one such demonstration of this synthesis of perspectives. We

provide a set of matching upper and lower bounds for the time it takes to transfer quan-

tum information in systems that can be mapped to free bosons or fermions hopping on a

d-dimensional lattice with 1/rα hopping strength. Specifically, for strongly long-range sys-

1for instance, polynomial speed-ups of order quadratic or smaller in the number of qubits
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tems with α < d/2, we prove a Lieb-Robinson-type bound on the time required to transfer

a single free boson/fermion and show that it can be saturated by a protocol to transfer an

unknown quantum state. We also prove a bound for sending quantum information from

one site to an extensive part of the system and show that it can likewise be saturated. This

bound leads to a bound on the time it takes for the system to scramble quantum informa-

tion, which generalizes the fast-scrambling result in Ref. [15] to all strongly long-range

systems.

In Chapter 3, we demonstrate the power of long-range systems to obtain quantum

speed-ups for quantum computation. In particular, we propose a method to engineer power-

law interacting Hamiltonians to quickly generate a multi-qubit quantum gate known as the

unbounded fanout gate and that it is able to achieve asymptotic speed-ups over short-range

systems for all α ≤ 2d+1. As an application of our protocol, we show that simulating long-

range systems with α ≤ 2d for polylogarithmic times or longer is classically intractable, if

factoring is classically hard. As a complement to our upper bounds on the fanout time, we

also develop a technique that allows us to prove the tightest-known lower bounds for the

time required to implement the QFT and unbounded fanout in general lattice architectures.

Finally, in Chapter 4, we consider the dynamics of information transfer in long-range

systems that are coupled to an environment. These “open” systems evolve non-unitarily

and model realistic experimental systems, which can suffer noise and decoherence. We

prove open-system Lieb-Robinson-type bounds on the dynamics of systems coupled to

Markovian environments and use these bounds to constrain the entanglement structure of

the states of these systems in the limit of infinitely long evolution times—i.e. of their

“steady states.” In particular, we prove bounds on the decay of spatial correlations in these

steady states. This result may serve as a first step towards establishing an area-law scaling

of entanglement for these systems, similar to what was done in Ref. [33] for the closed

case.
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Chapter 2

Signaling and scrambling with strongly

long-range interactions

In non-relativistic quantum mechanics, Lieb-Robinson bounds provide a notion of causal-

ity [1], limiting the speed of information propagation (or signaling) to a finite value in

lattice systems with short-range interactions. This bounded signaling speed has strong im-

plications for quantum information and condensed matter physics, leading to entanglement

area laws [34] and the existence of topological order [10]. However, it has remained an

open question until recently as to whether the signaling speed must be finite if interac-

tions are long-ranged and decay as an inverse power-law 1/rα in the inter-particle dis-

tance r. Such power-law interacting systems arise in experimental platforms for quantum

computation and quantum simulation, including Rydberg atoms [24], trapped ions [35],

polar molecules [26], defect centers in solids [27], and atoms trapped along photonic crys-

tals [36]. For d-dimensional power-law interacting systems with α greater than 2d + 1, a

finite signaling speed has recently been shown [5, 6] and a tight set of bounds proven (up

to subpolynomial factors) for all α > d. However, for α ≤ d, the fate of causality is far

from settled.

In this work, we focus on this regime of strongly long-range interacting systems, where

7



interaction energy per site diverges, thus implying α ≤ d [37, 38, 39, 40]. Note that even

if one normalizes the interaction strength to make energy extensive (i.e., proportional to

the number of lattice sites), these systems are still fundamentally different from those with

α > d (as energy is in general no longer additive for subsystems [41]). To avoid confusion,

we will not perform any normalization of interaction strength throughout this chapter, as

such normalization can be performed later by rescaling time without changing the physics

implied by our results [39].

Apart from their existence in experimental platforms [42, 35, 43, 26, 44], strongly long-

range interacting systems have received much theoretical interest due to their applications

in spin squeezing [45], novel behavior in dynamical critical scaling [46, 47], divergent

equilibration time [37], and close relation to fast quantum-information scrambling [48, 49,

50, 51, 52, 53, 54]. The phenomenology of these systems differs from that of their short-

range counterparts at a fundamental level, and thus require new theoretical understandings.

Two fundamental questions about these systems are (1) what is the shortest time tsi needed

to send a signal from one site to a site located an extensive distance away, and (2) what is

the shortest time tsc needed to scramble the information stored in the system? 1

There have been a number of attempts to answer the above two questions, with limited

success. For the first question, Refs. [55, 56, 30] show that in certain strongly long-range

interacting systems with α ≤ d, information and correlations can spread across the entire

system in a finite time that is independent of the number of sites, N . (For certain systems

not engineered for fast signaling or scrambling, information propagation may even be sup-

pressed [57].) The Lieb-Robinson-type bound derived in Ref. [39], however, suggests that

the signaling time can vanish in the N → ∞ limit, and does not rule out the possibility of

tsi scaling as log(N)N2α/d/N2 for α < d. No protocol that we know of comes close to

achieving such fast signaling. As for scrambling, Ref. [15] shows that the scrambling time

can be lower-bounded by tsc & 1/N for α = 0, whereas the fastest-known scramblers are

1We will define the quantities tsi and tsc rigorously later in the chapter
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conjectured to be able to scramble in time tsc ∝ log(N)/
√
N [52].

While the definitive answers to these two questions remain to be found, we present

several advances in this chapter. First, we prove a new bound for systems that can be

mapped to free bosons or fermions with 1/rα hopping strength, which leads to a signaling-

time bound of tsi & Nα/d/
√
N . While no previous bound has been given specifically for

free-particle systems, the best existing result for interacting systems yields a significantly

looser bound of tsi & log(N)N2α/d/N2 [39] 2. Notably, our free-particle bound is tight for

α ≤ d/2, as we show that it can be saturated by a new quantum state transfer protocol.

We also prove a bound of tsi & log(N)Nα/d/N for general interacting spin systems,

which—while improving significantly over the previous best bound mentioned above [39]—

is still not known to be tight. Building on this second result, we prove a tight bound for

“many-site signaling” (from one site to an extensive part of the system). This many-site

signaling bound leads to a scrambling-time bound of tsc & Nα/d/N , which generalizes the

result in Ref. [15] of tsc & 1/N to all α < d.

2.1 Tight bound for free particles

We first prove a Lieb-Robinson-type bound for non-interacting bosons/fermions on a lat-

tice. Consider the following free-particle Hamiltonian H(t) defined on a d-dimensional

lattice Λ with N sites:

H(t) =
∑
i,j∈Λ
i<j

(Jij(t)c
†
icj + h.c.) +

∑
i∈Λ

Bi(t)c
†
ici, (2.1)

where c†i (ci) represents the creation (annihilation) operator. The hopping strength Jij(t)

and chemical potential Bi(t) can depend on time and we do not impose any constraint on

them for now. We denote an operator A at time t in the Heisenberg picture as A(t) =

2While the original bound in Ref. [39] was stated in terms of n-body interactions, here we cite the bound
on the interaction time as it applies to the specific case of two-body interactions.
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U †(t)AU(t), where U(t) ≡ T e− i
~
∫ t
0 H(t′) dt′ is the time evolution operator (~ = 1). The

operator norm of A will be denoted by ‖A‖.

Theorem 1. For the Hamiltonian defined in Eq. (2.1) and any pair of distinct sites X, Y ∈

Λ, ∥∥∥[cX(t), c†Y

]∥∥∥ ≤ ∫ t

0

dτ

√∑
i∈Λ

|JiX(τ)|2. (2.2)

We use [·, ·] to denote the commutator for bosons and anti-commutator for fermions.

Roughly speaking, the quantity ‖[cX(t), c†Y ]‖measures the overlap between the support

of the operator cX(t) (which expands from site X due to hopping terms) and the site Y .

As a result, it also quantifies the amount of information that can be sent between X and

Y in a given time t. Indeed, we define the signaling time tsi as the minimal time required

to achieve ‖[cX(t), c†Y ]‖ > δ for some positive constant δ. Note that we do not expect the

chemical potential strength Bi(t) to show up in the bound, as on-site Hamiltonian terms do

not change the support of cX(t).

If the hopping terms in the Hamiltonian are short-ranged (e.g., nearest-neighbor), one

might expect ‖[cX(t), c†Y ]‖ to decay exponentially in the distance rXY between X and Y ,

due to the strong notion of causality that follows from the Lieb-Robinson bound [1]. Ad-

ditionally, if the hopping strength decays as a power law (|Jij(t)| ≤ 1/rα) with α > d,

intuition would suggest that ‖[cX(t), c†Y ]‖ decays algebraically in rXY [58, 59], indicating

a weak notion of causality. However, the right-hand side of Eq. (2.2) has no dependence

on rXY . This is because the bound is tailored to strongly long-range hoppings with α < d,

which makes it loose for shorter-ranged long-range hoppings.

Assuming that |Jij(t)| ≤ 1/rα, we can simplify Eq. (2.2) to

∥∥∥[cX(t), c†Y (0)
]∥∥∥ ≤ t×


O(1) α > d/2,

O
(
N

1
2
−α/d

)
0 ≤ α ≤ d/2.

(2.3)
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where N is the number of lattice sites and O is the asymptotic “big-O” notation 3. There-

fore, for α ≤ d/2, it takes a time tsi = Ω
(
Nα/d/

√
N
)

to signal from site X to site Y ,

independent of the distance between X and Y .

In the next section, we show that for α ≤ d/2, the bound in Eq. (2.2) can be saturated

(up to a factor of 2) by engineered free-particle Hamiltonians. This leads to the conclusion

that causality can completely vanish—in the sense that signals can be sent arbitrarily fast

given large enoughN—for a strongly long-range hopping system with α < d/2. It remains

an open question whether such a statement can be generalized to systems with d/2 ≤ α < d

for either free or interacting particles.

2.1.1 Proof of Theorem 1

Let us first go into the interaction picture of
∑

iBi(t)c
†
ici to eliminate the on-site terms

from the Hamiltonian in Eq. (2.1). (This imparts a time-dependent phase eiφjk(t) onto the

hopping term Jjk(t) for some φjk(t) ∈ [0, 2π) and j 6= k, which—since it does not change

the value of |Jjk(t)|—does not affect the overall bound.) We now have a pure hopping

Hamiltonian HI(t) =
∑

ij J̃ij(t)c
†
icj with |J̃ij(t)| ≡ |Jij(t)|. Because HI(t) is a quadratic

Hamiltonian, cX(t) is a time-dependent linear combination of annihilation operators on

every site, and we can write [cX(t), c†Y ] ≡ fXY (t)1, where fXY (t) is a number and 1 rep-

resents the identity operator. Given that UI(t) |0〉 = |0〉, where UI(t) is the time-evolution

operator corresponding to HI(t), and cX(t) |0〉 = 0, we have

fXY (t) = 〈0| [cX(t), c†Y ] |0〉 = 〈0| cX(0)UI(t)c
†
Y |0〉 . (2.4)

3The “big-O” notation f(x) = O(g(x)) indicates the existence of constants c1 and N1 such that 0 ≤
f(x) ≤ c1g(x) for all x ≥ N1. We also use the “big-Ω” notation f(x) = Ω(g(x)) to indicate that g(x) =
O(f(x)). Finally, we use the “big-Θ” notation f(x) = Θ(g(x)) when both f(x) = O(g(x)) and f(x) =
Ω(g(x)).

11



Figure 2.1: A fast quantum state transfer protocol for a long-range Hamiltonian acting on
a lattice of dimension d = 1 with N = 7 sites. The strengths of the hopping terms are
bounded by a power-law 1/rα in the distance r. The active interactions in each time-step
are depicted as directed edges with uniform weights. (a) The site X is initially in the
state |ψ〉 (gray circle), with the other (unoccupied) sites in state |0〉. Time-evolving by the
Hamiltonian H1 for time O

(
Nα/d−1/2

)
(indicated by gray arrows) yields a superposition

of the |0〉⊗N state and a symmetric |W 〉 state over the remaining N − 2 sites. (b) Applying
the Hamiltonian H2 for the same duration of time completes the state transfer of |ψ〉 to the
target site Y .

For convenience, we define the (normalized) states |ψX〉 ≡ c†X(0) |0〉 and |ψY (t)〉 ≡

UI(t)c
†
Y |0〉. Taking the time derivative of Eq. (2.4) gives

dfXY
dt

= −i 〈ψX |HI(t) |ψY (t)〉 . (2.5)

By the Cauchy-Schwarz inequality,

∥∥∥∥dfXYdt
∥∥∥∥ ≤ ‖HI(t) |ψX〉‖ ‖|ψY (t)〉‖ (2.6)

= ‖HI(t) |ψX〉‖ =

√∑
i∈Λ

∣∣∣J̃iX(t)
∣∣∣2. (2.7)

The last equality follows from |ψX〉 being a single excitation localized on site X and HI(t)

consisting only of hopping terms J̃ij(t)c
†
icj . Applying the fundamental theorem of calculus

yields the bound on fXY (t) and hence Theorem 1.
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2.1.2 Saturating the free-particle bound

We now show that the bound in Theorem 1 can be saturated by engineered Hamilto-

nians that can also be used to perform fast quantum state transfer. In particular, the

protocol presented here has a state transfer time of T = O
(
Nα/d/

√
N
)

, which—for

α ≤ d/2—improves over the fastest-known state transfer protocol using long-range in-

teractions [30].

Our setup for the state transfer task is depicted in Fig. 2.1. We initialize a lattice

with N sites in a tensor product of unoccupied states |0〉 and some unknown normalized

bosonic/fermionic state |ψ〉 = a |0〉 + b |1〉 on a single site X . The goal of state transfer

is to move |ψ〉 to the target site Y after the system time-evolves by a |ψ〉-independent (but

possibly time-dependent) Hamiltonian H(t) [60, 61].

The unitary time-evolution operator U(T ) can be said to implement state transfer in

time T if it satisfies the following condition:

∣∣∣〈0|X 〈0|⊗N−2 〈ψ|Y U(T ) |ψ〉X |0〉
⊗N−2 |0〉Y

∣∣∣ = 1. (2.8)

We refer to the left-hand side of Eq. (2.8) as the fidelity of the state transfer, which can be

bounded directly by a Lieb-Robinson-type bound on H(t) such as Eq. (2.2) [61].

We label the sites that are not X or Y by 1, . . . , N − 2 and denote the furthest distance

between any pair of sites by L = O
(
N1/d

)
. Our state transfer protocol is given by the

following piece-wise time-independent Hamiltonian:

H(t) =


H1 = 1

Lα

∑N−2
i=1 c†Xci + h.c. 0 < t < T

2
,

H2 = 1
Lα

∑N−2
i=1 c†icY + h.c. T

2
< t < T,

(2.9)

where T = πLα/
√
N − 2 is the total time for the protocol. Note that while H(t) satisfies

the constraint |Jij(t)| ≤ 1/rαij assumed in Eq. (2.3), the corresponding Jij(t) terms do not

13



actually vary with the distances between sites.

Evolving the initial state |Ψ〉 ≡ |ψ〉X |0〉
⊗N−2 |0〉Y by H1 for time T/2 yields the inter-

mediate state

e−iH1T/2 |Ψ〉 = a |0〉⊗N + b |0〉X |W 〉 |0〉Y . (2.10)

Here, |W 〉 = 1√
N−2

∑N−2
i=1 c†i |0〉⊗N−2 is the W state over theN−2 remaining sites. Further

evolving the state by H2 for time T/2 yields the final state:

e−iH2T/2e−iH1T/2 |Ψ〉 = |0〉X |0〉
⊗N−2 (a |0〉Y + b |1〉Y ). (2.11)

Thus we have achieved perfect quantum state transfer in time T = O
(
Nα/d/

√
N
)

. Note

that the distance between X and Y on the lattice does not appear in the state transfer time.

Setting b = 1 in the above protocol leads to

〈Ψ|[c†X(T ), cY ]|Ψ〉 =
1

2

∫ T

0

dτ

√∑
i∈Λ

|JiX(τ)|2. (2.12)

Thus, the bound in Eq. (2.2) is saturated up to a factor of 2.

It should be pointed out that, for α > d/2, the above protocol requires a time that

increases with N , which is slower than for the previous result in Ref. [30]. While that pro-

tocol has a state transfer time that is constant for α ≤ d, it uses an engineered Hamiltonian

with interactions, and therefore cannot be applied to systems of non-interacting particles.

In general, allowing interactions may increase the rate of information propagation, and

proving a Lieb-Robinson-type bound in these situations requires a different approach.

2.2 Improved bound for general interacting systems

We now derive bounds on the signaling time that extend beyond free-particle Hamiltoni-

ans. Without loss of generality, we study a generic interacting spin Hamiltonian H(t) =
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∑
i<j hij(t) where ‖hij(t)‖ ≤ 1/rαij and on-site interactions have been eliminated by going

into an interaction picture. We will bound the quantity ‖[A(t), B]‖, where A and B are

arbitrary operators supported on sets of sites X and Y respectively, using the following

Lieb-Robinson series [58]:

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!
J k(X, Y ), (2.13)

J k(X, Y ) ≡
∑

i1,...,ik−1

JXi1Ji1i2 . . . Jik−1Y . (2.14)

Here, |X| stands for the number of sites X acts on. Each term in Eq. (2.14) represents

a sequence of k directed hops in the lattice that originates at site X and ends at site Y .

For distinct sites i and j, Jij = 1/rαij represents a directed hop from i to j. For technical

reasons, we set Jii =
∑

j 6=i Jij
4.

Since Jij decays slowly in rij for α < d, our improved bound on ‖[A(t), B]‖ requires

bounding each term in Eq. (2.14) using a new summation technique absent in previous ef-

forts [58, 39]. This technique is particularly effective for tightening existing Lieb-Robinson

bounds for strongly long-range interacting systems. The result (assuming α < d) is:

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
(
eΘ(N1−α/d)t − 1

Θ(N1−α/d)rαXY

)
. (2.15)

The factor Θ(N1−α/d) comes from the total interaction energy per site given by Jii.

We consider now the case of signaling between subsystems X and Y of a system Λ

with |X|, |Y | = O(1). We formally define tsi—the signaling time from X to Y—as the

smallest time t such that for a fixed constant δ = Θ(1), there exist unit-norm operators A

and B supported on X and Y respectively such that ‖[A(t), B]‖ > δ [15]. If we further

assume that X and Y are separated by an extensive distance rXY = Θ
(
N1/d

)
, then the

4The strength of the on-site hop Jii is defined this way for technical reasons that we explain in Ap-
pendix A.
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following lower bound holds for the signaling time:

tsi = Ω

(
log(N)

N1−α/d

)
. (2.16)

This bound supersedes the naive signaling-time bound of tsi = Ω
(
1/N1−α/d) one would

obtain via normalization of interaction energy per site. While we do not know of any

examples that saturate this bound, it is the tightest-known signaling-time bound for strongly

long-range interacting systems. Indeed, the bound is close to being saturated in the limit

of α → d−, as the state transfer protocol in Ref. [30] shows that tsi = O(log(N)) can be

achieved at α = d. Unfortunately, generalizing our bound in Eq. (2.15) to the case of α = d

leads to tsi = Ω(1), which is not saturated by Ref. [30].

2.3 Many-site signaling and scrambling bounds

Of recent interest in the fields of theoretical high-energy and condensed matter physics

has been the phenomenon of quantum information scrambling [15, 62, 52, 63, 64, 65, 66,

67, 68, 69, 70]. Previous work on scrambling in power-law interacting systems has focused

primarily on numerical analysis [71, 72], whereas general mathematical results are lacking.

Only in all-to-all interacting systems (which can be treated as the limit α = 0) have Lieb-

Robinson-type bounds been used to bound the scrambling time [15]. Using the bound

derived in Eq. (2.15), we can prove a scrambling-time bound for systems with 0 < α < d,

a regime for which no better result is known.

To derive a bound on the scrambling time, we first derive a bound on the many-site

signaling time. We define the “many-site signaling time” tms to be the smallest t required to

signal fromX to a Y that has extensive size. Lieb-Robinson-type bounds such as Eq. (2.15)

naturally limit the time for many-site signaling. However, a direct application of Eq. (2.15)

to many-site signaling leads to a loose bound. Instead, a more refined technique that sums
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over all sites within the subsets X and Y yields a tighter bound [33]:

‖[A(t), B]‖ ≤ 2‖A‖‖B‖
∑

i∈X,j∈Y

eΘ(N1−α/d)t − 1

Θ(N1−α/d)rαij
. (2.17)

This bound reduces to Eq. (2.15) when |X|, |Y | = 1.

The scrambling time tsc corresponds to the minimal time required for a system of N

spins on a lattice Λ to evolve from a product state to a state that is nearly maximally entan-

gled on all subsystems of size kN for some constant 0 < k < 1
2

[15]. From this definition,

it can be shown that any information initially contained in a finite-sized subsystem S ⊂ Λ

is no longer recoverable from measurements on S alone [15]. That information is not lost,

however, but can be recovered from the complement S̄ = Λ \ S of S [63, 73]. As a result,

scrambling implies the ability to signal from S to S̄ [15]. Thus, tsc is lower bounded by the

time it takes to signal from a subset S with size Θ(1) to its complement with size Θ(N),

which corresponds to the many-site signaling time.

Using Eq. (2.17), we obtain the following scrambling-time bound for 0 ≤ α < d:

tsc ≥ tms = Ω

(
1

N1−α/d

)
. (2.18)

Note that this bound differs from Eq. (2.16) by a log(N) factor. Additionally, although

the bound on tsi in Eq. (2.16) may allow further tightening, the bound on tms in Eq. (2.18)

cannot be generically improved for 0 ≤ α < d. To see this, we consider a long-range Ising

Hamiltonian H =
∑

i 6=j Jijσ
z
i σ

z
j , with Jij = 1/rαij . For simplicity, we consider the subset

S to be a single site indexed by i and construct operators A = σ+
i and B =

⊗
j 6=i σ

+
j that

are supported on S and S̄ respectively. We can analytically calculate the expectation value

of [A(t), B] in an initial state |ψ〉 = 1√
2
[|0〉⊗N + |1〉⊗N ] [33]:

〈ψ| [A(t), B] |ψ〉 = sin

(
2t
∑
j 6=i

Jij

)
. (2.19)
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Using Jij = 1/rαij , we find that the signaling time of this protocol is t = O
(
Nα/d−1

)
for

0 ≤ α < d, which saturates the many-site signaling-time bound in Eq. (2.18) 5. This

does not, however, imply that the corresponding scrambling-time bound is tight. In fact,

previous work suggests that fast scramblers in all-to-all interacting systems (α = 0) can

scramble in time tsc = O
(

log(N)/
√
N
)

[15] 6. This suggests that future improvements to

the scrambling-time bound may be possible.

2.4 Conclusions and Outlook

In this chapter, we make several advances in bounding the signaling and scrambling times

in strongly long-range interacting systems. Our results suggest a number of possible future

directions. One is to find the optimal signaling-time bound for general strongly long-range

interacting systems. Previously, this has been an outstanding challenge; we now know of

a free-particle bound that is tight for α ∈ [0, d/2] and a general bound that is nearly tight

as α → d−. The search for the optimal bound for α ∈ [0, d] has thus been narrowed down

significantly. Another direction is to investigate how interactions can speed up signaling.

We expect weakly interacting systems to possess a similar signaling-time bound to our

free-particle bound, as the dynamics in such systems can often be treated using spin-wave

analysis [74]. But for strongly interacting systems, it remains unclear how much speedup

one can obtain over non-interacting systems.

Additionally, our bound for signaling to an extensive numbers of sites hints at a strat-

egy for achieving a better scrambling bound. In particular, the protocol that saturates our

many-site signaling bound relies on an initial entangled state, whereas the definition of

scrambling assumes that the system begins in a product state. It may be possible to im-

5A different protocol for many-site signaling was given in [55]. That result yields a many-site signaling
time of tms = O

(
Nα/d−1/2), which does not saturate the bound in Eq. (2.18).

6We note that the example of a fast scrambler given in [15] does not strictly obey the normalization con-
dition ‖hij(t)‖ ≤ 1/rαij . This does not, however, weaken the claim that there is gap between our scrambling-
time bound and the scrambling times of fast-scrambling systems
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prove the scrambling-time bound by explicitly restricting our attention, when bounding

tms, to initial product states.

Finally, we expect that the improved Lieb-Robinson-type bounds derived in this work

may lead to a better understanding of the spreading of out-of-time-order correlators [75],

the growth of entanglement entropy [33], and thermalization timescales [76] in strongly

long-range interacting systems.

In addition, there are connections between Lieb-Robinson-type bounds and the critical

scaling of the defects appearing in a quantum system driven across its quantum critical

point (the celebrated Kibble-Zurek (KZ) mechanism). It remains an open question whether

the KZ hypothesis can be shown to hold for strongly long-range systems.
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Chapter 3

Implementing a fast unbounded

quantum fanout gate using power-law

interactions

In the circuit model for quantum computation, the depth of a quantum circuit is given by

the number of layers of non-overlapping quantum gates it contains. In typical quantum

systems, coherence times are a limitation, so low-depth circuits prioritized for the regime

of noisy intermediate-scale quantum computers are more desirable [77]. Various proposed

models of quantum computation are equivalent up to polynomial overhead, making the

definition of the complexity class BQP insensitive to the model of computation [78, 79, 80,

81].

However, these models can differ in the precise complexity of operations. As a dras-

tic example, suppose we are given access to a fast unbounded fanout gate represented by

the map |x〉 |y1〉 |y2〉 . . . 7→ |x〉 |y1 ⊕ x〉 |y2 ⊕ x〉 · · · where the ⊕ operator denotes bitwise

XOR (bit yi is flipped if x= 1 and not flipped otherwise). This operation is a reversible

analog of a gate that copies x to registers y1, y2, . . . . By “unbounded,” we mean that there

is no limit on the number of bits that can be targeted by this operation.
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The unbounded fanout gate makes it possible for constant-depth circuits to perform

a number of fundamental quantum arithmetic operations [81]. Furthermore, unbounded

fanout can also reduce the quantum Fourier transform (QFT)—a subroutine of a large class

of quantum algorithms, including most famously Shor’s algorithm for integer factorization

[17]—to constant depth as well. In fact, it enables implementing the entirety of Shor’s

algorithm by constant-depth circuits with access to a polynomial amount of classical pre-

and post-processing 1.

While the unbounded fanout gate is clearly a powerful resource for quantum computa-

tion, its efficient implementation in physically realizable architectures has not been studied

in great depth. In the standard circuit model—where one may apply single-qubit and two-

qubit gates from a standard gate set on arbitrary non-overlapping subsets of the qubits—a

fanout gate on n qubits can be implemented optimally in Θ(log n)-depth [83]. One may

also consider the Hamiltonian model, in which one may apply single-qubit and two-qubit

Hamiltonian terms. In particular, in the Hamiltonian model with all-to-all unit-strength

interactions, one can implement the fanout gate in constant time [84, 85]. However, the as-

sumption of being able to directly apply interactions between two arbitrarily distant qubits

does not hold in practice for large quantum computing architectures [19, 20, 21, 22]. Map-

ping these circuits to restricted architectures inevitably leads to overheads and potentially

even different asymptotic scaling. In d-dimensional nearest-neighbor architectures, for ex-

ample, the unbounded fanout gate can only be implemented unitarily in depth Θ
(
n1/d

)
[86]. And while there exist protocols that can implement the fanout gate in constant depth

on these architectures [87], these proposals require intermediate measurements along with

classical control—a resource that may be inaccessible in certain near-term experimental

systems [18]. The overheads resulting from such physical restrictions could therefore limit

the potential asymptotic speed-up from a fast quantum fanout.

1While the rate-limiting step for factoring is actually modular exponentiation, it is possible to imple-
ment this subroutine in logarithmic quantum depth with a polynomial number of classical gates as a pre-
computation step, using a standard universal gate set for quantum computing [82]. Using the unbounded
fanout gate, the quantum circuit for modular exponentiation can be reduced to constant depth as well [81].
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Systems with power-law interactions, however, present an opportunity for realizing

these speed-ups. Specifically, for a lattice of qubits in d dimensions, the interaction strengths

between pairs of qubits separated by a distance r are weighted by a power-law decaying

function 1/rα. These long-range interactions are native to many experimental quantum

systems and have attracted interest as potential resources for faster quantum information

processing. Examples of long-range interactions include dipole-dipole and van der Waals

interactions between Rydberg atoms [24, 25], and dipole-dipole interactions between polar

molecules [26] and between defect centers in diamond [27, 25]. Previous works have ex-

plored the acceleration of quantum information processing using strong and tunable power-

law interactions between Rydberg states [88, 89, 90, 91, 92, 93, 94], which can implement

k-local gates that control or target simultaneously k � 10 qubits. Those gates still have

a finite spatial range and can therefore only give a constant-factor speed-up over nearest-

neighbor architectures. Recently, Refs. [30, 31, 95, 6] gave protocols that take advantage

of power-law interactions to quickly transfer a quantum state across a lattice. As we will

show, it is also possible to leverage the power of these interactions to implement quantum

gates asymptotically faster than is possible with finite-range interactions 2.

In this Letter, we propose a protocol for implementing the unbounded fanout gate

quickly using engineered Hamiltonians with power-law interactions. As an application of

this protocol, we show that simulating long-range systems with α≤ 2d for polylogarithmic

time or longer is classically intractable, if factoring is classically hard. As a complement to

our upper bounds on the fanout time, we also develop a technique that allows us to prove the

tightest-known lower bounds for the time required to implement the QFT and unbounded

fanout in a general lattice architecture.

2We note that in Refs. [96, 97], it was shown that the unbounded quantum fanout could be implemented
in trapped-ion systems using a global Molmer-Sorensen gate. However, those methods lead to gate durations
that scale superlinearly in the system size in order to achieve a certain value of state fidelity and, as such, do
not yield an asymptotic speed-up.
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3.1 Protocol for fast fanout using long-range interactions

To perform a fanout gate on n logical qubits, we employ as subroutines modified versions

of the state transfer protocols from Refs. [30] and [32] to generate a many-body entangled

state in O(polylog(n)) time using long-range interactions with α< 2d.

As an intermediate step, both state-transfer protocols “broadcast” a single-qubit state

into the corresponding Greenberger–Horne–Zeilinger (GHZ)-like state:

(ψ0 |0〉+ ψ1 |1〉)⊗ |00 . . . 0〉 7→ ψ0 |00 . . . 0〉+ ψ1 |11 . . . 1〉 , (3.1)

where ψ0, ψ1 ∈C and |ψ0|2 + |ψ1|2 = 1. In the case of Ref. [30], this long-range broadcast

is achieved by performing a sequence of cascaded controlled-NOT (CNOT) gates—similar

to the standard gate-based implementation of the unbounded fanout gate. The CNOT gate

from qubit i to qubit j can be implemented by a Hamiltonian Hij =hij |1〉〈1|i⊗Xj acting

for time t= π/(2hij), up to a local unitary. Applying a Hamiltonian H(t) =
∑

ij Hij(t),

which variously turns on/off interactions between pairs of qubits at different times, allows

one to implement the broadcast in Eq. (3.1).

By using Hamiltonians with long-range interactions hij satisfying ‖hij‖≤ 1/rαij , it is

possible to implement the broadcast operation asymptotically faster than with short-range

interactions—a statement that we will prove rigorously later in the text. For a system of

n qubits, Refs. [30] and [32] showed that this broadcast time depends on the power-law
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exponent α and the dimension of the system d as follows:

tGHZ =



O(n0) α < d

O(log n) α = d

O(logκα n) α ∈ (d, 2d)

O
(
eγ
√

logn
)

α = 2d

O
(
nmin(α/d−2,1)

)
α > 2d,

(3.2)

for constants γ = 3
√
d and κα = log 4/ log(2d/α). We term the broadcast time tGHZ, since

it corresponds to the GHZ-state-construction time when ψ0 =ψ1 = 1/
√

2. This long-range

broadcast is not the same as fanout because it requires that all intermediary qubits (besides

the first qubit) be initialized in the |0〉 state. However, as we now show, it is possible to

adapt the broadcast protocol to implement the fanout gate in time tGHZ using n ancillary

qubits.

Consider a system of n data qubits arranged on a d-dimensional lattice. Furthermore,

assume there are n ancillary qubits, each located adjacent to one of the original qubits.

We denote the qubits as |d1〉 , |d2〉 , . . . , |dn〉 and |a1〉 , |a2〉 , . . . , |an〉 for data and ancilla,

respectively. Suppose we want to perform fanout with |d1〉 as control, and that all ancillae

are guaranteed to be in state |0〉. Then the sequence of operations in Algorithm 1 (also

depicted graphically in Fig. 3.1) implements the fanout operation.

In addition to accomplishing fanout, this protocol returns the ancillary qubits to the |0〉

state. Modulo the O(n) short-range operations that can be done in parallel in a single time

step, the protocol requires time 2tGHZ. Hence, it can implement the fanout gate in time that

is constant for α<d, polylogarithmic for d≤α< 2d, and polynomial for α> 2d.
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a3 a5 a7a2 a4 a6 a8

hij ∼ 1
rα

ij
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d1 d2 d3 d4 d5 d6 d7 d8

a3 a5 a7a2 a4 a6 a8

(a)

(b)

a1

d1 d2 d3 d4 d5 d6 d7 d8

a3 a5 a7a2 a4 a6 a8

(c)

Figure 3.1: A protocol for a fast unbounded quantum fanout gate using long-range inter-
actions, depicted here for a 1D lattice. The layout consists of a chain of data qubits, along
with their adjacent ancillary qubits that are initialized to |0〉. (a) The first step is a lo-
cal controlled-NOT (CNOT) gate from |d1〉 to |a1〉. (b) The application of the long-range
“broadcast” from |a1〉 to the rest of the ancillary qubits |ai〉 creates a GHZ-like state in
Eq. (3.1) for the ancillary qubits together with the first data qubit. (c) We apply CNOT

gates from ancillary qubit |ai〉 to the data qubit |di〉, which can be done in parallel. After
this step, we reverse process (b) and process (a) to return the ancillary qubits to |0〉 (not
redrawn here).

Algorithm 1 Implementing fanout with long-range interactions
1: Initialize ancillary qubits: |ai〉← |0〉 for i= 1 to n

2: CNOT(|d1〉→ |a1〉)

5 Apply broadcast operation as shown in Eq. (3.1) to ancillae:

3: LONGRANGEBROADCAST(|a1〉→ |a2〉 , . . . , |an〉)

5 parfor indicates that for-loop can be implemented in parallel

4: parfor i= 2 to n do

5: CNOT(|ai〉→ |di〉) . Transfer fanout to data qubits

6: end parfor

5 Apply broadcast operation in reverse to uncompute ancillae

7: REVERSELONGRANGEBROADCAST(|a2〉 , . . . , |an〉→ |a1〉)

8: CNOT(|d1〉→ |a1〉)
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We briefly comment on the constant-depth implementation of the QFT and Shor’s al-

gorithm using the unbounded fanout gate. An n-qubit QFT circuit can be performed with

O(n log n) gates to 1/poly(n) precision [98]. Using unbounded fanout, the circuit can be

reduced to constant depth with O(n log n) ancillary qubits [81]. We note that including

these ancillae in the lattice would not change the asymptotic scaling of our protocol for

α< 2d, since tGHZ is O(polylog(n)) in this regime.

We also remark on the potential ways of performing the fast fanout gate experimen-

tally. One method would be to use two different qubit realizations for the data and ancillary

qubits, with the former interfacing with the latter through local interactions. For example,

one may consider a system of fermionic alkaline-earth atoms, with each atom’s electron on

the clock transition acting as an ancillary qubit, its nuclear spin as the data qubit, and with

long-range Rydberg-Rydberg interactions between electrons. In this heterogeneous case,

the n CNOT gates between the data and ancilla qubits of our protocol would be straight-

forward to implement in parallel [99]. Alternatively, one may consider implementing the

protocol entirely in a system of Rydberg atoms using power-law interactions of different

strengths. This could be done using a gate based on van der Waals interactions (α = 6) to

implement the short-range CNOT gates between data and ancilla qubits, and then rotating

into a new basis in order to implement the long-range broadcast interaction using dipole-

dipole interactions (α = 3). We provide more discussion on the implementation of the

protocol in Appendix B.

3.2 Intractability of classical simulation of long-range sys-

tems with α< 2d

As a corollary, the protocol shows that long-range interacting systems with α< 2d evolving

for time polylogarithmic in n or longer are difficult to simulate classically in the worst

case. The argument operates by a complexity-theoretic reduction from integer factoring, a
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problem that is assumed to be difficult for classical computers with the ability to use random

bits (FACTORING /∈BPP). This assumption suggests that the simulation of long-range

systems could provide an avenue towards a potentially useful experimental demonstration

of quantum computational advantage.

The argument proceeds as follows. The time required to implement the fanout gate

using Algorithm 1 is O(polylog(n)) for α< 2d. It is possible to implement Shor’s order-

finding algorithm in time O(tFO) using a small amount of classical pre-processing (poly-

nomial in n) [82, 81]. Using the ability to sample from the output of the order-finding

algorithm to error ε< 0.4< 4/π2, classically efficient post-processing can output a factor

of an n-bit integer with probability Ω(1) [17]. Therefore, if it were possible to efficiently

sample from the output distribution in long-range systems with α< 2d for evolution-time

t=O(log n), then it would be possible to factor n-bit integers efficiently as well. The best

classical algorithm currently known for factoring an n-bit integer takes runtime exp
[
O(
√
n log n)

]
[100] and the problem is widely believed to be classically intractable. This stands in con-

trast to systems with finite-range interactions in 1D, for which efficient classical simulation

is possible up to any time satisfying t≤O(log n) [11]. Under the complexity assumption

mentioned above (FACTORING /∈BPP), we have shown that this result is not fully gener-

alizable to long-range interacting systems with α< 2d3.

3.3 Lower bounds on the time required to implement QFT

and fanout

In previous sections, we found upper bounds to the time required to implement fanout—and

by corollary, the QFT. As a way to benchmark our long-range protocol, we now proceed

to discuss lower bounds for implementing fanout and the QFT. Recall that the protocol in

3We note that a similar result could have been achieved using the fact that constant-depth quantum circuits
with two fanouts are not classically simulable unless P = PP [101].
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Algorithm 1 can implement fanout in time tGHZ, which scales as O(polylog(n)) for long-

range systems with α< 2d. In this section, we show that such fast asymptotic runtimes

cannot be achieved in architectures with strict locality constraints.

In Ref. [102], Maslov showed that a specific way of implementing the QFT requires

Ω(n) depth on the 1D nearest-neighbor architecture, though this does not rule out other

QFT implementations with potentially sublinear depth. Here, we devise a technique that

yields a lower bound of Ω
(
n1/d

)
for the time required to perform a QFT in the Hamiltonian

model. This result strengthens and generalizes Maslov’s bound to higher dimensions and

to the Hamiltonian model. In addition, we show that the same lower bound applies even to

circuits that perform the QFT approximately.

Our Ω
(
n1/d

)
lower bound holds for any lattice system with finite velocities of informa-

tion spreading, which include short-range interactions (i.e., finite-ranged or exponentially

decaying) and power-law interactions with α> 2 in one dimension or α> 2d+ 1 for d> 1

[103, 5, 6]. Combined with our results above, this implies that systems with long-range in-

teractions with α< 2d can implement the QFT and fanout asymptotically faster than more

weakly interacting systems.

The intuitive idea behind our proof is that the QFT unitary can spread out operators in

a certain precise sense, a task that can be bounded by the “Frobenius-norm light cone” of

Ref. [95]. The fact that this light cone imposes a finite speed limit on information prop-

agation in short-range interacting systems implies that the minimum time t2(r) required

for operator-spreading is proportional to the distance between qubits r. This constrains the

implementation time for the QFT, denoted tQFT, by Ω
(
n1/d

)
, from which the circuit-depth

lower bound follows. The same Frobenius-norm bound also constrains the time required to

implement the approximate QFT (AQFT).

We consider the 4n-dimensional vector space of n-qubit operators for which the set of

Pauli operators {I,X, Y, Z}⊗n forms a basis. We quantify operator spreading outside a re-

gion of radius r as follows. Taking an operator |O) initially supported on site 1, we measure
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the weight of its time-evolved version, |O(t)), on sites at distance r (and beyond) using a

projection operator Qr, which projects onto strings of Pauli operators that act nontrivially

on at least one site at distance r or greater. We measure the weight of this projected operator

|Or) :=Qr|O(t)) via the (squared) normalized Frobenius norm ‖Or‖2
F := Tr

(
O†rOr

)
/2n,

which coincides with the Euclidean norm over the operator space, (Or|Or)
4. We define

t2(r) to be the minimal time after which ‖Or‖2
F is able to achieve a predetermined constant

value [95].

We show that operators spread by the action of the QFT can have high weight on dis-

tant regions, which implies that tQFT≥ t2(r). Recall that the QFT operator on n qubits is

defined as UQFT :=
∑2n−1

y,z=0 |y〉〈z|ωyz/
√

2n, where |y〉 (|z〉) is an n-qubit state that encodes

the binary representation of y (z) and ω = e2πi/2n . Then the following lemma holds:

Lemma. Let UQFT be the QFT operator on n qubits arranged in a d-dimensional lat-

tice such that the first and n-th qubits are located a distance r= Θ(n1/d) apart. Then

U †QFTZ1UQFT =:Z ′1 is an operator with at least constant weight at distance r.

We defer the (short) proof of this lemma to Appendix B. As a result of the lemma,

tQFT follows the light cone defined by the normalized Frobenius norm, which is at least as

stringent as the Lieb-Robinson light cone. This leads directly to the following theorem:

Theorem. For systems with finite-range or exponentially-decaying interactions in d dimen-

sions, the time required to implement the QFT unitary is lower bounded by tQFT = Ω(r),

where r= Θ(n1/d) is the distance between the first and n-th qubits.

For systems with long-range interactions, the Lieb-Robinson light cone gives the fol-

4See Ref. [95] for a more precise definition. We note that our projector Qr is a variation on the Qr used
in Ref. [95]. Specifically, for d = 1, they are related via Qr =

∑
x: |x|≥r Qx.
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lowing bounds [6, 4, 8, 7]:

tQFT =



Ω(1), α = d

Ω(log r), α ∈ (d, 2d]

Ω
(
rα−2d

)
, α ∈ (2d, 2d+ 1]

Ω(r), α > 2d+ 1.

(3.3)

The Frobenius light cone gives the following (tighter) bounds [104, 105]:

tQFT =


Ω
(
r

2α−2d
2α−d+1

)
, α ∈ (d, 2d]

Ω(rα−1), α ∈ (1, 2], d = 1

Ω(r), α > 2, d = 1.

(3.4)

We note that the lower bounds in the Theorem also apply to the fanout time, tFO,

through the observation that fanout also performs operator spreading (using X1 instead

of Z1). We emphasize that these bounds pertain to the Hamiltonian model, where commut-

ing terms can be implemented simultaneously and state transfer could in theory be done in

o(1) time for sufficiently small α.

We observe that the QFT can implement quantum state transfer as well. The goal of

state transfer is to find a unitary V such that V
(
|ψ〉 ⊗ |0〉⊗n−1)= |0〉⊗n−1⊗ |ψ〉 [30, 106].

The unitary V =H⊗nUQFT (where H represents the single-qubit Hadamard gate) satisfies

this definition of state transfer.

For the AQFT, the lower bound follows in a similar fashion. The circuit that imple-

ments the QFT approximately with error ε can be represented by a unitary ŨQFT such that

‖UQFT − ŨQFT‖ ≤ ε [82]. In Appendix B, we show that the operator Ũ †QFTZ1ŨQFT also

has large support on sites beyond distance r as well, implying that the lower bounds in

Eqs. (3.3) and (3.4) also hold for the AQFT.
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3.4 Conclusions and Outlook

In summary, we have developed a fast protocol for the unbounded fanout gate using power-

law interactions. For α≤ 2d, the protocol can perform the gate parametrically faster than is

possible with short-range interactions. In particular, for experimentally realizable dipole-

dipole interactions with α= 3 in two and three dimensions, as well as van der Waals inter-

actions with α= 6 in three dimensions, the fast fanout protocol allows the quantum Fourier

transform and Shor’s algorithm to be performed in time that scales subpolynomially in the

number of qubits. As a corollary, we showed that the classical simulation of long-range sys-

tems with α< 2d for time t=O(polylog(n)) is at least as difficult as integer factorization,

which is believed to be intractable in polynomial time classically.

To benchmark our protocol, we developed a new and general approach for lower-

bounding the time required to perform a given quantum algorithm that is independent of

its implementation as a quantum circuit. In particular, we derive a Ω
(
n1/d

)
lower bound

on the time required to implement quantum fanout—–as well as the exact and approximate

QFTs—for all systems constrained by a linear light cone. In doing so, we used the state-

of-the-art Frobenius bounds from [95, 104, 105], which have been shown to be tighter than

the Lieb-Robinson bound in the regimes of α in which they hold. While the Lieb-Robinson

bound has been shown to be saturable for all α≥ d (up to logarithmic factors), the cor-

responding result for the Frobenius bound remains unknown. For higher dimensions, the

conjectured Frobenius light cone is t= Ω
(
rα−d

)
for d<α<d + 1 [105]. If this general-

ization of the Frobenius bound were to hold, our lower bounds on the circuit complexity of

QFT and fanout would immediately generalize.

As a final remark, we have derived our lower bounds on tQFT under the assumption that

the first and last qubits of the QFT are separated by a distance of r= Θ(n1/d). However,

other mappings of computational qubits to lattice qubits could potentially lead to faster im-

plementations. For example, consider the mapping onto a one-dimensional chain of qubits
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wherein the second half of the chain is interleaved in reverse order with the first half 5. Ap-

plying the QFT to a product state in this layout results in a state with two-qubit correlations

that decay exponentially in the distance between the qubits. In this case, our lower bound

techniques cannot rule out the possibility of tQFT = o(n) for short-range interacting Hamil-

tonians. This suggests that tQFT could depend strongly on qubit placement. Given that the

QFT is typically used as a subroutine for more complex algorithms, it may not always be

possible to reassign qubits without incurring costs elsewhere in the circuit. Still, it would

be interesting to investigate whether careful qubit placement could yield a faster QFT.

5Specifically, for even n, this mapping is defined by qi 7→ q2i−1 for i ≤ n/2 and qi 7→ q2(n−i+1) for
i > n/2.
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Chapter 4

Clustering of steady-state correlations in

open systems with long-range

interactions

To date, most formulations of Lieb-Robinson bounds apply to closed systems that evolve

via a unitary time-evolution operator. In such systems, recent advances have proved tight

information-transfer bounds for interaction ranges that span the whole spectrum from local

[2, 3] to highly non-local regimes [4, 5, 6, 7], and have been saturated via explicit state-

transfer protocols [30, 95, 32]. While a complete picture for quantum information transfer

has emerged for closed quantum systems, the analogous question for systems that evolve

non-unitarily in time remains less well understood. For a broad range of quantum platforms

(including noisy quantum simulators), interactions with a larger environment are unavoid-

able and must be taken into account to accurately describe dynamics. While progress in this

direction has been made [107, 108, 109, 110, 111], the question of how the fundamental

rate of information transfer differs for systems that interact with some larger environment

remains unanswered.

Indeed, the notion of a Lieb-Robinson bound in an open system may seem a priori sur-
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prising from the point of view of quantum trajectories [112]. In this picture, in a time-step

dt the system’s wavefunction either evolves via a non-unitary evolution operator, or a quan-

tum jump discontinuously alters the state. A specific trajectory belonging to a spatially-

local Hamiltonian with local dissipation can transfer information faster than the limit set

by the Hamiltonian’s Lieb-Robinson bound [113]. Intuitively, this is because conditioning

on measurements is an inherently nonlocal process. As an extreme example, it is possible to

create a highly-entangled (GHZ) state from a product state in a time t = O(1) using only

locally entangling gates and measurements, for a specific outcome of the measurements

[87]. This would violate the Lieb-Robinson bound for local systems, which gives t = Ω(r)

for distance r. After averaging over trajectories, the state of the system can be represented

via a density matrix ρ which evolves via a master equation: dρ/dt = L(ρ). Subsequently,

the notion of a Lieb-Robinson bound is properly restored upon averaging over trajectories.

In this work, we make progress on the question of the fundamental rates of informa-

tion propagation in open systems by proving a broad class of Lieb-Robinson bounds for

systems with long-range interactions—specifically those that decay as a power-law 1/rα in

the distance r between particles, for some α > 0. Such power-law-decaying interactions

feature in experimental platforms relevant to quantum computation and simulation, such

as Rydberg atoms [24], trapped ion crystals [35, 114], polar molecules [26], and nitrogen-

vacancy color centers in diamond [27]. In all of these platforms, interactions with a larger

environment cannot be neglected, and a Markovian description of system dynamics is often

justified. In such systems, improved understanding of the fundamental rates of information

transfer has spurred the development of optimal protocols for quantum information pro-

cessing and state transfer [30, 32].

In addition to bounding dynamics of open long-range systems, we use these Lieb-

Robinson bounds to constrain the entanglement structure of the corresponding steady states.

For closed systems, Lieb-Robinson bounds have played an important role in proving rigor-

ous statements on the decay of correlations in gapped ground states [8]. This justifies the
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use of finite-dimensional matrix-product-state representations of the ground state in one-

dimensional systems with local interactions [34]. In this work, we prove the clustering of

correlations in the steady states of open power-law systems, which may serve as a first step

towards establishing an area-law scaling of entanglement for these systems, similar to what

was done in Ref. [33] for the closed case.

This chapter is organized as follows: in Section 4.1, we summarize the existing Lieb-

Robinson bounds for open long-range systems and present two new bounds that are tighter

for particular regimes of the power-law exponent α. The first yields a polynomial light cone

for α > 2d, using a technique pioneered in Ref. [4]. The second gives a linear light cone for

α > 3 in 1D, using the method from Ref. [5]. In Section 4.2, we also prove the clustering

of correlations in the steady states of open long-range systems. Specifically, we provide

bounds on the extent of the covariance correlations and mutual information under certain

assumptions on the Liouvillian mixing times. We also prove a stability theorem for the

stationary state under local Liouvillian perturbations, generalizing the results of Ref. [110].

4.1 Lieb-Robinson bounds for open long-range systems

In this section, we review the results of the previous best-known Lieb-Robinson bounds for

open long-range systems and state two new Lieb-Robinson bounds.

As a general set-up, we consider evolution by a long-range Liouvillian L(t) that acts

on a lattice Λ consisting of finite-level systems at each site. We denote by H the finite-

dimensional Hilbert space representing all possible states of the system and by B(H) the

space of all operators on H. For an operator O ∈ B(H), we will be interested in how its

expectation value changes as a function of time: 〈O(t)〉 = tr[O(t)ρ] = tr[Oρ(t)], where ρ

is the initial state of the system, which evolves (in the Schrödinger picture) via ρ(t) = eLtρ.

For these purposes, the time-evolution of O can be expressed as O(t) = eL
†tO, where L†
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is the adjoint Lindblad superoperator, defined as

L†O = +i[H,O] +
∑
i

[
L†iOLi −

1

2
{L†iLi, O}

]
, (4.1)

where H is the Hamiltonian and Li are Lindblad operators (also referred to as “jump”

operators) [115]. We emphasize that O(t) is not equivalent to the Heisenberg-Langevin

time evolution for the operator O. For example, if the system has a unique steady state, all

operators O(t) will be proportional to the identity at long times: limt→∞O(t) ∼ I. Thus

two operators that do not commute at t = 0 will start to commute at long times.

We will state the Lieb-Robinson-type bounds in this chapter in terms of time-independent

Liouvillians. However, we note that the proofs can be generalized with minor modifications

to the case of time-dependent Liouvillians—i.e. those for which bothH and Li are allowed

to vary in time.

To impose the long-range condition on L, we decompose it into L =
∑

Z⊂Λ LZ , where

for any pair of sites i, j, we have the condition

∑
Z3i,j

‖LZ‖∞ := sup
O∈B(H)

‖LZO‖
‖O‖ ≤ 1

dist(i, j)α
, (4.2)

where ‖ · ‖ denotes the standard operator norm, or∞-norm, and ‖ · ‖∞ denotes the super-

operator, or “∞→∞” norm (referred to as such because the second term in Eq. (4.2) uses

the operator ∞-norm in both the numerator and the denominator). Here dist(i, j) is the

distance between i and j, and α is the positive real parameter that controls the long-ranged

nature of the interaction.

4.1.1 Prior work on open-system Lieb-Robinson bounds

In Ref. [111], Sweke et al. generalized the Lieb-Robinson bound in Ref. [8] for α > d to

open systems. Letting A ∈ B(X) be an operator supported on X , KY ∈ LY be a Liouvil-
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lian supported on Y , and eL†t be the evolution under the adjoint Liouvillian superoperator.

The corresponding superoperator bound is:

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
(
evt − 1

rα

)
, (4.3)

where r := d(X, Y ), and C and v are O(1) constants. In the closed-system picture,

the conventional Lieb-Robinson-type bound can be recovered by choosing KY such that

KY (OX) = i[OX , OY ] and replacing ‖KY ‖∞ with 2‖OY ‖.

For this conventional bound, the velocity scales as v ∝ 2α, which diverges in the limit

α → ∞. To recover the Lieb-Robinson bound for short-range interacting systems, an

improved bound is required that uses a slight modification of the technique from Ref. [111]:

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
(

eṽt

[(1− µ)r]α

+ eṽt−µr
)
,

(4.4)

where µ ∈ (0, 1) and ṽ are constants, and ṽ is independent of α. The closed-system version

of this bound was first proven in Ref. [59] for two-body interactions and later generalized

to k-body interactions in Ref. [14]. In Ref. [111], Sweke et al. also prove Lieb-Robinson-

type bounds for α ≤ d. For this regime of α, one needs to restrict to a finite-sized lattice,

due to the energy being (in general) non-additive for subsystems [41]. Denoting the system

size of the lattice by N := |Λ|, the combined strength J of the terms acting on a single site

scales as J = Θ
(
N1−α/d) for α < d and J = Θ(logN) for α = d [see Eq. (A.1)]. The

bound then becomes:

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
(
eJt − 1

Jrα

)
. (4.5)

The effective Lieb-Robinson velocity in this case diverges in the thermodynamic limit, but

is finite for all finite N .
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4.1.2 Power-law light-cone bound for α > 2d

We prove a Lieb-Robinson bound for α > 2d using the truncation-of-unitaries-approach

presented by Tran et al. [14]. The technique takes as input the existing open-systems Lieb-

Robinson bound in Eq. (4.4) and bootstraps it to obtain a tighter bound:

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C‖KY ‖∞ ‖A‖
tα−d

rα−2d
. (4.6)

This bound yields the power-law light-cone contour t = r
α−2d
α−d . The proof of this bound

involves approximating the time evolution of the operators by a sequence of operators that

span successively larger and larger subsets of the lattice, and bounding the error of each

successive approximation by the existing Lieb-Robinson bound. We provide the full details

of the derivation in Appendix C.5.

4.1.3 Linear light-cone bound for d = 1, α > 3

Finally, we prove a bound with a linear light cone for open-long-range systems with α > 3

in d = 1 dimensions based on the techniques developed in Ref. [5]. In the process, we

tighten the tail of the Lieb-Robinson bound given in that work from 1/r to approximately

1/rα−2. The authors of Ref. [5] proved the following bound for the closed-system dynamics

of Hamiltonian H =
∑

ij Hij consisting of two-body terms:

∥∥[eiHtAe−iHt, B]
∥∥ ≤ C ‖A‖ ‖B‖ t

r
, (4.7)

whereB ∈ B(Y ) is an operator supported on Y . Likewise assuming a two-body Liouvillian

L =
∑

ij Lij , we obtain the following open-systems bound:

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C ‖KY ‖∞ ‖A‖
t

rα−2−o(1)
, (4.8)
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Figure 4.1: The evolution of an operator A initially supported on X by an adjoint Liouvil-
lian L† can be approximated by the same operator evolved by the truncated version of the
Liouvillian, L̃†, supported on a ball of radius r around X , up to an error given by C(r, t).

where the o(1) denotes some constant that can be made arbitrarily small. The result yields

a linear light cone t & r for all α > 3. The proof roughly proceeds by expanding out the

evolution operator eL†t into a series of products of Liouvillian terms Lij . For each term in

the series, we select out a subsequence of terms that move the operator forward (i.e. towards

Y ) and integrate out the other terms. By only taking into account the contributions from

the terms in the subsequences, we are able to obtain a tighter Lieb-Robinson bound. We

provide the mathematical details of the proof in Appendix C.6.

4.2 Bounds on correlations in the steady states of open

long-range systems

In this section, we prove the clustering of correlations in the steady states of open long-

range systems. We first state a lemma that describes how to use a modified version of the

Lieb-Robinson bounds stated in the previous section to bound how far operators can spread

under evolution by the (adjoint) Liouvillian L†. Specifically, we give a bound on the error

of approximating the time-evolution of an operator A supported on a site X ∈ Λ by a

truncated adjoint Liouvillian that only acts on ball of radius r centered on a site X ∈ Λ

(see Fig. 4.1).
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Lemma 1 (Bounds on the error incurred by approximating of time-evolved operators by

local ones). Let A be an operator initially supported on a site X ∈ Λ and let L̃ be the

restriction of the long-range Liouvillian L to the ball of radius r centered on X . Let Ã(t)

be the time-evolved version of A under L̃†. Then the error in the approximation of A(t) by

Ã(t) is bounded by

‖A(t)− Ã(t)‖ ≤ K‖A‖ C(r, t), (4.9)

where K is some constant, and C(r, t) is a modified version of the standard Lieb-Robinson

bound adapted to the problem of locally approximating time-evolved operators. In the

large-r limit, the tightest-known bounds for open systems with long-range interactions with

α > d scale asymptotically as

C(r, t) ∝


evt/rα−d, α > d,

tα−d+1/rα−3d, α > 3d,

t2/rα−3, α > 3, d = 1.

(4.10)

For α ≤ d, the bounds also depend on the system size of the lattice N := |Λ|. When

r ∝ N1/d, the bounds scale as follows:

C(N, t) ∝


eΘ(N1−α/d)t − 1

Θ(N1−α/d)
, α < d,

eΘ(log(N))t − 1

Θ(log(N))
, α = d.

(4.11)

This concludes the statement of Lemma 1.

The proof of Lemma 1 follows straightforwardly from the open-system Lieb-Robinson

bounds detailed in Section 4.1. In particular, the three lines of Eq. (4.10) follow from

Eq. (4.4), Eq. (4.6), and Eq. (4.8), respectively, while Eq. (4.11) comes from Eq. (4.5). In

Appendix C.1, we provide the details of the derivation of the bounds in Lemma 1. We now
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proceed to derive the bounds on clustering of correlations in the steady states of gapped,

reversible Liouvillians.

4.2.1 Bound on covariance correlations

In this first section, we show how open-system Lieb-Robinson bounds constrain the corre-

lations in the steady state of a Liouvillian L with dissipative gap λ.

The dissipative gap λ > 0 is defined as the magnitude of the least-negative non-zero

real part of an eigenvalue of L. (Throughout this work, we shall also assume that the

Liouvillian is primitive, i.e. it has a unique steady state such that L has one eigenvalue of

zero.) In addition to the Lieb-Robinson bounds, we will also appeal to certain “mixing

bounds” which describe how fast arbitrary initial states (or various correlation functions)

converge to the steady state.

For the mixing bounds, we need to impose “reversibility” on the Liouvillian. We say

that a Liouvillian L is s-reversible if there exists some operator σ such that ΓsL† = LΓs

is satisfied; the superoperator Γs is defined via Γs(f) = (σsfσ1−s + σ1−sfσs)/2 and s ∈

[0, 1]. For s-reversible Liouvillians, it is easy to see that σ is the steady state of L (since

L†(I) = 0). A sufficient condition for a Liouvillian to satisfy s-reversibility (for all s) is if

the dissipatorsLi satisfy a detailed-balance condition (and the Hamiltonian is zero,H = 0),

which is naturally obeyed for systems coupled to a thermal bath [110]. (More explicitly,

the detailed-balance condition is satisfied if dissipators come in energy raising/lowering

pairs with respect to some effective Hamiltonian H̄—for example, if [H̄, L±] = ±ωL±
and |L−|/|L+| = exp(2βω) where β−1 is an effective temperature.)

Returning to the topic of correlations, we let ρ be a quantum state defined on the lattice

Λ. We are interested in the covariance correlation between non-overlapping X, Y ∈ Λ:

Tρ(X : Y ) := sup‖f‖=‖g‖=1|Tr[(f ⊗ g)(ρXY − ρX ⊗ ρY )]|, (4.12)
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where f and g are Hermitian operators with f supported on region X and g supported on

region Y , and where ρX is the reduced density matrix constructed from ρ by tracing over

the complement of X . Our goal is to bound this correlation function in terms of λ and the

distance between X and Y .

We follow Theorem 9 in Ref. [110]. Let σ be the steady state of the Liouvillian. From

the right-hand side of Eq. (4.12), we define

Covσ(f, g) :=
1

2
Tr[(fg + gf)σ]− Tr[fσ]Tr[gσ], (4.13)

which is equivalent to the term inside the sup (because f and g commute). Now we use the

bound (which follows directly from the triangle inequality)

|Covσ(f, g)| ≤ |Covσ(ft, gt)|+ |Covσ(f, g)− Covσ(ft, gt)|. (4.14)

Here ft and gt are the time-evolved versions of f and g under L†. This step allows us to

relate a static covariance to time-dependent quantities; we will use dynamical bounds to

constrain the form of the latter, then pick an optimal time which maximally bounds the

static covariance.

The first term on the right is constrained by the variance bound for s-reversible, primi-

tive Liouvillians (see Appendix C.2)

|Covσ(ft, gt)| ≤ 4 ‖f‖ ‖g‖ e−2λt, (4.15)

where λ is the dissipative gap of L. Intuitively, this relationship can be understood as

follows: the operators ft, gt both evolve (in time) toward an operator that is proportional to

the identity, so the covariance between them will eventually tend to zero as a function of

time. The rate at which this occurs is set by the dissipative gap of the system.

To bound the second term, we use the relation Tr[σft] = Tr[σf ], which holds for all
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observables f . This gives:

|Covσ(f, g)− Covσ(ft, gt)| (4.16)

=
1

2
(|Tr[(fg − ftgt)σ] + Tr[(gf − gtft)σ]|) (4.17)

=
1

2
(|Tr[((fg)t − ftgt)σ] + Tr[((gf)t − gtft)σ]|) (4.18)

≤ 1

2
(‖(fg)t − ftgt‖+ ‖(gf)t − gtft‖) (4.19)

≤ K ‖f‖ ‖g‖ C(r, t), (4.20)

where r := d(X, Y ). We obtain the inequality in the final line using the open-system Lieb-

Robinson bounds C(r, t) given in Lemma 1. Specifically, we use the following Lemma,

which is itself a restatement of Corollary 7 in Ref. [110]:

Lemma 2 (Time-evolution of spatially separated observables). Take two operators A and

B supported on X, Y ∈ Λ respectively such that r := d(X, Y ), and let A(t) = eL
†tA and

B(t) = eL
†tB be their time-evolution under the adjoint Liouvillian L†. We also define

(AB)(t) = eL
†t(AB). Then the following bound holds:

‖(AB)(t)− A(t)B(t)‖ ≤ K‖A‖‖B‖C(r, t), (4.21)

where C(r, t) is given by Lemma 1 and K is some constant that depends on lattice param-

eters.

Lemma 2 bounds the difference between operators that evolve together in the Heisen-

berg picture as opposed to evolving separately. Again we emphasize that A(t), B(t), and

(AB)(t) are not equivalent to Heisenberg-Langevin evolution, a fact that is at the core of

this bound. We defer the short proof of Lemma 2 to Appendix C.3 and move on to proving

the bound on the covariance correlations.

Theorem 2 (Bounds on steady-state covariance correlations). Consider Hermitian opera-

tors f, g which are supported on two non-overlapping subsetsX and Y of the d-dimensional
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cubic lattice Λ, and let L be an s-reversible Liouvillian with stationary state σ and dissi-

pative gap λ that satisfies the conditions in Eq. (4.2). Then there exists a constant c > 0

which only depends on λ, v such that

Tσ(X : Y ) ≤


c
(
rα−d

) −2λ
v+2λ , α > d,

c
log(r)α−d+1

rα−3d
, α > 3d,

c
log(r)2

rα−3
, α > 3, d = 1.

(4.22)

Proof. From our previous analysis [see Eqs. (4.15) and (4.20)] on the covariance correla-

tion in Eq. (4.14), we have

|Covσ(f, g)| ≤ 4 ‖f‖ ‖g‖
(
e−2λt +

K

4
C(r, t)

)
. (4.23)

To obtain the tightest bound, we minimize with respect to t the function

h(t) = e−λ
′t +K ′C(r, t), (4.24)

where λ′ = 2λ,K ′ = K/4.

We will perform this minimization exactly for the first case in Eq. (4.22), for which

C(r, t) is given by the first line of Eq. (4.10); for the other cases, we instead use an approx-

imation to the optimal ansatz, which allows us to obtain an analytical expression for the

bound. Setting dh/dt = 0 in Eq. (4.24) leads to a minimum at time

t̄ = −
(

1

λ′ + v

)
log

(
K ′v

λrα−d

)
. (4.25)
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This implies a minimum:

h(t̄) =

(
K ′v

λ′rα−d

) λ′
λ′+v

+
K ′

rα−d

(
K ′v

λ′rα−d

) −v
λ′+v

≤ c
(
rα−d

) −2λ
v+2λ (4.26)

for some constant c which depends on λ, v,K. Taking the supremum over f, g gives the

bound on Tσ(X : Y ) for α > d in the first line of Eq. (4.22).

For the other two cases, we use the ansatz t∗ = 1 + log
(
rβ
)
. Since the bound in the

second line of Eq. (4.10) scales as C(r, t) ∝ tα−d+1/rα−3d for all t, we have

h(t∗) = e−λ(1+log(rβ)) +K
(1 + log

(
rβ
)
)α−d+1

rα−3d

=
e−λ

rλβ
+K

(β log(r))α−d+1

rα−3d
+O

(
logα−d(r)

rα−3d

)
. (4.27)

We choose β = (α− 3d)/λ, which is positive for α > 3d. This gives the ultimate bound of

h(t∗) =
e−λ +K

(
α−3d
λ

log r
)α−d+1

rα−3d
+O

(
logα−d(r)

rα−3d

)
= K

(
α− 3d

λ

)α−d+1
logα−d+1(r)

rα−3d

+O
(

logα−d(r)

rα−3d

)
, (4.28)

which proves the second line of Eq. (4.22). For the d = 1 case in the last line of Eq. (4.22),

the argument proceeds similarly, but we obtain a slightly better scaling in the logarithmic

factor.

Here we discuss the scaling of the bounds in Eq. (4.22), which is depicted in Fig. 4.2.

The effective exponent of the 1/r-scaling of the bound for α > d is α′ ≡ (α − d) 2λ
v+2λ

, as

compared to α̃ ≡ α − 3 for α > 3d (neglecting terms doubly logarithmic in r). Since α′

decreases as a function of v, the former bound becomes looser for larger v. In more detail,
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if we let x = v
λ

, then α′ < α̃ for all α > (3x+4)d
x

. In the limit of x → ∞, α̃ is tighter for

all α > 3d. Thus, for large enough α and v, the power-law light-cone bounds [second line

in Eq. (4.10), which in turn comes from Eq. (4.6)] give asymptotically tighter bounds on

the clustering of covariance correlations than the logarithmic light-cone bound [first line in

Eq. (4.10), which in turn comes from Eq. (4.4)].

Figure 4.2: A log-log plot of the tails of the bounds on the various connected correlation
functions in Theorems 1, 2, and 3 for d = 1. We include the exponentially decaying
tail from the short-range interactions case (red curve) for comparison. For the power-law
decaying bounds, we have different scaling exponents of the power-law tails for the bound
for α > 1 (blue curve) and the bound for α > 3 (green curve). For a given choice of x = v

λ
,

the relative positioning of the curves holds for all α > 3x+4
x

. In the limit v � λ, the picture
holds for all α > 3.

4.2.2 Stability result and mutual information bound

In this section, we will use the aforementioned bounds to constrain steady-state proper-

ties of open systems with power-law interactions. In addition to the newly-derived Lieb-

Robinson bounds, we will appeal to a “mixing bound” which provides an upper bound to

how fast an arbitrary initial state will converge to the steady state. The following mixing

bound was derived in Ref. [116], and generalizes the mixing bound of classical Markov

chains to quantum semigroups:

Lemma 3. Consider a primitive Liouvillian L that has a full-rank steady state σ, and is
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1
2
-reversible. Then an arbitrary initial state ρ will converge to σ at a rate bounded by

‖ρ(t)− σ‖1≤
√

2 log(‖σ−1‖)e−βt, (4.29)

where β is called the log-Sobolev constant associated with L.

Intuition can be gained by considering an “infinite-temperature” steady state σ = I/dH

where dH is the dimension of the Hilbert space. The mixing bound above states that the

coefficient in front of the exponential will scale as
√

log(dH), i.e. it will increase with the

dimension of the Hilbert space. This is because the convergence toward the unique steady

state from an arbitrary initial state can be slow if the dimension of the Hilbert space is large.

Theorem 3 (Effect of perturbations on reduced steady-state density matrix). Let X, Y be

two non-overlapping subsets of a d-dimensional cubic lattice Λ. Let L1 be a primitive and

1
2
-reversible Liouvillian with log-Sobolev constant β, and let L2 be a Liouvillian pertur-

bation, acting trivially outside of X . Let ρ be the stationary state of L1, and let σ be the

stationary state of L1 + L2. Then,

‖ρY − σY ‖1≤


c log

(
‖ρ−1‖

) 1
2

(
1

rα−d

) 2β
v+2β

, α > d,

c log
(
‖ρ−1‖

) 1
2

log(r)α−d+1

rα−3d
, α > 3d,

c log
(
‖ρ−1‖

) 1
2

log(r)2

rα−3
, α > 3, d = 1,

(4.30)

where c is a constant and r is the distance between X and Y .

The theorem basically says that the effects of local perturbations in the Liouvillian will

not be felt significantly by the steady state of the system at sufficiently distant locations.

We prove the theorem by first introducing a time-evolved state to interpolate between the

two steady states. This allows us to use a combination of mixing-time and Lieb-Robinson

bounds to restrict the terms in this bound. Then we apply the same minimization procedure

used in Theorem 2 for the covariance-correlations bound to arrive at the stated bounds in
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Eq. (4.30) [each of which follow directly from the three cases in Eq. (4.10)]. We defer the

proof of this result, which is similar to the proof of Theorem 2, to Appendix C.4.

We now prove a bound on the mutual information in the steady state. The mutual

information between two regions A,B is defined as

Iρ(A : B) = S(ρAB||ρA ⊗ ρB), (4.31)

where S(ρ||σ) = tr[ρ(log ρ− log σ)] is the relative entropy. The following theorem holds.

Theorem 4 (Clustering of mutual information). Let A,B be two non-overlapping subsets

of a d-dimensional cubic lattice Λ. Let L be a primitive and 1
2
-reversible Liouvillian with

log-Sobolev constant β. Let ρ be the stationary state of L. Then the mutual information

between the two regions Iρ(A : B) is bounded by

Iρ(A : B) ≤


c log

(
‖ρ−1‖

) 3
2

(
1

rα−d

) 2β
v+2β

, α > d,

c log
(
‖ρ−1‖

) 3
2

log(r)α−d+1

rα−3d
, α > 3d,

c log
(
‖ρ−1‖

) 3
2

log(r)2

rα−3
, α > 3, d = 1,

(4.32)

where c is a constant and r is the distance between A,B.

The significance of this result is that the mutual-information correlations in the steady

state of an open long-range system decay as a power-law in the distance between regions.

This bound, which relies on the existence of the log-Sobolev constant, is tighter than the

naive bound that would result from simply applying the bound on the covariance correlation

in Theorem 2 to Iρ(A : B).

Proof. We define the semi-group L̃ to be the terms in L that act entirely within balls of ra-

dius r/2 centered aroundA andB, and let σ be the steady state of L̃. Simple manipulations
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imply:

Iρ(A : B) = −S(ρAB) + S(ρA) + S(ρB) (4.33)

≤ −S(ρAB)− tr[ρA log σA]− tr[ρB log σB] (4.34)

= S(ρAB||σA ⊗ σB). (4.35)

where we have used S(ρ||σ) ≥ 0 to obtain the inequality. The RHS further satisfies the

inequality:

S(ρAB||σA ⊗ σB) ≤ log
(
||ρ−1

AB||
)
||ρAB − σA ⊗ σB||1, (4.36)

which is a standard result (c.f. Eq. (36) in Ref. [110]). From here, we can apply the bounds

in Theorem 3, using L1 = L̃, L2 = L − L̃, Y = A ∪B, and X = Λ \ Y .

4.3 Summary and outlook

In this work, we have proven generalized Lieb-Robinson bounds which constrain the dy-

namics of open, Markovian systems with power-law interactions and used them to constrain

correlations in the steady state.

We comment briefly on the tightness of the bounds derived in this work. Intuitively, one

might expect that the presence of dissipation should lead to tighter Lieb-Robinson bounds

for open systems than for their closed counterparts, since the presence of decoherence from

a bath might limit the speed of quantum information transfer. In this work, we have gen-

eralized the proof of Lieb-Robinson bounds from closed system dynamics to Markovian

evolution (a priori, such bounds need not exist for Markovian dynamics). However, our

bounds only depend on interaction range and the dimension of the lattice. Any bound that

only depends on these two inputs cannot be tighter than the corresponding closed-system

Lieb-Robinson bound, since the latter is a special case of former. As such, the saturating

protocols for closed systems [95, 32] can be used to saturate open Lieb-Robinson bounds
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such as those uncovered in Lemma 1. In the future, it would be interesting to add an-

other degree of freedom into formulations of open Lieb-Robinson bounds: the dissipative

gap. (Some progress has been made in showing that Lieb-Robinson velocities can get

tighter in dissipative systems [108].) In principle, it might be possible to derive Lieb-

Robinson bounds that reduce to closed-system ones when the dissipative gap is zero, and

get tighter in the presence of non-zero dissipation. Then one can develop protocols that sat-

urate the dissipative-gap-dependent bounds. Another question in this direction is whether

the conditional evolution generated via a non-Hermitian Hamiltonian can also exhibit a

dissipative-gap-dependent Lieb-Robinson bound that reduces to the conventional one in

the dissipationless limit.

Setting aside the idea of a Lieb-Robinson bound that depends on the dissipative gap,

there is still the question of generalizing the best-known closed-system bounds to Marko-

vian evolution. In particular, the recent Lieb-Robinson bounds in Refs. [6] and [7] both

provide opportunities for generalization to open systems. Such a result would likely re-

quire a modification of the interaction-picture technique first developed in [117] and used

in both subsequent works to open-system dynamics. Generalizing these bounds would di-

rectly lead to tighter bounds on operator spreading in Lemma 1 and allow us to prove tighter

bounds on correlation clustering in steady states (Theorem 2 and Theorem 4)

Another way to probe the tightness of the steady-state correlation bounds derived in

this work would be to improve the mixing bounds, which currently require the open system

to be in thermal equilibrium. It would be interesting to derive more general mixing bounds

which also apply to systems that are out of thermal equilibrium.

One of the salient applications of Lieb-Robinson bounds is in rigorous proofs on the

stability of the spectral gap in topologically ordered quantum matter. For example, Ref. [10]

used closed-system Lieb-Robinson bounds to show that spatially local perturbations will

not close energy gaps in the toric code, thus leading to phase stability against arbitrary

local noise. Can we use a similar approach to show that local perturbations will not close
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the dissipative gap in a topologically-ordered open system? A robust qubit steady-state

structure would be useful toward the quest of passive quantum error correction [118].

Lieb-Robinson bounds can be used to prove area-law entanglement scaling in the ground

state of one-dimensional systems with local interactions [34]. This result helps to rigor-

ously justify the validity of the matrix-product state ansatz for the ground state of such

systems. For closed systems with power-law interactions, Lieb-Robinson bounds can be

used to further extend area-law scaling to certain broad classes of systems [33]. Do the

results presented in this chapter have similar implications for area-law scaling of the steady

state? This would have direct implications for the matrix-product operator ansatz in mod-

eling open systems.

Finally, the Lieb-Robinson-type bounds we proved apply for the operator, or∞-norm.

However, there exists a hierarchy of Lieb-Robinson-like bounds that have the potential to

be tighter for certain information processing tasks such as scrambling and transferring a

quantum state of a local subsystem without knowledge of the initial state of the rest of

the system. These bounds can use other norms such as the Frobenius norm defined by

‖O‖F =
√

Tr{O†O} [95, 119, 120, 105] or apply to free-particle systems [16, 95]. It

would be interesting to generalize these bounds to open systems as well.
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Appendix A

Supplemental Material for Chapter 1

In Appendix A.1, we provide a detailed proof of the general Lieb-Robinson-type bound for

long-range interactions with α ≤ d mentioned in Eq. (2.15). The bound has a closed-form

expression that can be used to lower bound the signaling time [see Eq. (2.16)] for α ≤ d.

In Appendix A.2, we derive a second general Lieb-Robinson-type bound that is the

tightest one can get from the Lieb-Robinson series mentioned in Eq. (2.13), although it

lacks a closed-form analytic expression. We show numerically that the signaling time ob-

tained from this bound has the same scaling as a function of system size N as the bound in

Eq. (2.15) whenN is sufficiently large. Therefore, the bound presented in Eq. (2.15) is—in

a broad sense—the best one can obtain without developing new techniques beyond those

used in deriving the traditional Lieb-Robinson series.

A.1 Proving the general Lieb-Robinson-type bound for α ≤

d

Before we present the proof of the general Lieb-Robinson-type bound given in Eq. (2.15),

let us summarize in Appendix A.1.1 some mathematical preliminaries useful for the proof.
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A.1.1 Mathematical preliminaries

In this section, we elaborate on the scaling of the on-site hop parameter Jii defined after

Eq. (2.14). We define the quantity λ = maxi∈Λ Jii, which for power-law interactions has

strength

λ = max
i∈Λ

∑
j∈Λ\i

Jij = max
i∈Λ

∑
j∈Λ\i

1

rαij
. (A.1)

If the lattice Λ is a square lattice with unit spacings, then λ scales as

λ =


Θ
(
N1−α/d) for 0 ≤ α < d,

Θ(logN) for α = d,

Θ(1) for α > d.

(A.2)

In general, the scaling of λ as a function of N in Eq. (A.2) holds asymptotically for large

regular lattices [39].

For α ≤ d, we note that λ diverges in the thermodynamic limit. For some applications,

it is preferred to apply a normalizing factor of 1/λ (due to Kac [121]) to the Hamiltonian

to ensure the system energy is extensive. Since experimental systems (such as those with

dipolar interactions in 3D) do not necessarily have extensive energy, we would prefer not

to apply the Kac normalization. The light cone contours for Kac-normalized Hamiltonians

follow straightforwardly from our results upon rescaling the time by a factor of λ.

In the rest of this subsection, we justify the dependence of λ on N and α as shown in

Eq. (A.2). We assume that the lattice Λ is d-dimensional with N = Ld sites. Without loss

of generality, let i be the site located at the origin and define rj ≡ rij ≥ 1. For 0 ≤ α < d,

we bound Eq. (A.1) above by an integral:

∑
j∈Λ

1

rαj
≤
∫
~r∈Rd

dd~r

‖~r‖α =
2π

d
2

Γ(d
2
)

∫ L

0

dr

rα−d+1
=

ωd
d− αL

d−α, (A.3)

where ωd ≡ 2π
d
2

/
Γ(d

2
) is the hyper-surface area of a unit d-sphere and Γ(·) is the Gamma
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function. It follows that λ = O
(
N1−α/d) for α < d. The asymptotic lower bound λ =

Ω
(
N1−α/d) follows from setting ‖~r‖ → ‖~r‖+

√
d and integrating from r = 1 to r =∞.

For α = d, we perform the same calculation, taking care to avoid integrating over the

origin:

∑
j∈Λ

1

rαj
≤
∫
‖~r‖≥1

dd~r

‖~r‖d +
∑
j∈Λ

θ
(

1 +
√
d− rj

)
(A.4)

≤ ωd

∫ L

1

dr

r
+
ωd

(
1 +
√
d+ 1

2

)d
ωd
(

1
2

)d (A.5)

=
ωd
d

log(N) +
(

2
√
d+ 3

)d
, (A.6)

where θ(·) denotes the Heaviside step function. So, at the critical point α = d, we have

λ = O(log(N)). The lower bound λ = Ω(log(N)) holds in a similar fashion.

For α > d, the sum in Eq. (A.1) converges, so λ can be bounded by a constant indepen-

dent of N . Thus, we have verified the asymptotic scaling of the on-site parameter λ for the

three cases listed in Eq. (A.2).

A.1.2 Proof of the bound in Eq. (2.15)

In this section, we provide a simple proof of Eq. (2.15) for long-range interactions. First,

let us recall the Lieb-Robinson series from Eq. (2.13).

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!
J k(X, Y ), (A.7)

J k(X, Y ) ≡
∑

i1,...,ik−1

JXi1Ji1i2 . . . Jik−1Y . (A.8)

We use the so-called reproducibility condition for finite systems with power-law decaying

interactions [58, 122]. Specifically, for α > 0 and distinct i, j ∈ Λ, the second-order
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hopping term k = 2 in Eq. (A.8) can be bounded by

J 2(i, j) =
∑
k

JikJkj ≤ pλJij, (A.9)

where p = 2α+1 and λ is the on-site hop parameter defined in Eq. (A.1). This inequality

allows the power-law decay of Jij to be reproduced across multiple hopping terms.

We reorder the summations on the right-hand side of Eq. (A.8) by introducing a new in-

dex n to count the number of self-hops in a particular sequence of hopping sites {i1, . . . , ik−1}.

Specifically, n represents the number of indices j ∈ {0, . . . , k−1} such that ij = ij+1 (with

i0 = X and ik = Y ). Now let us first assume that the n self-hops occur in the first n terms

(JXi1 to Jin−1in). Then we may rewrite the right-hand side of Eq. (A.8) as

∑
i1,...,ik−1

JXi1 . . . Jik−1Y = λn
∑

in+1,...,ik−1

Jinin+1 . . . Jik−1Y , (A.10)

using the fact that each self-hop term Jii is equal to λ. If, on the other hand, the n self-

hops appear in arbitrary positions in the sequence of hops, then accounting for these cases

multiplies Eq. (A.10) by the combinatorial factor of
(
k
n

)
. Inserting into Eq. (A.8) gives

J k(X, Y ) =
k∑

n=0

(
k

n

)
λn

 ∑
in+1,...,ik−1

JiX in+1 . . . Jik−1Y

 , (A.11)

where we relabeled in as X . Now, using the fact that ij 6= ij+1 for j = n, . . . , k− 1 (where

ik = Y ), we can apply the reproducibility condition in Eq. (A.9) a total of k − n times

along with the normalization condition Jij = 1/rαij for i 6= j to get

∑
in+1,...,ik−1

JXin+1 . . . Jik−1Y ≤ (λp)k−n−1JXY =
(λp)k−n−1

rαXY
. (A.12)
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Finally, inserting this inequality into Eq. (A.11) and applying the binomial theorem gives

J k(rXY ) ≤
k∑

n=0

(
k

n

)
λn
[

(λp)k−n−1

rαXY

]
=

(λ+ λp)k

λprαXY
. (A.13)

Inserting this bound for J k(rXY ) into Eq. (A.7) gives an exponential series bound for the

commutator

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!
J k(X, Y ) (A.14)

≤ 2‖A‖‖B‖|X||Y |
∞∑
k=1

(2t)k

k!

(λ(1 + p))k

λprαXY
(A.15)

= 2‖A‖‖B‖|X||Y |
(
e2λt(1+p) − 1

λprαXY

)
(A.16)

= 2‖A‖‖B‖|X||Y |
(
eΘ(N1−α/d)t − 1

Θ(N1−α/d)rαXY

)
, (A.17)

which reproduces Eq. (2.15).

A.2 Second general Lieb-Robinson-type bound for α ≤ d

The above derivation of the bound in Eq. (A.17) requires the use of the reproducibility con-

dition [Eq. (A.9)], which can make the bound loose compared to the Lieb-Robinson series

in Eq. (A.7). In this section, we will exactly sum the series in Eq. (A.7) and compare the re-

sulting bound to that of Eq. (A.17). We will show by numerical analysis that—although the

bound obtained directly from the Lieb-Robinson series is tighter than the one Eq. (A.17)—it

largely shares the same scaling behavior when the number of sites N is large.

A.2.1 Summing the Lieb-Robinson series exactly

We now exactly calculate the sum in Eq. (A.7) without using the reproducibility condi-

tion. Since Eq. (A.7) is an infinite series, one cannot perform the sum directly. But using
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a discrete Fourier transform, the series can be summed numerically in a highly efficient

manner.

To use the discrete Fourier transform, we assume that Jij = 1/rαij is translationally

invariant. Note that the physical interaction strength between lattice sites does not need to

be translationally invariant, as it just needs to be bounded by Jij . his additional assumption

does not greatly affect the generality of the following results.

For simplicity, we consider a 1D lattice Λ that consists of N spins on a ring; the fol-

lowing results generalize straightforwardly to lattices in arbitrary dimensions. Let rij =

min{|i− j|, |N − i+ j|} be the (periodic) distance metric, which coincides with the graph

distance d(i, j) on Λ. Due to translational invariance, we denote Jij by J(rij) which satis-

fies J(r +N) = J(r).

We now perform a discrete Fourier transform from the position space parameterized by

r = 0, 1, 2, · · · , N − 1 to a momentum space parameterized by p = 0, 1, 2, · · · , N − 1,

denoted by Fp[f(r)] =
∑N−1

r=0 e−2πipr/Nf(r). We observe that the sum in the definition of

J k(X, Y ) in Eq. (A.8) can be rewritten as the k-fold convolution of J(r) with itself. Thus,

letting r ≡ rXY and J k(r) ≡ Jk(X, Y ), the discrete Fourier transform of Eq. (A.8) is

given by

Fp[J k(r)] = ω(p)k, (A.18)

where ω(p) = Fp[J(r)]. We now take the discrete Fourier transform of the entire series in

Eq. (A.7):

Fp [‖[A(t), B]‖] ≤
∞∑
k=1

(2t)k

k!
ω(p)k = e2ω(p)t − 1. (A.19)

The series in Eq. (A.7) can thus be evaluated exactly by taking the inverse Fourier transform

of Eq. (A.19):

‖[A(t), B]‖ ≤ F−1
r

[
e2ω(p)t − 1

]
. (A.20)
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where F−1
r [g(p)] ≡ 1

N

∑N−1
p=0 e

2πipr/Ng(p) defines the inverse discrete Fourier transform.

For α = 0, the inverse Fourier transform can be evaluated to yield the analytical expression

‖[A(t), B]‖ ≤ 2‖A‖‖B‖|X||Y |
(
e4Nt − 1

N

)
, (A.21)

which matches the bound in Eq. (A.17) up to constant factors. For α > 0, it is difficult to

obtain a simple analytical expression for the bound in Eq. (A.20). We will thus evaluate

this bound numerically, as detailed in the next section.

A.2.2 Numerical comparison of the two bounds

In this section, we study the asymptotic scaling of the exact summation bound in Eq. (A.20).

Because the discrete Fourier transform can be performed rather efficiently using the Fast

Fourier Transform algorithm [123] numerically, we can evaluate the right-hand side of

Eq. (A.20) for system sizes up to the order of 106. This allows us to compare the bound in

Eq. (A.20) (referred to below as the “exact summation bound") with the bound in Eq. (A.17)

(referred to below as the “analytical bound") for large N .

Let us first focus on the large-r asymptotic behavior of the two bounds. As a typical

example, we set N = 106 and t = 1/λ and plot the right-hand side of the two bounds (with

‖A‖ = ‖B‖ = |X| = |Y | = 1) as a function of r for α = 0.5 in Fig. A.1. Unsurprisingly,

the right-hand side of the analytic bound in Eq. (A.17) decays as 1/rα for the entire range

of r. The exact summation bound leads to the same scaling for small r, but not for large r.

While this comparison leaves room for potential tightening of the bound in Eq. (A.17) for

large r, generic improvement of the bound for all r seems unlikely.

Next, we compare theN -dependence of the two bounds. To get rid of the r-dependence,

we will compare the signaling times between two sites with either r = 1 (the smallest

possible separation on a 1D ring) or r = N/2 (the largest possible separation). If the

two bounds agree with each other at both r = 1 and r = N/2 in the large N limit, it is
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Figure A.1: A comparison between the exact summation bound [Eq. (A.20)] and the an-
alytical bound [Eq. (A.17)] sites as a function of the distance r between operators A and
B. The specific plot assumes a 1D periodic lattice with N = 106, α = 0.5, t = 1/λ, and
r = 1, 2, · · · , N/2.

reasonable to believe that they will agree with each other at all values of r.

For α < 1, the analytical bound gives the following signaling time (upon setting

‖[A(t), B]‖ = 1) as function of r and N :

tsi(r,N) = Ω

(
log(N1−αrα)

N1−α

)
. (A.22)

Choosing either r = 1 or r = N leads to tsi = Ω(Nα−1 log(N)), consistent with Eq. (2.16).

For the exact summation bound, we numerically compute tsi by finding the value of t that

makes ‖[A(t), B]‖ = 1 over a range of N from 104 to 106 for both r = 1 and r = N/2.

We then fit t as a function of N to the function aNγ log(N). In Fig. A.2, we plot the fitted

exponent γ(α) as a function of α. We observe that γ(α) scales approximately as α − 1 as

long as α is not close to 1 for both r = 1 and r = N , showing that both bounds lead to

approximately the same scaling of signaling time in N .

When α → 1, γ(α) deviates from α − 1 noticeably. We attribute such deviation to

finite-N effects in our numerical evaluation of the exact summation bound. In particular,

we notice that as α → 1, λ (which plays an important role in both bounds) is not well-

approximated by Nα−1 for insufficiently large enough N . For such values of N , λ is better
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Figure A.2: The fitted exponent γ in the signaling time scaling obtained from the exact
summation bound in Eq. (A.20) at r = 1 (a) and r = N/2 (b) for a ∈ [0, 1]. The error bars
reflect the 95% confidence intervals for the fit.

approximated by log(N).

To give further clarification, we perform a comparison of the two bounds exactly at

α = 1, where we can exactly use log(N) in place of Nα−1. The signaling time given by

the analytical bound now scales as

tsi(r,N) = Ω

(
log(r logN)

logN

)
. (A.23)

We then fit the signaling time obtained from the exact summation bound at α = 1 using

the above scaling function and find very good agreement between the two bounds. For

example, at r = 1 the signaling time from the exact summation bound can be fitted by the

function a log(N)b log log(N)c with b = −1.0 and c = 0.95, which agrees with the scaling

of log log(N)/ log(N) provided by Eq. (A.23). As a result, we expect the signaling time

bounds given by both bounds to have the same scaling in N when the system size is large

enough for all α ≤ d.
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Appendix B

Supplemental Material for Chapter 2

In Appendices B.1 and B.2, we present the mathematical proofs of results stated in Chap-

ter 3. In Appendix B.3, we present a roadmap towards experimentally implementing the

broadcast protocols in Refs. [30] and [32] using dipolar interactions in a system of Ryd-

berg atoms. Finally, in Appendix B.4, we provide a summary of the analysis in Ref. [30]

of various noise and decoherence mechanisms due to the fragility of the GHZ state and

susceptibility to single-qubit errors.

B.1 Proof of Lemma 1

In this section, we provide the proof that the QFT unitary spreads operators and is thereby

constrained by the Frobenius and Lieb-Robinson bounds.

Lemma 4. Let UQFT be the QFT operator on n qubits arranged in d dimensions such that

the first and nth qubits are a distance r= Θ(n1/d) apart. Then U †QFTZ1UQFT =:Z ′1 is an

operator with at least constant weight at distance r.

Proof. We explicitly compute the weight of the operator Z ′1 on site n. Define ω := e2πi/2n .

The QFT operation on n qubits is defined as
∑2n−1

y,z=0 |y〉〈z|ωyz/
√

2n, where we interpret

the bit string y1, y2, . . . , yn as a binary representation of a number y ∈{0, 1, . . . , 2n − 1}
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in the canonical ordering, i.e. y= y12n−1 + y22n−2 + · · · + yn. The inverse of the QFT is

obtained simply by taking ω→ω−1. First, we compute

Z ′1 =
2n−1∑
x,y,z=0

|z〉〈y| ω
−zy(−1)y1ωyx

2n
|y〉〈x| . (B.1)

We divide the sum over y into two cases, y1 = 0 and y1 = 1:

Z ′1 =
1

2n

2n−1∑
x,z=0

|z〉〈x|
( ∑
y: y1=0

ω(x−z)y −
∑
y: y1=1

ω(x−z)y

)
. (B.2)

We can compute these sums separately, giving

Z ′1 =
1

2n−1

∑
x 6=z

|z〉〈x| 1− (−1)(x−z)

1− ωx−z . (B.3)

The nonzero terms in the sum on the right-hand side of Eq. (B.3) occur when x− z is odd,

i.e., when xn− zn = 1 mod 2. Therefore, the only terms that remain are off-diagonal on

qubit n or, equivalently, contain only the Xn or Yn Pauli operators. This implies that Z ′1 has

all its weight on operators acting nontrivially at distance r—formally, that Qr|Z ′1) = |Z ′1).

B.2 Generalization of lower bound to approximate QFT

In this section, we generalize to the approximate QFT unitary our result showing that the

QFT unitary can spread operators nontrivially beyond a distance r. Ref. [82] defined the

approximate QFT as a unitary ŨQFT that can implement the QFT approximately with error

ε:

‖UQFT − ŨQFT‖ ≤ ε, (B.4)
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where ‖ · ‖ denotes the operator norm. Consider the operator Ũ †QFTZ1ŨQFT. We argue that

this operator is spread out as well. From Eq. (B.4), it follows that

∥∥∥Ũ †Z1Ũ − U †Z1U
∥∥∥ ≤ 2ε ‖Z1‖ = O(ε), (B.5)

where ‖ ·‖ indicates the operator norm and we let U :=UQFT and Ũ := ŨQFT for simplicity.

Since the normalized Frobenius norm is upper-bounded by the operator norm, we have

∥∥∥Ũ †Z1Ũ − U †Z1U
∥∥∥
F

= O(ε). (B.6)

Moving to the vector space of operators and applying the projector Qr onto operators with

support beyond radius r yields

∥∥∥Qr|Ũ †Z1Ũ)−Qr|U †Z1U)
∥∥∥ = O(ε), (B.7)

where ‖ · ‖ is the Euclidean norm and using ‖Qr‖= 1. By the triangle inequality, we have

∥∥∥Qr|Ũ †Z1Ũ)
∥∥∥ ≥ ∥∥Qr|U †Z1U)

∥∥−O(ε) (B.8)

= 1−O(ε). (B.9)

Equation (B.8) implies that the operatorZ1 after conjugating by the AQFT has large support

on sites beyond distance r as well, implying that the lower bounds in Eqs. (3) and (4) of

the main text also hold for the AQFT.

B.3 Experimental implementation

In this section, we describe an experimental procedure to implement the broadcast protocols

from Refs. [30] and [32]. Specifically, we will consider dipole-dipole interactions between

Rydberg atoms—which decay as 1/r3—in two and three dimensions. This would allow
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for implementing the fanout gate on n qubits in time O(polylog(n)). Our implementation

builds on the one outlined in the Supplemental Material of Ref. [30].

We encode our ancillary qubits in the electronic ground state and excited Rydberg states

of a neutral atom under a weak electric field. Using Rb87, this can be done by encoding

the qubit state |0〉 in the ground state |g〉 and the |1〉 state in the equal superposition state

(|s〉 + |p0〉)/
√

2 consisting of the excited Rydberg states |s〉 =
∣∣L = 0, J = 1

2
,mJ = 1

2

〉
and |p0〉 =

∣∣L = 1, J = 1
2
,mJ = 1

2

〉
, obtained by applying a microwave dressing field1.

This leads to the following effective dipolar interaction Hamiltonian between the qubits:

Hint =
∑
i 6=j

Hij =
1

4πε0

∑
i 6=j

µ2
0

16

1− 3 cos2 θij
r3
ij

(1− Zi)⊗ (1− Zj), (B.10)

where rij is the distance between atoms i and j, θij is the angle between the electric field

and the vector separating the two atoms, and Zi = |0〉〈0|i − |1〉〈1|i. Additionally, the tran-

sition dipole moment is given by µ0 = 〈p0|d0|s〉, where dp = êp · d is a component of the

dipole operator d and ê0 = ẑ, ê± = ∓(x̂± iŷ)/
√

2. Our assumption here of instantaneous

power-law interactions is a good approximation for a physical system, provided that the

timescale of the dynamics is sufficiently long compared to the size of the system divided

by the speed of light [124].

The (1−Zi)⊗ (1−Zj) interactions in Eq. (B.10) can be used to realize the |1〉〈1|i⊗Xj

interactions required for the protocol in Ref. [30] [see Eq. (1)] as well as the |1〉〈1|i⊗|1〉〈1|j
interactions used in Ref. [7] [see Eq. (6)], since the interactions are interchangeable up to

local terms. While the local operations used in the protocol may require time-dependent

control, we note that the dipolar interactions will remain constantly on throughout the entire

broadcast process, which avoids the need for selective two-body interactions. The individ-

ual addressing required to perform the local rotations has been demonstrated in 2D tweezer

arrays [125] as well as in a 3D optical lattice, as shown in Ref. [126]. The 5 µm lattice

1We note that the |s〉 and |p0〉 states (as well as the |p+〉 state defined later) can all have different principal
quantum numbers.
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spacing in those systems would also be appropriate for our protocol, as the distance be-

tween Rydberg atoms helps prevent the dipole-dipole interactions from reaching the scale

of the energy-level spacing.

In order to implement the “selective” asymmetric control-target interactions required

by the protocols in Ref. [30] and Ref. [32], we use a procedure reminiscent of the Hahn

spin-echo [127]. First, we apply the interaction Hamiltonian Hint on all qubits at once for

a time t. Then, we apply a local π-pulse (X gate) on either all of the control qubits or

all of the target qubits at once. This has the effect of swapping Z for −Z, which leaves

all control-control and target-target interactions invariant, but flips the sign of the control-

target interactions. Then, in the final step, we evolve by the interaction −Hint for time t.

This will have the effect of zeroing out the control-control and target-target interactions and

lead to a net evolution by the control-target interactions for the full time t. This is sufficient

to implement the broadcast protocol from Ref. [30] using only local controls.

To tie things up, we show how to implement the oppositely signed Hamiltonian −Hint.

We will use the same approach as for Hint, but instead of resonantly dressing the |s〉 state

with |p0〉, we will instead use the state |s′〉 with a different principal quantum number and

dress it with the state |p+〉 =
∣∣L = 1, J = 3

2
,mJ = 3

2

〉
to form the state |1′〉 = (|s′〉 +

|p+〉)/
√

2. In this case, the corresponding effective dipolar interaction Hamiltonian will be

given by

H ′int = − 1

4πε0

∑
i 6=j

µ2
+

32

1− 3 cos2 θij
r3
ij

(1− Zi)⊗ (1− Zj), (B.11)

where µ+ = 〈p+|d+|s〉. Note that, apart from a constant factor, the dipole-dipole interac-

tion here differs from Hint by only a negative sign. Thus, by transferring the |1〉 population

to the |1′〉 state, it is possible to implement the state transfer protocols in Ref. [30] and

Ref. [32] via Rydberg atoms. Note that when the polarization of the drive is changed, one

needs to guarantee that the qubit state is temporarily moved out of the |s〉, |p0〉, and |p+〉
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states.

B.4 Noise and decoherence

In this section, we study the effects of possible decoherence mechanisms in the fast fanout

protocol for the specific experimental system mentioned in the previous section. In par-

ticular, for the protocol using qubits encoded in the excited states of Rydberg atoms, two

potential sources of noise are spontaneous emission from the Rydberg state as well as errors

in single-qubit gates. The error analysis we detail here summarizes the analysis performed

in the Supplemental Material of Ref. [30].

Spontaneous emission

The GHZ state is quite fragile, since the spontaneous emission of even a single qubit can

cause the state to decohere entirely. If a single qubit in the |1〉 state has a lifetime τ , the

lifetime of the corresponding n-qubit GHZ state would be approximately ∼ τ/n. The

lifetime of the 100s Rydberg state of Rb87 at 300K is τ = 340µs, so the lifetime of a

GHZ state with n qubits would be 340
n
µs. For the GHZ-state-encoding procedure given in

Ref. [30], the number of qubits that can be entangled with probability of success at least ε

can be upper-bounded by

n <
τ ln 1

ε

δt
, (B.12)

where δt is the time required to implement an intermediate expansion step. Assuming

δt = 5 ns and ε = 1/2, this would limit the maximum allowable size of the GHZ state to

be roughly n = 4.7× 104.

Performing the fanout gate requires two GHZ-encoding steps, since after the intial

GHZ-state encoding of the ancilla qubits and the parallel CNot gates between ancilla and
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data qubits, the ancilla qubits must be reset (in order to maintain the coherence of the first

data qubit d1). Thus, the total success probability must be replaced with
√
ε to reflect the

fact that the GHZ-state creation step must be applied twice. For ε = 1/2, this gives a

maximum size for the fanout gate of N = 2.4× 104.

Single-qubit noise

The protocol in Ref. [30] uses a number of single-qubit gates in order to implement the

control-target interactions. In this subsection, we discuss the effects of imperfections in

those gates on the overall fidelity of the fanout protocol.

Suppose we want to perform the protocol with overall probability of success ε. For

a sequence of ns noisy single-qubit gates each with probability of success P , the total

probability of success is P ns . Setting this equal to ε implies that the single-qubit success

probability must satisfy P > ε1/ns . In a given step of the protocol, the average number of

single-qubit gates involved is roughly 4 per qubit, so the total number of gates is ns = 4n.

Taking the achievable fidelity of a single-qubit gate to be P = 1 − 1 × 10−4 and letting

ε = 1/2 as before, this implies that roughly n = 900 qubits could be entangled [30]. This

size estimate is an order of magnitude smaller than one obtained in the previous subsection,

indicating that the protocol is quite sensitive to single-qubit errors.
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Appendix C

Supplemental Material for Chapter 3

C.1 Bounds on the error incurred by approximating time-

evolved operators by local ones

Here we use the open-system Lieb-Robinson bounds described in Section 4.1 of the main

text to derive the scalings in Lemma 1. Recall that Ã(t) is the evolution of the operator A

under the Liouvillian L̃, the restriction of the long-range Liouvillian L to Br(X), the ball

of radius r centered on X , for time t. We bound the difference between A(t), which is A

evolved by the full Liouvillian, and Ã(t) as follows:

∥∥∥A(t)− Ã(t)
∥∥∥ =

∥∥∥∥∫ t

0

d

ds

[
eL
†(t−s)eL̃

†sA
]

ds
∥∥∥∥ (C.1)

=

∥∥∥∥∫ t

0

eL
†(t−s)(L† − L̃†)Ã(s) ds

∥∥∥∥ (C.2)

≤
∫ t

0

∑
j:dist(j,X)>r

∑
i:dist(i,X)≤r

∥∥∥L†ijÃ(s)
∥∥∥ ds. (C.3)

In order to bound
∥∥∥L†ijÃ(s)

∥∥∥, we turn to the open-system Lieb-Robinson bounds discussed

in Section 4.1. Each line of Eq. (4.10) and Eq. (4.11) will correspond to plugging in one of
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those bounds. For ease of reference, we reproduce the scalings here:

C(r, t) ∝



eΘ(N1−α/d)t − 1

Θ(N1−α/d)
, α < d,

eΘ(log(N))t − 1

Θ(log(N))
, α = d.

evt

rα−d
, α > d,

tα−d+1

rα−3d
, α > 3d,

t2

rα−3
, α > 3, d = 1.

(C.4)

The calculations will be similar for each bound, so we will only demonstrate the result of

inserting the power-law light cone bound from Eq. (4.6) into Eq. (C.3):

∥∥∥A(t)− Ã(t)
∥∥∥ ≤ C ‖A‖

∫ t

0

ds
∑

j:dist(j,X)>r

∑
i:d(i,X)≤r

∥∥∥L†ij∥∥∥ sα−d

dist(i,X)α−2d
(C.5)

≤ C ‖A‖
∫ t

0

ds
∑

j:dist(j,X)>r

∑
i:dist(i,X)≤r

1

dist(i, j)α
sα−d

dist(i,X)α−2d
(C.6)

≤ C ′ ‖A‖
∫ t

0

ds
∑

j:dist(j,X)>r

sα−d

dist(j,X)α−2d
(C.7)

≤ C ′′ ‖A‖ t
α−d+1

rα−3d
. (C.8)

This yields the expression in the fourth line of Eq. (C.4). Performing the same operations

for the other bounds gives the other terms in Eq. (C.4): the first and second lines come from

Eq. (4.5); the third line comes from Eq. (4.4), and the last line comes from Eq. (4.8).

C.2 Variance bound for reversible Liouvillians

Here we provide a derivation of the covariance bound used in Eq. (4.15). We show that

s-reversibility is important for this bound to hold. We define the variance of an observable

f in the steady state σ as Var[f ] = Tr[f 2σ]− Tr[fσ]2, which is real and positive. We wish
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to find a bound for Var[ft] for the time-evolved observable ft = eL
†tf .

The Liouvillian is a non-Hermitian superoperator, which means that each eigenvalue

has right and left eigenoperators:

L(ri) = λiri, L†(li) = λ∗i li. (C.9)

From the structure of the adjoint Liouvillian (L†), it is clear that L†(I) = 0, where I is the

identity operator. This implies that one of the eigenvalues λ0 is zero, and the corresponding

right eigenoperator σ is called the steady state and satisfies L(σ) = 0 and eLt(σ) = σ.

The eigenoperators are “bi-orthonormal” via the Hilbert-Schmidt inner product: Tr[l†i rj] =

Tr[r†i lj] = δij .

We define the superoperator Γs(f) = (σsfσ1−s + σ1−sfσs)/2 where s ∈ [0, 1] and σ

is a full-rank, Hermitian operator with positive eigenvalues. We say that a Liouvillian is

s-reversible for some s ∈ [0, 1] if ΓsL† = LΓs. By acting both sides on the operator I,

we see that σ is the steady state, i.e. that L(σ) = 0. Imposing reversibility implies that the

spectrum must be real because the Liouvillian is pseudo-Hermitian with a positive-definite

metric [128].

The dynamics preserves Hermiticity of a density matrix, which implies that L(f †) =

[L(f)]†, and the same for the adjoint: L†(f †) = [L†(f)]†, where f is an arbitrary operator.

This implies that (right and left) eigenoperators with real eigenvalues must be Hermitian.

For s-reversible Liouvillians, the entire spectrum is real, which implies that all eigenoper-

ators are Hermitian.

Ref. [110] derives a bound for the time-evolved variance in a s-reversible system:

Var[ft] ≤ e−2λ1tVar[f(t = 0)], (C.10)

where {−λi} is the real, non-positive spectrum of L, sorted from smallest to largest mag-

nitude with λ0 = 0, λ1 > 0. (λ = λ1, i.e. the dissipative gap.) Here we derive this bound
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using the properties of the eigenoperators of L.

Consider a general Hermitian operator which we write in terms of left eigenoperators

f =
∑
j

cjlj ⇒ ft =
∑
j

cje
−λjtlj, (C.11)

where cj are real because f is Hermitian. Noting that Tr[ljσ] = 0 for j 6= 0, we find

Var[ft] = Tr

(∑
j 6=0

cje
−λjtlj

)2

σ

 =
∑
j 6=0

c2
je
−2λjt, (C.12)

where in the last equality we have used Tr[lirj] = Tr[liΓs(lj)] = δij . From this, it is

easy to see that λi>1 ≥ λ1 implies the bound Eq. (C.10). For the more general case of a

complex spectrum, it is not clear how to repeat the derivation above. We therefore find that

s-reversibility is sufficient for the bound to hold. (It is unclear whether s-reversibility is

necessary for the bound.)

Given the bound Eq. (C.10), one can repeat the steps outlined in Eqs. [49-55] in Ref. [110]

to obtain the bound used in Eq. (4.15) of the main text. For completeness, we include these

steps below:

|Covσ(ft, gt)| ≤
√

Var(ft)Var(gt) (C.13)

≤ e−2tλ1
√

Var(f)Var(g). (C.14)
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The inequality in (C.13) is due to Holder’s inequality. The variance can be bounded by

√
Var(f) =

√
Tr[σ(f − Tr[σf ])2] (C.15)

≤
√
‖(f − Tr[σf ])2‖ (C.16)

≤ ‖f − Tr[σf ]‖ (C.17)

≤ ‖f‖+|Tr[σf ]| (C.18)

≤ 2‖f‖. (C.19)

Putting together (C.14) and (C.19) leads to the desired bound (where λ = λ1, i.e. the

dissipative gap):

|Covσ(ft, gt)| ≤ 4 ‖f‖ ‖g‖ e−2λt, (C.20)

which matches Eq. (4.15) in the main text.

C.3 Bound on the difference between two operators evolv-

ing separately versus evolving together

In this section, we provide the proof of the bound in Lemma 2. We restate the lemma here

for convenience:

Lemma 2. Take two operators A and B supported on single sites X, Y ∈ Λ respectively

such that r := d(X, Y ), and let A(t) = eL
†tA and B(t) = eL

†tB be their time-evolution

under the Liouvillian superoperator L†. We also define (AB)(t) = eL
†t(AB). Then the

following bound holds:

‖(AB)(t)− A(t)B(t)‖ ≤ K ′‖A‖‖B‖C(r, t), (C.21)

where C(r, t) is given by the Lieb-Robinson-type bound corresponding to the system in
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question (see Lemma 1) and K ′ is some constant that depends on lattice parameters.

Proof. We define the semi-group L̃† to be the terms in L† that act entirely within balls of

radius r/2 centered around X and Y . Then, let Ã(t) be the time-evolved version of A

under L̃† and likewise for B̃(t). By definition, this implies that Ã(t)B̃(t) = (ÃB)(t). We

then get

‖(AB)(t)− A(t)B(t)‖ ≤ ‖(AB)(t)− (ÃB)(t)‖+ ‖A(t)B(t)− Ã(t)B̃(t)‖. (C.22)

The first term on the RHS of Eq. (C.22) may be bounded by the Lieb-Robinson bound

stated in Lemma 1 (for an operator that is initially supported on two sites instead of one).

The second term can be bounded by

‖A(t)B(t)− Ã(t)B̃(t)‖ ≤ ‖A(t)(B(t)− B̃(t))‖+ ‖(A(t)− Ã(t))B̃(t)‖ (C.23)

≤ ‖A‖‖B(t)− B̃(t)‖+ ‖A(t)− Ã(t)‖‖B‖, (C.24)

using ‖A(t)‖ ≤ ‖A‖ and the submultiplicativity of the operator norm. Using the Lieb-

Robinson bound again, we get

‖(AB)(t)− A(t)B(t)‖ ≤ 2K‖A‖‖B‖C(r, t), (C.25)

which is the same as Eq. (4.21) in the main text.

C.4 Effect of perturbations on reduced steady-state den-

sity matrix

In this section, we provide the proof of Theorem 3. The argument hews closely to that of

Lemma 11 in Ref. [110], but uses the Lieb-Robinson bounds for open long-range systems

given in the main text.

73



Theorem 2. Let X, Y be two non-overlapping subsets of a d-dimensional cubic lattice Λ.

Let L be a primitive and s-reversible Liouvillian with log-Sobolev constant β, and letQ be

a local Liouvillian perturbation, acting trivially outside of X . Let ρ be the stationary state

of L, and let σ be the stationary state of L+Q. Then,

‖ρY − σY ‖1≤


c log(‖ρ−1‖)

1
2
(

1
rα−d

) 2β
v+2β , α > d,

c log(‖ρ−1‖)
1
2 log(r)α−d+1

rα−3d , α > 3d,

c log(‖ρ−1‖)
1
2 log(r)2

rα−3 , α > 3,

(C.26)

where c is some constant, and r is the distance between X and Y .

Proof. We use the following definition of the trace norm:

1

2
‖ρ− σ‖1= max

0≤A≤I
tr[A(ρ− σ)], (C.27)

for positive semi-definite A. This implies

‖ρY − σY ‖1= 2 tr[(AY ⊗ IY c)(ρ− σ)], (C.28)

where AY = trY c [argmax0≤A≤I tr[A(ρ− σ)]]. We use the triangle inequality

tr[(AY ⊗ IY c)(ρ− σ)] = tr
[
(AY ⊗ IY c)

[
(eLt − e(L+Q)t)(φ) + (σ − e(L+Q)t(φ)) + (eLt(φ)− ρ)

]]
(C.29)

≤ tr
[
(AY ⊗ IY c)(eLt − e(L+Q)t)(φ)

]
(C.30)

+
1

2
‖trY c [σ − e(L+Q)t(φ)]‖1+

1

2
‖trY c [eLt(φ)− ρ]‖1, (C.31)

where φ is an arbitrary state. Note that we have introduced two time-evolved operators in

this step. We will now use a combination of mixing bounds and Lieb-Robinson bounds to

74



restrict the RHS. The last term is bounded via the log-Sobolev bound:

1

2
‖trY c [eLt(φ)− ρ]‖1≤

(
1

2
log
(
‖ρ−1‖

)) 1
2

e−βt. (C.32)

This is basically an upper bound on how fast an arbitrary initial state must converge towards

the steady state. The second term in Eq. (C.29) can be bounded using a combination of

Lieb-Robinson bounds and the log-Sobolev bound:

1

2
‖trY c [σ − e(L+Q)t(φ)]‖1 = tr

[
AY e

(L+Q)t(σ − φ)
]

(C.33)

= tr
[
e(L†+Q†)t(AY )(σ − φ)

]
(C.34)

≤ tr
[
(e(L†+Q†)t − eL†t)(AY )(σ − φ)

]
+ tr

[
eL
†t(AY )(σ − φ)

]
.

(C.35)

The last term can again be bounded via the log-Sobolev bound:

tr
[
eL
†t(AY )(σ − φ)

]
≤ 1

2
‖eLt(σ − φ)‖1≤

(
2 log

(
‖ρ−1‖

)) 1
2 e−βt. (C.36)

The first term can be bounded via the Lieb-Robinson bound:

tr
[
(e(L†+Q†)t − eL†t)(AY )(σ − φ)

]
≤ tr

[
(e(L†+Q†)t − eL†t)(AY )

]
‖σ − φ‖1 (C.37)

≤ 2 tr
[
(e(L†+Q†)t − eL†t)(AY )

]
(C.38)

≤ 2 tr
[
(e(L†+Q†)t − eL†Xc t)(AY )

]
+ 2 tr

[
(eL

†
Xc t − eL†t)(AY )

]
(C.39)

≤ K‖AY ‖C(r, t), (C.40)

where LXc is the Liouvillian restricted to terms that do not intersect X . K is an arbitrary

constant, and C(r, t) is the Lieb-Robinson bound stated in Lemma 1.

The first term in Eq. (C.29) can be bounded using the Lieb-Robinson approach above.
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Gathering all the bounds together leads to

‖ρY − σY ‖1≤ K1

(
log
(
‖ρ−1‖

)) 1
2 e−βt +K2C(r, t) (C.41)

for arbitrary constants K1, K2. We wish to pick a time t that minimizes the RHS. We now

note that the RHS has the same functional form as the function that we needed to minimize

for the covariance correlation bound. Repeating the minimization procedure outlined in

Theorem 2, we arrive at the stated bounds in Eq. (4.30) of the main text.

C.5 Generalization of the Tran et al. bound to open long-

range systems

Here we provide the derivation of the open-systems Lieb-Robinson bound in Eq. (4.6). We

use the generalization of the Hastings & Koma bound to open systems, as described in

[111]. Let KY ∈ LY be a Liouvillian with support contained in Y and τ(t) ≡ eL
†t be the

backwards time-evolution operator. The corresponding superoperator bound is

C(r, t) ≡ ‖KY (τ(t)A)‖ ≤ C‖KY ‖∞ ‖A‖ |X||Y |
evt − 1

rα
, (C.42)

If the supports of operators KY and A are not constant, then summing Eq. (C.42) over the

sites in those supports gives a bound of

C(r, t) ≤ ‖KY ‖∞ ‖A‖φ(Y )
evt

rα−d−1
, (C.43)

where φ(Y ) denotes the boundary of Y . For simplicity, we will later write this bound in

the form

C(r, t) ≤ ‖KY ‖∞ ‖A‖φ(Y )f(r, t). (C.44)
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To derive the open-systems Lieb-Robinson bound in Eq. (4.6), we follow the proof in

Tran et al. [14]. We first divide up the time interval [0, t] into M timesteps of size ∆t ≡

t/M and let ti = it/M for i = 0, . . . ,M . For brevity, we denote by τi ≡ τ(tM−i, tM−i+1)

the time-evolution operator from time tM−i to tM−i+1. We can decompose the evolution of

A by τ(t) into M timesteps:

τ(t)A = τMτM−1 . . . τ1A. (C.45)

We then approximate the evolution by τ1 by a truncated operator A1 such that

‖τ1A− A1‖ = ε1, (C.46)

where A1 is supported on sites at most a distance ` from the support of A. We repeat the

above approximation for the other time intervals to get

‖τ2A1 − A2‖ = ε2, (C.47)

‖τ3A2 − A3‖ = ε3, (C.48)

. . .

‖τMAM−1 − AM‖ = εM . (C.49)

At the end of this process, we have approximated τ(t)A by an operator AM supported on

sites located a distance of M` from the support of A. We bound the error of this approxi-

mation using the triangle inequality:

‖τM . . . τ1A− AM‖ ≤ ε1 + · · ·+ εM . (C.50)

By choosing M` slightly less than r, we guarantee that the support of AM does not overlap
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with X , which implies that KY (AM) = 0 and therefore that the commutator

C(r, t) = ‖KY (τA)‖ ≤ ‖KY (τA− AM)‖+ ‖KY (AM)‖ = ‖KY (τA− AM)‖ (C.51)

is at most the error of the approximation: ε ≡ ε1 + · · · + εM . To find a bound on ε1, we

trace out the part of τ1A that lies outside of A`(Y ), the ball of radius ` around the support

of A:

A1 ≡
1

Tr
(
IA`(Y )c

) TrA`(Y )c(τ1A)⊗ IA`(Y )c =

∫
A`(Y )c

dµ(W )W (τ1A)W †, (C.52)

where Sc denotes the complement of the set S and the trace is rewritten as an integral over

Haar unitaries W supported on A`(Y )c, and µ(W ) denotes the Haar measure.

Now the error from approximating τ1A with A1 is given by

ε1 = ‖τ1A− A1‖ =

∥∥∥∥τ1A−
∫
A`(Y )c

dµ(W )W (τ1A)W †
∥∥∥∥ (C.53)

=

∥∥∥∥∫
A`(Y )c

dµ(W )
[
τ1A−W (τ1A)W †]∥∥∥∥ (C.54)

≤
∫
A`(Y )c

dµ(W ) ‖[τ1A,W ]‖ . (C.55)

Plugging this into Eq. (C.55) gives

ε1 = ‖τ1A− A1‖ ≤
∫
A`(Y )c

dµ(W ) ‖A‖φ(Y )f(`,∆t) = |A|φ(Y )f(`,∆t), (C.56)

where ∆t = t/M is the size of each timestep. Applying this to all of the errors yields

εj ≤ |A|φ(Xj)f(`,∆t), (C.57)
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where Xj is the support of Aj . Thus the new bound is

C(r, t) ≤ 2‖KY ‖∞ε ≤ 2M‖KY ‖∞|A|φmaxf(`,∆t) (C.58)

= 2‖KY ‖∞|A|
t

∆t
φmaxf(`,∆t), (C.59)

where φmax = maxj φ(Xj), and we replaced M with t/∆t. Without loss of generality, we

may set ∆t = 1. Using the form of f(r, t) given in Eq. (C.43), this yields the bound

C(r, t) ≤ C‖KY ‖∞ ‖A‖ tφmax
ev(

r
t

)α−d−1
(C.60)

≤ C‖KY ‖∞ ‖A‖
tα−d

rα−2d
, (C.61)

which matches Eq. (4.6) in the main text.

C.6 Generalization of the Chen & Lucas bound to open

long-range systems

In this section, we provide the proof of the bound in Eq. (4.8), which generalizes the closed-

system Lieb-Robinson bound from [5] to open systems. In the process, we improve the tail

of the bound from 1/r to 1/rα−2−o(1). Our goal is to prove that, for an operator A ∈ B(X)

supported on X , for KY ∈ LY a superoperator supported on Y , and for backward time-

evolution operator eL†t, we have

∥∥∥KY (eL
†tA)

∥∥∥ ≤ C ‖KY ‖∞ ‖A‖
t

rα−2
. (C.62)

To do that, we use a trivial bound

∥∥∥KY (eL
†tA)

∥∥∥ ≤ 2 ‖KY ‖∞
∥∥∥PY eL†tA∥∥∥ , (C.63)
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where PY is the projector onto operators supported on sites at distance Y and beyond. We

will now represent the operator A by its vectorized form |A), so that PY acting on A can be

viewed as a superoperator acting on the vectorized operator: PY (A) = PY |A). Also, from

here on out, we will represent L† by L for notational convenience.

The quantity that we wish to bound is
∥∥PY eLt |A)

∥∥, which can be expanded in a series

∥∥PY eLt |A)
∥∥ =

∞∑
n=0

tn

n!
Ln |A) =

∞∑
n=0

tn

n!

∑
β1,β2,...,βn

Lβn . . .Lβ2Lβ1 |A) , (C.64)

where the βi correspond either to single-site terms or two-body couplings, which we will

refer to as “jumps.”

C.6.1 More definitions

We need a few more definitions before we can proceed. Consider a sequence of jumps

β = (βn, . . . , β1). First, we denote by ν(β) the number of jumps in β and νq(β) the

number of order-q jumps in β. By “order-q” jumps, we mean jumps that are of length at

least 2q−1 and less than 2q. For example, ν1(β) is the number of nearest-neighbor jumps

in β. ν2(β) counts the number of jumps of length 2, 3. Given a jump β, dist(β, y) is the

minimum distance from the support of β to y. The distance between a sequence of jumps

β to y is the minimum distance between each jump and y. We also define a number Nq for

each q as follows:

Nq = d µ
2qγ

r

2q
e, (C.65)

where γ ∈ (0, 1) is a parameter to be chosen later, and where µ < 2 is a constant chosen to

be small enough that

∞∑
q=1

(Nq − 1)2q ≤ µr
∞∑
q=1

2−qγ < r. (C.66)
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We list the other definitions below (see Fig. C.1 for a diagram):

• Given a sequence of jumps β, we define its q-forward subsequence according to

Definition 1.

Definition 1. Given a sequence of jumps β = (βn, . . . , β1), its q-forward subse-

quence λ(q) is constructed as followed:

– Set λ(q) = {} to be an empty sequence and define dist({}, y) = dist(x, y).

– For j = 1, . . . ,m:

∗ If dist(βj, y) < dist(λ(q), y) and βj is an order-q jump, add βj to λ(q).

We denote by F the map from β to its set of q-forward subsequences Λ = {λ(q) :

q = 1, . . . , r}. This map is many-to-one.

• If the q-forward subsequence λ(q) has at least Nq jumps, we construct the irreducible

q-forward subsequence λ′(q) by taking exactly the first Nq jumps in λ(q). Otherwise,

we say that there is no irreducible q-forward subsequences.

• We denote the map from Λ = {λ(q)} to the set of irreducible q-forward subsequences

Λ′ = {λ′(q)} by T . Note that |Λ′| can be less than |Λ| because the length of λ(q) may

be less than Nq for some q.

• From a set Λ′ = {λ′(q1), . . . ,λ′(qk)} of irreducible q-forward subsequences, we define

I(Λ′) = {β : T (F(β)) ⊇ Λ′} to be the set of sequences β that has Λ′ in its set of

irreducible q-forward subsequences.

C.6.2 Proof

Lemma 3 below guarantees that, for each sequence β that contributes to Eq. (C.64), there

exists at least one irreducible q-forward subsequence λ′(q) for some q.
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A sequence of
jumps

β Λ = {λ(q)}

q-forward subse-
quences

Λ′ = {λ′(q)}

irreducible
q-forward subse-
quences

F T

I

Figure C.1: A summary of the definitions regarding sequences and subsequences.

Lemma 3. For each sequence β, if PYLβ |A) 6= 0, then there exists at least one q-forward

subsequence such that νq(λ(q)) ≥ Nq.

The proof of this lemma is straightforward. If there exists no such q, then ν`(λ(q)) ≤

Nq − 1 for all q. By the construction of λ:

r ≤
r∑
q=1

νq(λ
(q))2q ≤

r∑
q=1

(Nq − 1)2q < r, (C.67)

which is a contradiction.

In the following, we use the notation χq to denote whether β has an irreducible q-

forward subsequence:

χqLβ |A) =


Lβ |A) if ∃λ′(q) ∈ T (F(β))),

0 otherwise.
(C.68)

We can rewrite the series expansion of Eq. (C.64) as

PY eLt |A) = PY
∞∑
n=0

tn

n!

∑
β

Lβ |A) (C.69)

= PY

[
1−

∞∏
q=1

(1− χq)
]
∞∑
n=0

tn

n!

∑
β

Lβ |A) , (C.70)

where Lemma 3 ensures that 1 − ∏`(1 − χ`) = 1 for all sequences that contribute to
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Eq. (C.64). Expanding the product over `, we will get terms of the form

S(q1, . . . , qk) = (−1)k+1PY χq1χq2 . . . χqk
∞∑
n=0

tn

n!

∑
β

Lβ |A) (C.71)

= (−1)k+1PY
∞∑
n=0

tn

n!

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
β∈I({λ′(q1),...,λ′(qk)})

length(β)=n

Lβ |A) , (C.72)

for some distinct integers q1, . . . , qk. In the last line, we sum over all possible irreducible

q-forward subsequences λ(q), for q = q1, . . . , qk, then sum over all sequences β which

contains {λ′(q1), . . . ,λ′(qk)} in its set of irreducible q-forward subsequences.

We will now upper-bound ‖S(q1, . . . , qk)‖. First, let λ′ be a sequence consisting of all

jumps in λ′(q1), . . . ,λ′(qk) such that the set of irreducible `-forward subsequences of λ′ is

exactly {λ′(q1), . . . ,λ′(qk)}. From λ′, we construct β:

β =
(
βm+1,jm+1 , . . . , βm+1,1λ

′
m, . . . , λ2β2,j2 , . . . , β2,1, λ

′
1, β1,j1 , . . . , β1,1

)
, (C.73)

where (λ′m, . . . , λ
′
1) = λ′, j1, . . . , jm+1 are nonnegative integers, βi,j ∈ Γi, and the sets Γi

are constructed recursively for i = 1, . . . ,m+ 1 as follows:

• Γ1 = {(x′, y′) : dist((x′, y′), y) < dist(x, y) if (x′, y′) is an order-q jump, where q = q1, . . . , qk}.

• Set cq = r for all q = q1, . . . , qk. Each cq will remember the distance from y to the

last length-q jump. For the sake of the proof, let cq =∞ for all other q.

• For i = 2 to m:

– Γi = {(x′, y′) : dist((x′, y′), y) < cq(x′,y′).

– Update cq = dist(λ′i, y), where q is the order of the jump λ′i.

• Γm+1 = {(x′, y′)} is the set of all possible jumps.

The point of this construction is that each sequence β appears exactly once. We can then
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rewrite

S(q1, . . . , qk) = (−1)k+1PY
∞∑
n=0

tn

n!

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
β∈I({λ′(q1),...,λ′(qk)})

length(β)=n

Lβ |A) , (C.74)

= (−1)k+1PY
∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

∞∑
jm+1=0

· · ·
∞∑
j1=0

tm+
∑m
l=1 jl

(m+
∑m

l=1 jl)!
Ljm+1

Γm+1
Lλm+1 . . .Lλ1Lj1Γ1

|A) ,

(C.75)

= (−1)k+1PY
∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

∫
∆m(t)

dt1 . . . dtme
Ljm+1

Γm+1
(t−tm)Lλm+1 . . .Lλ1e

Lj1Γ1
t1 |A) ,

(C.76)

where ∆m(t) is the simplex defined by 0 ≤ t1 ≤ · · · ≤ tm ≤ t. Now, we use the triangle

inequality:

‖S(q1, . . . , qk)‖ ≤
3

2

∑
λ′(q1)

· · ·
∑
λ′(qk)

∑
λ′

tm

m!

1

q
αNq1
1

. . .
1

q
αNqk
k

(C.77)

≤ 3

2

(
r2q

Nq1

)
. . .

(
r2q

Nqk

)(
m

Nq1 , . . . , Nqk

)
tm

m!

1

2αq1Nq1
. . .

1

2αqkNqk
(C.78)

=
3

2

∏
i=1,...,k

[(
r2qi
Nqi

)
tNqi

Nqi !

1

2αqiNqi

]
, (C.79)

where in the last two lines we use the fact that m = Nq1 + · · ·+Nqk . Plugging this bound

into Eq. (C.70), we have

∥∥PY eLt |A)
∥∥ ≤ −1 +

∏
q

[
1 +

3

2

(
r2q

Nq

)
tNq

Nq!

1

qαNq

]
. (C.80)

Now we use 1 + x ≤ ex to bound

∥∥PY eLt |A)
∥∥ ≤ −1 + exp

[
3

2

∑
q

(
r2q

Nq

)
tNq

Nq!

1

qαNq

]
. (C.81)

Let q∗ be the largest integer such that 2q∗(γ+1) ≤ (µr)1−γ . Note that µr/2q(γ+1) > 1 for all
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q ≤ q∗. We divide the sum in Eq. (C.81) into two parts:

∑
q

(
r2q

Nq

)
tNq

Nq!

1

2αqNq
≤

q∗−1∑
q=1

(
r2q

Nq

)
tNq

Nq!

1

2αqNq︸ ︷︷ ︸
=S1

+
r∑

q=q∗

rt

2(α−1)q︸ ︷︷ ︸
=S2

. (C.82)

First, we estimate S2:

S2 ≤
1

1− 2−α
rt

2q∗(α−1)
≤ 1

1− 2−α
µ(1−α)/(γ+1)︸ ︷︷ ︸
=c3

t

r
α−1
γ+1
−1
. (C.83)

Next, we estimate S1. Note that Nq ≥ µr
2q(γ+1) for all q:

S1 ≤
q∗−1∑
q=1

(
e2rt

N2
q 2(α−1)q

)Nq
(C.84)

≤
q∗∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
, (C.85)

where we have used the Stirling’s approximation x! > xxe−x. When q → 1, Nq ∝ r.

The corresponding term in S1 decays with r at least exponentially as (t/r)r. On the other

hand, when q → q∗, Nq → 1 and the corresponding term in S1 is instead suppressed by

2q(2γ+3−α) for all α > 3 + 2γ. This limit analysis suggests that we should use two different

bounds on S1 for small q and large q. For that, we define

q0 ≡ b
1

1 + γ
log2(µrκ)c ≤ 1

1 + γ
log2(µrκ) (C.86)

and divide up S1 into two sums over q ≤ q0 and q0 < q ≤ q∗:

S1 ≤
q0−1∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
︸ ︷︷ ︸

=S1a

+

q∗∑
q=q0

(
e2t

µ2r
2q(2γ+3−α)

)Nq
︸ ︷︷ ︸

=S1b

. (C.87)

First, we take the sum over q ≤ q0. We assume that α > 2γ+ 3 and t ≤ µ2r/e2, so that the
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inner summand satisfies

(
e2t

µ2r
2q(2γ+3−α)

)
≤ 1 (C.88)

for all q ≤ q0. Because Nq decreases with q, we upper bound

S1a =

q0∑
q=1

(
e2t

µ2r
2q(2γ+3−α)

)Nq
≤
(
e2t

µ2r

)Nq0 q0∑
q=1

2q(2γ+3−α)Nq (C.89)

.

(
e2t

µ2r

) µr

2q0(γ+1)

(C.90)

≤
(
e2t

µ2r

)r1−κ

(C.91)

≤ t

r
e−r

1−κ
, (C.92)

where in the last line we further assume t ≤ µ2r/e2. This gives the sum over q ≤ q0 in the

term S1. To bound the sum over q0 < q ≤ q∗, we note that Nq−1 ≥ Nq + 1 for all q < q∗.

To prove this, suppose Nq−1 = Nq. That means

µr

2(q−1)(γ+1)
< Nq−1 = Nq ≤

µr

2q(γ+1)
+ 1 (C.93)

⇔1 > (2γ+1 − 1)
µr

2q(γ+1)
>

µr

2q(γ+1)
, (C.94)

which contradicts with µr/2q(γ+1) > 1 for all q < q∗. Therefore, Nq−1 ≥ Nq + 1 for all

q < q∗. Since Nq∗ = 1, it follows that Nq∗−n ≥ n + 1 > n for all n ≥ 1. We make the

substitution n = q∗ − q to obtain

S1b =

q∗∑
q=q0

(
e2t

µ2r
2q(2γ+3−α)

)Nq
≤

q∗−q0∑
n=1

(
e2t

µ2r
2(q∗−n)(2γ+3−α)

)n
, (C.95)

(C.96)

again assuming that α > 3 + 2γ and e2t/(µ2r) < 1. Now, using the fact that q∗ − n ≥ q0,
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we have

2(q∗−n)(2γ+3−α) ≤ 2q0(2γ+3−α) ≤ rκ(2γ+3−α). (C.97)

Plugging this into the sum yields

q∗−q0∑
n=1

(
e2t

µ2r
2(q∗−n)(2γ+3−α)

)n
≤

q∗−q0∑
n=1

(
e2t

µ2r
rκ(2γ+3−α)

)n
(C.98)

=
e2t

µ2r1−κ(2γ+3−α)

q∗−q0−1∑
n=0

(
e2t

µ2r1−κ(2γ+3−α)

)n
(C.99)

≤ e2t

µ2r1−κ(2γ+3−α)

1

1− e2t
µ2r1−κ(2γ+3−α)

(C.100)

≤ 2
e2

µ2︸︷︷︸
=c2

t

r1−κ(2γ+3−α)
, (C.101)

assuming that e2t
µ2r1−κ(2γ+3−α) ≤ 1

2
. Combining everything, we have

S1 + S2 ≤ c1

(
t

r
e−r

1−κ
)

+ c2
t

r1−κ(2γ+3−α)
+ c3

t

r
α−1
1+γ
−1
. (C.102)

We make the simplification that κ = 1− γ, so that

1− κ(2γ + 3− α) = 1− (1− γ)(α− 3− 2γ) = α− 2−2γ − γα + 3γ + 2γ2︸ ︷︷ ︸
=o(1)

.

(C.103)

In addition, for all γ > 0, there exists a constant cγ that may depend on α such that

e−r
γ ≤ cγ

1

rα−3
(C.104)
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for all r > 0. Therefore,

t

r
e−r

γ ≤ cγ
t

rα−2
. (C.105)

Substituting Eqs. (C.105) and (C.103) into Eq. (C.102) and letting c = c1cγ + c2 + c3, we

have the desired bound:

∥∥PY eLt |A)
∥∥ ≤ c

t

rα−2−o(1)
, (C.106)

which is exactly Eq. (4.8) in the main text.
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