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We classify phases of a bosonic lattice model based on the computational complexity of classically
simulating the system. We show that the system transitions from being classically simulable to classically
hard to simulate as it evolves in time, extending previous results to include on-site number-conserving
interactions and long-range hopping. Specifically, we construct a complexity phase diagram with easy and
hard “phases” and derive analytic bounds on the location of the phase boundary with respect to the
evolution time and the degree of locality. We find that the location of the phase transition is intimately
related to upper bounds on the spread of quantum correlations and protocols to transfer quantum
information. Remarkably, although the location of the transition point is unchanged by on-site interactions,
the nature of the transition point does change. Specifically, we find that there are two kinds of transitions,
sharp and coarse, broadly corresponding to interacting and noninteracting bosons, respectively. Our Letter
motivates future studies of complexity in many-body systems and its interplay with the associated physical
phenomena.
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A major effort in quantum computing is to find
examples of quantum speedups over classical algorithms,
despite the absence of general principles characterizing
such a speedup. The study of classical simulability of
quantum systems evolving in time allows one to identify
features underlying a quantum advantage. Studying the
classical simulability of both quantum circuits [1–14] and
Hamiltonians [15,16], especially under restrictions such
as spatial locality [17–21], allows one to understand the
classical-quantum divide in terms of their respective
computational complexity. Computational complexity
has been closely linked to phases of matter in contexts
such as dynamical phase transitions [20], measurement-
based quantum computing [22], thermal phase transitions
[23], and entanglement phase transitions [24]. Therefore,
studying the complexity of simulating quantum dynamics
is fruitful in understanding the nonclassical features of
quantum many-body physics, both theoretically and
experimentally.
In this Letter, we characterize the worst-case computa-

tional complexity of simulating time evolution under
bosonic Hamiltonians and study a dynamical phase
transition in approximate sampling complexity [20,21].
Previous work [20] studied free bosons with nearest-
neighbor hopping but did not consider the robustness of

the transition to perturbations in the Hamiltonian, a
crucial question in the study of any phase transition. In
this Letter, we focus on the physics of the dynamical
phase transition. Among other things, we generalize
Ref. [20] to include number-conserving interactions
and long-range hops and conclude that the phase tran-
sition survives under perturbations in the Hamiltonian.
The interactions we study are ubiquitous in experimental
implementations of hopping Hamiltonians with ultracold
atoms and superconducting circuits [25,26]. Long-range
hops that fall off as a power law are also native to several
architectures [27–31]. We also study the location of the
phase transition and its dependence on various system
parameters, constructing a complexity phase diagram, a
slice of which is presented in Fig. 1.
Setup and summary of results.—Consider a system of n

bosons hopping on a cubic lattice of m sites in D
dimensions with real-space bosonic operators aj. We let
m ¼ ΘðnβÞ (see Ref. [32]) and assume sparse filling: β ≥ 1.
The Hamiltonian H ¼ P

i;j JijðtÞa†i aj þ H:c:þP
i fðniÞ

has on-site interactions fðniÞ and time-dependent hopping
terms bounded by a power law in the distance dði; jÞ as
jJijðtÞj ≤ 1=dði; jÞα. The parameter α governs the degree of
locality. When α ¼ 0, the system has all-to-all couplings,
while α → ∞ corresponds to nearest-neighbor hops. The
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on-site terms JiiðtÞ can be large, and the interaction strength
is parametrized by V. For concreteness, our hardness
results are stated assuming a Bose-Hubbard interaction
fðniÞ ¼ Vniðni − 1Þ=2, but they hold for generic on-site
interactions [33]. We assume the bosons are initially sparse
and well separated. Specifically, partition the lattice into K
clusters C1;…; CK containing b1;…; bK initial bosons,
respectively, such that b ≔ maxbi ¼ Oð1Þ does not scale
with lattice size. Define the width Li of a cluster Ci as the
minimum distance between a site outside the cluster and an
initially occupied site inside the cluster and let L ¼ miniLi.
Thus, our initial states are chosen so the typical cluster size
is L ¼ ðm=nÞ1=D ¼ Θðnðβ−1Þ=DÞ.
The computational task of approximate sampling is to

simulate projective measurements of the time-evolved state
in the local boson-number basis. The approximate sam-
pling complexity measures the running time of a classical

algorithm needed to produce samples from some distribu-
tion D̃ that is ϵ ¼ Oð1=polyðnÞÞ close in total variation
distance to a target distribution D (see Ref. [34]). Sampling
from a distribution D̃ takes runtime Tðn; tÞ on a classical
computer, where t is the evolution time. Like thermody-
namic quantities, the complexity is defined asymptotically
as n → ∞, so we consider the scaling of T along a curve
tðnÞ. Along any curve tðnÞ ¼ cnγ , sampling is easy if there
exists a polynomial–run-time classical algorithm for all n,
or hard if such an algorithm cannot exist. Since the problem
is either easy or hard for a particular function tðnÞ, there is
always a transition in complexity as opposed to a smooth
crossover. We prove upper and lower bounds on the
transition timescale by presenting sampling algorithms
on the easiness side, and performing reductions to quantum
supremacy proposals on the hardness side. Specifically, we
show that approximate sampling is easy for all times t <
ceasynγeasy and hard for all times t > chardnγhard .
We find that the transition comes in two types, which

we call “sharp” and “coarse.” For sharp transitions, these
bounds coincide in the exponent γeasy ¼ γhard and the
transition occurs in the coefficient ceasy ≤ chard. For coarse
transitions, however, the transition occurs in the exponent.
In our results, we will show that sampling is easy for any
time t ¼ OðnγeasyÞ, but hard along any curve with exponent
γhard > γeasy (see Refs. [35–37] for more precise defini-
tions). An example of a sharp transition is when the
transition timescale is t� ¼ 2n, so sampling is easy for t ≤
1.99n and hard for t ≥ 2.01n. An example of a coarse
transition is t� ¼ Θðn log nÞ, so sampling is easy for t ≤ cn
and hard for t ≥ cn1.01.
We summarize our main results in Table I. The easiness

result comes from applying classical algorithms for quan-
tum simulation, and depend on Lieb-Robinson bounds on
information transport [38–42]. The hardness results come
from reductions to families of quantum circuits for which
efficient approximate samplers cannot exist, modulo widely
believed conjectures in complexity theory [10,17–19], and

TABLE I. Exponents γeasy and γhard in the easiness and hardness timescales for various regimes of α. The question mark indicates that
results in this regime are currently unknown.

α Easiness exponent γeasy Hardness exponenta γhard

α < ðD=2Þ
?

ðβ=DÞ½α − ðD=2Þ�
ðD=2Þ ≤ α ≤ D 0
D ≤ α ≤ Dþ 1 ½ðβ − 1Þ=D�ðα −DÞ
Dþ 1 ≤ α ≤ 2Dþ ½D=ðβ − 1Þ� 0b ½ðβ − 1Þ=D�
2Dþ ½D=ðβ − 1Þ� ≤ α < ∞ ½ðβ − 1Þ=D�½ðα − 2DÞ=ðα −DÞ� − ½1=ðα −DÞ�

α → ∞ ½ðβ − 1Þ=D� ½ðβ − 1Þ=D� if D ≥ 2 or V < ∞
∞ otherwise

aUp to an additive constant δ > 0 that is present for α < D=2, D ¼ 1, or weak interactions V ¼ oð1Þ.
bThe easiness timescale for this case is teasy ¼ log n.

FIG. 1. Slice of the complexity phase diagram for the long-
range bosonic Hamiltonian in D dimensions with n bosons when
the number of sites is m ¼ Θðn2Þ. Colors represent whether the
sampling problem is easy (yellow), hard (blue), or not currently
known (gray). The X-axis parametrizes the evolution time as a
polynomial function of n, and the Y axis is α, the exponent
characterizing the long-range nature of the hopping Hamiltonian
(with scale y ¼ 1=

ffiffiffi
α

p
except for the point α ¼ 0).
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from fast protocols to transmit quantum information across
long distances [43,44].
Note that the hardness exponents in Table I sometimes

come with an infinitesimal δ > 0 whenever at least one of
the following cases holds: α < D=2, D ¼ 1, or weak
interactions V ¼ oð1Þ. When the easiness and hardness
timescales coincide, we interpret this term δ as signifying a
coarse transition, since it ensures γhard > γeasy. In theD ¼ 1

nearest-neighbor limit, we show the δ is optimal proving
the transition is coarse.
We examine the various limits: α → ∞ (nearest neigh-

bor), α → 0 (all-to-all connectivity), V → 0 (free bosons),
and V → ∞ (hardcore bosons). First, when α → ∞, the
hardness timescale upper bound is OðLÞ in all cases except
when V → ∞ and D ¼ 1, which we discuss later. This
matches the easiness timescale t ¼ ΩðLÞ, which corre-
sponds to the distance L between clusters. This pins down
t� to ΘðLÞ, which is when interference between clusters
becomes relevant [20]. In the opposite limit when the
model is sufficiently long-range (α < D=2), the role of the
dimension is unimportant, giving γhard < 0 in all cases,
showing the immediate onset of hardness.
Next, we observe that the location of the transition

t� is generally independent of the interaction strength V.
The only exception is the limit of hardcore interactions and
nearest-neighbor hops ðV;α → ∞Þ in 1D.There, t� → ∞, as
the model maps to free fermions, or equivalently, matchgate
circuits, which are easy to simulate at all times [1,2].
The results for constant density β ¼ 1, or m ¼ ΘðnÞ, are

perhaps most experimentally relevant and are shown in
Table II. In this case, the separation between clusters is a
constant, and when α ≥ Dþ 1, the classical sampling
algorithm works only for time t ¼ Oðn−1=ðα−DÞÞ, so the
easiness exponent asymptotes to 0 as α → ∞; in other
words, sampling becomes hard after constant time, con-
sistent with recent related results [45]. Nevertheless, for
α → ∞, the easiness and hardness exponents still match, up
to an irremovable δ > 0 in 1D. We now outline the proofs
of our results, the details of which may be found in the
Supplemental Material [46].
Easy-sampling timescale.—To derive teasy, we give

an efficient sampling algorithm. The algorithm performs

time evolution on each cluster Ci separately. This takes
polynomial time in the number of basis states, which is
ðjCijþbi−1

bi
Þ ¼ OðjCijbiÞ and hence polynomial in n when

bi ¼ Oð1Þ. This product-state approximation of the exact
time-evolved state jψðtÞi ¼ Utjψð0Þi is achieved by
decomposing the propagatorUt via a spatial decomposition
scheme for quantum simulation [42,62] that we call the
HHKL decomposition. We complete the derivation of the
easiness timescale by showing that the approximation is
good for times t < OðteasyÞ.
We briefly present the HHKL decomposition. Let HR be

the sum over all terms in the Hamiltonian supported
completely in region R and implicitly let XY ¼ X ∪ Y
represent the union of regions. The decomposition scheme
approximates the time evolution unitary acting on region
XYZ (where Y separates regions X and Z) by forward
evolution on YZ, backward evolution on Y, and forward
evolution on XY: UXYZ ≈UXYðUYÞ†UYZ. The operator
norm error made by this approximation is [42]
Oððevt − 1ÞΦðXÞðl−αþDþ1 þ e−lÞÞ, where v > 0 is a char-
acteristic velocity, ΦðXÞ is the area of the boundary of X,
and l is the minimum distance between any pair of sites in
X and Z. The error is small for times t shorter than the time
it takes for information to propagate from X to Z.
The velocity v of information propagation is also

known as a Lieb-Robinson velocity and is determined
by the operator norm of terms in the Hamiltonian which
couple different sites [39]. Since bosonic operators
have unbounded operator norm, this could result in an
unbounded velocity [63]. However, because of boson-
number conservation under the Hamiltonian, the dynam-
ics is fully contained in the n-boson subspace, within
which the operator norm of each term is OðnÞ. While free
bosons (V ¼ 0) behave as in the single-particle subspace,
implying the Lieb-Robinson velocity is Oð1Þ, in the
interacting case, an OðnÞ Lieb-Robinson velocity would
cause the asymptotic easiness timescale to vanish
(teasy → 0).
Nevertheless, we can derive an easiness timescale

independent of V for a clustered initial state, a key technical
result detailed in Ref. [46]. Intuitively, at short times
each boson is well localized within its original cluster.
Therefore, the relevant subspace has at most b bosons in
each cluster Ci. Truncating the Hilbert space to allow only
bþ 1 bosons per cluster is therefore a good approximation
at short times [46,64], and the truncation error vanishes
in the asymptotic limit. The modified Hamiltonian H0 after
truncation has terms with norm only OðbÞ, giving an
effective Lieb-Robinson velocity v ¼ OðbÞ ¼ Oð1Þ for
states close to the initial state [65]. For this modified
Hamiltonian, we apply the HHKL decomposition to bound
the error caused by simulating each cluster separately. Once
the error has been calculated, the timescale immediately
follows by solving ϵðtÞ ¼ Oð1Þ for t ¼ teasy, which is a
lower bound on the transition timescale t�. In Ref. [46],

TABLE II. Easiness and hardness timescale exponents when
β ¼ 1.

α
Easiness

exponent γeasy
Hardness

exponent γhard

α < ðD=2Þ
?

ð1=DÞ½α − ðD=2Þ�
ðD=2Þ ≤ α ≤ Dþ 1 0
Dþ 1 ≤ α < ∞ ½−1=ðα −DÞ� 0

α → ∞ 0 0 if D ≥ 2 or V < ∞
∞ otherwise
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we give the full dependence of teasy on various system
parameters, including the filling fraction of bosons.
Sampling hardness timescale.—To derive thard, we give

protocols to simulate universal quantum circuits by setting
the time-dependent parameters JijðtÞ of the long-range
bosonic Hamiltonian. This implies sampling is worst-case
hard after time thard. Specifically, if a general sampling
algorithm exists for times t ≥ thard, we prove this algorithm
can also simulate hard quantum circuits [17] when inter-
actions are strong, and boson sampling [10] when inter-
actions are weak.
In the interacting case, our reduction from universal

quantum computation to a long-range Hamiltonian hinges
on implementing a universal gate set. Using a dual-rail
encoding to encode a qubit in two modes of each cluster Ci,
we show in Ref. [46] how to implement arbitrary single-
qubit operations in Oð1Þ time and controlled-phase gates
[66] between adjacent clusters in a time that depends on
their spacing L. For hardcore bosons, the entangling gate is
constructed slightly differently, and features an easiness
result for the 1D nearest-neighbor case.
The two-qubit gate uses free-particle state transfer as a

subroutine [43,44] to bring adjacent logical qubits near
each other. We implement the constant-depth circuit of
Ref. [17], which consists only of on-site and nearest-
neighbor gates between qubits in a 2D grid. The total time
for hardness under this scheme takes timeOðmin½L; Lα−D�Þ
when α > D and Oð1Þ when α ∈ ½D=2; D�. In 1D, simu-
lating a 2D circuit introduces extra overhead. Nevertheless,
we can recover the same timescale up to an infinitesimal
δ > 0 in the exponent by only encoding nδ logical qubits.
Lastly, when α < D=2, state transfer takes time oð1Þ, but

the time for an entangling gate isOð1Þ. We can still achieve
coarse hardness for time oð1Þ by mapping the system onto
free bosons, which we now come to.
In the noninteracting case, we implement the boson

sampling scheme of Ref. [10], which showed that a Haar-
random unitary applied to m sites containing n bosons
gives a hard-to-sample state. It also gave an Oðn logmÞ-
depth decomposition of a linear-optical unitary in the
circuit model without spatial locality. We give a faster
implementation for the continuous-time Hamiltonian
model, which can include simultaneous noncommuting
terms but imposes spatial locality, a result of independent
interest [46]. Specifically, we show that most linear-optical
states of n bosons on m sites can be constructed in time
min½Oðnm1=DÞ; Õðnmα=D−1=2Þ�, which is faster than the
circuit model when α < D=2. This result also uses free-
particle state transfer as a subroutine. As in the 1D
interacting case, we can implement the reduction on a
polynomially growing number of bosons nδ, resulting in
the timescale of Table I for free bosons. This result resolves
an important conceptual question posed by Ref. [20] for
the noninteracting, nearest-neighbor case by closing the
gap between teasy and thard. In this limit, the transition

timescale is at ΘðL=vÞ, both with and without interactions,
showing that the algorithm of Ref. [20] is optimal and that
the presence of interactions does not change the phase
diagram.
Sharp and coarse transitions.—In the nearest-neighbor

limit α → ∞, where the exponents on our hardness and
easiness timescales match up to an infinitesimal (δ), we
can make precise statements about the nature of the
transition. In the presence of interactions and in two
dimensions and above, the bounds on the timescale in the
nearest-neighbor limit coincide up to a multiplicative con-
stant at teasy ¼ thard ¼ ΘðLÞ, proving the transition is sharp.
However, in 1D, the hardness timescale only matches up to
an infinitesimal δ > 0 in the exponent chard ¼ ceasy þ δ. In
this case, we show that chard cannot be improved any further,
proving that this is a coarse transition.
To understand the physics behind the two kinds of

transitions, it is illuminating to study the approach to the
transition point from both sides. On the easiness side, the
important quantity is the many-body entanglement. At
short times, the wave function is approximately separable,
implying easiness of classical simulation. The separable
state is computed using a HHKL decomposition, whose
errors grow in time until they becomeOð1Þ at the transition
timescale. These errors upper bound the amount of entan-
glement present across any cut, so the easy phase corre-
sponds to states with no entanglement, and the complexity
transition occurs as the entanglement grows from zero
entanglement to area-law entanglement.
However, sampling complexity in one dimension is

special because area-law entanglement is classically sim-
ulable using matrix product states [67,68]. Specifically, in
1D, we prove an extended easiness timescale of teasy ¼ cL
for any constant c [46]. Thus, sampling is easy for all times
OðLÞ, implying that the δ in the hardness exponent cannot
be removed, and the transition is coarse. Further, our results
suggest the sampling complexity increases smoothly as
the entanglement grows from area law to volume law, as
explained below. However, if D ≥ 2, the argument based
on entanglement breaks down because tensor-network
contraction takes time exponential in the system size in
both the worst case and average case [69,70], and there are
known examples of constant-depth 2D circuits that are hard
to simulate [17].
On the hardness side, many-body entanglement is

necessary but not sufficient for sampling hardness [1,2,71].
Since our hardness results in the interacting case rely on
mapping bosons to qubits via a dual-rail encoding, we
understand the transition by counting the number of
encoded logical qubits. For coarse transitions, as the
evolution time approaches the transition timescale t� from
above, the number of encoded logical qubits shrinks as nδ,
where δ → 0 as t → t�. This illustrates that while the
problem is still asymptotically hard as n → ∞, one needs
to go to higher boson numbers n to achieve the same
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computational complexity. On the other hand, for sharp
transitions, as we approach the transition from the hard
side, the number of encoded logical qubits suddenly jumps
from ΩðncÞ for some constant c to Oðlog nÞ. In Ref. [46],
we elaborate on how to use the number of effective logical
qubits as an order parameter for the phase transition.
Whether or not such an order parameter is a universal
way to characterize complexity phase transitions deserves
closer attention.
Finally, in the noninteracting case, we do not know the

nature of the transition in D ≥ 2. However, if the infini-
tesimal in the hardness timescale cannot be removed, it
would indicate a coarse transition. Alternatively, there may
exist a constant-depth boson sampling circuit on a nearest-
neighbor architecture for which approximate sampling is
classically hard. It has been proved by Brod [72] that exact
sampling of constant-depth boson sampling is classically
hard. Nevertheless, Brod points out that it is unclear if this
exact sampling hardness can be extended to the approxi-
mate sampling hardness we consider in this Letter. As such,
in D ≥ 2 without interactions, the type of transition is an
open problem.
Lastly, we note that the transition can also be studied for

the case when the bosons evolve under local random gates,
as is done in Ref. [73]. The authors observe a seemingly
coarse complexity transition as a function of depth, although
the true nature of the transition is open in this case as well.
Outlook.—We have mapped out the complexity of the

long-range Bose-Hubbard model as a function of the
particle density β, the degree of locality α, the dimension-
ality D, and the evolution time t. An interesting open
question concerns regions of the phase diagram at finite α
without definitive easiness or hardness results. These gaps
are closely related to finding state-transfer protocols which
saturate Lieb-Robinson bounds. Stronger Lieb-Robinson
bounds can increase teasy, and faster state transfer can
reduce thard, as evidenced by the improvement over our
previous results [74] due to results from Ref. [44]. These
observations show that studying complexity phase transi-
tions provides a nice test bed for, and gives an alternative
perspective on, results pertaining to the locality of quantum
systems.
Our results directly apply to a wide range of exper-

imental platforms in quantum information, such as cold
atoms and trapped ions, as their Hamiltonians are special
cases of the one that we study, or straightforward exten-
sions. Our model is also ideal for studying dynamics in
long-range interacting systems and models of modular
networks. We elaborate on these connections in Ref. [46].
If the qualitative features of the phase diagram we have

derived for the Bose-Hubbard model hold more generally,
our results may hint at a notion of universality present in
transitions between complexity phases. In 1D, we have
proved that the transition is always coarse. However, in 2D
and higher, when there are interactions, the transition is

sharp. In contrast, in 2D and higher for noninteracting
transitions, the transition type is unknown. This depend-
ence on the dimension and possible dependence on
interaction type hints at classifying complexity phases of
matter, and the transitions between them, based on generic
features such as connectivity, dimensionality, and kinds of
interactions.
Along this line, it would be interesting to study whether

similar features occur for different kinds of complexity
phase transitions. In our Letter, the transition occurs in the
dynamics of a many-body Hamiltonian. However, different
approaches are possible. For example, one could consider
open quantum systems, where decoherence might drive
dynamical transitions from hard to easy. A particularly rich
class is that of random quantum circuits with interspersed
measurements [75–77], which have distinct nonequilibrium
phases and entanglement phase transitions, and which may
be promising models to study complexity phase transitions.
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