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Entanglement is one of the physical properties of quantum systems responsible for the computa-
tional hardness of simulating quantum systems. But while the runtime of specific algorithms, notably
tensor network algorithms, explicitly depends on the amount of entanglement in the system, it is
unknown whether this connection runs deeper and entanglement can also cause inherent, algorithm-
independent complexity. In this work, we quantitatively connect the entanglement present in certain
quantum systems to the computational complexity of simulating those systems. Moreover, we com-
pletely characterize the entanglement and complexity as a function of a system parameter. Specifi-
cally, we consider the task of simulating single-qubit measurements of k–regular graph states on n
qubits. We show that, as the regularity parameter is increased from 1 to n− 1, there is a sharp transi-
tion from an easy regime with low entanglement to a hard regime with high entanglement at k = 3,
and a transition back to easy and low entanglement at k = n− 3. As a key technical result, we prove
a duality for the simulation complexity of regular graph states between low and high regularity.

A fundamental question since the inception of quantum
computing has been to understand the physical mecha-
nisms underlying the computational speedup of quan-
tum computers. One of the most widely studied re-
sources for a quantum speedup is entanglement [1, 2].
However, understanding precisely how much entangle-
ment is necessary and sufficient for a quantum system
to be intractable to arbitrary classical simulation tech-
niques has remained elusive. Quantum computations
involving next to no entanglement can be hard to sim-
ulate classically [3–5] and relatively little entanglement
can be universal for quantum computation [6–8], while
states with very high entanglement can be useless for
quantum computation [9, 10].

One way the relation between entanglement and
hardness has been studied is by considering the perfor-
mance of specific simulation methods, like tensor net-
works [11–14]. The runtime of tensor-network algo-
rithms depends exponentially on the amount of a certain
type of entanglement [1, 11, 12], as it determines how
efficiently we can contract the tensor network. How-
ever, it is an open problem to characterize the situations
in which tensor network algorithms are optimal. When
can we find another algorithm that could do better in sit-
uations in which tensor networks are inefficient? More-
over, when does the failure of tensor networks coincide
with an inherent hardness of the problem itself? This es-
sentially is the content of the second of Aaronson’s “Ten
Semi-Grand Challenges for Quantum Computing The-
ory” [15].

The effect of the presence of entanglement on the
hardness of classical simulation has been considered
in various settings including measurement-based quan-
tum computing (MBQC) [9, 10, 16, 17], the one-clean-
qubit model [18], and more recently in a line of research
considering the time evolution under certain classes of
Hamiltonians [19, 20]. However, we are lacking a quan-

titative connection between the entanglement present in
certain quantum states and the inherent computational
complexity of simulating those states.

In this paper, we answer Aaronson’s question quan-
titatively with respect to the entanglement of regular
graph states. For a simple graph G = (V, E) given by
the pair of vertex set V and edge set E, the correspond-
ing graph state |G〉 is defined as

|G〉 = ∏
(i,j)∈E

(CZ)i,j|+〉⊗n, (1)

where CZi,j is the controlled-Z operator acting on ver-
tices i and j. The action of the CZi,j gate is invari-
ant with respect to changing the control and the tar-
get qubits. Graph states [21] are a very well-motivated
class to investigate the interplay of classical simulabil-
ity and entanglement. On the one hand, a graph state
directly maps to a tensor network, and one can invoke
the measurement-based model of quantum computing
[6, 22, 23] to argue that certain graph states are not effi-
ciently simulable and are, moreover, universal resources
for quantum computations. On the other hand, their en-
tanglement can be conveniently analyzed using graph
theory [7].

Examples of universal resource states are graph states
on hexagonal, square, or triangular lattices [24, 25].
Under closed boundary conditions these resource states
precisely correspond to 3–, 4–, and 6–regular graphs,
respectively. Conversely, graph states on a 2–regular
graph, i.e., a one-dimensional cluster state, and the
graph state on an (n− 1)–regular graph on n qubits,
i.e., the complete graph, are also well studied: both are
efficiently simulable and at the same time have low en-
tanglement [7, 25, 26]. However, for all other values of
the regularity parameter k, it is unknown exactly when,
if at all, classical simulation is intractable, and how the
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Figure 1. (a) The family of quantum states we consider are graph states on a k–regular graph G on n qubits with arbitrary single
qubit rotations U1, U2, . . . , Un. The measurements are done in the standard basis. (b) Phase transitions of the entanglement (as
measured by entanglement width) and computational complexity—whether classical simulation is easy or hard—as a function
of the regularity parameter k. For both the entanglement width and the computational complexity, we take the worst case over
all k–regular graphs G as well as U1, U2, . . . , Un.

regularity parameter relates to the entanglement of the
corresponding graph state.

Our contributions.—In this work, we completely char-
acterize the computational complexity of simulating k–
regular graph states in arbitrary product bases and their
entanglement as a function of the regularity parameter
k; see Fig. 1. We also identify new resource states for
MBQC, which is a result of independent interest. In-
deed, our constructions reach all the way to almost fully
connected graphs that may be more natural for some ex-
perimental architectures such as ion traps [27] or cav-
ity quantum electrodynamics [28] than low-degree lat-
tices. We also obtain new bounds in graph theory from
complexity-theoretic assumptions.

Our setup includes arbitrary single-qubit gates at
the end to perform the measurement in arbitrary local
bases. This ensures that classical simulation algorithms
that exploit specific properties—in particular, low sta-
bilizer rank or T-count [29, 30] and low negativity in
quasiprobability representations [31–35]—are rendered
inefficient. Importantly, the last layer of local rotations
does not affect the entanglement properties of the quan-
tum state. In other words, the local rotations serve to
isolate entanglement as the key causal factor responsi-
ble for hardness or easiness, respectively, and enable us
to understand to what extent the entanglement present
in a state serves as a necessary and sufficient criterion
characterizing the simulation complexity.

Our two main results can be summarized as follows
and are illustrated in Fig. 1(b).

• As the regularity parameter k is increased from its
minimal value of 1 to its maximal value of n− 1,
the simulation complexity first sharply changes
from easy to provably hard precisely at k = 3,
but then changes sharply back to easy again at
k = n− 3.

• The entanglement scaling, as measured by the en-

tanglement width [25], is in one-to-one correspon-
dence with the simulation complexity, changing
from constant to at least logarithmic to constant
at the same values of k at which the simulation com-
plexity changes from easy to hard and back to easy.

Qualitatively, the entanglement width measures the
entanglement of “tree-like” bipartitions of the state and
this feature directly determines the runtime of tensor-
network algorithms. It is also an LOCC (Local Op-
erations and Classical Communication) monotone and
hence a meaningful measure of entanglement [6].

We have thus identified a setup in which all the
known easy cases are efficiently simulable using tensor-
network algorithms precisely by virtue of the state of the
system having little entanglement. At the same time,
all other cases are provably hard to simulate because the
entanglement present in the system facilitates universal
measurement-based quantum computation, as we detail
below. In this sense, the entanglement may justifiably be
said to cause the sharp complexity phase transitions. To
the best of our knowledge, this is the first setup in which
both features have been simultaneously demonstrated,
and moreover, the entanglement and complexity transi-
tions, as a function of a natural system parameter, are
sharp.

Finally, using appropriate complexity theoretic
conjectures, bounds on entanglement width for the
hard cases depicted in Fig. 1(b) can be improved from
logarithmic to superlogarithmic or polynomial.

Main results.—Let us now state our main results. We
consider simulation of the quantum states in terms of
both sampling from their output distributions and com-
puting their output probabilities up to constant multi-
plicative error in an arbitrary local product basis. We
also stress that all our results carry over to the case of ap-
proximate sampling, assuming appropriate complexity-
theoretic conjectures (see the Supplemental Material [36]
for details).
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Figure 2. (a) A grid graph with closed boundary conditions is a torus, which is a 4–regular graph. This is a resource state for
MBQC because “cutting open” the torus along the pink lines gives back a grid graph. (b) Two tori connected together to construct
a 5–regular graph. The pink vertices are the ones we delete to recover a grid graph, which proves that this is a valid resource state
for MBQC.

Indeed, in the case in which simulation is hard, the
two notions of simulation are intricately linked: given
that computing output probabilities to constant multi-
plicative error is harder than any problem in the com-
plexity class #P, the sampling task cannot be efficiently
solved. This can be shown by a standard reduction due
to Stockmeyer [37]. In the hard regime, our proofs thus
rely on showing #P-hardness of estimating probabilities
of a specific family of k–regular graphs in a specific fam-
ily of local bases, implying the hardness of sampling.
Conversely, easiness of sampling and computing output
probabilities up to constant multiplicative error are in-
dependent properties and not implied by one another.
However, our proofs in the easy regimes show that both
tasks are efficiently possible for our particular setup.

Specifically, we prove the following results.

Theorem 1 (The easy regime). In the regimes of very low
(k≤ 2) and very high (k≥ n− 3) regularity, locally rotated
k–regular graph states (a) have constant entanglement width,
and (b) can be simulated by a polynomial time classical algo-
rithm.

For all other values of k, we show that classical simula-
tions are not efficiently possible:

Theorem 2 (The hard regime). For every 3≤ k≤ n− 4,
there exist locally rotated k–regular graph states such that
(a) these states cannot be simulated classically in polynomial
time, and (b) the entanglement width scales at least logarith-
mically.

We also get the following corollary.

Corollary 3. For every 3≤ k≤ n− 4, assuming
BPP(P#P, there exist k–regular graph states satisfy-
ing Theorem 2(a) such that their entanglement width is
superlogarithmic.

Assuming stronger hardness conjectures, the lower bounds
on the entanglement width can be sharpened to Ω(nδ) for
some constant δ> 0 (assuming the exponential time hypoth-
esis) and to Ω(n1/2) (assuming the strong exponential time
hypothesis.)

Let us note that our hardness results—while stated
for the worst case—are in fact also valid on average over
the local rotations via worst-to-average case reductions
[38–40]. Together, our results completely characterize
the classical simulability of locally rotated regular graph
states as a function of the regularity parameter in terms
of both sampling and computing probabilities.

Proof of easiness results.—In order to prove our easiness
results, we utilize connections between entanglement
width and classical simulations of graph states. Let us
denote the entanglement width of a graph G by ew(|G〉);
see Refs. [25, 36] for the precise definition.

First, note that for k∈ {1, 2, n− 3, n− 2, n− 1},
ew(|G〉) is a constant for every G∈Gk, where Gk is the
set of all k–regular graphs. To see this, we make use
of the relations of the entanglement width of a graph
state |G〉 to width measures of the underlying graph
G. In particular, the entanglement width is equal to the
rank width of the underlying graph for graph states,
and furthermore it can be related to the tree width and
clique width of G [25]. A refresher of these measures
and their inter-relations are given in Section F of the
Supplemental Material [36]. All of these width mea-
sures express how “tree-like” the graph is from different
perspectives. 1– and 2–regular graphs have bounded
tree width, which implies that they have bounded rank
width and therefore also bounded entanglement width.
Additionally, rank width, and hence, entanglement

G LC(G , )

Figure 3. To perform local complementation LC(G, a) of a
graph G with respect to vertex a (pink), we take the comple-
ment of the subgraph comprising the neighbors of the pink
vertex (green).
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G G LC(G, ) Del( , , ) Del( , )
a
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c

Figure 4. A visual proof that the complement of a grid graph is a resource state for MBQC. (a) A 3× 3 grid graph G. Consider
(b) G—the complement of G. (c) Apply a local complementation to vertex a. (d) Delete vertices b and c. (e) Delete some of the
gray vertices to finally reach a 2× 2 grid graph.

width, satisfy a duality property: if it is bounded for a
graph G, it is also bounded for the complement G of G
[41, 42]. This fact allows us to argue that (n− 3)– and
(n− 2)–regular graphs have bounded entanglement
width.

Qualitatively, graph states with low entanglement
width are efficiently simulable via tensor network
simulation methods by the technique of Ref. [17]. For a
graph G, the idea is to construct a tree-tensor-network
decomposition of a graph state |G〉. This takes time
poly(n, 2ew(|G〉)). Given this decomposition, and using
techniques of Refs. [11, 12, 17], one can compute any
output probability under any set of local rotations.
Additionally, one can also sample from the resulting
output distributions.

Hamming weight symmetry for the complete graph. For
the complete graph—i.e, the (n− 1)–regular graph—we
construct a new recursive algorithm that allow us to
simulate arbitrary single-qubit product measurements.

Specifically, our approach relies on an inherent sym-
metry of the complete graph: the fact that any output
probability of the complete graph on n vertices has a
Hamming weight symmetry—it can be written as a lin-
ear combination of n+ 1 many terms, one for each Ham-
ming weight, such that each of them is efficiently com-
putable. Using this fact, we design a recursion tree and
show how to traverse it in polynomial time. The rig-
orous proof is given in Section B of the Supplemental
Material [36] , along with a description of the recursion
tree.

While it is known that the output probabilities of the
complete graph can be computed efficiently [7, 25, 26],
to the best of our knowledge, our approach is novel and
might have applications elsewhere to prove easiness,
especially in problems having a Hamming weight
symmetry. Some recent works have also used this
symmetry to devise classical algorithms for quantum
simulation [43, 44].

Proof of hardness for 3≤ k≤ n/2. In order to prove our

hardness results, we make use of the fact that certain
graph states are resources for MBQC. Using Aaronson’s
result that postBQP = PP [45], the output probabili-
ties of a resource state for MBQC with local rotations
are #P-hard to compute [6, 46–48]. Then, using Stock-
meyer’s theorem, it is not possible to efficiently sample
from their output distribution unless the polynomial hi-
erarchy collapses [37]; see [49] for an overview of this
argument. In particular, this is true for the square lattice
and the hexagonal lattice [24].

Furthermore, we exploit the fact that certain single-
qubit Clifford operations on a graph state |G〉, with clas-
sical communication and standard basis measurements,
result in vertex deletion and local complementation of G
[50]. Local complementation flips the neighborhood of a
vertex: connected vertices in the neighborhood are dis-
connected, and any two disconnected vertices are joined
by an edge. This operation is illustrated in Fig. 3. It
is known that if we can transform a parent graph G to
a hexagonal or grid graph by vertex deletion and local
complementation, then |G〉 is a universal resource for
MBQC and hence hard to simulate [25, 47].

Our construction starts from the observation that
hexagonal and square lattices with closed boundary
conditions on the torus are, respectively, 3– and 4–
regular graphs. These are universal resources for
MBQC, since we can reach planar hexagonal and square
lattices by vertex deletion: we “cut” the torus open, see
Fig. 2(a). Consequently, computing the output probabil-
ities of G in an arbitrary local basis is #P-hard for 3– and
4–regular graphs.

For graphs with higher regularity, we need more in-
volved constructions. We reverse-engineer k–regular re-
sources by starting from the 4–regular resource state—
the square lattice on a torus—and boost it up to k–
regularity by adding gadgets, which can be removed by
local complementation or vertex deletion. Note that, in
most cases, the desired regularity scales with the total
number of vertices (for example, consider an n–vertex,
n/2–regular graph), and adding each new gadget might
change the total number of vertices. So, adding too
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many gadgets might not always be a good construction
strategy.

In light of this, starting from a grid graph on a torus,
i.e., an n vertex, 4–regular graph, we add just a single
gadget, namely another grid graph on a torus, see
Fig. 2(b). We then judiciously connect the two grid
graphs in a way such that every vertex is k–regular. It
is nontrivial to argue that such a connection pattern
even exists. We prove that it does using the Gale-Ryser
theorem [51–53], for every 4< k≤ n/2. The Gale-Ryser
theorem is constructive. Thus, our constructions prove
that there exists an explicit n–vertex, k–regular graph G
such that computing the output probabilities of G in an
arbitrary local basis is #P-hard, for every 4 ≤ k ≤ n/2.

The duality property.—Finally, we show that the complex-
ity of simulating graphs with low regularity and graphs
with high regularity satisfies a duality property. Specif-
ically, we prove that the complement of an n× n hexag-
onal graph or grid graph is a resource state for MBQC.
Hence, the corresponding (n− 4)–regular graph state is
universal under postselection, and simulating product
measurements of it is classically intractable.

To see this, consider an n× n grid graph G, and mark
three vertices—a corner vertex of degree 2, and its two
neighbors, see Fig. 4. Denote these vertices by a (the
pink vertex), b, and c (the green vertices). Now, in
the complement graph G, apply local complementation
to vertex a, that is, we take the complement of the
neighborhood of a. Then delete the vertices a, b, c, and
subsequently, delete all the vertices in the same row and
column as a in G. We are left with an (n− 1)× (n− 1)
grid graph, which is a resource state for MBQC. The
intuition behind this is the following: since the grid
graph has bounded degree, for a vertex in the com-
plement of such a graph, the only neighbors that are
not connected are those which were connected in the
original graph. Hence, local complementation mostly
restores the original connections apart from those of a
and its neighbors. An analogous strategy shows that
the complement of an n× n hexagonal lattice is also a
resource state for MBQC.

Proof of hardness for n/2< k≤ n− 4. We now extend
our hardness proof to the regime of n/2< k < n− 4.
The idea is to take the hard graphs we constructed for
4≤ k≤ n/2, comprising two copies of the grid graph on
the torus, and then complement those hard graphs. If
we started with a k–regular graph, after complementa-
tion, we are left with an (n− k− 1)–regular graph. We
then delete all vertices which were part of the second
grid graph in the original graph and then apply local
complementation to one of the vertices and vertex dele-
tion in the column and row of that vertex.

As a consequence, we obtain an explicit duality of
simulation complexity between the regimes of high and
low regularity. In other words, we find that there is an
explicit n–vertex, k–regular graph G such that comput-

ing the output probabilities of G in an arbitrary local ba-
sis is #P-hard, for every n/2< k≤ n− 4.

Finally, we straightforwardly obtain bounds on the
entanglement width of regular graphs in the easy
regime using width measures from graph theory
[41, 42, 54–62], specifically tree width, rank width, and
clique width, which can be related to the entanglement
width.

Outlook.—We have completely resolved Aaronson’s
question for regular graph states, going significantly be-
yond initial results on the interplay between simulabil-
ity and entanglement in Refs. [16, 17, 25]. An immediate
follow-up problem is to characterize the interplay be-
tween entanglement and simulation complexity of more
restricted, physical families of graphs such as planar or
bipartite graphs. Our gadget constructions do not ob-
viously generalize to these more restricted cases. As a
result, we need new techniques to prove #P-hardness.

More generally, we can ask: can Aaronson’s ques-
tion of which systems are classically simulable be
resolved in general, or even for slightly more general
setups beyond graph states? Beyond graph states,
the entanglement width is not always related to the
classical simulation complexity of the corresponding
quantum states. Furthermore, some of the qualitative
interpretations of entanglement width, which were
based on these measures, break down. It thus remains a
fascinating question to identify a metric that tracks the
hardness in other settings. It is possible that situations,
similar to the one we have identified, also exist for other
measures such as the stabilizer rank of a state or its neg-
ativity, but it remains open if there is a universal single
physical property that fully determines the complexity of
simulating a system. More likely, simulation complexity
is always a function of several different properties.
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S1. SETTING

In this section, we define our setup and define some
conventions that we use in this work. For a graph G,
denote the corresponding graph state as |G〉. We con-
sider graph states on k–regular graphs for k ∈ [n− 1] ≡
{1, 2, . . . , n− 1}.

Definition 4 (k–regular graph). A k-regular graph is a
graph in which the degree of every vertex, that is, the number
of adjacent vertices, is exactly k.

We then consider measurements of the qubits, or in
other words, the vertices of G in an arbitrary single-
qubit basis. Such a measurement is equivalent to the
application of a product of arbitrary single qubit gates
followed by a standard basis measurement.

For each qubit i ∈ [n] ∼= V, we parameterize the
single-qubit unitary Ui as

Ui(θi, φi) =

(
cos θi

2 − sin θi
2

eiφi sin θi
2 eiφi cos θi

2

)
. (1)

When the arguments of Ui(θi, φi) are clear from the con-
text, we drop them and just use Ui. Let

U = U1 ⊗U2 ⊗ · · · ⊗Un. (2)

For fixed G and U, the probability of getting any out-
come x ∈ {0, 1}n is given by

px(G,U) =
∣∣∣∣〈x| n⊗

i=1
Ui |G〉

∣∣∣∣2. (3)

A closely related quantity, the probability amplitude, is de-
fined as

qx(G,U) = 〈x| n⊗
i=1

Ui |G〉 . (4)

When the context is clear from usage, we drop either G
and U or both from our notation. Additionally, let us de-
note by D(G,U) the following probability distribution:

Pr
X∼D(G,U(l))

[X = x] = px(G,U). (5)

This probability distribution is over x, for a fixed G and
U.

Equivalently, we can view our setting in the standard
circuit picture. In this picture, the family of quantum
circuits we are going to study contain a Clifford part,
which is used to construct the graph state |G〉. In this
part, there is a first layer of Hadamard gates, followed
by a sequence of controlled-Z gates applied on the edges
of G. This is followed by the layer of single-qubit gates
and a standard basis measurement, as illustrated in Fig-
ure 1 of the main text.

Throughout this work, we let the symbols X,Y, and Z
denote single qubit Pauli-X, Pauli-Y, and Pauli-Z gates
respectively. Additionally, we use capital letters, like
U, V et cetera, to denote quantum gates.

S2. TECHNIQUES

In this section, we talk about manipulating graph
states and also talk about some useful complexity the-
oretic results that we use in this work. First, we start
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with basic concepts in graph theory and how they relate
to graph states. Then, we discuss how we measure en-
tanglement in the rest of the work. Finally, we introduce
some advanced concepts in graph theory and use them
to find upper and lower bounds on our entanglement
measure.

A. Some basic concepts in graph theory

Let us begin by briefly rehashing some well-known
concepts from graph theory.

Consider a graph G = (V, E), where V is the set of
vertices and E is the set of edges. All the graphs, un-
less otherwise stated, are simple and undirected. Some-
times, to avoid ambiguity, we use VG and EG to denote
that the vertex and edge sets of G. We state a series of
standard definitions from graph theory below. We as-
sume some familiarity with other related notions from
graph theory, which can be found in [62].

Definition 5 (Adjacency matrix). The adjacency matrix
of a graph G is a |V| × |V| matrix A such that

Ai,j = 1 if (u, v) ∈ E,

= 0 otherwise.
(6)

Definition 6 (Neighborhood). The neighborhood of a
vertex v in the graph G is defined as

Nv(G) = {u : (u, v) ∈ E}. (7)

For two graphs G and H such that H is a subgraph of G,
the operation K = G \ H is defined as

K = (VG, EG \ EH). (8)

Definition 7 (Complete graph). A complete graph is a
graph in which every pair of distinct vertices is connected by
an edge.

Definition 8 (Complement of a graph). The complement
of a graph G with n vertices, denoted by G, is defined as

G = Gcomplete \ G, (9)

where Gcomplete is the complete graph on n vertices.

Definition 9 (Subgraph). A subgraph of a graph G =
(V, E) is another graph whose vertex and edge sets are subsets
of V and E respectively.

Definition 10 (Tree). A tree is a connected, acyclic graph.

Definition 11 (Binary tree). A binary tree is a tree where
each vertex is connected to at most three other vertices.

Definition 12 (Bipartite graph). A bipartite graph is a
graph whose vertices can be divided into two disjoint sets U
and V such that every edge connects a vertex in U to one in
V.

Definition 13 (Complete bipartite graph). A complete
bipartite graph is a bipartite graph whose vertices can be
divided into two disjoint sets U and V such that

(a) every edge connects a vertex in U to one in V, and

(b) every vertex of U is connected to every vertex of V.

A complete bipartite graph is denoted by Kp×q, where
p and q are the cardinalities of the sets U and V, respec-
tively.

B. Operations on graph states

We frequently make use of a graph-theoretic opera-
tion called vertex deletion. We define it as follows.

Definition 14 (Vertex deletion). For a graph G = (V, E),
the operation vertex deletion, when applied to the vertex v
of G, produces a new graph H such that

H = (V \ v, E \ S), (10)

where S is the set of all the edges incident to v.

Applying vertex deletion to a vertex v of G is equiva-
lent to measuring the corresponding qubit of |G〉 in the
Z basis. Indeed, let P(Z,±)

v be the two Pauli projectors
onto the Z basis when we measure vertex v. Let N(v) be
the neighborhood of v and let us delete the vertex v to
get the graph H. Then,

P(Z,+)
v |G〉 = 1√

2
|0〉 |H〉 ,

P(Z,−)
v |G〉 = 1√

2
|1〉 ∏

u∈Nv(G)

Zu |H〉 .
(11)

Note that the gates Zu in equation (11) are single-qubit
gates. Hence, by an appropriate choice of a last layer of
local rotations, we can implement a vertex deletion.

Before defining the next graph operation, let us define
the symmetric difference operator between two sets.

Definition 15 (Symmetric difference). The symmetric dif-
ference operator between two sets A and B, denoted by ∆, is
defined as

A ∆ B = (B \ A) ∪ (A \ B). (12)

Definition 16 (Local complementation). For a graph G =
(V, E), a local complementation τv on the vertex v flips the
neighborhood of v: two vertices which were previously con-
nected (in the neighborhood of v) get disconnected and two
vertices which were previously disconnected get connected.
The neighborhood of a vertex u in the graph τv(G) is given
by

Nu(τv(G)) = Nu(G) ∆ (Nv \ u) if (u, v) ∈ E,
= Nu(G) otherwise.

(13)
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It is known that applying a local complementation to
a vertex v in G is equivalent to applying a sequence of
single qubit Clifford unitaries

U = exp
(
−i

π

4
Xv

)
∏

u∈Nv

exp
(

i
π

4
Zu

)
(14)

to the graph state |G〉. That is,

|τv(G)〉 = Uv |G〉 . (15)

Local complementation is illustrated in Figure 4 of the
main text.

C. Some useful results from complexity theory

Before stating our technical lemmas, we state a few
results from complexity theory for convenience. Vari-
ants of these statements and proofs have appeared in
[6, 7, 38, 70, 71], so we only state the lemmas without
proofs.

Lemma 17. Consider an n–vertex graph Rn such that the
corresponding graph state |Rn〉 is a resource state for mea-
surement based quantum computation. Consider local rota-
tions U, as defined in equation (2). Then, computing px(R,U)
is #P-hard in the worst case over U, for any x ∈ {0, 1}n, up
to constant multiplicative error.

The proof follows from [6, 24, 47, 48]. For example,
considering graphs with n vertices, this fact holds for an√

n×√n grid graph. The idea is that resource states can
do universal quantum computing under post-selection.
By standard arguments sketched in these papers, that
implies computing probabilities is #P-hard.

Lemma 18. Let R be an n–vertex graph such that |Rn〉 is
a resource state for measurement based quantum computa-
tion. Let T be a graph such that R can be reached from T
by vertex deletion and local complementation. Then, comput-
ing px(T,U) is #P-hard in the worst case over U, for every
x ∈ {0, 1}n, up to constant multiplicative error.

The proof follows from [47, 50, 72]. The intuition
is that both vertex deletion and local complementation
correspond to single-qubit operations, as we saw in Sec-
tion S2 B. Hence, R is equivalent to a locally rotated grid
graph, which is a known resource state.

Lemma 19 ([37]). Let C be a quantum circuit and let

px = |〈x|C|0n〉|2, (16)

for x ∈ {0, 1}n. Consider a distribution D given by

Pr
X∼D

[X = x] = px. (17)

Note that this is a distribution over x for a fixed C. Then, if
there is a polynomial time classical algorithm to sample from

D, then there is a BPPNP algorithm to estimate px, upto con-
stant multiplicative error, for a random choice of x ∈ {0, 1}n.

Consequently, if computing every px is #P-hard upto con-
stant multiplicative precision, no polynomial time classical al-
gorithm exists to sample from D, assuming the PH does not
collapse to BPPNP.

The proof follows from Stockmeyer’s counting the-
orem [37] and can also be found in [38]. Lemma 19
states that assuming the PH does not collapse to BPPNP,
one can rule out the existence of classical exact sam-
plers which sample from the output distribution of C.
Through additional appropriate conjectures about the
additive error hardness of computing the output proba-
bilities of C, one can also extend the result of Lemma 19
to rule out classical approximate samplers, up to an ap-
propriate error in total variation distance, using stan-
dard techniques which are also outlined in [38, 73,
74]. Qualitatively, the proof says that the two popular
characterizations of simulation of quantum circuits—
sampling and estimation—are interlinked. The presence
of a sampler in BPP implies the presence of an estimator
in BPPNP.

D. Measuring entanglement entropy

Let |ψ〉 be an n-qubit pure state and let (A,B) be a
partition of the qubits and let the corresponding Hilbert
spaces be HA and HB. Consider a Schmidt decomposi-
tion of |ψ〉 as follows:

|ψ〉 =
min(2|A| ,2|B|)

∑
i=1

√
si |ui〉 |vi〉 , (18)

where
{
|ui〉 : i ∈ {1, 2, . . . , 2H|A|}

}
and

{
|vi〉 : i ∈

{1, 2, . . . , 2H|B|}
}

are two sets of orthonormal basis vec-

tors of the Hilbert spacesHA andHB, respectively. Here
are si are nonnegative real numbers. The Schmidt rank
of a quantum state is given by the number of non-zero
si-s in the Schmidt decomposition.

Then the von Neumann bipartite entanglement en-
tropy of |ψ〉, with respect to the bipartition (A,B) is
given by

S(|ψ〉A,B) =

min(2|A| , 2|B|)

∑
i=1

−si log si. (19)

There are other measures of entanglement, like the log-
arithm of the Schmidt rank of a quantum state, with re-
spect to a bipartition. Schmidt rank width is a natural
generalization of the Schmidt rank of a quantum state.

Definition 20 (Schmidt rank width). Consider an n-qubit
state |ψ〉. Consider trees T with exactly n leaves where the
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maximum degree of each vertex is 3. Any edge e in the tree
splits the leaves of the tree into two sets Ae and Be, depending
on the two connected components of T − e, where T − e is a
graph with edge e removed. Then, the Schmidt rank width of
|ψ〉 is given by

srw(|ψ〉) = min
T

max
e∈T

log2 rAe ,Be , (20)

where rAe ,Be is the Schmidt rank with respect to the biparti-
tion rAe ,Be .

Qualitatively, it measures how large a linear combina-
tion we need, in the worst case, to write down the quan-
tum state |ψ〉 for the best “tree-like” decomposition of
the state. The more “succinct” and more “tree-like” the
state is, the less is the resource overhead in simulating
the state by tree tensor networks [11, 12, 17]. Therefore,
Schmidt-rank width is a measure of the worst-case sim-
ulation cost, provided we can figure out an optimal tree
decomposition.

1. Entanglement width

In this paper, we measure entanglement entropy in
terms of entanglement width, defined in [25].

Definition 21 (Entanglement width). Consider an n-qubit
state |ψ〉. Consider trees T with exactly n leaves where the
maximum degree of each vertex is 3. Any edge e in the tree
splits n qubits into two sets, Ae and Be, depending on the two
connected components of T − e, where T − e is a graph with
edge e removed. Then the entanglement width of |ψ〉 is given
by

ew(|ψ〉) = min
T

max
e∈T

S
(
|ψ〉Ae ,Be

)
. (21)

The qualitative interpretation of this measure is the
same as that of the Schmidt rank width: it measures how
entangled the state is across “tree-like” bipartitions.

E. Relation to classical simulations

Entanglement width is important because the runtime
of tensor network simulations of a graph state depends
on its entanglement width. To formalize this, let us state
the following lemma.

Lemma 22 ([17]). Let |G〉 be an n qubit graph state. Then,
using tree-tensor networks, px(G,U) can be exactly com-
puted in poly

(
n, 2ew(|G〉)

)
time, for any choice of U.

Additionally, using tree-tensor networks, the output dis-
tribution D(G,U) can be sampled from in poly

(
n, 2ew(|G〉)

)
time, for any choice of U.

An immediate consequence of Lemma 22 is that, if the
entanglement width of a graph state is upper bounded

byO(log n), classical simulations are efficient. Also note
that implicit in Lemma 22 is the fact that we can effi-
ciently find the optimal tree decomposition for |G〉 in
polynomial time, when the entanglement width is loga-
rithmically bounded.

F. Width-measures in graph theory

Here, we define the notions of tree width, clique
width, and rank width. We had merely referenced these
measures in the main text: we look at them in detail be-
low.

1. Tree width

First, we look at a measure called “tree width.” The
definitions are taken from [62]. Intuitively, tree width
measures how “similar” a graph is to a tree. The tree
width of any tree is 1.

Definition 23 (Tree decomposition). A tree decomposi-
tion of a graph G = (V, E) is a tree T such that the following
properties hold.

(a) Each vertex i of T is labelled by a subset Bi ⊂ V. Each
such vertex is called a “bag”.

(b) The two vertices corresponding to every edge in E are both
in at least one Bi.

(c) For every vertex u ∈ V, the subtree of T consisting of all
the “bags” containing u is connected.

Definition 24. The width of a tree decomposition T is given
by max

i
|Bi| − 1.

Definition 25 (Tree width). The tree width of a graph G,
denoted by tw(G), is the minimum number t such that there
exists a tree decomposition with width at most t.

Many tasks that are NP-hard in general are efficiently
solvable in graphs with bounded tree width [61]. Graph
states with logarithmically bounded tree width can be
efficiently simulated under arbitrary local rotations [11]
if we know the corresponding tree decomposition.

Although the tree width is a very useful concept in
these regards, it can be unbounded in “dense” graphs,
i.e. graphs that have lots of edges. However, these
graphs can otherwise have a lot of symmetry and many
problems can still be easy to solve in these graphs. For
example, the complete graph on n vertices has a tree
width of n− 1, but a lot of problems are easy when re-
stricted to just the complete graph. Furthermore, decid-
ing whether the tree width of a graph is at most m for a
given integer m is NP-complete [57].

With that motivation in mind, some generalizations of
tree width become necessary.
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2. Clique width

The definition is taken from [41].

Definition 26 (Clique width). The clique width of a graph
G, denoted by cw(G), is defined as the minimum number of
labels needed to construct G with the following operations:

(a) Creating a new vertex v that is labeled by an integer i.

(b) If there are two graphs G and H which are already con-
structed, taking a disjoint union of these two graphs to
create a new graph.

(c) Creating a new edge between all vertices of label i and all
vertices of label j.

(d) Changing the label of a vertex.

Note that the clique width is a generalization of tree
width, in the sense that graphs with bounded tree width
also have bounded clique width. However, the clique
width can remain bounded even when the tree width
blows up. For example, the clique width of the complete
graph is 2. In that sense, it is a “more useful” metric than
the tree width. However, deciding whether the clique
width of a graph is at most m for a given integer m is NP-
complete [56]. So, practically, using this measure might
be difficult.

We now define a generalization of clique width that
does not have this problem.

3. Rank width

The definitions are taken from [42].

Definition 27 (Cut rank). Let M be the |V| × |V| adjacency
matrix of the graph G. The cut rank of A ⊆ V is the rank of
the submatrix of M with row labels corresponding to A and
column labels corresponding to V \ A.

Definition 28 (Rank decomposition). A rank decompo-
sition of G = (V, E) is a pair (T, L) where T is a binary tree
and L is a bijection from V to the leaves of the tree.

For a particular rank decomposition (T, L) of a graph
G, any edge e in the tree T splits V into two parts, Ae and
Be, corresponding to the two connected components of
T − e, where T − e is the tree T with edge e removed.
The width of an edge e is the cut-rank of Ae (which is
equivalent to the cut-rank of Be).

Definition 29. The width of the rank decomposition
(T, L) is the maximum width of an edge in T.

Definition 30 (Rank width). The rank width of a graph
G, denoted by rw(G), is the minimum width of a rank decom-
position of G.

Rank width generalizes clique width, in the sense that
graphs with bounded clique width also have bounded
rank width. Additionally, there is a polynomial time al-
gorithm to decide whether the rank width of a graph is
at most k, for a given integer k [41].

4. Inter-relations between width measures

Here, we state a few inter-relations between width
measures. Proofs can be found in [41, 42, 59].

First, we upper bound clique width in terms of tree
width.

Lemma 31 ([54]). For a graph G,

cw(G) ≤ 3 · 2tw(G)−1. (22)

Next, we lower bound clique width in terms of the
tree width.

Lemma 32 ([59]). Let G be an n–vertex graph such that it
does not have the complete bipartite graph Kt×t as a subgraph,
for some value of t. Then,

tw(G) ≤ 3 · cw(G) · (t− 1)− 1. (23)

Now, we relate rank width and clique width.

Lemma 33 ([42]). For a graph G,

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1. (24)

Now, we state a relation between the clique width of
a graph and its complement.

Lemma 34 ([41]). For a graph G,

1
2
· cw(G) ≤ cw(G) ≤ 2 · cw(G), (25)

where G is the complement of G.

Finally, we state one more lemma about how oper-
ations like vertex deletion do not increase the clique
width. This helps us in independently analyzing the
clique width of some of our hard graphs.

Lemma 35 ([41]). Let G be a graph and H be obtained from
G by a sequence of vertex deletions. Then,

cw(H) ≤ cw(G). (26)

G. Relation to entanglement width

Here, we relate the width measures we saw from
graph theory to the entanglement measures we saw in
the study of quantum states. We relate these two using
graph states.

In general, for any state |ψ〉, since

S(|ψ〉A,B) ≤ log2 (rA,B) (27)

for any bipartition (A,B), we have

ew(|ψ〉) ≤ srw(|ψ〉). (28)

However, the situation greatly simplifies for a graph
state. We now state a lemma from [17] to show this.
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Lemma 36. For any graph state |G〉,
ew(|G〉) = srw(|G〉) = rw(G). (29)

From Lemma 36, entanglement width has exactly the
same physical interpretation as the Schmidt rank width
for a graph state.

Additionally, by exploiting the connections between
rank width and entanglement width, we can argue that
entanglement width satisfies the following upper and
lower bounds, which can be found in [42].

Lemma 37. For a graph G and the corresponding graph state
|G〉,

ew(|G〉) ≤ cw(G) ≤ 2ew(|G〉)+1 − 1. (30)

S3. RESULTS

In this section, first we state our easiness and hard-
ness results. Then, we give a formal proof for each of
them, one after another. We also give a formal statement
and proof of the duality theorem. A description of the
proofs was already provided in the main text. Here, we
provide more rigorous technical details, for the sake of
completeness.

Finally, we use our hardness results to sharpen the
bound on the entanglement width of certain graphs.

Let Gk be the set of all k–regular graphs. Consider the
following task.

REGULARGRAPH
[
n, k, x,U

]
Input A description of an n–vertex, k–regular graph

G ∈ Gk, x ∈ {0, 1}n, and a description of the
last layer of local rotations U.

Output An inverse polynomial multiplicative error es-
timate of px(G,U).

Theorem 38 (Easy cases). For k ∈ {1, 2, n − 3, n −
2, n − 1}, ew(|G〉) is a constant for any G ∈ Gk and
REGULARGRAPH

[
n, k, x,U

]
is solvable in classical polyno-

mial time.

Theorem 39 (Hard cases). For 3 ≤ k ≤ n − 4,
REGULARGRAPH

[
n, k, x,U

]
is #P-hard, for any x ∈

{0, 1}n, assuming the PH does not collapse to BPPNP.

We delegate the proof of these two theorems to Sec-
tion S3 A and Section S3 D, respectively. Two corollaries
are evident.

Corollary 40. For 3 ≤ k ≤ n− 4, there exists an explicit, ef-
ficient construction of a family of n–vertex, k–regular graphs
F such that

ew(|G〉) = ω(log n), (31)

for any G ∈ F , assuming that the PH does not collapse to
BPPNP.

Proof. Follows from Lemma 22 and Theorem 39.

Note that, in our hardness results, we prove some-
thing more fine-grained than what is required for The-
orem 39. We construct k–regular graphs for which it is
#P-hard to compute the output probabilities to inverse
polynomial multiplicative precision, under local rota-
tions, and then invoke Lemma 19 to prove Theorem 39.

Consequently, we talk about how we can have weaker
complexity theoretic conjectures imply the same bound
as that of equation (31) and how we can have sharper
bounds by tightening the conjecture, in Section S3 E 2.

We also prove a duality between regimes of low reg-
ularity and regimes of high regularity, which serves as
a convenient tool for proving our hardness results. The
duality, as is later discussed, follows from Theorem 41.

Theorem 41 (Duality theorem). The complement of an n–
vertex hexagonal lattice, or an n × n grid graph G is a re-
source state for measurement based quantum computing.

We prove this for the grid graph, and observe that a
similar result holds for the hexagonal lattice. We convert
the complement of an n× n grid graph to an (n− 1)×
(n− 1) grid graph, by a sequence of vertex deletions and
local complementation. To prove hardness, we reduce
some of our hard graphs to the complement of a grid
graph.

A. Proof of Theorem 38 (The easy regime)

Let Gk be the set of all k–regular graphs. Note that
cw(G) = 2 when G is the complete graph [58]. Addi-
tionally, note that

tw(G) = 1 (32)

for every G ∈ G1. This is because an n vertex 1–
regular graph is just n/2 disconnected lines, each of unit
length—so, each can be thought of as a tree with two
nodes and one edge and would have a treewidth of 1—
and treewidth does not change by a disjoint union of
graphs with same treewidth.

Also note that, for k = 2,

tw(G) = 2 (33)

for every G ∈ G2. This is because every 2–regular graph
is a disjoint union of a number of series-parallel graphs1,
each of which has a tree width of 2. Series-parallel
graphs draw their inspiration from series-parallel elec-
trical circuits and consist of connected vertices either in
series, or in parallel, or a combination of both.

Hence, by Lemma 33 and Lemma 31, the clique width
and rank width of every graph in G1 and G2 is bounded
by a constant.

1 For a technical definition of series-parallel graphs, see [63].
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By Lemma 34, the complement of a bounded clique
width graph also has bounded clique width. Since every
(n− 2)– and (n− 3)–regular graph is a complement of
some 1–regular or 2–regular graph, the clique width and
the rank width of every (n − 1)–regular and (n − 2)–
regular graph is also bounded by a constant. By Lemma
36, the entanglement width of any graph state |G〉 is
exactly the rank width of the corresponding graph G.
Hence, the entanglement width of every 1–, 2–, (n− 1)–
, (n− 2)–, and (n− 3)–regular graph is bounded.

B. The complete graph revisited

We had discussed the recursive method for comput-
ing the output probabilities of the complete graph in the
main text. In this section, we elucidate the technical de-
tails behind the recursive method.

We have just established the that the entanglement
width of the complete graph is bounded, and hence, by
Lemma 19, efficient sampling and probability estima-
tion is possible under any local rotation. Here, we give a
different proof of the fact that output probabilities of the
complete graph can be computed in polynomial time,
under any local rotation. Our proof leverages inherent
symmetry properties of the complete graph.

The easiness of computing output probabilities of the
complete graph has been established before, by observ-
ing that a complete graph has bounded clique width
[25], by observing that a complete graph is reducible to
a star graph under local Clifford rotations and the fact
that the star graph has bounded tree width [26], or by
observing that the complete graph can be reduced by
local Clifford rotations [7] to the GHZ state which can
be efficiently classically simulated. But, to the best of
our knowledge, our approach has not been taken before
and may be utilized elsewhere where there is Hamming
weight symmetry.

The motivation behind this new approach is that
our result rely on symmetry properties of the complete
graph: this proof can serve as a refresher of those prop-
erties. The one specific property we repeatedly use is
the fact that the output probabilities of a complete graph
has Hamming weight symmetry—it can be written as a
linear combination of polynomially many terms, one for
each Hamming weight, such that each of them is effi-
ciently computable. In this easiness proof, we can ac-
tually go slightly beyond the setting of Figure 1 by al-
lowing the use of eiθZiZj gates and not just controlled-Z
gates. In more technical terms, define the following state
|G〉 on a complete graph:

|G〉 = 1√
2n ∑

z∈{0,1}n
β

(
∑

i,j∈[n],i<j
zizj

)
|z〉 , (34)

where β = e−iθ is a unimodular complex number that
depends on θ. Let us use the notation [n] to denote the

set {1, 2, . . . , n} and let |z| be the Hamming weight of z.
We could equivalently write |G〉 as

|G〉 =
n

∑
y∈0

cy ∑
z∈Hy

|z̃〉 , (35)

where

|z̃〉 = 1√
2n
|z〉 , (36)

Hy is the set of all strings with Hamming weight y and

cy = β

(
∑

|z|=y;i,j∈[n];i<j
zizj

)
= βy(y−1)/2, (37)

which, by symmetry, is the same for every z ∈ Hy. This
is what we mean by Hamming weight symmetry.

Now, let us formally state the theorem and prove it.

Theorem 42. For k = n− 1, px(G,U) can be computed in
polynomial time for any choice of U and any x ∈ {0, 1}n.

Proof. We first reduce computing px(U), for a string x ∈
{0, 1}n to computing p0n(V), for a particular choice of V.
To see this reduction, note that for a string x ∈ {0, 1}n,
we can write px(Ul) as

px(U) = |〈0n|V|G〉|2, (38)

where

V = U1X
x1 ⊗U2X

x2 ⊗ · · · ⊗UnX
xn . (39)

Then, observing that

px(U) = p0n(V), (40)

we compute px(U) using our ability to compute p0n(V),
for any V.

Now, consider computing the following quantity:

Z[n] =
n⊗

i=1

(
〈0| cos

(
θi
2

)
e−iφi + 〈1| sin

(
θi
2

))
|G〉 .

(41)
Observe that

p0n(U) =
∣∣Z[n]∣∣2. (42)

So, if we can compute Z[n], we can compute p0n(U). In
the next steps, we will show how to compute Z[n]. Let∣∣ψy,n

〉
= cy ∑

z∈Hy

|z̃〉 . (43)

Note that

|G〉 =
n

∑
y∈0

∣∣ψy,n
〉

. (44)

Additionally, define
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Z[n, y] =
n−1⊗
i=1

(
〈0| cos

(
θi
2

)
e−iφi + 〈1| sin

(
θi
2

))(
〈0| cos

(
θn

2

)
e−iφn + 〈1| sin

(
θn

2

)) ∣∣ψy,n
〉

. (45)

Note that

Z[n, y]

= cos
(

θn

2

)
e−iφn

n−1⊗
i=1

(
〈0| cos

(
θi
2

)
e−iφi + 〈1| sin

(
θi
2

)) ∣∣ψy,n−1
〉

+ sin
(

θn

2

)
cy

cy−1

n−1⊗
i=1

(
〈0| cos

(
θi
2

)
e−iφi + 〈1| sin

(
θi
2

)) ∣∣ψy−1,n−1
〉

= cos
(

θn

2

)
e−iφnZ[n− 1, y] + sin

(
θn

2

)
cy

cy−1
Z[n− 1, y− 1].

(46)

Now, design a recursion tree, a part of which is shown
in Fig. S1. We start with Z[n, y] and by multiplying each
path with the corresponding path-weights, slowly re-
curse down the tree. The number of nodes never blows
up because there is a lot of overlap during the recursion:
for example, in Fig. S1, both Z[n− 1, y] and Z[n− 1, y−
1] have the same daughter node Z[n − 2, y − 1], albeit
with different path-weights.

The value of Z[n, y] is the total value we get in the
following way.

• First, we multiply the path weights for each path.

• Then, we add up the paths.

The number of paths is

2 + 4 + 6 + 8 + · · · n = O(n2). (47)

We set

Z[n, y] = 1, n < y,
Z[0, 0] = 1,
Z[0,−1] = 1,

Z[1, 0] = cos
(

θ1

2

)
e−iφ1 .

(48)

to deal with the base cases. Now, do this for every
y and add the values to get Z[n]. Since the tree has
polynomially many paths that are polynomially large,
it can be traversed in polynomial time by standard algo-
rithms.

C. Proof of Theorem 41 (Duality theorem)

Let G be an n× n grid graph. Consider the vertices a,
b, and c as shown in Figure 3 of the main text (a is the
red vertex, and b and c are the green vertices.)

Let G be the complement of the grid graph. Follow
the following sequence of steps.

• Apply a local complementation on a (red vertex).

• Vertex delete a, b, and c.

What we get back is a resource state for MBQC be-
cause we can get an (n − 1) × (n − 1) grid graph from
there, just by vertex deletion.

D. Proof of Theorem 39 (The hard regime)

For every 3 ≤ k ≤ n/2, we construct a k–regular par-
ent graph such that we can reach the hexagonal graph
or the grid graph from that parent graph just by ver-
tex deletion. If we can do that, then by Lemma 17
and Lemma 18, computing the probabilities of the par-
ent graph would be #P-hard, under inverse polynomial
multiplicative precision. Then, the existence of a classi-
cal sampler indicates the collapse of the PH to BPPNP,
by Lemma 19.

1. Technical constructions

One idea would be to start with the grid-graph or
the hexagonal lattice, and just “reverse engineer” a con-
struction of the k–regular graph, by adding appropriate
gadgets to every vertex. This indeed works for small
values of k, as we see in a demonstration below.

Consider a family of n–vertex, k–regular graphs F
and consider the following task.

F -REGULARGRAPH
[
n, k, x,U

]
Input A description of an n–vertex, k–regular graph

G ∈ F , x ∈ {0, 1}n, and a description of the
last layer of local rotations U.

Output An inverse polynomial multiplicative error es-
timate of px(G,U).

Proposition 43. There is an explicit F such that F -
REGULARGRAPH

[
n, 3, x,U

]
is #P-hard.

Proof. Consider an n vertex hexagonal lattice. Then, we
add periodic boundary conditions, which is equivalent
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Z [n, y ]

Z [n − 1, y ]

Z [n − 2, y ]

Z [n − 3, y ]

cos
(

θn−2

2

)
e−iφn−2

Z [n − 3, y − 1]

sin
(

θn−2

2

)
cy

cy−1

cos
(

θn−1

2

)
e−iφn−1

Z [n − 2, y − 1]

sin
(

θn−1

2

)
cy

cy−1

cos
(

θn
2

)
e−iφn

Z [n − 1, y − 1]

Z [n − 2, y − 1]

cos
(

θn−1

2

)
e−iφn−1

Z [n − 2, y − 2]

Z [n − 3, y − 2]

cos
(

θn−2

2

)
e−iφn−2

Z [n − 3, y − 3]

sin
(

θn−2

2

)
cy−2

cy−3

sin
(

θn−1

2

)
cy−1

cy−2

sin
(

θn
2

)
cy

cy−1

cos
(

θn−2

2

)
e−iφn−2 sin

(
θn−2

2

)
cy−1

cy−2

Figure S1. An illustration of how the recursion tree is constructed in the proof of Theorem 42, up to the first three levels.

to putting this on (or, in more colloquial terms, “wrap-
ping it around") a torus. This makes it a 3–regular graph.

Note that one could recover a hexagonal lattice of
Ω(
√

n) × Ω(
√

n) vertices just by a sequence of vertex
deletions to “cut open” the torus. The proof then fol-
lows from the observation that an n vertex hexagonal
lattice is a resource state for MBQC.

Proposition 44. There is an explicit F such that F -
REGULARGRAPH

[
n, 4, x,U

]
is #P-hard.

Proof. The proof is the same as that of Proposition 43, ex-
cept we start with an n–vertex grid graph, instead of the
hexagonal lattice. The proof is also illustrated in Figure
2(a) of the main text.

Proposition 45. There is an explicit F such that F -
REGULARGRAPH

[
n, k, x,U

]
is #P-hard, for k = n− 5 and

k = n− 4.

Proof. F is the complement of the graph families con-
structed in Proposition 43 (for k = n− 4) and Proposi-
tion 44 (for k = n− 5). In other words, the hard graphs
are the complements of the hexagonal lattice or the grid
graph, under closed boundary conditions. Using ver-
tex deletion, one could "cut open" the boundary to reach
the complement of a hexagonal lattice or a grid graph
respectively, of side length Ω(

√
n)×Ω(

√
n), which are

resource states in MBQC, as proven in Theorem 41.

For other hardness results, we need more involved
constructions, with gadgets. Particularly, as explained
in the main text, we need to invoke the Gale-Ryser theo-
rem. The technical details of that theorem are provided
below.

Proposition 46. There is an explicit F such that F -
REGULARGRAPH

[
2m2, k, x,U

]
is #P-hard, for any 4 < k ≤

m2.

Proof. Start from two m × m grid graphs. Then, con-
sider closed boundary conditions which is equivalent to
putting them on a torus. Thereafter, have edges between
the two tori to make every vertex k regular. This is illus-
trated in Figure 2(b) of the main text.

To argue that a valid connection pattern exists, we
make use of the Gale-Ryser theorem, the details of
which are given below. This suffices for our proof, be-
cause one could always delete one torus to reach an ob-
ject that is a resource state for measurement based quan-
tum computing, by Proposition 44.

We need to show that there is a way to connect the
vertices such that the final graph is k–regular. To boost
the regularity of each vertex of the two tori, on either
side, to k, there are m2 vertices that we need to add k− 4
extra edges to.

Since all the edges are “across” the two different grid
graphs, and no edge is added “within” any grid, we can
think of our situation as trying to construct a bipartite
graph, with m2 vertices on either side, such that the de-
grees on either side, given by A and B, are

A = B =

(
k− 4, . . . , k− 4︸ ︷︷ ︸

m2 times

)
. (49)

Now, we check the conditions of the Gale-Ryser theorem
to prove that such degree sequences indeed correspond
to a valid bipartite graph. Note that the proof of the
Gale-Ryser theorem is constructive.

Although we do not explicitly construct the graph
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here, we note that it can be easily done by following the
steps of [52].

First condition

The first condition of the Gale-Ryser theorem is the fol-
lowing:

m2

∑
i=1

ai =
m2

∑
i=1

bi, (50)

where ai is the ith element of sequence A and bi is the ith
element of sequence B.

Note that for our case, ai = bi for every i. Hence, this
statement is trivially true, as can be seen from (49). Now,
let us state the second condition.

Second condition

For any 1 ≤ p ≤ m2, we need

p

∑
i=1

ai ≤
m2

∑
i=1

min(bi, p). (51)

We break the analysis of this condition into three cases,
depending on the value of p.

First case

Let us take

1 ≤ p ≤ k− 4. (52)

Then, the RHS becomes pm2. The LHS is upper
bounded by p(k − 4). Hence, the RHS is larger for any
k ≤ m2 and the second condition is satisfied.

Second case

Let us take

k− 3 ≤ p. (53)

Then, the RHS is

(k− 4)m2. (54)

The LHS is

(k− 4)p. (55)

Hence, the RHS is always greater than or equal to the
LHS. To conclude, we have identified a way to connect
two tori, each with m2–vertices, together such that the
resultant graph is k-regular, for any 4 ≤ k ≤ m2.

Remark. Let n = 2m2. Then, by Proposition 44, F -
REGULARGRAPH

[
n, k, x,U

]
is #P-hard, for any 4 < k ≤

n/2.

Corollary 47. REGULARGRAPH
[
n, k, x,U

]
is #P-hard, for

any 4 < k ≤ n/2.

Now, we can use the duality theorem to argue the
hardness of n–vertex, k–regular graphs with n/2 + 1 ≤
k ≤ n − 4. Every hard graph for these families is a
complement of the hard graphs we just explicitly con-
structed.

Proposition 48. There is an explicit, efficiently constructible
F such that F -REGULARGRAPH

[
2m2, k, x,U

]
is #P-hard,

for any m2 + 1 ≤ k < 2m2 − 5..

Proof. From Proposition 46, we have already
seen how to construct an H such that H-
REGULARGRAPH

[
2m2, t, x,U

]
is #P-hard for 4 < t ≤ m2.

For a particular choice of m, let H ∈ H be a 2m2–vertex,
t–regular graph, of the type that was constructed in the
proof of Proposition 46. So, H comprises of two copies
of a torus connected to each other in a certain way.

Let G be the complement of H. G is k–regular, where
k = 2m2 − t − 1. Then, by deleting all vertices on one
copy of the torus, we can reach the complement of a
grid graph from H, under closed boundary conditions.
Then, we can "cut open" the boundary by vertex dele-
tion to reach the complement of a grid graph whose side
lengths are Ω(

√
n) ×Ω(

√
n). By Theorem 41, this is a

resource state for measurement based quantum compu-
tation, and hence the proof follows.

Remark. Let n = 2m2. Then, by Proposition 48, F -
REGULARGRAPH

[
n, k, x,U

]
is #P-hard, for any n/2 ≤

k < n− 5.

Corollary 49. REGULARGRAPH
[
n, k, x,U

]
is #P-hard, for

any n/2 < k < n− 5.

Proposition 50. REGULARGRAPH
[
n, k, x,U

]
is #P-hard,

for any n/2 < k ≤ n− 5.

Finally, the proof of Theorem 39 follows from Propo-
sition 43, Proposition 46, Proposition 45, Lemma 18, and
Corollary 49.

E. Bounds on the entanglement width

We prove some conditional and unconditional lower
bounds on the clique width of the graphs constructed in
the previous section.

1. Unconditional bounds

Corollary 51. Let G be any n–vertex k–regular graph con-
structed in the proofs of any one of Proposition 43, Proposi-
tion 44, Proposition 46, or Proposition 48. Then,

cw(G) = Ω(
√

n). (56)

Consequently,

ew(|G〉) = Ω(log n). (57)
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Proof. For each G, we can reach either a grid graph or a
hexagonal lattice by vertex deletion, or reach a comple-
ment of either. From [55, 58, 60], the n–vertex grid graph
and the n–vertex hexagonal lattice have a clique width
Ω(
√

n). Since, by Lemma 34,

cw(G) ≥ 1
2
cw(G), (58)

the complement of the grid and the hexagonal lattice
also have clique width Ω(

√
n).

By Lemma 35, since vertex deletion does not in-
crease the clique width, the explicit graphs constructed
in Proposition 46 and Proposition 48 also have clique
width Ω(

√
n). Consequently, the bound on entangle-

ment width follows from Lemma 33 and Lemma 36.

2. Conditional bounds

Corollary 52. Let F be any k–regular graph family such
that F -REGULARGRAPH

[
n, k, x,U

]
, is #P-hard, for any

x ∈ {0, 1}n. Then, assuming BPP 6= P#P,

ew(|G〉) = ω(log n), (59)

for some G ∈ F .

Proof. Assume the contrary. Then there is an algorithm
to solve F -REGULARGRAPH

[
n, k, x,U

]
in classical poly-

nomial time using [17]. But, it was assumed that this
task is #P-hard. This implies BPP = P#P, which is a
contradiction.

By using a stronger conjecture, we can get a better
lower bound.

Corollary 53. Let F be any k–regular graph family such
that F -REGULARGRAPH

[
n, k, x,U

]
, is #P-hard, for any

x ∈ {0, 1}n. Then, assuming ETH 2,

ew(|G〉) = Ω
(

nδ
)

, (60)

for some G ∈ F , and for some δ < 1.

Corollary 54. LetF be any k–regular graph family such that
F -REGULARGRAPH

[
n, k, x,U

]
, is #P-hard, for any x ∈

{0, 1}n and every G ∈ F is reducible to a Ω(
√

n)×Ω(
√

n)
grid graph by a sequence of vertex deletions and local comple-
mentations. Then, assuming SETH 3,

ew(|G〉) = Ω
(

n1/2
)

, (61)

2 The Exponential Time Hypothesis (ETH) states that there is no so-
lution to #3SAT in time O(2nε

), for some constant ε < 1 [75]. Note
that #3SAT is a #P-complete function.

3 The Strong Exponential Time Hypothesis (SETH) states that for ev-
ery constant ε > 0, there is a k such that there is no solution to #kSAT

in timeO
(

2n(1−ε)
)

[75]. Note that #kSAT is a #P-complete function
for every k ≥ 3.

for some G ∈ F .

The proofs are similar to that of Corollary 52. The n1/2

comes from the fact that a Ω(
√

n)×Ω(
√

n) grid graph
“encodes” a #P-hard probability on Ω(

√
n)-many “log-

ical” qubits and the fact that entanglement width does
not increase under vertex deletions and local comple-
mentation.

S4. CONNECTIONS TO PREVIOUS WORK

In this section, we discuss relations between our setup
and what was considered in other relevant works.

A. A discussion of other known classical simulation
methods

Apart from entanglement based methods discussed
in the main text, there are known techniques to simu-
late quantum circuits based on the amount of other re-
sources present in them, like T gates [29], stabilizer rank
[30], or Wigner negativity [31, 32]. We had discussed
in the main text why these methods are not adequate
to classically simulate our setup: here, we go into more
technical details.

In [29], the runtime of the classical simulator, for both
probability estimation and sampling, scales as O

(
2ct),

where t is the number of T gates and c is a constant. For
every fixed graph state |G〉, from Figure 1(a) of the main
text, the presence of a last layer of unitaries means that
the number of T gates, in the worst case, is n. Hence,
classical simulation is inefficient.

From [30], any quantum circuit having Clifford gates
and t T gates can be implemented by a quantum circuit
starting with t magic states, each given by

|T〉 = 1√
2

(
|0〉+ eiπ/4 |1〉

)
. (62)

Both the stabilizer and the approximate stabilizer rank
of this equivalent circuit are O(2ct), for some constant
c. Due to local rotations, this factor could be exponen-
tially growing in n, in the worst case, for any graph state
|G〉 in Figure 1(a) of the main text, rendering simulation
inefficient. So far, it is not known how to prove better
bounds on the stabilizer rank of a circuit or better utilize
it as a resource in classical simulations.

Techniques based on Wigner negativity run into simi-
lar problems. Note that, when the circuit is only com-
posed of Clifford gates, Wigner negativity, as defined
in [31], is zero. Hence, techniques from Ref. [31] can
be used to classically sample from the circuit. How-
ever, local rotations can significantly increase the neg-
ativity of the circuit, and the best known techniques for
classically sampling from the circuit depend on a met-
ric called “forward negativity” [32] being low. How-
ever, the authors in [32] demonstrated that the forward
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negativity can, in general, increase exponentially with
the number of magic states, which rules out Wigner-
negativity-based samplers for our setting.

For qubit circuits, an additional barrier is that qubit
Wigner functions are much harder to define than their
qutrit counterparts [33–35].

In conclusion, local rotations render a number of
known classical simulation techniques useless for the
simulation of graph states. Since entanglement is not
changed by local rotations, only entanglement-based
simulation techniques seem to survive. This helps in
our analysis and helps us to isolate entanglement as a
potential cause of hardness.

B. A discussion of other entanglement measures

There are many measures to calculate both bipar-
tite and multipartite entanglement, other than entangle-
ment width, but we show below that it is harder to see
what relation they have with hardness, if there is any
relation at all. We discuss two popular measures here:
the bipartitie von Neumann entropy and the geometric
measure.

The bipartite von Neumann entropy, for a graph state
|G〉, with respect to any bipartition (A,B) depends on
the size, shape, and location of the bipartition and has
the following upper and lower bounds [21]:

log2 r = S(|G〉A,B) ≤ PauliPersistency(|G〉)
≤ minvertexcover(G), (63)

where Pauli Persistency is the number of local Pauli mea-
surements required to fully disentangle the graph state,
minvertexcover(G) is the minimal vertex cover of the cor-
responding graph G, and r is the Schmidt rank of |G〉
across the bipartition (A,B).

By a result from graph theory, for n–vertex, k–regular
graphs,

minvertexcover(G) ≤ n · k
k + 1

. (64)

This implies

S
(
|G〉A,B

)
≤ n · k

k + 1
. (65)

Note that the upper bound grows with k, for a fixed n.
However, for k = n − 1, the von Neumann entropy is
1 across any bipartition [7], which indicates that the up-
per bound is not tight at all. To derive this property of
the complete graph, we note that the complete graph re-
duces to a GHZ state under local Clifford rotations, and a
GHZ state has von Neumann entropy equal to 1 for any
bipartition.

On the other hand, for a worst case 2–regular graph,
there is a bipartition (A,B) which achieves von Neu-
mann entropy n/2. For example, this is achieved by n

vertices arranged in a circle, where we fill A and B with
alternate vertices. At the same time, a bipartition that di-
vides the vertices into two semi-circles has constant von
Neumann entropy. Therefore, this metric is very sensi-
tive to the chosen bipartition. Since both the complete
graph and any 2–regular graph are easy to classically
simulate, but the former has low von Neumann entropy
and the latter has high von Neumann entropy across the
worst-case cut, it is not clear how von Neumann entropy
of the worst case cut relates to classical simulation com-
plexity.

Alternatively, one could consider von Neumann en-
tropy across the best-case cut (A,B) subject to the con-
straint that |A| = bn/2c. However, for every n, one
can divide the n qubits into two decoupled sets A and
B with |A| = bn/2c and define independent k-regular
graphs on A and B, for any constant k. The proposed
best-case von Neumann entropy would then be zero for
all such graphs and will thus clearly not track the simu-
lation complexity.

Therefore, if one wants to use the von Neumann en-
tropy to track simulation complexity, one needs to make
the choice of the cut more cleverly. Indeed, entangle-
ment width, according to Eq. (21), is precisely a case of
such a cleverly chosen cut: entanglement width is the
minimum von Neumann entropy across the most tree-
like bipartition, and we show how it tracks simulation
complexity. It is plausible that one can find other such
variants.

There are other measures, like the geometric measure
of entanglement, given by

Sgeom (|ψ〉) = − log2 sup
α∈P
|〈α|ψ〉|2, (66)

where P is the set of all separable states. For a graph G,

mp ≤ Sgeom (|G〉) ≤ Pauli Persistency(|G〉)

≤ minvertexcover(G) ≤ n · k
k + 1

, (67)

where

mp = max
(A,B)

mp(A,B). (68)

In equation (68), (A,B) is a bipartition and mp(A,B) is
the maximum number of Bell pairs that can be created
between (A,B), by a bipartite LOCC circuit, compris-
ing only of CZ gates and local Clifford gates [26], when
starting from |G〉. In other words, there can be CZ gates
within each partition, but there should be no CZ gates
across the bipartition. For a complete graph, mp is 1.

Hence, the known upper and lower bounds on the ge-
ometric measure are also not tight, and it is not clear
what relation, if any at all, these metrics have with hard-
ness.
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S5. COMMENTS ON AVERAGE CASE HARDNESS

In the summary section of the main text, we had
pointed out that our results generalize to the average
case. In this section, we discuss that in detail.

There could be two notions of average case for our
setup:

• For a particular G, and random choice of U.

• For a random choice of G, and random choice of
U, for a particular k–regular family.

For every hard k–regular graph identified in Theorem
39, for 3 ≤ k ≤ n − 4, computing px(G,U) is #P-hard
with high probability over the choice of U, up to an ad-
ditive error of 2−O(m log m), using the worst-to-average
case reductions in Ref. [73], where m is the number of
gates of the circuit.

The results are not immediately extendable to a ran-
dom choice of G, because the polynomial interpolation
methods of [38, 39, 73] may take us beyond k–regular
graph states. The question then becomes whether it
is reasonable to expect average case hardness in this
regime.

We assert such an expectation is reasonable and does
not violate known results from graph theory, because
most k–regular graphs, for a range of values for k, have
Ω(n) clique width and Ω(log n) entanglement width.
This fact follows straightforwardly from techniques in
graph theory, like Lemma 32, and from works like [58].
But we still state it formally and sketch a proof, just for
the sake of completeness.

Note that this does not rule out classical samplers,
as there could be a matching upper bound of O(log n)
for the entanglement width which would make efficient
sampling possible by Lemma 22—but it makes this set-
ting “almost” out of reach of known non-trivial, tree
width based samplers.

Lemma 55. Let G be an n–vertex, k–regular graph picked
uniformly at random from the set of all possible n–vertex, k–
regular graphs. Then

lim
n→∞

Pr[cw(G) = Ω(n)] = 1, (69)

when k = o(n), or k = n− o(n). Consequently, under the
same conditions as (69),

lim
n→∞

Pr[ew (|G〉) = Ω(log n)] = 1. (70)

Proof. First, we prove that random k–regular graphs, for
k = o(n), have clique width Ω(n) with high probabil-
ity. By Lemma 34, this means random n− k− 1–regular
graphs also have a clique width of Ω(n) with high prob-
ability, as these are complements of random k–regular
graphs. The result on entanglement width then follows
from Lemma 33 and Lemma 36, just as we have seen
before.

Let k = o(n). Let G be a random k–regular graph. It
holds that

tw(G) = Θ(n), (71)

with high probability [61]. From Lemma 32,

tw(G) ≤ 3 · cw(G) · (t− 1)− 1, (72)

if G does not have the complete bipartite graph Kt×t as
a subgraph. The proof then follows from the following
result, which can be seen in Ref. [69]:

lim
n→∞

Pr[Kt×t is not a subgraph of G] = 1, (73)

for any constant t, for a random k–regular graph with
k = o(n).

Note that Lemma 55 breaks down for the very specific
case of when k = Θ(n). This is an artefact of the proof
technique, because equation (73) breaks down for this
case, and we did not find other simple ways to bound
the clique width. Nonetheless, we conjecture that there
should be a better way to bound the clique width for
these cases.
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