
Topological Edge Mode Tapering

Christopher J. Flower,1, 2, ∗ Sabyasachi Barik,1 Sunil Mittal,3 and Mohammad Hafezi1, 2

1Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
2Quantum Technology Center, NIST/University of Maryland, College Park, Maryland 20742, USA

3Department of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts 02115, USA

(Dated: June 16, 2022)

Mode tapering, or the gradual manipulation of the size of some mode, is a requirement for any
system that aims to efficiently interface two or more subsystems of different mode sizes. While high
efficiency tapers have been demonstrated, they often come at the cost of a large device footprint or
challenging fabrication. Topological photonics, offering robustness to certain types of disorder as well
as chirality, has proved to be a well-suited design principle for numerous applications in recent years.
Here we present a new kind of mode taper realized through topological bandgap engineering. We
numerically demonstrate a sixfold change in mode width over an extremely compact 8µm distance
with near unity efficiency in the optical domain. With suppressed backscattering and no excitation
of higher-order modes, such a taper could enable new progress in the development of scalable,
multi-component systems in classical and quantum optics.

Introduction. Ever since the discovery that topological
physics was not limited to condensed matter systems,
topology has emerged as a new design principle in optics
[1–6]. Promising built-in protection against defects and
disorder, as well as chirality, topology in optics has led
to the development of novel ideas including topological
delay lines, [4], lasers [7–12], waveguides [13], antennas
[14], fibers [15], resonators [16, 17], sources of quantum
light [18], devices enabling robust routing of photons [19,
20], and more.

At the same time, mode matching is a ubiquitous prob-
lem in the field of optics, and often requires the manip-
ulation of the spatial extent of some mode. Mode engi-
neering of this kind is often employed in optical systems
to increase coupling efficiency between a large optical
source and some sample [21–23]. It is notably a cru-
cial component for the development of hybrid photonic
integrated systems, which offer a path to solve several
outstanding engineering challenges in both classical and
quantum photonics [24–26]. Additionally, it is a princi-
ple often employed in the development of hybrid quan-
tum systems, where coupling efficiency between compo-
nent systems can be limited due to impedance mismatch
[27]. For example, a taper may be used to couple a
many-wavelength scale transducer to a waveguide with
a much smaller cross-section [28]. In addition to improv-
ing coupling, a wider or more distributed mode may be
advantageous for applications that require careful power
management. While mode tapering has been extensively
studied, it remains desirable to design and fabricate more
compact mode tapers without sacrificing device efficiency
[21–23].

In this work, we describe a novel means of mode ta-
pering through topological bandgap engineering. By tak-
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FIG. 1. The relationship between bandgap width and edge
mode width. a) A representation of the interface of two topo-
logically distinct materials. An edge mode exists at the in-
terface of the top and bottom regions, but the width of that
mode is determined by a changing control parameter, repre-
sented by the color gradient which changes Left to Right. b)
the corresponding bulk band structures at different points in
space.

ing advantage of the robust, unidirectional, and single-
mode nature of topological edge modes, we present a ta-
per that allows abrupt many-fold enhancement or reduc-
tion of mode size with negligible losses. We achieve this
by taking advantage of the inverse relationship between
the topological bandgap and edge mode width, schemat-
ically shown in Fig. 1. By spatially manipulating the
lattice parameters (introduced in Fig. 2a) we are able to
tune the bulk bandgap of a valley-Hall topological pho-
tonic crystal waveguide [16, 29–34], and by extension the
edge mode width, while maintaining a constant center
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FIG. 2. The relationship between lattice parameters, ` and δ, and properties of the topological photonic crystal waveguide
system. a) Schematic representation of the valley-Hall topological photonic crystal design and edge mode. Lattice parameters
are indicated. b-d) Mode waist radius, bulk bandgap width, and center frequency vs lattice parameters ` and δ. Each panel
includes an inset displaying a cross section of the data at ` =0.16 µm. All data is interpolated for clarity.

frequency. While this approach can be applied to any fre-
quency in the electromagnetic spectrum, we focus in the
optical domain for concreteness and demonstrate a band-
width of 9 THz around a central frequency of 353 THz.
Using 2D Finite Difference Time Domain techniques, we
demonstrate an ultra-efficient (>99.5%) 6-fold mode ta-
per over an ultra-short distance (<8 µm near a wave-
length of 850nm) without the use of any optimization
techniques. Furthermore, we stress that the principle of
this approach to robust mode tapering is broadly appli-
cable and could be realized in other platforms, such as
acoustic, electronic, or atomic systems, where topological
physics is studied.

Topological Bandgap Engineering for Tapering. Fig. 1
illustrates the expected relationship between edge mode
confinement and topological bandgap, as well as how it
may be leveraged to engineer a mode taper. In particular,
we expect the confinement length of the topological edge
states, which are exponentially localized at the boundary,
to scale roughly inversely with the bulk bandgap. Panel a

depicts an edge mode at the interface of two topologically
distinct regions (top and bottom, here indicated by hot
and cold color schemes online). A left to right gradient in
both the top and bottom regions represents the changing
of some control parameter that determines the width of
the bulk topological bandgaps. We stipulate that the
control parameters in the system are such that the bulk
bandgaps coincide in frequency in the top and bottom
regions at the same point along the interface. These bulk
bandgaps are illustrated in panel b at three points along
the taper, indicated by dotted lines in panel a.

Photonic Crystal Design. The topological photonic
crystal system that is the subject of this work is based on
a valley-Hall design composed of a honeycomb lattice of
triangular holes [16, 29–34]. The rhombic unit cell of the
crystal in question consists of two triangular holes of side
length `(1 ± δ), shown in Fig. 2a. The lattice constant
is chosen to be 0.46 µm. Time reversal symmetry man-
dates that the Berry Curvature integrated over the full
Brillouin Zone is zero, but crucially the Berry Curvatures
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at the K and K ′ points are of opposite sign. Interfacing
such a region with its mirror image results in a pair of
helical modes at the boundary.

These edge modes can be characterized by a physical
width, or mode waist radius, a bandgap width, and a
bandgap center frequency. The mode waist radius is de-
fined here as the distance over which the field amplitude
decays from its maximum to 1/e times its maximum in
the in-plane direction orthogonal to the propagation di-
rection of the mode. If both regions have the same lattice
parameters (` and δ) the mode waist radius will be the
same on both sides of the boundary. The bandgap width
and center frequency are bulk properties of the two topo-
logically distinct regions that determine the frequency
and bandwidth of the edge mode.

Effective Hamiltonian and Analysis. To get an approx-
imate idea of how these properties depend on the lattice
parameters ` and δ, we can turn to the Hamiltonian de-
scribing the valley-Hall topological photonic crystal in-
sulator near each of the K and K ′ valleys [29], given by:

Heff = vD(τzσxδkx + τ0σyδky) +mτ0σz (1)

where vD is the group velocity and δk are momenta rel-
ative to the K/K ′ points. The Pauli matrices σx,y,z and
τx,y,z act on the basis of right and left circularly polar-
ized eigenmodes of the unperturbed lattice and the val-
ley degree of freedom, respectively. The perturbation or
mass term, m, is calculated by determining the overlap of
the change in permittivity of the perturbed crystal with
the field intensities of the eigenmodes of the unperturbed
crystal.

When one considers an interface at y = 0 with opposite
masses ±m on either side, Eq.1 yields a solution state
that is bound at y = 0, and freely propagates along the
x-axis. Apart from the four-component spinor part, the
spatial part takes the form:

Ψ(x, y) ∝ e−
m|y|
vD e

± ikxx
vD . (2)

As can be seen, the decay length away from the interface
is proportional to the inverse of the mass term, and by
extension the bandgap. In particular, the change in per-
mittivity that determines the value of m is governed by
the change in the area of each triangle in the unit cell.
This quantity goes to zero as δ goes to zero, but also
depends on `.

Simulation of Bulk and Edge Mode Properties. In order
to create a functional tapered waveguide, we must care-
fully choose the lattice parameters such that as we move
along the interface the bandgap width and the mode
waist radius change while the center frequency remains
the same. The relationships between each of these mode
properties and the lattice parameters, ` and δ, are dis-
played in Fig. 2b-d, where each respective inset shows
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FIG. 3. E field amplitudes versus in-plane displacement (Y)
across the interface of the topologically distinct regions of the
valley-Hall photonic crystal. a) δ = 0.05 and ` = 0.17 µm. b)
δ = 0.40 and ` = 0.16 µm.

a cross section of the data with ` fixed at 0.16 µm. As
hypothesized, the dependency of the mode waist radius
on the lattice parameters is roughly inverse that of the
bandgap width. The edge mode becomes more and more
tightly confined and the bandgap grows as the difference
between the triangular holes in a single rhombic unit cell
is increased. The bandgap center frequency on the other
hand depends only very weakly on δ, in agreement with
prediction from tight-binding models.

With these landscapes in hand we can now design ta-
pered topological photonic crystal waveguides across a
wide range of operational frequencies and mode waist di-
ameters. Fig. 3 displays cross sectional snapshots of the
mode profiles of two points in this parameter space. In
particular, panel a shows the electric field amplitudes of
the edge mode for ` = 0.17 µm and δ = 0.05, while panel
b shows that for ` = 0.16 µm and δ = 0.40, both at their
center frequency of 353 THz. The mode waist radius is
determined by fitting a straightforward envelope function
and gives 3.5 and 0.6 µm respectively.

Simulation of Tapered Edge Mode Properties. Using
these two points in parameter space as endpoints, we
have designed a tapered photonic crystal consisting of a
small bandgap region (` = 0.17 µm and δ = 0.05), a linear
taper region, and a large bandgap region (` = 0.16 µm
and δ = 0.40). In the small and large bandgap regions
the lattice parameters remain fixed, while in the taper
region the lattice parameters are linearly tuned between
the two. The resulting design and simulation scheme is
displayed in Fig. 4a. By exciting the guided edge mode
from the left with a 60 THz wide Gaussian excitation
pulse we are able to determine the mode structure and
properties of the tapered topological waveguide system.
Fig. 4b shows the calculated field profile of the guided
mode at 353 THz, clearly showing the dramatic decrease
in mode waist radius along the propagation direction.
This effect is shown quantitatively in Fig. 4c, demon-
strating an approximately 6-fold reduction in mode waist
radius (or alternatively a 5.8 µm reduction in mode waist
diameter) through the taper region, indicated by vertical
lines.
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FIG. 4. The topologically tapered waveguide system. a) A schematic representation of the fully tapered topological photonic
crystal system and excitation scheme. In simulation, this topological photonic crystal was excited with a gaussian beam source
of approximately 5 µm mode waist radius. b) The magnitude of the field amplitude for the tapered system, normalized by
the source magnitude (|E|/|ESource|), presented on a logarithmic scale. Bottom and top insets show bulk bandstructures for
the lattice parameters used to the left and right of the taper region, respectively. c) Mode waist radius along the direction of
propagation. The region in which the photonic crystal parameters are tapered is indicated. d) Transmission, defined as the
integral of the real part of the Poynting vector over a surface orthogonal to the propagation direction of the mode, along the
optical path of the waveguide. Normalization is with respect to transmission at the far left of the system, but downstream
from the source. e) Transmission band of the full system. The bandwidth or full width at half max is approximately 9 THz
centered around 353 THz.

To ensure that such an abrupt change in the mode pro-
file hasn’t been achieved at the cost of reduced efficiency,
we present transmission data through the tapered system
in Fig. 4d at 353 THz. Based on this data we can bound
the mode conversion loss of the taper at < 0.5% over
the 8 µm taper. This data is normalized by transmis-
sion data from an untapered topological photonic crystal
waveguide matching the parameters of the small bandgap
system, or the wider, left hand side of the tapered system.

In order to be a useful component in a wide range of
applications, such as those focused on quantum or classi-
cal information processing, we must also guarantee that
the bandwidth of our device is sufficiently large. The fre-

quency response of the tapered waveguide is displayed in
Fig.4e which shows the bandwidth to be approximately
9 THz, centered around 353 THz.

Discussion. Although we have only considered linear
tapers and this system is entirely unoptimized, we have
nevertheless shown that this means of mode tapering in
a topological system can exhibit significant mode width
engineering with extremely high efficiency over an ultra
compact distance. In particular, we have demonstrated
a change in mode waist diameter of 5.8 µm over an 8 µm
taper length while suffering only < 0.5% mode conversion
loss. For comparison, adiabatic linear tapers in silicon-
on-insulator waveguides may achieve comparable losses
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at only extremely shallow taper angles (1◦). In such a
system, a 3.8 µm increase in mode waist diameter with
negligible loss would require approximately 218 µm of
taper length [35]. This device footprint can be reduced
with the use of more sophisticated techniques, such as
an inverse parabolic taper, but this still requires 40 µm
of taper length for a change in mode waist diameter of
≈ 4.5 µm, and suffers mode conversion losses of greater
than 5% [21].

Such topological systems are therefore promising can-
didates for robust and efficient interfaces between physi-
cal systems of varying mode sizes. Uses for an interface
of this nature are plentiful, ranging from simple applica-
tions like increasing the coupling efficiency between op-
tical systems [21–23], to more involved ones such as the
development of hybrid integrated photonics for quantum
information processing [24–26]. Furthermore, as this ap-
proach is not fundamentally limited to photonic systems,
it may even be useful in the development of more general
hybrid quantum systems that may suffer from impedance
mismatch due to different mode sizes [27].
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