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Qubit noise spectroscopy is an important tool for the experimental investigation of open quantum
systems. However, conventional techniques for implementing noise spectroscopy are time-consuming,
because they require multiple measurements of the noise spectral density at different frequencies.
Here we describe an alternative method for quickly characterizing the spectral density. Our method
utilizes random pulse sequences, with carefully-controlled correlations among the pulses, to measure
arbitrary linear functionals of the noise spectrum. Such measurements allow us to estimate k’th-
order moments of the noise spectrum, as well as to reconstruct sparse noise spectra via compressed
sensing. Our simulations of the performance of the random pulse sequences on a realistic physical
system, self-assembled quantum dots, reveal a speedup of an order of magnitude in extracting the
noise spectrum compared to conventional dynamical decoupling approaches.

I. INTRODUCTION

Noise spectroscopy is an essential tool for understand-
ing the behavior of a quantum system coupled to an
environment. It plays an important role in the experi-
mental investigation of quantum computation and quan-
tum sensing, in physical systems such as superconduct-
ing qubits, semiconductor quantum dots, and nitrogen-
vacancy centers in diamond [1–7]. Typically, noise spec-
troscopy consists of estimating the noise spectral density,
S(ω), at different frequencies ω, using techniques such as
relaxometry or dynamical decoupling [8–13].

Dynamical decoupling (DD) pulse sequences have been
studied for decades in the field of nuclear magnetic res-
onance (NMR) to reduce the dephasing of spin ensem-
bles [14, 15], and later implemented in various quantum
systems for noise spectroscopy [5, 16–20]. The rotation
π-pulses incorporated in these sequences shape the fil-
ter function that probes the qubit’s environment in the
frequency domain. However, such probing requires the
application of many pulse sequences across the whole fre-
quency domain, and is thus quite time-consuming.

In this work, we develop a different approach to per-
forming noise spectroscopy, which requires fewer re-
sources for characterizing the noise spectral density S(ω).
Our approach applies π−pulses at random but carefully
chosen timings (i.e., random pulse sequences), which al-
lows us to estimate any linear functional of S(ω). Such
functions can be used to estimate physically-relevant
properties of S(ω), without probing it across the whole
frequency domain.

The design of these pulse sequences can be compared
with other recent works on generating or simulating non-
Markovian noise with prescribed time-correlations [21–
24]. Our goal in this paper is different, however: we

use random pulse sequences to measure properties of the
noise generated by an unknown environment, rather than
to simulate or model a source of noise that has already
been characterized by some other kind of measurement.

Furthermore, when S(ω) is sparse, we can reconstruct
it by using random pulse sequences together with com-
pressed sensing [25, 26]. This method is reminiscent
of compressed sensing techniques used in NMR, though
the domain where we apply these techiques (noise spec-
troscopy) is quite different [27, 28]. This method re-
quires measurements of only O(s log n) linear functionals
of S(ω), where s is the sparsity and n is the number of
grid points in the frequency domain. Numerical simu-
lations show that this method can achieve an order of
magnitude speedup, compared to conventional dynami-
cal decoupling sequences, for a realistic physical system,
self-assembled quantum dots.

II. NOISE MODEL

Let us consider a single qubit (“the system”) coupled
to a classical bath that leads to pure dephasing of the
qubit. The general Hamiltonian can be written as

Ĥ(t) = Ĥ0 + ĤV (t) = (Ω + V (t))σz, (1)

where Ĥ0 = Ωσz is the system Hamiltonian and ĤV (t)
is the Hamiltonian associated with a stochastic process
V (t) that describes the noise caused by the bath. For ex-
ample, V (t) can represent a classical fluctuating variable,
such as a magnetic field. For simplicity, here we assume
that V (t) is a Gaussian process with zero mean value

〈V (t)〉V = 0, (2)
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where 〈...〉V stands for the average with respect to the
ensemble of V (t). The Gaussian process is determined
by the auto-correlation

〈V (t)V (t′)〉V = g(t− t′). (3)

In the frequency domain, the spectral density can be de-
fined by the Fourier transform of the auto-correlation,

S(ω) =

∫ +∞

−∞
e−iωtg(t)dt. (4)

The dynamics of a system coupled to a Gaussian bath can
be entirely determined by the spectrum, S(ω) [29, 30].

In this work, we make an additional mild assumption
that the noise spectrum vanishes at frequencies larger
than a cutoff frequency ωc, that is, S(ω) = 0 when
|ω| > ωc [31, 32]. The methods for noise spectroscopy
described in this paper can also be extended to char-
acterize quantum environments, such as bosonic baths
[33]. This involves a technical complication, as the noise
spectrum S(ω) is no longer an even function. However,
when the bath is at thermal equilibrium, the asymmetry
of S(ω) has a simple structure that is determined by the
temperature of the bath. If this temperature is known,
then S(ω) can be fully characterized [34].

III. PROTOCOLS FOR NOISE SPECTROSCOPY

As illustrated by Fig. 1a, a general protocol for noise
spectroscopy goes as follows: (1) Prepare the system
qubit in the |+〉 = 1√

2
(|0〉+ |1〉) state using a Hadamard

gate. (2) Apply a sequence of π pulses, of total time du-
ration T . (3) Rotate the qubit back with a Hadamard
gate and measure its state in the σz basis. (4) Repeat
(1)-(3) many times and estimate the probability, P0(T ),
to obtain the qubit in the |0〉 state.

For a stochastic bath, P0(T ) yields an exponential de-
cay, e−χ(T ), which only depends on S(ω) and the pulse
sequence [35–37],

P0(T ) = 1
2 (1 + e−χ(T )),

χ(T ) =

∫ ∞
−∞

dω

2π
S(ω)|f̃(ω)|2 =

∫ ∞
−∞

dω

2π
S(ω)W (ω),

(5)
where f(t) is the filter function corresponding to the pulse

sequence (see Fig. 1b), f̃(ω) is the Fourier transform of
the filter function, and the window function, W (ω), is

defined as W (ω) = |f̃(ω)|2.

A. Dynamical decoupling

Here we review the Carr-Purcell-Meiboom-Gill
(CPMG) pulse sequence as the typical DD method used
for noise spectroscopy [5, 14, 16–20, 38]. The CPMG
pulse sequence (illustrated by Fig. 1b) consists of M
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FIG. 1. (a). A single-qubit noise spectroscopy experiment.
The qubit is initialized in the |+〉 state by a Hadamard gate.
Then, the qubit evolves under the application of the pulse
sequence. Finally, a measurement is performed in the σz ba-
sis after another Hadamard gate. (b). Top: An illustration
of the CPMG pulse sequence with M = 4 instantaneous π-
pulses (blue rectangles) along the y axis. The time interval
between each two pulses is τ = T/M . The qubit freely evolves
for a time of τ/2 before the first pulse and after the last one.
Bottom: The corresponding filter function, f(t), flips the sign
every time a π-pulse is applied. (c) Illustration of the random
pulse sequence method. Given a target function, T (ω), a ran-
dom pulse generator can produce multiple pulse sequences.
The blue spikes represent instantaneous π-pulses. The ex-
pectation value of the resulting window function, E(W (ω)),
approximates T (ω). As a result, one can measure the linear
functional

∫
S(ω)T (ω)dω by averaging the outcome of each

individual pulse sequence.

rotation π-pulses applied with time period τ (τ = T/M).
The window function of this sequence equals

W (ω) =

{
32
ω2 sin4(ωτ4 ) sin2(ωMτ

2 )/ cos2(ωτ2 ), for even M
32
ω2 sin4(ωτ4 ) cos2(ωMτ

2 )/ cos2(ωτ2 ), for odd M.

(6)
When M →∞, we get W (ω) ∝ Tδ(π/2τ) such that

χ(T ) ≈
∫ ∞
−∞

dω

π
S(ω)

4Tδ(π/2τ)

π
≈ 4T

π2
S(π/2τ). (7)
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As a result, the application of a CPMG sequence mainly
probes the noise at a single frequency of π/2τ (with sec-
ond order corrections described in [34]). To fully decom-
pose the spectrum then requires sweeping the free evo-
lution time, τ (or the number of pulses, M). However,
such probing across the whole frequency range involves
numerous measurements, which are not always necessary
for extracting the significant features of the noise.

B. Random pulse sequence

We propose an alternative method for noise spec-
troscopy based on random pulse sequences. Rather than
probing single frequencies like the CPMG method, our
approach generates window functions, W (ω), with de-
sired spectral shapes that probe any linear functional of
S(ω). The general idea is to design a random pulse gen-
erator to produce a group of sequences, such that the
expectation value of their window function, E(W (ω)),
can approximate a desired target function, T (ω) (as il-
lustrated in Fig. 1c and further explained in [34]). As
a result, we can directly estimate the linear functional,
I =

∫
S(ω)T (ω)dω. This procedure is analogous to

the generation of a stationary sequence [39], adapted for
noise spectroscopy.

The random pulse sequences are generated in the fol-
lowing way. The total experiment time, T , is divided
into M equal segments, such that T = Mτ . Rota-
tion π-pulses are applied only at the end of particu-
lar segments determined by a random pulse generator.
Specifically, we generate a vector of random variables,
~U = (U1, . . . , UM ) ∈ {1,−1}M , and a corresponding ran-
dom pulse sequence, such that:

1. Ui represents the value of the filter function, f(t),
in the time segment t ∈ [(i − 1)τ, iτ ]. A π-pulse is
applied at time iτ if and only if Ui 6= Ui+1.

2. The expectation value of any random variable is
zero, i.e., E(Ui) = 0.

3. The covariance of two random variables, Ui, Uj ,
should only depend on the distance |j − i|, i.e.,
it has the form E(UiUi+j) = R(j), where R(j) is
determined by the target function, T (ω), that we
wish to generate.

Random variables Ui satisfying these properties can be
constructed by generating a sequence of independent
Gaussian random variables, applying a finite impulse
response (FIR) filter with suitably chosen coefficients
(a0, a1, . . . , aλ−1), and then applying the sign function.
In some cases, time-varying FIR filters may be used for
improved computational efficiency [34].

In the following, we show, given a target function T (ω),
which random pulse covariances R(j) should be chosen.
The random pulse sequence produces a certain window

function, WU (ω), that probes the noise. The expecta-
tion value of the window function over all the possible

realizations of ~U yields

E(WU (ω)) = Mτ2 sinc2(ωτ
2

)[1+2

λ∑
k=1

R(k) cos (kωτ)(1− k
M

)],

(8)

where we define sincx = sin x
x and λ is the cutoff distance

of the correlation between random variables, i.e., R(k|k >
λ) = 0.

Note that the cosine functions {cos(kωτ)} form an al-
most complete basis (the zeroth term excluded) in the
region [−πτ ,

π
τ ]. Thus, by matching the time interval be-

tween segments and the cutoff frequency of the noise
(i.e., setting τ = π

ωc
), and by adjusting the random

pulse generator (i.e., optimizing the filter coefficients
(a0, a1, . . . , aλ−1), as explained in [34]) so that

R(k) = M
π(M−k)

∫ ωc

−ωc

cT (ω) cos(kωτ)

sinc2(ωτ2 )
dω, (9)

the expectation value of W (ω) yields

E(W (ω))
λ→∞−−−−→Mτ2[cT (ω)+(1−cT0) sinc2(ωτ2 )]. (10)

In Eqs. (9) and (10), c is an adjustable parameter that
ensures the positivity of W (ω), and T0 is a constant term
depending on T (ω),

T0 = 1
ωc

∫ ωc

−ωc

T (ω)

sinc2(ωτ2 )
dω. (11)

Note that R(k) is proportional to the k-th coefficient of
the Fourier series representation of T (ω)/ sinc2(ωτ2 ) (Eq.
(9)). As such, Eq. (10) is a good approximation for a
finite λ, if R(k) converges to 0 as k → ∞. By plugging
Eq. (10) into Eq. (5), the expectation value of the decay
exponent yields

E(χ) =
Mτ2

2π

∫ ωc

−ωc

[cT (ω)S(ω)dω+(1−cT0) sinc2(ωτ
2

)S(ω)dω].

(12)

From Eq. (12), we can extract the desired func-
tional, I =

∫
S(ω)T (ω)dω, by subtracting the term∫

S(ω) sinc2(ωτ2 )dω from E(χ). This term can be esti-
mated by applying an additional series of “base” random

pulse sequences, for which ~U contains independent ran-
dom variables (that is, R(k) = 0 for all k > 0). The ex-
pectation value of the “base” sequence’s window function

is E(Wbase(ω)) = Mτ2

2π sinc2(ωτ2 ), and the correspond-

ing decay exponent is E(χbase) = 1
2π

∫
S(ω)E(Wbase(ω)).

Figure III B illustrates the window functions generated
by the random pulse protocol for a target function of
T1(ω) = sinc2 (ωτ2 ) cos (3ωτ). The value of E(Wbase)
(dashed magenta line in Fig. 2a) is subtracted from
E(W (ω)) (dashed cyan line in Fig. 2a), to obtain T (ω)
(dashed cyan line in Fig. 2b).

The experimental estimation of the desired functional,
Iexp, requires measuring the decay exponent χexp, by
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FIG. 2. Illustration of the generation of the target func-
tion T (ω) = sinc2 (ωτ

2
) cos (3ωτ) by two groups of random

pulses. In both plots, the dashed lines represent exact ex-
pectation values. The solid lines represent simulated results
of an experimental realization considering 200 random pulse
sequences with 50 segments, each repeated 200 times. The
shaded area represents the uncertainties of these results. (a)
The dashed blue line (dashed red line) stands for the ex-
pectation value of the window function, E(W (ω)) (of the
base window function, E(Wbase(ω))), generated by T (ω), and
the solid cyan line (solid magenta line) is the corresponding
simulation of the experimental result, W exp(ω) (W exp

base(ω)).
(b) The dashed blue line represents T (ω). The solid cyan
line stands for the extracted window function of the two
averaged window functions in (a), calculated by W ∗(ω) =
[W exp(ω)− (1− cT0)W exp

base(ω)]/c.

generating N1 different random pulse sequences with
each repeated N2 times, as well as measuring the base de-
cay exponent, χexp

base, by generating Nbase,1 different ran-
dom pulse sequences with each repeated Nbase,2 times.
For the specific target function T (ω) in Fig. III B, the ap-
plication of random pulse sequences with (M,N1, N2) =
(M,Nbase,1, Nbase,2) = (200, 200, 50) (solid lines in Fig.
III B) provides a close estimation of the expectation val-
ues (dashed lines in Fig. III B).

IV. ACCURACY OF THE METHOD

The accuracy of the experimental estimation of the
desired functional, Iexp, depends on the accuracies of the
experimentally measured decay exponents, which are also
yielded by the method to generate random pulses. For a
specific type of random pulse generator, the accuracy is
given by (see [34])

|χexp − E(χ)|

=O

(√
2

πMτ

||S(ω)E(W (ω))− 〈S(ω)E(W (ω))〉||L2√
N1

+
||S(ω)E(W (ω))||L1√

N1N2

)
,

(13)

and the same expression for |χexp
base − E(χbase)| with

E(Wbase(ω)) = Mτ2 sinc2(ωτ2 ). In Eq. (13), 〈.〉 denotes
averaging in the frequency regime [−π/τ, π/τ ].

The first term in Eq. (13) related to the L2 norm
can be viewed as a measure of the smoothness of
S(ω)E(W (ω)). For example, in the extreme case of
constant S(ω)E(W (ω)), the L2 norm vanishes. How-
ever, when S(ω)E(W (ω)) consists of isolated peaks,
the first term will dominate the value of the deviation.
In the general case, the best strategy for minimizing
the deviation between the measured and ideal decay
exponent is to make N1 large while keeping N2 as small
as possible [34].

V. COMPRESSED SENSING

A promising application of the random pulse method
is the compressed sensing (CS) [25, 26] of sparse noise
spectra. A noise spectrum, approximated as a function
on a discrete subset of N points in the frequency domain
(call this subset GN ), is called s-sparse if it contains at
most s non-zero elements. As we show below, our method
implements O(s logN) sets of random pulses to fully de-
compose the spectrum, ideally providing an exponential
speedup compared to O(N) sets of experiments required
by the CPMG protocol.

The main idea of the CS method is to implement
random pulse sequences that generate a random set of
Fourier basis functions to probe the spectrum. According
to equations (8) and (10), the target function of random
pulse sequences can be set to Tk(ω) = cos(kωτ) sinc2(ωτ2 )

by setting R(j) = M
2(M−k)δ(j − k), such that

E(χk − χbase) = Mτ2
∫ ωc

−ωc

S(ω) sinc2(ωτ2 ) cos(kωτ)dω,

(14)
where χk is the decay exponent for random pulses with
Tk(ω). Note that the term S(ω) sinc2(ωτ2 ) has the same

sparsity as S(ω), since sinc2(ωτ2 ) varies mildly between
4
π2 and 1 when ω is in the interval [−πτ ,

π
τ ].
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FIG. 3. (a) A reconstruction of an ideal sparse spec-
trum using the CS method. The solid blue line represents
a 2-sparse spectrum with N = 250 grid points. The red
circles represent the decomposed spectrum using CS based
on m = 12 different Fourier basis functions. For each
Fourier basis function, we generate random pulse sequences
with (M,N1, N2) = (250, 1000, 50). (b) The accuracy of CS
((M,N1, N2) = (250, 1000, 50)) in reconstructing ideal spec-
tra as a function of the number of Fourier basis functions.
Different curves represent different sparsities considering 200
randomly generated spectra with N = 250. Each simulation
is repeated for 100 times and the shaded areas represent the
95% confidence regime. Inset: The scaling of the critical num-
ber of Fourier basis functions, mc, as a function of the sparsity
of the spectrum.

According to the CS theory [25, 26], by generating
m random Fourier functions with frequencies k1, . . . , km,
the discrete spectrum S∗ : GN → R (where GN is the
set of grid points) can be recovered by solving a convex
optimization problem,

min
S∗:GN→R

||S∗(ω) sinc2(ωτ/2)||L1
, subject to

m∑
j=1

∣∣∣∣χexp
kj
− χexp

base

− 2ωcMτ2

N
||S∗(ω) sinc2(ωτ/2) cos(kjωτ)||L1

∣∣∣∣2 ≤ ε.
(15)

Here, ε is chosen by the experimenter to allow for noise in
the measurements of χexp

kj
and χexp

base. The solution S∗(ω)

0 50 100 150
 (MHz)

0

0.5

1

S
(

)

theory
CS

20 25 30 35
0

0.5

1

FIG. 4. A reconstruction of the noise spectrum of an en-
semble of nuclear spins interacting with an InAs/GaAs quan-
tum dot (under an external magnetic field of B = 2 T at the
Voigt geometry) using pulse sequences of compressed sens-
ing. The blue solid line represents the theoretically simulated
noise spectrum. The red dots represent the simulated recon-
structed spectrum considering random pulse sequences with
(M,N1, N2) = (200, 2000, 50) and m = 40 different Fourier
basis functions. For the CS method, we estimate the spec-
trum using the LASSO, with N = 667 grid points and 10-fold
cross validation, which successfully identifies the central fre-
quencies of the major peaks.

to Eq. (15) is accurate if the number of generated Fourier
functions satisfies m ≥ Ω(s logN) [26].

Fig. 3a presents a numerical simulation of the CS
method on an ideal sparse spectrum. The solid blue
line represents a 2-sparse spectrum with N = 250 grid
points. The red circles represent the reconstructed spec-
trum, S∗(ω), obtained from CS with m = 12 different
Fourier basis functions. By accurately identifying the
non-zero elements of the original spectrum (blue line),
the CS method (red circles) succeeeds in reconstructing
it.

We further examine the accuracy of CS in reconstruct-
ing ideal spectra under different sparsities, s, as a func-
tion of the number of Fourier basis functions, m (Fig.
3b). For each sparsity (different curves in Fig. 3b),
we randomly generate 200 sparse spectra with N = 250
grid points to obtain the averaged accuracy (see [34]).
The accuracy is defined as the L∞ norm of the differ-
ence between the discretized true spectrum, S(ω), and
the reconstructed spectrum, S∗(ω). For each sparsity,
the accuracy undergoes a clear phase transition at a cer-
tain value of m. We define mc as the critical number of
Fourier basis functions for which the accuracy reaches 0.5
(e.g., for s = 13, mc = 40). It can be seen that mc is a
linear function of s (inset of Fig.3b), which is consistent
with the theoretically-predicted proportionality between
m and s logN .

Next, to quantify the performance of the CS method
for realistic physical systems, we explore the ability of
the method to extract the spectral density of noise that
interacts with InAs/GaAs quantum dots. This noise rep-
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FIG. 5. Numerical simulations of the accuracy of reconstruct-
ing the central frequencies of the InAs/GaAs noise spectrum
as a function of the number of sets of experiments, Nset. The
reconstruction accuracy, |ω̂∗ − ω̂th|∞, quantifies the devia-
tion between the reconstructed frequencies and the theoretical
ones for the three largest peaks. The solid blue line and the
dashed red line represent the accuracy of CS with N = 167
and N = 667 grid points, respectively. The CS simulations
are repeated for 30 times and the shaded areas represents
the 95% confidence regimes. The dotted green line represents
the reconstruction accuracy of the noise spectrum using the
CPMG sequences. Achieving a certain accuracy by utilizing
the CPMG sequences requires an order of magnitude more
sets of experiments than by utilizing CS.

resents the decoherence of the quantum dots due to their
hyperfine interaction with an ensemble of nuclear spins
broadened by strain [38, 40]. The solid blue line in Fig.
4 shows the theoretical spectral density of such a noise
source calculated from the Fourier transform of the au-
tocorrelators of the fluctuating nuclear spins, while con-
sidering quantum dots of pure indium and arsenic at a
temperature of 4 K and under a magnetic field of B = 2 T
applied perpendicular to the growth direction of the dots
(Voigt geometry) [40]. This spectrum consists of several
narrow peaks at spectral frequencies that correspond to
different Larmor frequencies of the nuclei.

The red dots in Fig. 4 represent the discrete spec-
trum obtained by simulating the performance of CS with
m = 40 different Fourier basis functions. While the the-
oretical spectrum is not ideally sparse, we adopt suit-
able data analysis techniques (least absolute shrinkage
and selection (LASSO) [41], along with cross-validation
(CV) [34]) to successfully identify the centers of the ma-
jor peaks.

We quantify the accuracy of extracting the InAs/GaAs
noise spectrum by comparing the central frequencies
of the largest three peaks obtained from CS to their
theoretical values. The theoretical central frequencies,
ω̂th = (ω1, ω2, ω3), are calculated by a Gaussian fitting
to the theoretical spectrum. The experimental results,
ω̂∗ = (ω∗1 , ω

∗
2 , ω

∗
3), are the weighted mean values of the

frequencies from the neighboring non-zero discrete S∗(ω)
obtained from CS. The reconstruction accuracy is defined
as the `∞ norm of the difference between these two vec-

tors, i.e. |ω̂∗ − ω̂th|∞.
The solid blue line and the dashed red line in Fig. 5

represent the simulated reconstruction accuracies of CS
with N = 167 and N = 667 grid points, respectively.
In these simulations, we assume no experimental errors
and only focus on the effect of the number of different
sets of experiments, Nset. For CS, Nset = m + 1 for
m Fourier basis functions and one additional experiment
with the base random pulse sequence. For both choices of
N , we observe a sharp change (phase transition) in the
accuracy of reconstructing the spectrum at Nset ≈ 40.
The reconstruction accuracies then converge to constant
values inversely proportional to N (e.g., the dashed red
line for N = 667 has a lower baseline than the solid blue
line for N = 167). As a result, increasing the number of
grid points N in post-processing could boost the spectral
resolution of CS without adding any resources.

To further demonstrate the resource efficiency of the
CS method, we compare the accuracies of CS in resolv-
ing the InAs/GaAs noise spectrum to the ones obtained
by using the conventional CPMG method (dotted green
line in Fig. 5). For CPMG, the number of sets of ex-
periments required for noise spectroscopy is given by
Nset = 2ωcT/π, i.e., the number of different sequences
that probe the noise spectrum over the frequency range
[0, ωc] given the total experiment time, T [5, 14, 16–
20, 38].

For Nset < 100, the CPMG sequences cannot resolve
adjacent spectral peaks of the InAs/GaAs noise spectrum
(i.e., |ω̂∗ − ω̂th|∞ > 1), because the sampling frequency
interval associated with the sequences is wider than the
spectral distance between nearby peaks in the spectrum.
Meanwhile, for Nset > 100, the CPMG protocol can re-
solve the desired spectrum, with accuracy inversely pro-
portional to Nset. However, to achieve a certain level of
accuracy, the CPMG sequences require at least an order
of magnitude more resources than the CS method. For
example, as we illustrate for the InAs/GaAs noise spec-
trum, |ω̂∗ − ω̂th|∞ ≈ 0.2 for CS dashed red line) with
N = 667 grid points and Nset ≈ 40; but this accuracy
is hardly reached by CPMG (dotted green line) up to
Nset ≈ 500.

VI. OUTLOOK

To conclude, we develop a new method for qubit noise
spectroscopy based on the realization of random pulse
sequences. This method allows us to measure arbitrary
linear functionals of the noise spectrum, and reconstruct
sparse spectra by utilizing compressed sensing (CS). Fur-
thermore, the proposed method can be used to recon-
struct noise spectra of realistic physical systems, such as
optically-active quantum dots, with an order of magni-
tude less resources than conventional dynamical decou-
pling techniques.

For future research, our method can be generalized to
incorporate pulses with durations other than π, and to-
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ward the characterization of multi-qubit systems [12]. In
addition, while we have only considered the reconstruc-
tion of the noise spectrum on a finite set of sample points,
similar ideas can be applied to reconstruction over con-
tinuous domains [42–44].

Finally, the accuracy of CS utilizing random pulse se-
quences strongly depends on the spectral properties of
the probed noise source. Beyond the experimental re-
alization of CS on the specific platform of InAs/GaAs
quantum dots, it would be beneficial to study the per-
formance of random pulse sequences on realistic noise
sources with various spectral features, e.g., levels of spar-
sity.
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