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Entanglement renormalization circuits are quantum circuits that can be used to prepare large-scale
entangled states. For years, it has remained a mystery whether there exist scale-invariant entangle-
ment renormalization circuits for chiral topological order. In this paper, we solve this problem by
demonstrating entanglement renormalization circuits for a wide class of chiral topologically ordered
states, including a state sharing the same topological properties as Laughlin’s bosonic fractional
quantum Hall state at filling fraction 1/4 and eight states with Ising-like non-Abelian fusion rules.
The key idea is to build entanglement renormalization circuits by interleaving the conventional
multi-scale entanglement renormalization ansatz (MERA) circuit (made of spatially local gates)
with quasi-local evolution. Given the miraculous power of this circuit to prepare a wide range of
chiral topologically ordered states, we refer to these circuits as MERA with quasi-local evolution
(MERAQLE).

I. INTRODUCTION

Quantum many-body systems at zero temperature
manifest many phenomena that have no counterparts in
the ordinary classical world. One distinctive feature that
prevails only in the quantum realm is the notion of en-
tanglement, which intuitively states that local degrees
of freedom are organized in such a way that the whole
system cannot be straightforwardly perceived as an as-
sembly of uncorrelated individual pieces. However, com-
plete understanding of the structure and nature of many-
body entanglement remains an outstanding challenge for
quantum physicists even today. Several proposals have
been put forward in an attempt to capture its essential
features, including tensor network states [1, 2], neural
networks [3], and a wide variety of entanglement mea-
sures [4]. One particularly useful definition of the en-
tanglement structure of a many-body state is given by
investigating the quantum circuits necessary to prepare
the state, sometimes under certain restrictions, such as
locality constraints or symmetries. One can start with
a product state or some other easily prepared state and
then use the circuit to generate the desired target state.
This operational definition sheds light on the pragmatic
aspect of entanglement.

Entanglement renormalization is a class of state-
preparation quantum circuits marked by its repetitive
operating procedures at varying length scales [5], gener-
ating entanglement successively at different ranges. The
earliest realization of this concept is the so-called multi-
scale entanglement renormalization ansatz (MERA) [5–
7]. A prototypical one-dimensional example of MERA
composed of three steps (layers) of similar actions on a
qubit system is depicted in Fig. 1. In each step, two sets
of quantum gates are applied on the system. While the
isometry unitary operators (blue triangles) act on inputs
in state |0〉 and in the state from the previous step, the
disentangler unitary operators (red squares) act on the

outputs of neighboring isometries. If we proceed with this
protocol for a sufficiently large number of steps, we can
create a complicated entangled state from an initial state
that has almost all of the qubits unentangled, progres-
sively introducing entanglement at various length scales.
The hierarchical structure of the MERA circuit embod-
ies the fact that entanglement can be present at different
length scales. It is a convention to say that the initial
time is at the infrared (IR) scale while the final time is at
the ultraviolet (UV) scale. If we reverse the time arrow,

|0i |0i|0i |0i|0i|0i|0i|0i|0i|0i|0i|0i |0i|0i
IR

UV

t

FIG. 1. A one-dimensional MERA circuit with time run-
ning downward. One starts at the top (the IR region) with
a small system with sparse entanglement on a lattice with
a large lattice constant (qubits represented by unfilled red
circles without the |0〉 symbols above) and with many an-
cillary qubits (unfilled black circles) in state |0〉. We succes-
sively apply layers of entanglement renormalization consisting
of isometries (blue triangles) and disentanglers (red squares)
to progressively include and couple the ancillary qubits, cre-
ating a complex system with denser and more complicated
entanglement structure in the UV region at the bottom.
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going from UV to IR, the layers of the conjugated MERA
circuit will progressively disentangle degrees of freedom
in the order from smallest to largest scales. Ignoring the
disentangled ancillary qubits, we are effectively arriving
at lattices with larger and larger unit cells. This phe-
nomenon is reminiscent of the coarse-graining procedure
in the renormalization group in classical statistical me-
chanics, and hence the word renormalization is included
in the name of the circuit. Since this circuit is an ansatz,
there is no fundamental restriction on the gates, except
for spatial locality of the gates at each length scale. One
can consider generalizations of this circuit to higher spa-
tial dimensions [8–10], to fermions [11, 12], to qudits
[5, 6, 8, 10, 13–15], and to more types of unitaries [8]. One
can also consider gates acting on three or more qubits or
even consider a fermionic system. If one is able to find an
entanglement renormalization circuit for the target state,
one is able to generate the final state from the initial state
in time (i.e. circuit depth) logarithmic in the system size.
Being a state with little or no entanglement, the initial
state can be prepared by other means, such as adiabatic
preparation [16–20], dissipative preparation [21, 22], or
even a specially designed quantum process tailored for
the structure of the state [23, 24]. Examples of states
that entanglement renormalization circuits can prepare
are the Greenberger-Horne-Zeilinger state (GHZ state)
and the cluster state [7], which are ground states of the
transverse-field Ising model and the cluster state Hamil-
tonian, respectively. MERA is also capable of preparing
gapless states in one dimension, such as the Ising model
and the Potts model at the critical point [5, 25], which
violate the area law logarithmically.

In Fig. 1, despite the fact that we use the same red
square symbol for all the disentanglers and the same blue
triangle symbol for all the isometries, the unitaries can
be different at different length scales and do not have
to be translation-invariant. Nevertheless, in practice,
if we study the ground state of a translation-invariant
parent Hamiltonian, we can demand the unitaries to be
translation-invariant. We can also require the MERA cir-
cuit to be scale-invariant, which means that the disentan-
glers and the isometries do not change from layer to layer,
and see what kind of many-body quantum states keep the
same local reduced density matrices after each step of the
same entangling procedure. Such a scale-invariant cir-
cuit is appealing as it renders the preparation procedure
of the corresponding quantum state simple conceptually
and possibly in practice. A quantum state that can be
prepared with a scale-invariant MERA circuit is termed a
fixed-point wavefunction. A gapped quantum phase that
has a zero-correlation-length wavefunction can serve as
a fixed-point wavefunction of a scale-invariant MERA.
After preparing the fixed-point wavefunction, one can
reach any state in the same phase by adding an extra
layer consisting of a finite-depth circuit with some local-
ity constraints [26]. Models with known scale-invariant
entanglement renormalization circuits are the toric code
model [27], the quantum double model [9, 27], and, more

generally, the Levin-Wen models [10, 26, 28], as well as
certain symmetry-protected topological phases with sym-
metry conditions imposed on the entanglement renormal-
ization circuits [29].

The concept of entanglement renormalization has a
wide range of interesting connections to other research
areas. In particular, it is a unitary way to realize the
concept of real space renormalization group without dis-
carding any information. After each coarse-graining step,
the information about the original wavefunction is en-
coded in the quantum gates, the present quantum state,
and the ancillas in the |0〉 state. Therefore, it is drasti-
cally different from Kadanoff’s real space renormalization
group [30], where the averaging operation to coarse-grain
a system erases part of the information irretrievably. In
addition, there have been some efforts to generalize the
lattice version of entanglement renormalization to devise
a unitary approach to renormalizing quantum field the-
ories, resulting in the continuous MERA (cMERA) [31]
and magic cMERA [32]. Those formulations attempt to
resolve the problem existing in traditional renormaliza-
tion group approaches, where the integration out of high-
momentum modes is an irreversible process.

From the perspective of experimental physics and
quantum computing, a MERA circuit can serve as a prac-
tical quantum circuit to generate an initial quantum state
in preparation for further quantum simulation or compu-
tation. One can implement the long-range gates in the
IR with access to long-range interactions [33, 34]. De-
pending on the specific experimental architecture, one
may also realize these gates by first applying short-range
gates to qubits and then physically increasing the dis-
tance between them [35, 36] before applying the next
layer of short-range gates. Therefore, if long-range inter-
actions are sufficiently strong or if qubits can be phys-
ically moved sufficiently quickly, the MERA circuit can
allow for the unitary preparation of a wide range of long-
range entangled states in logarithmic time.

Even though entanglement renormalization is a pow-
erful and beautiful concept for making sense of entan-
glement at different ranges, there is no guarantee that
such structure exists for all states. In particular, there
are phases of matter where a simple application of this
concept does not work [8], such as fracton phases in three
dimensions [37] or the Fermi sea in two dimensions [38].
In those cases, one needs to use a generalized MERA
formalism called the branching MERA [39], where en-
tanglement is organized differently.

In two dimensions, it is hypothesized that log-depth
quantum circuits should be able to prepare all topolog-
ical phases [8, 26, 40]. We know that the framework
of scale-invariant MERA circuits is capable of preparing
many quantum states belonging to the class of non-chiral
topological orders (the toric code model, the quantum
double model [9], and the Levin-Wen models [10] pre-
viously mentioned). However, it is still an open ques-
tion whether we can employ scale-invariant MERA cir-
cuits to prepare chiral topological states, i.e., whether
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we can find a MERA circuit that has the desired chi-
ral state as a fixed point of a single-layer application.
(Here, we define chiral topologically ordered phases as
quantum phases with nonzero thermal Hall conductivity
[41] .) One can prove no-go theorems under certain as-
sumptions [42–44]. For example, Li and Mong [44] have
shown that a free-fermionic system with a nonzero Chern
number is incompatible with a scale-invariant MERA cir-
cuit with discrete strictly local quantum gates. One in-
tuitive argument to understand the no-go theorems and
the hardness of the problem is as follows. We first define
the correlation length of a state to be the smallest ` > 0
such that the connected two-point correlation function
〈O(x)O(y)〉c = 〈O(x)O(y)〉 − 〈O(x)〉〈O(y)〉 of any lo-
cal observable O(x) of finite support and unit operator
norm ||O(x)|| = 1 can be bounded by an exponentially
decaying function C exp(− |r| /`) with C > 0 (C is pos-
sibly dependent on the size of the support of O), i.e.,
|〈O(x)O(y)〉c| ≤ C exp (− |x− y| /`). Suppose that we
run a MERA circuit going from UV to IR. If all quan-
tum gates in each layer of the MERA circuit are strictly
local (i.e. have an interaction range of finite radius), then
in order to be scale-invariant under the coarse-graining
operation, a fixed-point wavefunction must either have a
zero correlation length or an infinite correlation length.
The reason is that, after each step of the renormalization
operation, the correlation length on the coarse-grained
lattice `′ has to be the correlation length on the origi-
nal lattice ` scaled down by a factor b with b > 1, i.e.,
`′ = `/b [45]. If a chiral wavefunction stays the same
throughout all the coarse-graining operations, there are
only two possibilities for its correlation length: ` = 0
and ` =∞. A system with an infinite correlation length
means that some of its correlation functions cannot be
bounded by any exponentially decaying function. For
short-range Hamiltonians, this is generally a signature
of gaplessness. As topologically ordered systems are de-
fined as gapped phases, the case with an infinite correla-
tion length is irrelevant to us. Hence, the only remaining
question is: would it be possible to have a chiral topo-
logical state with a zero correlation length? Recall that,
unlike the non-chiral states mentioned above, many well-
known chiral topological states we know, such as many
integer and fractional quantum Hall states, have nonzero
correlation lengths. Additionally, it has been shown that
a Chern insulator of free fermions (i.e. non-interacting in-
teger quantum Hall state on a lattice) cannot have a zero
correlation length [43, 46]. Moreover, for an interacting
chiral topological system with U(1) symmetry and finite-
dimensional on-site Hilbert spaces, a typical property of
many known chiral topological phases, the Hamiltonian
cannot be a sum of locally-commuting terms [47]. As
the condition of the correlation length being zero is usu-
ally a harbinger of the existence of a locally-commuting
parent Hamiltonian [28], we expect that finding a rep-
resentative wavefunction with zero correlation length for
a chiral phase should be a hard, if not impossible, task.
With all the evidence mentioned above, it seems very un-

likely that scale-invariant MERA circuits exist for chiral
topological phases.

Despite all the difficulties mentioned above, there are
works pointing out how to overcome the issue mentioned
above, at least for non-interacting fermions. The key in-
sight is to relax the condition that quantum circuits for
each layer of entanglement renormalization must be made
up of strictly local and discrete quantum gates assumed
in the conventional MERA framework. Instead, we al-
low the use of continuous time evolution under a time-
dependent quasi-local Hamiltonian. By quasi-locality, we
mean that the interactions are no longer restricted to be
finite-range, but their strength should decay with dis-
tance faster than any power law. A comparison between
a quantum circuit based on strictly local discrete quan-
tum gates and one with quasi-local evolution is shown
in Fig. 2. With quasi-local evolution, we can circumvent
the no-go theorems and the intuitive argument of corre-
lation length reduction stated above. A chiral state with
a nonzero correlation length can now be a fixed-point
wavefunction of a scale-invariant entanglement renormal-
ization circuit. For example, in Ref. [8], an entangle-
ment renormalization procedure is demonstrated for a
lattice Chern insulator model, which has a nonzero fi-
nite correlation length in its ground state. The circuit is
comprised of a series of subroutines, the so-called quasi-
adiabatic evolutions, which are generated by quasi-local
Hermitian operators derived from certain adiabatic evo-
lutions of the Chern insulator model. In Ref. [48], a dif-
ferent approach was presented. The authors used the
formalism of cMERA to develop a scale-invariant entan-
glement renormalization circuit for a continuous Chern
insulator model. The continuous MERA generalizes the
discrete isometry unitaries and disentangler unitaries in
the conventional MERA on a lattice to continuous uni-
tary evolution generated by Hermitian operators acting
on a continuum of spatial modes. The Hermitian op-
erators of the cMERA in Ref. [48] involve interactions
with exponentially decaying tails. The evidence above
suggests that quasi-locality may be an essential feature
of scale-invariant entanglement renormalization circuits
for gapped chiral topological states, which usually have
nonzero finite correlation lengths. Despite the success in
non-interacting chiral systems, designing scale-invariant
entanglement renormalization circuits for interacting chi-
ral topologically ordered systems based on this physics
insight still remains a largely unexplored research area.

In this paper, we solve this problem by providing ex-
plicit circuits for several exactly solvable interacting chi-
ral spin models, thus offering a glimpse of the entangle-
ment structure of interacting chiral topological phases.
The key idea—first briefly introduced in Ref. [8] for a
hybrid qubit-fermion system describing Ising topologi-
cal order—is to marry the MERA circuits for interact-
ing non-chiral topological states with quasi-local evolu-
tion that renormalizes non-interacting chiral topological
states. We start by sketching the underlying logic behind
our proposal. Consider several layers of non-interacting
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Strictly Local Gates Quasi-Local Evolution
t t

U(t) = ! exp (−i∫
t

0
dt′ H(t′ ))

(a)

Hr=0, R=2(t)
Hr=0, R=3(t)
Hr=0, R=4(t)
Hr=0, R=5(t)

Hr=0(t) = ∑
R

Hr=0, R(t)Hr=0, R=1(t)

(b)

FIG. 2. (a) Left: A traditional local quantum circuit consist-
ing of strictly local (i.e. with support bounded by a finite ra-
dius) discrete quantum gates. Right: A quantum circuit U(t)
based on quasi-local continuous time evolution under a time-
dependent Hamiltonian H(t) with interaction tails decaying
faster than any power law function. To be precise, H(t) is a
sum of interaction terms H(t) =

∑
rHr(t), where each inter-

action term Hr(t) centered at position r has a decomposition
in terms of Hermitian operators Hr,R(t) supported on sites
within disks of different radii R ∈ N: Hr(t) =

∑
RHr,R(t),

and the Hermitian operators Hr,R(t) with large R can be
uniformly bounded by ‖Hr,R(t)‖ = O(1/Rα) for any power
α > 0. (b) A schematic diagram of the decomposition
of the interaction term Hr=0(t) =

∑
RHr=0,R(t) for two-

dimensional square-lattice systems.

px+ ipy topological superconductors on a lattice [49, 50].
Since the system has a Z2 fermion parity symmetry, we

can couple the system to a Zf2 lattice gauge field with Z2

gauge variables and add the Gauss’s law constraint to the
coupled system. The superscript f stands for “fermion”
and helps us remember the role the gauge field plays in
the fermion parity symmetry. We will refer to this proce-
dure as gauging. The topological properties of the whole
gauged system, including the original superconductors

and the Zf2 gauge field, will fall into Kitaev’s sixteenfold
way classification [51]. In the classification, the unitary
modular structure of the quasiparticles suggests that it
is possible to have bosons or spins (hard-core bosons) as
the fundamental constituents of the theories rather than
the original fermions and gauge field. In fact, inspired by
the proposal in Refs. [52, 53], we are able to reformulate

the gauged theory solely in terms of S = 1/2 spins on a
lattice. To be more precise, this reformulation provides
a duality between a theory with fermions coupled to a

Zf2 gauge field on the one hand and an interacting spin
theory on a lattice on the other. Because the original
fermionic theories are chiral, the resulting spin theories
are also chiral. Therefore, we will sometimes refer to the
ground states of the resulting spin models as chiral spin
liquids. The chiral spin liquids constructed this way in-
clude eight Abelian states and eight non-Abelian states.
In particular, they include a state with the topological
properties of Laughlin’s bosonic fractional quantum Hall
state at filling fraction 1/4, a state with the Ising topolog-
ical quantum field theory (Ising TQFT) fusion and braid-
ing statistics, a state within the same universality class
as the bosonic Moore-Read fractional quantum Hall state
at filling fraction one (whose fusion rules are Ising-like),
and six other states with Ising-like topological proper-
ties. Since the superconducting fermions in the original
model are non-interacting and since the structure com-

ing from the Zf2 gauge field is similar to the well-studied
toric code [27] (which can be interpreted as a Z2 lat-
tice gauge theory and as a non-chiral topologically or-
dered system), the spin models constructed this way are
exactly solvable. Thanks to this nice property, we are
able to analytically work out the corresponding (gener-
alized) scale-invariant entanglement renormalization cir-
cuits. Intuitively speaking, we construct each layer of the
entanglement renormalization circuit by incorporating
the conventional MERA circuit for the interacting non-
chiral toric code with quasi-local continuous time evolu-
tion that coarse-grains the non-interacting chiral px+ ipy
topological superconductors. In fact, under certain con-
straints on spins, Refs. [52, 53] provide an additional du-
ality between fermions and spins called bosonization. In
this terminology, the quasi-local continuous time evolu-
tion of spins is simply the bosonization of a fermionic
quasi-local continuous time evolution that coarse-grains
layers of non-interacting px + ipy topological supercon-
ductors. Even though the spin models have nonzero fi-
nite correlation lengths, due to the quasi-local structure
of continuous time evolution, the resulting quantum cir-
cuits can evade the no-go arguments stated above. As
shown schematically in Fig. 3, our entanglement renor-
malization quantum circuits have strictly local quantum
gates interleaved with quasi-local evolution. This figure
sums up the core spirit of the entire manuscript. Note
that, in this manuscript, we will consider unitary evo-
lution that disentangles the state, with time going from
UV to IR. One can get the entangling state-preparation
unitary by performing Hermitian conjugation. Inspired
by the miraculous power of combining the conventional
MERA circuit with quasi-local evolution, we refer to this
specific type of (generalized) entanglement renormaliza-
tion circuit as MERA with quasi-local evolution (MER-
AQLE).

Since the notions mentioned above might not be famil-
iar to all the readers, we will pedagogically review them
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FIG. 3. A schematic diagram of the scale-invariant MERAQLE framework presented in this paper. At the bottom is a two-
dimensional many-body entangled state of spins (represented by black marbles) to be disentangled by the MERAQLE circuit.
The full MERAQLE circuit is a tower consisting of layers labeled by the number s ∈ N. The number s labeling the layers is,
roughly speaking, the logarithm of the length scale at which the entanglement of the system is being undone. Each layer s
of the circuit consists of two subcircuits Csx and Csy, which represent a single step of horizontal (i.e. x direction) entanglement
renormalization and a single step of vertical (i.e. y direction) entanglement renormalization, respectively. The subcircuit Csx can
be further decomposed into three circuit components: Csql,x (a circuit based on quasi-local evolution in the right subfigure of
Fig. 2(a)), Cs

Z
f
2 ,x

(a layer of a conventional MERA circuit with strictly local gates designed to renormalize the toric code model,

which is a pure Zf2 lattice gauge theory), and Csaux,x (an auxiliary circuit with strictly local gates designed to locally rearrange
the fermionic modes). The precise definitions and meaning of the circuit components Csql,x, Cs

Z
f
2 ,x

, and Csaux,x are discussed in

detail in Sec. V. The subcircuits Csx with different s are essentially the same except acting on different length scales. A similar
decomposition also holds for the subcircuit Csy.

in following sections. We will gradually introduce all the
necessary concepts before presenting our results. The re-
mainder of this paper is organized as follows. In Sec. II,
we review the toric code model [27] and its MERA circuit.
In Sec. III, we review the px + ipy topological supercon-
ductor model on a lattice [49], which is non-interacting
and chiral, and its entanglement renormalization circuit,
which uses the idea of quasi-local evolution. In Sec. IV,
we first pedagogically review how to bosonize a fermionic
theory. We describe in detail how to gauge the fermion
parity symmetry of a fermionic theory and rephrase the
fermionic modes and the gauge field purely in terms of
spin degrees of freedom. Then, we use the bosonization
technique to construct chiral spin liquid models belong-
ing to Kitaev’s sixteenfold way classification. Finally, in
Sec. V, we present our main results. We use the entangle-
ment renormalization circuits from Secs. II and III to con-
struct the MERAQLE circuits for all Kitaev’s sixteenfold
way chiral spin liquids. In Sec. VI, we present conclusions
and outlook. In Appendix A, we review the mathemati-
cal framework of quasi-adiabatic evolution, which forms
the backbone of our quasi-local evolution for px + ipy
superconductors. In Appendix B, we present some tech-
nical calculations related to the MERAQLE circuits and
omitted from the main text.

II. TORIC CODE

Before we begin to discuss the framework of MER-
AQLE circuits, we first discuss an exact scale-invariant
entanglement renormalization circuit for the simplest
model with intrinsic topological order, i.e., the toric code
[27, 54], to make the reader more familiar with the no-
tions of entanglement renormalization and fixed-point
wavefunctions in two dimensions. We will first review the
toric code Hamiltonian in Sec. II A and then, in Sec. II B,
present its entanglement renormalization circuit, which
will be a simpler variant of the one initially proposed
in Ref. [9]. The toric code entanglement renormaliza-
tion circuit belongs to the family of conventional MERA
circuits with strictly local quantum gates. Despite its
simplicity, the MERA circuit presented here will serve as
an inspiration for the MERAQLE circuit constructed in
Sec. V.

A. Model

For the toric code model, we consider qubits living on
the edges of a square lattice. The Hamiltonian is

HTC = −
∑
f

∏
e∈f

Ze −
∑
v

∏
e∈v

Xe (1)
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FIG. 4. The two sets of interaction terms for the toric code.
The first set consists of plaquette operators. A representative
plaquette operator is illustrated as an operator made of four
Pauli-Z operators. The other set consists of vertex operators.
A representative vertex operator is illustrated as an operator
made of four Pauli-X operators. All translated versions of
the illustrated plaquette and vertex operators are included in
the Hamiltonian. For later convenience, we put Z operator
labels to the right of the qubits and X operator labels to the
left. We drop the subscript from Ze and Xe since it is clear
from the figure which qubits they act on.

with Xe =

(
0 1
1 0

)
and Ze =

(
1 0
0 −1

)
being Pauli ma-

trices of the qubit on edge e, where the symbol f labels
all faces and the symbol v labels all vertices on the square

lattice. In this matrix representation,

(
1
0

)
= |0〉 and(

0
1

)
= |1〉. The notation e ∈ f means that the edge e

is one of the four edges of the face f , while the notation
e ∈ v means that the edge e is incident on the vertex
v. We will refer to

∏
e∈f Ze as a plaquette operator and∏

e∈vXe as a vertex operator. The operators are shown
in Fig. 4. This model is non-chiral and exactly solvable.
It can be considered to be a pure Z2 lattice gauge theory
[27, 54]. All the plaquette operators and all the ver-
tex operators commute with one another, so the ground
state can be chosen as simultaneous eigenstate of those
operators with eigenvalue one. One can show that the
correlation length of the toric code ground state is zero.

This model has four types of elementary excitations.
Violating the first term while not violating the second
term in Eq. (1) implies the existence of an m particle
that has bosonic self-braiding statistics. Violating the
second term while not violating the first term in Eq. (1)
implies the existence of an e particle that also has bosonic
self-braiding statistics . The braiding of an m particle
and an e particle results in a nontrivial (−1) phase. The
combination of e and m gives rise to a fermion f .

For later convenience, we now introduce some quan-
tum information terminology [55, 56]. The Pauli group
Pn on n qubits is a non-Abelian group with group ele-
ments having the form of tensor products of Pauli ma-

trices ikP1 ⊗ P2 ⊗ · · · ⊗ Pn with k ∈ {0, 1, 2, 3} and
Pj ∈ {Ij , Xj , Yj , Zj} being a Pauli matrix on the j-
th qubit. The multiplication operation is defined using
the matrix multiplication operation for each individual
qubit. A stabilizer group, or stabilizer, S on n qubits
is an Abelian subgroup of Pn that does not contain the
tensor product of identity matrices with a minus sign,
−I1 ⊗ I2 ⊗ · · · ⊗ In, as its element. Sometimes, it is
convenient to work with a set of generators that gener-
ate a stabilizer group so that any group element in the
stabilizer group can be written as a product of the gen-
erators. Note that the choice of the set of generators is
not unique. In addition, we say that a quantum state is
stabilized by an operator if the state is a +1 eigenvector.
We say that a state is stabilized by the stabilizer group
S if the state is a +1 eigenvector of all the stabilizer gen-
erators. Therefore, in this terminology, the ground state
of the toric code is stabilized by all plaquette operators
and all vertex operators. The group generated by all the
plaquette operators and all the vertex operators forms a
stabilizer group, which stabilizes the ground state of the
toric code model.

B. Entanglement Renormalization Circuit

The full entanglement renormalization circuit for the
toric code ground state has a hierarchical structure
of multiple layers of smaller subcircuits, like the one-
dimensional MERA in Fig. 1. Each layer represents the
length scale at which the entanglement of the ground
state is renormalized. Instead of having the circuit struc-
ture with isometries and disentanglers for each layer, like
the toric code MERA initially proposed in Ref. [9], we
here have two kinds of subcircuits for each layer of entan-
glement renormalization. One is called a single step of
horizontal entanglement renormalization, and the other
is called a single step of vertical entanglement renormal-
ization. The structure of the entanglement renormaliza-
tion circuit is similar to the one shown in Fig. 3.

Those subcircuits for single steps of entanglement
renormalization of the toric code consist of a series of
controlled-NOT (CNOT) gates. A CNOT gate is a two-
qubit gate defined by the following action: |00〉 → |00〉,
|01〉 → |01〉, |10〉 → |11〉, and |11〉 → |10〉. The first
qubit is called the control qubit, and the second qubit
is called the target qubit. The horizontal entanglement
renormalization subcircuit CZ2,x and the vertical entan-
glement renormalization subcircuit CZ2,y are shown in
Fig. 5(a) and Fig. 7(a), respectively. To represent a
CNOT gate in the figures throughout the paper, we will
use an arrow pointing from the control qubit to the tar-
get qubit. Note that all CNOT gates shown in Fig. 5(a)
commute; similarly, in Fig. 7(a).

To understand how the ground state of HTC trans-
forms, it suffices to understand how the individual
terms of HTC change when conjugated by the sub-
circuits. In particular, if |Ψ〉 is a ground state of
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FIG. 5. (a) The circuit CZ2,x for a single step of horizontal en-
tanglement renormalization for the toric code. The filled cir-
cles represent qubits (spins) constituting the toric code model.
(b,c) The state of the system after the circuit has been ap-
plied. Unfilled circles are the qubits (spins) that have been
disentangled by the circuit into |0〉 and |+〉 ≡ 1√

2
( 1 1 )T

states, as indicated by the labels in (b). (c) shows the new
stabilizer generators. The red single-site Z and X generators
stabilize the disentangled qubits, while the black 4-qubit gen-
erators stabilize the toric code defined on the new horizontally
elongated square lattice. The derivation of the new stabilizer
generators is presented in Fig. 6.

HTC and hence an eigenvalue-one eigenvector of the∏
e∈f Ze and

∏
e∈vXe operators, then CZ2,x|Ψ〉 must be

an eigenvalue-one eigenvector of the CZ2,x

∏
e∈f Ze C

†
Z2,x

and CZ2,x

∏
e∈vXe C†Z2,x

operators. Since CZ2,x and
the constituent CNOT gates are in the Clifford group
[55, 56], the normalizer of the Pauli group, the operators

CZ2,x

∏
e∈f Ze C

†
Z2,x

and CZ2,x

∏
e∈vXe C†Z2,x

must be in
the Pauli group and therefore generate a new stabilizer
group. Instead of directly studying how the ground state
is transformed by CZ2,x, we can investigate how the stabi-
lizer group gets transformed under conjugation by CZ2,x.
In quantum information, this approach is called the stabi-
lizer formalism. A similar statement holds for the vertical
entanglement renormalization subcircuit CZ2,y.

To see the transformation of the stabilizer group, we
first notice that, under conjugation, the CNOT gate

X X
X

X
X

X

ZZ
Z

Z
ZZ

Z
Z

Z
ZZ

Z
Z

Z

X
X

X
X

X
X

X
X

(a) (b)

(c) (d)

FIG. 6. Transformation of the stabilizer generators of the
toric code model under conjugation by the horizontal entan-
glement renormalization subcircuit CZ2,x in Fig. 5(a). (a)(b)
Transformation of the plaquette operators. (c)(d) Transfor-
mation of the vertex operators. The new stabilizer group
generated by the operators on the right-hand sides of the sub-
figures is the same as the stabilizer group generated by the
operators in Fig. 5(c). The red Pauli operators in the subfig-
ures are the red single-qubit stabilizer generators in Fig. 5(c)
acting on the disentangled qubits.

transforms two-qubit operators as follows:

1⊗ Z ↔ Z ⊗ Z Z ⊗ I ↔ Z ⊗ I
1⊗X ↔ I ⊗X X ⊗ I ↔ X ⊗X , (2)

where the first qubit is the control qubit and the second
qubit is the target qubit. With this insight, one can eas-
ily check that, as shown in Fig. 5(b,c) and Fig. 7(b,c),
the stabilizer group is transformed under CZ2,x and CZ2,y

into the stabilizer group of the toric code model defined
on an (elongated) square lattice with larger unit cells,
together with red single-qubit generators stabilizing dis-
entangled qubits not associated with the new square lat-
tice. Therefore, the ground state is transformed into the
ground state of the toric code on the new lattice with
some disentangled qubits. The disentangled ancillary
qubits (which can be in either |0〉 or |+〉 ≡ 1√

2
( 1 1 )T )

are like the ancillary qubits in quantum state |0〉 in the
one-dimensional example in Fig. 1. Notice that we will
still refer to the qubits in state |+〉 as ancillary qubits
since they only differ from |0〉 by single-qubit Hadamard

gates 1√
2

(
1 1
1 −1

)
.

Following the application of CZ2,y CZ2,x, we thus ob-
tain a toric code ground state that is self-similar to the
original toric-code ground state up to a scale transfor-
mations and up to the presence of disentangled qubits.
This means that the toric code ground state is indeed a
fixed-point wavefunction under a single layer of entangle-
ment renormalization CZ2,y CZ2,x. If we iterate CZ2,y CZ2,x

to further disentangle qubits at different length scales,
we will obtain a scale-invariant entanglement renormal-
ization circuit, which has a tower structure similar to
the one shown in Fig. 3. To further compare the cir-
cuit here with Fig. 3, we introduce a number superscript
s ∈ N to label the length scale (layer) the subcircuits
are acting at, i.e., CZ2,x → CsZ2,x

, CZ2,y → CsZ2,y
. We

can therefore say that the circuit components Cs
Zf

2 ,x
and
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+ + ++ + + + + +

= = CNOT
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<latexit sha1_base64="oB2+yKfR2i2Te8IPPzQAFaezjmY=">AAAB/HicbVDLSsNAFL3xWesr2qWbYBFcSEmKjy4L3bisYB/YhjCZTtqhk0mYmQgh1F9x40IRt36IO//GSZuFth4YOJxzL/fM8WNGpbLtb2NtfWNza7u0U97d2z84NI+OuzJKBCYdHLFI9H0kCaOcdBRVjPRjQVDoM9Lzp63c7z0SIWnE71UaEzdEY04DipHSkmdWhiFSE4xY1pp52YNXv0hnnlm1a/Yc1ipxClKFAm3P/BqOIpyEhCvMkJQDx46VmyGhKGZkVh4mksQIT9GYDDTlKCTSzebhZ9aZVkZWEAn9uLLm6u+NDIVSpqGvJ/OoctnLxf+8QaKChptRHieKcLw4FCTMUpGVN2GNqCBYsVQThAXVWS08QQJhpfsq6xKc5S+vkm695lzXru4uq81GUUcJTuAUzsGBG2jCLbShAxhSeIZXeDOejBfj3fhYjK4ZxU4F/sD4/AGn3ZTB</latexit>CZ2,y

FIG. 7. (a) The circuit CZ2,y for a single step of vertical entan-
glement renormalization for the toric code. The filled circles
represent qubits (spins) constituting the toric code model.
(b,c) The state of the system after the circuit has been ap-
plied. Unfilled circles are the qubits (spins) that have been
disentangled by the circuit into |0〉 and |+〉 states, as indi-
cated by the labels in (b). (c) shows the new stabilizer gen-
erators. The red single-site Z and X generators stabilize the
disentangled qubits, while the black 4-qubit generators sta-
bilize the toric code defined on the new vertically elongated
square lattice. The derivation of the new stabilizer generators
is presented in Fig. 8.

Cs
Zf

2 ,y
in Fig. 3 for our purposes here are CsZ2,x

and CsZ2,y
,

respectively, while the other circuit components are triv-
ial, i.e., Csaux, x = Csaux, y = I and Csql, x = Csql, y = I. We
categorize the whole scale-invariant entanglement renor-
malization circuit for the toric code as a conventional
MERA circuit. It is a two-dimensional generalization of
the one-dimensional MERA in Fig. 1, even though we
do not specify which CNOT gates constitute the isome-
tries and which CNOT gates constitute the disentanglers.
The only reason why we call the circuit a MERA circuit
is that it involves strictly local gates within each layer of
the circuit. Since the toric code ground state has a zero
correlation length, the fact that it serves as a fixed-point
wavefunction of a conventional MERA circuit is consis-
tent with the correlation length reduction argument pre-
sented in Sec. I.

Z
Z

Z

Z
Z

Z

X

X

X
X

X

X

Z
Z

Z
Z

Z
Z

Z
Z

X
X

X
X

X
X

X
X

(a) (b)

(c) (d)

FIG. 8. Transformation of the stabilizer generators of the
toric code model under conjugation by the vertical entangle-
ment renormalization subcircuit CZ2,y in Fig. 7(a). (a)(b)
Transformation of the plaquette operators. (c)(d) Transfor-
mation of the vertex operators. The new stabilizer group
generated by the operators on the right-hand sides of the sub-
figures is the same as the stabilizer group generated by the
operators in Fig. 7(c). The red Pauli operators in the subfig-
ures are the red single-qubit stabilizer generators in Fig. 7(c)
acting on the disentangled qubits.

III. LATTICE px + ipy TOPOLOGICAL
SUPERCONDUCTOR

Having introduced the entanglement renormalization
circuit for the toric code model based on the conventional
MERA framework in the previous section, in this section,
we are going to discuss a different type of entanglement
renormalization circuit in two dimensions. We will con-
struct the scale-invariant entanglement renormalization
circuit for a lattice px + ipy topological superconduc-
tor model, which is the most elementary non-interacting
chiral topologically ordered system. We will review the
model in Sec. III A and discuss the entanglement renor-
malization circuit for it in Sec. III B. Following the con-
struction of the entanglement renormalization circuit for
a Chern insulator model in Ref. [8], the circuit will be
based on the concept of adiabatic evolution. In Sec. V,
we will use the circuit constructed here together with
the idea of conventional MERA circuits from the previ-
ous section to construct a wider class of entanglement
renormalization circuits.

A. Model

We consider a two-dimensional px+ ipy topological su-
perconductor of spinless fermions on an infinite square
lattice. The fermions live on the vertices. We use the
vector r = (rx, ry) ∈ Z2 to label lattice sites, where we
have set the lattice spacing to one. We use x̂ = (1, 0)
and ŷ = (0, 1) to represent horizontal and vertical unit
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Hopping

Pairing

Chemical Potential

−t

−t
Δ
iΔ

−μ

FIG. 9. An illustration of the Hamiltonian of the lattice px +
ipy topological superconductor in Eq. (3). We have nearest-
neighbor hoppings with amplitude −t and nearest-neighbor
pairings with amplitudes ∆ (for horizontal bonds) and i∆
(for vertical bonds). We also introduce a uniform chemical
potential µ for each site. For hopping and pairing terms, an
arrowhead pointing to a site represents a fermionic creation
operator on that site, while a tail of an arrow for a hopping
term represents a fermionic annihilation operator on that site.
The Hermitian conjugates of the non-Hermitian hopping and
pairing terms are not shown in the figure to avoid clutter, but
are included in the Hamiltonian.

vectors. In real space, the Hamiltonian is [49]

Hpx+ipy =− t
∑
r

(
c†r+x̂cr + c†r+ŷcr + h.c.

)
− µ

∑
r

c†rcr

+
∑
r

(
∆ c†r+x̂c

†
r + i∆ c†r+ŷc

†
r + h.c.

)
, (3)

where t and ∆ are real positive numbers. We will refer to
the parameter µ as chemical potential even though there
is no charge conservation here. This parameter satisfies
−4t < µ < 0 [57]. The Hamiltonian Hpx+ipy is illustrated
in Fig. 9.

To analyze the spectrum, we perform a Fourier trans-
formation to momentum space k = (kx, ky) ∈ [−π, π) ×
[−π, π) to obtain [49]

Hpx+ipy =
1

2

∑
k

( c†k c−k )Mk

(
ck
c†−k

)
, (4)

where

Mk=

(
−2t(cos kx+cos ky)−µ −i2∆ (sin kx+i sin ky)
i2∆ (sin kx−i sin ky) 2t cos kx+2t cos ky+µ

)
.

(5)

Here and in future derivations we will be omitting the
constant term. In the continuum limit, where k is close
to (kx, ky) = (0, 0), we have sin kx + i sin ky → kx + iky.
This confirms the fact that the lattice model is indeed
a lattice regularization of the continuum px + ipy super-
conductor. This model can be solved by the standard

Bogoliubov transformation and is gapped and topolog-
ically nontrivial with a nonzero spectral Chern number
[49]. If, instead of an infinite lattice, we had a lattice with
a boundary, this model would have had a chiral propa-
gating Majorana edge mode on the boundary [49]. The
chiral central charge is c = 1/2. Hence, this model has
chiral topological order. However, unlike the toric code
model in Sec. II, this model does not have intrinsic topo-
logical order in the sense that this model does not have
anyonic quasiparticles. One can show that the ground
state has a nonzero finite correlation length. For further
details regarding the px + ipy superconductor, we refer
the reader to Refs. [49, 58–60].

B. Entanglement Renormalization Circuit

We now construct the entanglement renormalization
circuit for the lattice px+ipy topological superconductor.
Similar to Sec. II B, a single layer of the entanglement
renormalization procedure will consist of two different
kinds of subcircuits. One is for a single step of horizontal
entanglement renormalization; the other is for a single
step of vertical entanglement renormalization.

We first demonstrate how to perform a single step of
horizontal entanglement renormalization of the ground
state of the lattice px + ipy topological superconductor.
This construction is a variant of the entanglement renor-
malization circuit for a Chern insulator model in Ref. [8].
We introduce an AB sublattice structure to the super-
conductor model, as shown in Fig. 10(a). Each unit cell
has a pink A site on the left and a blue B site on the
right. Our goal is to design a renormalization procedure
that produces a superconducting state only on the pink
A sites, while disentangling the blue B sites from the
pink A sites and from each other. Up to a scale trans-
formation, the new superconductor state should be the
same as the original superconductor state. The blue B
sites will be disentangled by ensuring they are empty. To
achieve this goal for this non-interacting fermionic model,
instead of using discrete strictly local gates like the ones
in the Sec. II, we will find an adiabatic path between
the initial Hamiltonian (with every site participating in
the superconducting state) and the final Hamiltonian, in
which only pink A sites participate in the superconduct-
ing state while blue B sites are kept empty with on-site
potential terms [8]. We require that the Hamiltonian gap
along the entire adiabatic path between the initial and
final Hamiltonians remains open in the thermodynamic
limit.

In this framework, we can rewrite the initial Hamilto-
nian Hpx+ipy in Eq. (3) using the notation induced by
the AB sublattice structure:
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Hpx+ipy, x, initial =− t
∑
r

(
c†BrcAr + c†Ar+x̂cBr + c†Ar+ŷcAr + c†Br+ŷcBr + h.c.

)
− µ

∑
r

(
c†ArcAr + c†BrcBr

)
+
∑
r

(
∆ c†Ar+x̂c

†
Br + ∆ c†Brc

†
Ar + i∆ c†Ar+ŷc

†
Ar + i∆ c†Br+ŷc

†
Br + h.c.

)
. (6)

The x subscript reminds us that we are performing horizontal entanglement renormalization here. In momentum
space, the Hamiltonian becomes

Hpx+ipy, x, initial =
1

2

∑
k


c†Ak

c†Bk
cA−k
cB−k


T 
−2t cos ky − µ −t− te−ikx 2∆ sin ky −∆ + ∆e−ikx

−t− teikx −2t cos ky − µ ∆−∆eikx 2∆ sin ky
2∆ sin ky ∆−∆e−ikx 2t cos ky + µ t+ te−ikx

−∆ + ∆eikx 2∆ sin ky t+ teikx 2t cos ky + µ




cAk

cBk

c†A−k
c†B−k

 .

(7)

We choose our final Hamiltonian to be

Hpx+ipy, x, final =− t
∑
r

(
c†Ar+x̂cAr + c†Ar+ŷcAr + h.c.

)
−
∑
r

(
µ c†ArcAr + µ′ c†BrcBr

)
(8)

+
∑
r

(
∆ c†Ar+x̂c

†
Ar + i∆ c†Ar+ŷc

†
Ar + h.c.

)
. (9)

Therefore, the Hamiltonian for the pink A sites has the same form as Hpx+ipy in Eq. (3). The ground state for the
pink A sites will thus still be the original px + ipy topological superconductor up to a horizontal lattice rescaling. On
the other hand, the blue B sites in the final Hamiltonian are not coupled to pink A sites or each other. We choose the
chemical potential µ′ for the blue B sites to be negative so that they are empty (and therefore disentangled) in the
ground state of Hpx+ipy, x, final. These properties make Hpx+ipy, x, final a proper parent Hamiltonian for a horizontally
entanglement renormalized px + ipy topological superconducting state.

In momentum space, the final Hamiltonian becomes

Hpx+ipy, x, final =
1

2

∑
k


c†Ak

c†Bk
cA−k
cB−k


T  −2t cos kx − 2t cos ky − µ 0 −i2∆ (sin kx + i sin ky) 0

0 −µ′ 0 0
i2∆ (sin kx − i sin ky) 0 2t cos kx + 2t cos ky + µ 0

0 0 0 µ′




cAk

cBk

c†A−k
c†B−k

 . (10)

For a general system, a gapped path between two
Hamiltonians can be hard to find. In this case, however,
with a proper choice of parameters (t = 1.0, µ = −2.0,
µ′ = −8.0, ∆ = 1.0), a gapped path from Hpx+ipy, x, initial

to Hpx+ipy, x, final can be found using the following simple
linear interpolation:

Hpx+ipy, x(λ) = (1−λ)Hpx+ipy, x, initial+λHpx+ipy, x, final,
(11)

with λ ∈ [0, 1]. We can use the standard Bogoliubov
transformation to analyze the spectrum of this Hamil-
tonian. As we show in Fig. 11, the system is gapped
throughout the whole process. While the simple linear
interpolation as in Eq. (11) may not yield a gapped path
for some other choices of the parameters (t, µ, µ′, ∆), we
can always find a gapped path by first adiabatically tun-
ing the parameters to the case studied above, then using
linear interpolation in Eq. (11), and then adiabatically
tuning the parameters back to the original desired set of

parameters.

The renormalization along the y-direction is similar,
and the corresponding AB sublattice structure is de-
picted in Fig. 10(b). Once again, the pink A sites are
for the remaining active fermions representing the renor-
malized lattice px+ipy topological superconductor, while
the blue B sites are to be emptied and thus disentan-
gled at the end of the renormalization step. We will
again use a simple linear interpolation like in Eq. (11)
between the initial Hamiltonian and the final renormal-
ized Hamiltonian. In fact, if we start with the horizon-
tal renormalization Hamiltonian Hpx+ipy, x(λ) and map

ky → kx, kx → −ky, and cA,B, r → eiπ/4cA,B, r, we will
obtain the desired vertical renormalization Hamiltonian
Hpx+ipy, y(λ).

Now that we have a gapped path, we could consider
traditional adiabatic evolution along this path, but per-
fect state preparation fidelity would require perfect adia-
baticity and therefore an infinite amount of time. Instead
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FIG. 10. We introduce an AB sublattice structure for the
entanglement renormalization of the px + ipy topological su-
perconductor (a) in the horizontal direction (i.e. x) and (b)
in the the vertical direction (i.e. y).

of doing this, we will use quasi-adiabatic evolution [61–
64]. For any given adiabatic path of gapped Hamiltonians
H(λ) with time λ ∈ [0, 1], the quasi-adiabatic evolution
is a unit-time evolution

Uqa = T exp

(
i

∫ 1

0

dλD(λ)

)
(12)

generated by a time-dependent Hamiltonian [65] (see Ap-
pendix A for details)

D(λ) = −i
∫ ∞
−∞

dt F (Egapt) e
iH(λ)t∂λH(λ)e−iH(λ)t,

(13)
where T denotes λ-time-ordering and where F (x) is
an odd function decaying subexponentially, i.e., there
exist x-independent constants Cα such that |F (x)| ≤
Cα exp (− |x|α) for any α ∈ (0, 1). The evolution Uqa

uses unit time to take the ground state of the initial
Hamiltonian H(λ = 0) to that of the final Hamiltonian
H(λ = 1). The parameter Egap of the quasi-adiabatic
evolution is chosen to be the minimum energy gap be-
tween the ground state and the first excited state of H(λ)
along the entire path λ ∈ [0, 1]. Later, we will refer to
the Hamiltonian D(λ) as the quasi-adiabatic continua-
tion operator. Since the quasi-adiabatic continuation op-
erator D(λ) is derived from the Hamiltonian H(λ), D(λ)
possesses many properties similar to those of H(λ). In
particular, if H(λ) is translationally invariant and has an

on-site symmetry, the operator D(λ) will also be invari-
ant under translations and the on-site symmetry. Using
Lieb-Robinson bounds [66] and the fact that F (x) decays
subexponentially, one can also show that, if H(λ) is a
strictly local Hamiltonian (as is the case in this section),
then the quasi-adiabatic continuation operator D(λ) is
a sum of interaction terms D(λ) =

∑
rDr(λ), where

each interaction term Dr(λ) can be further decomposed
into Dr(λ) =

∑
RDr, R(λ) with the Hermitian opera-

tor Dr, R(λ) supported on sites within a distance R from
site r and satisfying ‖Dr, R(λ)‖ ≤ O([Egap]−αR−α+1) for
any integer α > 1 [61, 63]. Therefore, the strength of
the operator Dr, R(λ) decays with R superpolynomially,
i.e. faster than any inverse power law. We call such a
Hamiltonian quasi-local (see Fig. 2), in contrast to the
strict locality of H(λ). We also see that a smaller min-
imum energy gap Egap results in a slower decay of the
bound on ‖Dr, R(λ)‖ as a function of R. We present fur-
ther details regarding quasi-adiabatic evolution in Ap-
pendix A.

Therefore, for a single layer of entanglement renormal-
ization, we first apply the horizontal entanglement renor-
malization subcircuit Cspx+ipy, x

constructed by inserting

the interpolating Hamiltonian Eq. (11) into Eqs. (12,13).
The resulting quasi-adiabatic subcircuit Cspx+ipy, x

renor-

malizes every other site horizontally. Then, using a
similar construction, we apply the vertical entanglement
renormalization subcircuit Cspx+ipy, y

to renormalize ev-

ery other site vertically. We can successively apply the
same horizontal and vertical entanglement renormaliza-
tion subcircuits to get a quantum circuit that renormal-
izes the degrees of freedom at larger and larger length
scales. The superscript s ∈ N labels the length scale of
the entanglement renormalization layer. The full scale-
invariant entanglement renormalization circuit can be
succinctly written as

Cpx+ipy =
∏
s∈N

(Cspx+ipy, y Cspx+ipy, x), (14)

and the lattice px + ipy superconductor ground state is
a fixed-point wavefunction under this circuit. Note that
the product in Eq. (14) is taken such that quasi-adiabatic
circuits with greater s appear on the left, i.e. act later.
Therefore, we get an entanglement renormalization struc-

ture of Fig. 3 but without the auxiliary and discrete Zf2
lattice gauge theory circuit components. That is, we only
have the quasi-local-evolution circuit components Csql, x
and Csql, y in the subcircuits Csx and Csy, respectively.

It is worth noting that even though the px + ipy topo-
logical superconductor model has a nonzero finite cor-
relation length, it is still the fixed-point wavefunction of
the entanglement renormalization circuits we constructed
above. This is allowed because the quasi-adiabatic cir-
cuits are quasi-local (see Appendix A) and the formula
`′ = `/b, b > 1 for conventional MERA circuits with
strictly local gates, like the ones presented in Sec. II B,
does not work here. Intuitively speaking, we can inter-
pret the result as follows: even though the re-scaling
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FIG. 11. (a) The Bogoliubov quasiparticle bands of the interpolating Hamiltonian Hpx+ipy, x(λ) in Eq. (11) with t = 1.0,
µ = −2.0, µ′ = −8.0, and ∆ = 1.0. Along the entire path, the many-body ground state has the lower two (i.e. negative-energy)
quasiparticle bands filled and the upper two (i.e. positive-energy) bands empty. Along the entire path, it takes a finite amount
of energy to create a quasiparticle in the upper bands or remove a quasiparticle from the lower bands. This demonstrates that
the many-body system is gapped throughout the adiabatic evolution for horizontal entanglement renormalization. There is no
hopping or pairing for blue B sites at the end of the adiabatic process, so we get two flat bands at λ = 1. (b) We restrict the
Hamiltonian to the same fermion parity superselection sector as the ground state and, within this restricted Hilbert space, plot
the spectral gap above the many-body ground state.

procedure on the lattice shrinks the correlation length
between sites by a factor b, the quasi-locality of the quasi-
adiabatic circuit adds some correlation to the system to
remedy that loss of correlation.

IV. GAUGING FERMION PARITY
SYMMETRY AND BOSONIZATION

In the previous section, we considered a simple non-
interacting chiral topologically ordered model and its en-
tanglement renormalization circuit. However, our goal
in this paper is to construct circuits for interacting chiral
topologically ordered models. In this section, we there-
fore introduce a formalism involving gauging the fermion
parity symmetry to construct several exactly solvable in-
teracting chiral topologically ordered models. The proce-
dure can be conveniently simplified by a procedure called
bosonization. In Sec. IV A, we review the formalism of
gauging the fermion parity symmetry and bosonization.
Then, in Secs. IV B, IV C, and IV D, we use the formalism
to construct interacting spin models, some of which have
chiral topological order. The models will be presented
in the order of increasing construction complexity. The
exact solvability of these models will be used in Sec. V
to analytically construct their entanglement renormaliza-
tion circuits.

A. Formalism

In this subsection, we review how to obtain an inter-
acting bosonic system from a two-dimensional fermionic
lattice system by gauging the fermion parity symmetry.
Even though a quadratic fermionic system with pairing
does not conserve total fermion number Ntotal, it still
conserves global Z2 fermion parity (−1)Ntotal . We can
gauge this Z2 symmetry by coupling the fermionic sys-
tem to a Z2 gauge field (subject to a Gauss’s law con-
straint), making the symmetry transformation local [67].
Specifically, we will introduce new dynamical variables
representing the gauge field and living on the edges con-
necting the original fermionic lattice sites such that the
new system is invariant under local symmetry transfor-
mations. We will refer to these local symmetry trans-
formations as local gauge transformations. In general,
gauging a symmetry of a gapped quantum system allows
us to construct a new topological phase of matter [68–
70]. Using this approach, together with an additional
ingredient of penalizing non-zero fluxes (to be discussed
below), we will build in the following subsections a wide
class of lattice models with nontrivial topological prop-
erties. In this subsection, we will also discuss how to
reformulate the gauged theory in a purely bosonic lan-
guage [52, 53, 71] with spin-1/2 particles (or hard-core
bosons). This shows how gauged fermionic theories nat-
urally arise when studying quantum spin systems. If the
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FIG. 12. We associate an orientation with every edge of the
square lattice. (a) shows fermions coupled to the Zf2 gauge

field. The fermions live on the faces, while the Zf2 gauge field
lives on the edges. The Gauss’s law constraint is imposed on
the Hilbert space. We can then rewrite the theory purely in
terms of spins (qubits) living on the edges of the square lattice
and remove the Gauss’s law constraint, as shown in (b). The

generators of the fermionic theory coupled to the Zf2 gauge
field in (a) are mapped to the corresponding spin operators
in (b). The ordering of the Majorana operators is defined in
the text.

original fermionic system is gapped, the resulting spin
system is, in fact, a gapped quantum spin liquid [51, 54].

Before discussing the gauging of fermion parity, we first
associate an orientation with every edge, as shown in
Fig. 12(a). The fermions live on the faces, i.e., on the sites
of a dual lattice. Following the convention of Ref. [52],
we decompose complex fermion operators into Majorana

operators cf = (γf + iγ′f )/2, c†f = (γf − iγ′f )/2, where

f denotes faces. (Note that, throughout the manuscript,
the symbol f in a superscript denotes fermion-related
objects. On the other hand, the symbol f appearing as a
subscript or in the normal line of type denotes a face on a
square lattice.) The Majorana operators are Hermitian:

γ†f = γf and γ′†f = γ′f . Their anti-commutation relations
are

{γf , γf ′} = 2δf,f ′ ,

{γf , γ′f ′} = 0. (15)

Denoting by Nf = c†fcf the fermion number operator
on face f , the fermion parity operator on that face is
(−1)Nf = −iγfγ′f . We will refer to the operator Se =

iγL(e)γ
′
R(e) as a Majorana hopping operator, where the

edge e is shared by the adjacent left face L(e) and the
adjacent right face R(e) defined with respect to the edge
orientation. Note that the fermion parity operators on all
faces and the Majorana hopping operators on all edges
together generate the whole algebra that preserves the

global fermion parity.
To gauge the Z2 fermion parity symmetry of a

fermionic system described by a Hamiltonian, we cou-
ple the fermions living on the faces to a Z2 gauge field
living on the edges. To emphasize that the Z2 gauge field

is related to fermion parity, we will refer to it as the Zf2
gauge field with an f superscript. We will use σx,e, σy,e,

and σz,e to denote the Pauli matrices of the Zf2 gauge
variables on edge e. By analogy with the ordinary U(1)
electromagnetism theory, we define the local gauge trans-
formation operator acting on the fermion mode on face

f and the nearby Zf2 gauge variables as

Gf ≡ (−1)Nf

∏
e∈f

σz,e. (16)

This operator flips the sign of the fermion mode cf
and the surrounding gauge variables σx,e. Roughly
speaking, σx,e is the discrete (meaning a discrete

gauge group) analog of eiA(e) in the ordinary U(1)
electromagnetism theory, and σz,e the discrete analog

of eiE(e) [54, 67, 72, 73], where A(e) and E(e) are,
respectively, the vector potential and the electric field
on edge e with the lattice constant equal to one. The
local fermion parity operator (−1)Nf behaves as a local
charge operator in this discrete theory. The presence
of the operator (−1)Nf in Gf is an indication that we
are making the original global symmetry transformation
(−1)Ntotal local. Note that Gf is both Hermitian and
unitary. Now we demand that the physics should not
change under gauge transformations, so all physical
operators must commute with Gf [67]. Therefore, to
be invariant under all gauge transformations Gf , the
original fermionic Hamiltonian must be modified by
inserting gauge variables. Unless the fermion terms
are on-site, for a generic term involving distant n-body
(n ∈ 2N) fermionic interactions, we need to replace
fermion operators with Wilson lines by inserting a
string of gauge variables σx,e along a path connect-
ing the fermion operators. For example, a two-body
operator γf1γ

′
f2

with f1 6= f2 should be replaced with

γf1γ
′
f2

(∏
e∈path(f1,f2) σx,e

)
. The notation path(f1, f2)

denotes an unoriented path on the dual square lattice
connecting faces f1 and f2. The notation e ∈ path(f1, f2)
denotes edges on the square lattice that path(f1, f2)
crosses. Similarly, a four-body operator γf1γ

′
f2
γf3γ

′
f4

with f1, f2, f3, f4 all being different (a sufficient
but not necessary condition) should be replaced with

γf1γ
′
f2
γf3γ

′
f4

(∏
e∈path(f1,f2) σx,e

)(∏
e∈path(f3,f4) σx,e

)
.

We will use the notation Ogauged or {O}gauged
to denote

the gauge-invariant version (obtained using the above
procedure) of a fermion-parity-conserving operator O.

Let us now apply the above procedure to the genera-
tors of our fermion theory. Since the fermion parity op-
erator (−1)Nf commutes with Gf , we can keep (−1)Nf

unchanged. However, a Majorana hopping operator Se =
iγL(e)γ

′
R(e) does not commute with Gf . So, we replace it



14

with a gauge-invariant operator Sgauged
e = iγL(e)σx,eγ

′
R(e)

instead, which is the shortest Wilson line. A generic Wil-
son line can be therefore decomposed into products of
(−1)Nf and Sgauged

e . In addition to (−1)Nf and Sgauged
e ,

the operator σz,e also commutes with the local gauge
transformation operators Gf . In fact, all operators com-
muting with local gauge transformations are generated
by (−1)Nf , Sgauged

e , and σz,e.
By analogy with the ordinary U(1) electromagnetism

theory, we now impose a discrete Gauss’s law constraint
on the system [54, 67, 72, 73]:∏

e∈f

σz,e = (−1)Nf , ∀f. (17)

Note that both sides of this equation are gauge-invariant
physical operators. This equation relates the parity of
the local charge operator Nf to the discrete electric field
variables σz,e. This is the exponentiation of the lattice
discrete (discrete in the sense of the discrete gauge group)
analog of the familiar Gauss’s law of the continuum U(1)
electromagnetism theory: ∇ · E = Q/ε0. Equivalently,
we can write the Gauss’s law constraint as

(−1)Nf

∏
e∈f

σz,e ≡ Gf = 1, ∀f. (18)

That is, the only allowed quantum states |ψf,Zf
2 〉

are those invariant under local gauge transformations:

Gf |ψf,Z
f
2 〉 = |ψf,Zf

2 〉. (Note that here f in the subscript
of Gf refers to face f , while the two instances of f in the

superscript of |ψf,Zf
2 〉 stand for fermions.) Note that,

due to this constraint, the generator (−1)Nf is no longer
a fundamental generator of the operator algebra since it
is equivalent to the composite operator

∏
e∈f σz,e, which

is built from the four nearby σz,e operators.

The Zf2 flux within the smallest loop encircling a ver-
tex v is measured by the gauge-invariant flux measuring
operator

Φv ≡
∏
e∈v

σx,e. (19)

It picks up a minus sign in the presence of a flux at the
vertex v; otherwise, it gives +1. For historical reasons,

we sometimes call a Zf2 flux a π flux [74]. Note that
flux measuring operators commute with each other and
with Wilson lines. We now add a Hamiltonian term that
energetically penalizes non-zero fluxes:

HΦ
penalty = −∆Φ

∑
v

Φv = −∆Φ

∑
v

∏
e∈v

σx,e, (20)

with ∆Φ > 0. If the flux energy parameter ∆Φ is large
enough, the flux penalty Hamiltonian HΦ

penalty ensures
that, in the low energy subspace, there is no flux any-
where: Φv = 1, ∀v. However, we can still consider vio-
lations of this condition as vortex excitations of the the-
ory. Note that a pair of fluxes can be created by applying

ψ

ψ

ψ

ψ

v

v

FIG. 13. We can have fermions ψ on the faces and vortices
v on the vertices as emergent quasiparticles. Vortices come
from the existence of π fluxes of the Zf2 gauge field at the
vertices. A vortex could be a composite object that is not
strictly localized to a small region, so, when we associate a
vortex with a vertex, we only talk about its center-of-mass
position or the position of the flux at the core. A vortex
and an anti-vortex might or might not be the same particle,
depending on how the fermions are organized around a flux.

a string of σz,e operators, which is gauge-invariant and
anti-commutes with the flux measuring operators Φv at
the endpoints of the string. A vortex excitation is then
typically found by solving for the ground state of fermions
in the presence of a single π flux with the other π fluxes
far away. Therefore, a vortex can be a composite object
consisting of the flux and the response of the fermions to
it. Hence, in this new theory, we have not only fermions
living on faces but also vortex quasiparticles living on
vertices, as shown in Fig. 13 [75]. In this paper, we
will assume that the flux energy parameter ∆Φ is much
greater than all the fermionic interactions, leading to a
large energy gap for the vortices.

Here, we have to point out that, when we introduce
gauge variables to gauge fermion operators, there can be
many equivalent ways of writing down a gauge-invariant

operator {O}gauged
corresponding to the fermion opera-

tor O involving distant fermionic degrees of freedom. For

example, the gauge-invariant operator
{
γf1γ

′
f2

}gauged

corresponding to the two-body operator γf1γ
′
f2

with
distant faces f1 and f2 can be written using any path
path(f1, f2) on the dual lattice connecting the faces, even
though in practice one might conveniently choose the
shortest path. For a four-body operator, γf1γ

′
f2
γf3γ

′
f4

,
there are even more equivalent choices for making the
gauge-invariant operator. For example, instead of picking

γf1γ
′
f2
γf3γ

′
f4

(∏
e∈path(f1,f2) σx,e

)(∏
e∈path(f3,f4) σx,e

)
as
{
γf1γ

′
f2
γf3γ

′
f4

}gauged

, we can equivalently choose

γf1γ
′
f2
γf3γ

′
f4

(∏
e∈path(f1,f3) σx,e

)(∏
e∈path(f2,f4) σx,e

)
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or γf1γ
′
f2
γf3γ

′
f4

(∏
e∈path(f1,f4) σx,e

)(∏
e∈path(f2,f3) σx,e

)
.

A large flux energy parameter ∆Φ is important since
it implies that different choices of O are equivalent at
low energies due to the zero-flux condition Φv = 1.
The equivalence between different choices simply comes
from the lattice discrete analog of Stokes’ theorem in
electromagnetism.

A large flux energy parameter ∆Φ also allows us to
solve the theory as if we only had fermions and no
gauge field at low energies. Under the zero-flux condi-
tion Φv = 1, rather than directly dealing with the theory
of fermions coupled to the gauge field, we can observe the
following. We first ignore the Gauss’s law constraint and
observe that any gauge field variable σx,e commutes with
all the flux measuring operators Φv and all the Wilson
line operators derived from the original fermionic Hamil-
tonian [51, 76, 77]. Since σ2

x,e = 1, the Hamiltonian can
be block-diagonalized into sectors labeled by the global
gauge field configurations {σx,e |σx,e = ±1}. We can
satisfy the zero-flux condition by assigning proper gauge
field configurations. The simplest gauge field configura-
tion satisfying the zero-flux condition is σx,e = 1 on every
edges, in which case the Wilson lines now involve only the
original fermionic operators. This means that, by this
gauge fixing, we return the Hamiltonian of the gauged
fermionic system back to the Hamiltonian of the origi-
nal fermionic system up to a constant −∆Φ

∑
v 1 coming

from the flux penalty Hamiltonian. Therefore, we just
need to solve the original fermionic theory. Denoting by
|ψf 〉 an eigenstate of the fermionic system, the corre-
sponding eigenstate of the theory of fermions coupled to

the Zf2 gauge field is simply |ψf 〉⊗∀e |σx,e = 1〉, where
we inserted gauge variables σx,e = 1 of the edges into the
state. However, due to the commutativity of local gauge
transformations Gf with other physical gauge-invariant
operators, all states obtained by applying any product of
local gauge transformations {Gf} on |ψf 〉⊗∀e |σx,e = 1〉
are also legitimate eigenstates. In each such legitimate
eigenstate, the signs of gauge fields along some closed
loops are flipped, and the fermionic state (written in
terms of complex creation operators acting on the vac-

uum) has c†f → −c
†
f for faces f inside the closed loops.

All the above states corresponding to different choices of
the product of {Gf} are orthogonal to each other, so they
span a large vector space. To remove the degeneracy, we
now impose the Gauss’s law constraint Gf = 1. The only
state satisfying this constraint within the large degener-
ate vector space defined above is an equally weighted
superposition of all possible gauge-transformed states:

|ψf,Zf
2 〉 =

∏
f

(
1 +Gf√

2

) |ψf 〉⊗
∀e

|σx,e = 1〉. (21)

We present this state schematically in Fig. 14. To con-
clude, we can solve the gauged Hamiltonian at low en-
ergies with large enough ∆Φ by first solving the original
fermionic system without the gauge field and then sym-
metrizing the wavefunction as in Eq. (21) by inserting

|ψ f,Zf2⟩ = +⋯

+

+ +

FIG. 14. A schematic representation of the wavefunction

|ψf,Z
f
2 〉 in Eq. (21). It is an equally weighted superposition

of wavefunctions with different zero-flux gauge field config-
urations. We draw a solid black line along each edge with
σx,e = −1. There is no solid black line along edges with
σx,e = 1. In this schematic picture, we omit the modification
of the fermionic wavefunction coming from the fermion par-
ity operator in the local gauge transformation operator Gf .

Therefore, the wavefunction |ψf,Z
f
2 〉 can be thought of as a

condensate of loops. We have dropped the overall normaliza-
tion constant in this plot.

gauge variables in the trivial states and summing over
all states connected by local gauge transformations.

We will now show that the Zf2 gauge theory with
fermions can be exactly rewritten purely in terms of spins
(or hard-core bosons) on the edges of the square lattice
with the same assignment of edge orientations. To do
this, we demonstrate how the generators are mapped into
the pure spin language. We map the shortest Wilson line
involving nearest-neighbor Majorana hopping as follows:

Sgauged
e = iγL(e)σx,eγ

′
R(e) → Ue := XeZr(e). (22)

We have used the notation (shown in Fig. 12) that, if e
is oriented east, r(e) is the north-oriented edge whose ar-
rowhead is at the tail of the e arrow. If e is oriented north,
r(e) is the east-oriented edge whose arrowhead is at the
tail of the e arrow. We have chosen a different notation
(Xe and Ze) for the operators in the pure spin systems
to distinguish them from the operators (σx,e and σz,e) of

the Zf2 gauge field, even though they are related. Note
that the commutation relations between the operators Ue
on different edges are the same as those of Sgauged

e . For a
face f , the fermion parity operator is mapped as follows:

(−1)Nf = −iγfγ′f →Wf =
∏
e∈f

Ze. (23)

We will call Wf an emergent fermion parity operator
and a bosonized fermion parity operator interchangeably.
The word “bosonized” will be explained later. The flux
creation operator remains the same:

σz,e → Ze. (24)
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The mapping is summarized in Fig. 12. One can verify
that the mapping above gives an algebra isomorphism by
checking that it induces an algebra homomorphism (pre-
serves the algebraic structure of the physical operators)
and is injective (by construction) and surjective (all the
operators on the pure spin side can be generated by Ue,
Wf , and Ze). Note that the Gauss’s law constraint for
the operators in the gauged fermion theory is trivially
satisfied in the pure spin language.

Note that any long Wilson line can be decomposed into
Sgauged
e and (−1)Nf , so it can always be mapped to the

pure spin language. As a special case, the original flux
measuring operator in Eq. (19) can be decomposed into
a product of Wilson line segments and fermion parity
operators. Using Eq. (22) and Eq. (23), we can see that
the flux measuring operator is mapped as follows:

Φv ≡
∏
e∈v

σx,e → Fv ≡WNE(v)

∏
e∈v

Xe, (25)

where NE(v) indicates the face directly to the northeast
of vertex v, and the W operator is defined in Eq. (23).
The flux penalty Hamiltonian thus becomes

HF
penalty = −∆Φ

∑
v

WNE(v)

∏
e∈v

Xe. (26)

The zero-flux condition Φv = 1, ∀v at low energies is
translated into Fv = 1, ∀v.

To make sure there is a duality between the two the-
ories, we also have to know the mapping of the Hilbert
spaces. This is done by requiring that the quantum state
that is an eigenvalue-one eigenstate of all (−1)Nf , Φv,
and Gf operators (i.e. the fermion vacuum state with
zero flux and Gauss’s law constraints) is mapped to the
eigenvalue-one eigenstate of all the Wf , Fv [78]. The for-
mer state is nothing but a loop condensate of the gauge
field shown in Fig. 14 with fermions in the vacuum state,
while the latter has a similar loop-condensate picture
in the basis of Xe but without fermions. Knowing the
mapping of a single state, we can derive the mapping of
the other states by applying the generators to the states
on both sides. One can verify that the number of de-
grees of freedom on both sides matches. For the gauged
fermion theory, we have 1 (fermion) + 2 (gauge field) −
1 (Gauss′s law) = 2 spins for each vertex, which matches
what we have in the pure spin system.

Let us now summarize what we have done. We have
successfully mapped a fermionic theory coupled to a Zf2
gauge field on a lattice (subject to the Gauss’s law con-
straint) to a theory of spins [79]. Notice the similarity of
σe,x and σe,z to Xe and Ze. We can interpret the map-
ping as “integrating out” the fermions, where we remove
the Gauss’s law constraint and rewrite the whole theory,
including the fermions and the gauge field, in terms of the
gauge field with purely bosonic Z2 variables. This kind
of statistical transmutation between fermions and bosons
by coupling fermions to a gauge field can be traced back
at least to the composite fermion story in fractional quan-
tum Hall systems [80, 81]. What is interesting here is that

the statistical transmutation is done exactly on a lattice
instead of working at the continuum field-theory level. In
hindsight, it is also physically clear why a toric-code-like
spin theory should be able to represent fermionic degrees
of freedom [82]. Recall (see Sec. II) that, in the toric code
model, even though the theory is made of spins (hard-
core bosons), we have fermions as stationary emergent
quasiparticles, each a combination of an e particle and
an m particle. By deforming the toric code model to in-
troduce interactions between the emergent fermions, one
should be able to rewrite a fermionic theory fully in terms
of spins (hard-core bosons). Any unpaired e or m particle

can be interpreted as a Zf2 flux.

In the following sections, we will consider physical sys-
tems fundamentally defined in terms of spins and work
out quantum circuits that coarse-grain the spin systems
and leave behind some disentangled spins, even though
the spin theories will be dual to theories with fermions

coupled to a Zf2 gauge field. We will treat the dual pic-

ture of fermions with the Zf2 gauge field as a helpful in-
terpretation of the theory and use it to inspire certain
circuit operations on the spin systems. In later sections,
we will sometimes use the word “emergent fermions” for
the dual fermions because they are anyons emergent in
the spin models. They have to be created in pairs and
not one at a time.

In particular, in this paper, we will take advantage
of gauging the fermion parity of some well-understood
free fermionic theories to generate new topological the-
ories, which will then be mapped to the spin language,
where they will become exactly solvable interacting chi-
ral topologically ordered theories. To be specific, we will
be interested in gauging non-interacting fermionic models
made of layers of lattice px + ipy topological supercon-
ductors to construct sixteen inequivalent chiral bosonic
topologically ordered theories classified by Kitaev [51].
These bosonic models are exactly solvable precisely be-
cause they are dual to free fermionic theories under the
zero-flux condition. We will use this idea to write down
lattice spin models with progressively increasing com-
plexity.

As we mentioned above, for excitation energies much
lower than ∆Φ, we are effectively in the zero-flux sec-
tor. Furthermore, in the remainder of the paper, we will
only be interested in working on entanglement renor-
malization circuits that only operate on ground states,
which contain zero flux. For our purposes, the Hamil-
tonians constructed using the above approach simply il-
lustrate that the corresponding ground states can have
parent Hamiltonians with anyonic excitations and thus
have topological order. Therefore, for the purposes of
studying the ground states, instead of adding the flux
penalty Hamiltonian, for the rest of the paper, we can
conveniently consider another class of Hamiltonians that
have the zero-flux condition as a hard constraint directly
on the Hilbert space [52, 53, 71]. In other words, we will
not includeHΦ

penalty described by Eq. (20) into the gauged
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fermion Hamiltonians, and we will not include HF
penalty

described by Eq. (26) into the corresponding spin Hamil-
tonians. We simply follow the procedure of replacing op-
erators in the fermion Hamiltonian with Wilson lines and
doing the algebra isomorphism and require that Φv = 1
on the gauged-fermion side, and that Fv = 1 on the spin
side.

Under the zero-flux constraint, we refer to the succes-
sive procedures of gauging a fermionic Hamiltonian with

a Zf2 gauge field and then integrating out the fermions
as bosonization [52, 53, 71] since one can also view the
spin-1/2 degrees of freedom in the final spin theory as
hard-core bosons, where infinitely strong on-site repul-
sion between bosons renders each site either unoccupied
or occupied by a single boson. The whole bosonization
procedure turns a purely fermionic Hamiltonian into a
purely (hard-core) bosonic Hamiltonian with a constraint
(the zero-flux constraint). The flow chart of bosoniza-
tion to arrive at a bosonic Hamiltonian from a purely
fermionic Hamiltonian is shown in Fig. 15. In addition,
we can also define bosonization for any fermionic opera-
tor, not just for a fermionic Hamiltonian. This is done
similarly by inserting gauge variables into fermion oper-
ators to obtain Wilson lines and integrating the fermions
out by the algebra isomorphism under the zero-flux con-

straint. We will use the notation
{
Of
}bosonized

to de-
note the bosonized operator of the fermionic operator
Of that conserves fermion parity. The reader should dis-
tinguish the bosonization in two spatial dimensions pre-
sented here from the traditional bosonization for the Lut-
tinger liquid in one dimension [73, 83]. Once again, the

bosonization procedure of fermionic operators {·}bosonized

is not unique due to different choices of Wilson lines in

the gauging procedure {·}gauged
; however, when we use

bosonization to construct bosonic physical systems, un-
der the zero-flux constraint they will be equivalent. Note
that bosonization gives rise to an exact duality directly
between spins with a constraint and the original fermions.
The bosonization duality isomorphism is determined by
the following mapping of the generators:

Se ↔ Ue, (27)

(−1)Nf ↔Wf . (28)

The mapping of the operators is depicted in Fig. 16. Also,
the fermion vacuum state is mapped to the simultaneous
+1 eigenstate of all the Wf operators on the spin side
with the zero-flux constraint Fv = 1 being satisfied. Not
surprisingly, the duality resembles the duality between

fermions coupled to the Zf2 gauge field and the spin the-
ory without a constraint. The slight difference is that,
compared to the duality in Fig. 12, Figure 16 does not

have the Zf2 gauge field on the fermion side, and thus
we forbid the Ze generators that create fluxes on the
spin side and that do not commute with the zero-flux
constraint. Notice that the exact solvability of the spin
models with the flux penalty Hamiltonian at low energies
previously mentioned now turns into the exact duality re-

lating the spin theory with a constraint to the original
non-interacting fermion theory.

Let us emphasize once again that this bosonization
perspective with the zero-flux constraint on the Hilbert
space merely provides a convenient way to describe the
ground states by constructing the corresponding parent
Hamiltonians in the presence of the zero-flux constraint.
This simplification will help us elucidate the construction
of the entanglement renormalization circuits in the re-
mainder of the paper. However, in order to realize these
systems experimentally, we do not have to impose the
hard constraint on the total spin Hilbert space or the
ground states. Instead, if we want, we are free to re-
place the zero-flux constraint back with the flux penalty
Hamiltonian. Therefore, when we discuss entanglement
of the spin system, the total Hilbert space is still as-
sumed to have the structure of a tensor product of local
spin Hilbert spaces.

B. Gauging trivial insulator =⇒ pure Zf2 lattice
gauge theory

Starting from this subsection, we will construct several
spin models based on non-interacting fermionic models
using the bosonization technique introduced in the previ-
ous subsection. We will construct models with increasing
complexity so the readers can become gradually familiar
with the formalism of gauging the fermion parity sym-
metry and the formalism of bosonization.

The first non-interacting fermionic model we consider
is the following fermionic Hamiltonian with a trivial in-
sulating ground state:

Htrivial insulator = −
∑
r

(1− 2c†rcr). (29)

We can easily see that each term measures the local
fermion parity (−1)Nr . Clearly, the ground state is the
vacuum, and the chiral central charge is zero. It is
straightforward to gauge the fermion parity symmetry
of the theory since the Hamiltonian Htrivial insulator does
not involve interactions among different sites. We simply

introduce the Hilbert space of Zf2 gauge variables and do
not have to replace the fermionic interacting terms in the
Hamiltonian with Wilson lines. In addition, we can de-
rive the bosonized Hamiltonian with spins living on the
edges of a square lattice using bosonization rules shown
in Fig. 16:

HZf
2

= {Htrivial insulator}bosonized
= −

∑
f

∏
e∈f

Ze, (30)

with the zero-flux condition Fv = 1 as a constraint. The
original lattice sites for the trivial fermionic insulator la-
beled by r are sitting at the centers of the faces f of
the new square lattice when we perform the bosoniza-
tion. The Hamiltonian simply comes from the emergent
fermion parity operators Wf , the bosonization of Eq. (29)
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Pure Fermionic Theory 

Fermions Coupled to the  Gauge Field 
(with Zero Flux)

Zf
2

Gauge Fermion Parity Symmetry

Interacting Spin Theory 
(with Zero Flux)

“Integrating Out” Fermions

Bosonization

Gauge Fixing 

FIG. 15. Bosonization is composed of two steps. The first step is gauging the fermion parity of the original fermionic theory
under the zero-flux condition as a constraint, Φv = 1. Due to the zero-flux constraint, different choices of Wilson lines for a
fermion operator become equivalent. Under the constraint and with the gauge choice σx,e = 1 (gauge fixing), we can recover
the original fermionic theory from the gauged theory. The second step of bosonization is integrating out the fermions by the
algebra isomorphism depicted in Fig. 12. The non-uniqueness of Wilson lines in the first step results in the non-uniqueness
of bosonization (one-to-many mapping). However, different choices of the bosonized operator for a given fermion operator are
equivalent under the zero-flux constraint on the spin theory, Fv = 1.

iγ γ′ 

iγ

γ′ 

Zero-Flux 
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Fermion System Spin-1/2 System

= 1
Z
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X
XX

X

(a) (b)

FIG. 16. Here we have a bosonization duality between (a)
the pure fermionic theory and (b) the pure spin theory by
imposing the zero-flux condition Fv = 1 as a constraint on the
spin side. The fermions live on the faces of the square lattice,
while the spins live on the edges of the square lattice. The
three fermionic operators on the left are mapped to the three
spin operators on the right. The ordering of the Majorana
operators is defined in the text.

by using Eq. (23). As mentioned previously in Sec. IV A,
we can alternatively include the flux penalty Hamilto-
nian HF

penalty to penalize softly the sectors with nonzero
fluxes rather than imposing the zero-flux condition as a
constraint. If we do that, one can see that this model
is a commuting-projector model and behaves almost like

the toric code model with a slight modification of the
Hamiltonian.

First, we observe that the emergent fermion par-
ity operators Wf in the Hamiltonian HZf

2
defined in

Eq. (30) together with the flux measuring operators Fv
in the flux penalty Hamiltonian HF

penalty define a sta-
bilizer group that stabilizes the ground state, and the
stabilizer group is the same as that of the toric code
in Sec. II A, even though we have a different choice

of the stabilizer generators:
{
Wf =

∏
e∈f Ze, ∀f

}
∪{

Fv =
(∏

e′∈NE(v) Ze′
)(∏

e∈vXe

)
, ∀v

}
. The stabilizer

generators are shown in Fig. 17. Therefore, the ground
state stabilized by the stabilizer group is the same as
that of the toric code. Therefore, the ground state is
non-chiral and has a zero correlation length.

Second, we can see that the the topological data is
the same as that of the toric code. We can either check
this from the dual picture of fermions coupled to the Zf2
gauge field or by working directly with spins. Notice that
a single violation from the first set of stabilizer generators
{Wf , ∀f} with no nearby violation of the second set of
generators {Fv, ∀v} implies the existence of a fermion ψ
living on the face whose stabilizer is violated, whereas a
single violation of the second set of stabilizer generators
{Fv, ∀v} without violation of the first set of stabilizer
generators {Wf , ∀f} nearby implies the existence of a
vortex boson m. The vortex here is simply a flux since, in

the dual picture of fermions coupled to the Zf2 gauge field,
there are no interactions between fluxes and fermions.
The fusion of a fermion with a nearby vortex particle
gives rise to a boson, which we call an e particle. The
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FIG. 17. The stabilizer generators of the pure Zf2 lattice
gauge theory: the emergent fermion parity operator Wf (the
4-qubit operator on the left) and the flux measuring operator
Fv (the 6-qubit operator on the right). The X operators are
written slightly to the left of the qubits, while the Z operators
are written slightly to the right of the qubits. When an X
operator and a Z operator are both associated with the same
qubit, the Z operator acts first.

vacuum 1 together with the e m ψ particles constitute
the same topological data as in the toric code.

By going from Eq. (29) to Eq. (30), we turned an non-
interacting fermionic model into an interacting bosonic

spin model. We call this model the pure Zf2 lattice gauge
theory. This is because, in the dual fermionic picture, if

we included the flux penalty Hamiltonian HΦ
penalty to pe-

nalize fluxes softly, and if we made the coefficient in front
of (−1)Nr much greater than ∆Φ, the model at low ener-
gies would have no matter field excitations, and it would

be described by the pure Zf2 lattice gauge field. This is

also why we add the subscript Zf2 to the Hamiltonian in
Eq. (30).

C. Gauging lattice px + ipy topological
superconductor =⇒ lattice Ising TQFT

In this subsection, we consider the bosonization of
a less trivial non-interacting fermionic model, arriving
again at an exactly solvable interacting chiral spin model.
The fermionic model we want to bosonize is the lattice
px + ipy topological superconductor model Hpx+ipy in
Eq. (3) in Sec. III A. Even though a px + ipy topological
superconductor does not have intrinsic topological order,
it is well-known that, if we gauge the fermion parity sym-
metry of a px + ipy topological superconductor, we will
have intrinsic chiral topological order with the Ising topo-
logical quantum field theory (Ising TQFT) description at
low energies [49, 51, 59].

For the sake of gauging the Hamiltonian Hpx+ipy , we
first put the fermionic degrees of freedom of the Hamil-
tonian Hpx+ipy onto the faces of a square lattice and
rewrite the Hamiltonian in terms of the edge orientation
assignments in Fig. 12:

Hpx+ipy =
∑
ey

(
−t c†R(ey)cL(ey) − t c†L(ey)cR(ey) + ∆ c†R(ey)c

†
L(ey) + ∆ cL(ey)cR(ey)

)
− µ

∑
f

c†fcf

+
∑
ex

(
−t c†R(ex)cL(ex) − t c†L(ex)cR(ex) − i∆cR(ex)cL(ex) + i∆c†L(ex)c

†
R(ex)

)
, (31)

where ey labels the vertical edges, ex labels the horizontal edges, and f labels the faces. We can then rewrite the
theory in the language of Majorana operators, gauge the theory by using the shortest Wilson lines, and decompose
the Wilson lines into the generators Sgauged

e = iγL(e)σx,eγ
′
R(e) and (−1)Nf = −iγfγ′f . The result is the gauged

Hamiltonian{
Hpx+ipy

}gauged
=

=
∑
ey

[
−
(
t+ ∆

2

)
(−iγL(ey)γ

′
L(ey))(iγL(ey)σx,eyγ

′
R(ey))(−iγR(ey)γ

′
R(ey))−

(
t−∆

2

)
(iγL(ey)σx,eyγ

′
R(ey))

]

+
∑
ex

[
− t

2
(−iγL(ex)γ

′
L(ex))(iγL(ex)σx,exγ

′
R(ex))(−iγR(ex)γ

′
R(ex))−

t

2
( iγL(ex)σx,exγ

′
R(ex))

+ i
∆

2
(−iγL(ex)γ

′
L(ex))(iγL(ex)σx,exγ

′
R(ex))−

i∆

2
(iγL(ex)σx,exγ

′
R(ex))(−iγR(ex)γ

′
R(ex))

]
− µ

∑
f

(
1 + iγfγ

′
f

)
, (32)

where Gauss’s law is imposed onto the Hilbert space. In order to obtain the dual spin model of the gauged fermionic
theory under the zero flux constraint, we can either “integrate out” the fermions in Eq. (32) to get rid of the Gauss’s
law constraint using Eqs. (22,23) or directly apply the bosonization mapping in Fig. 16 to the fundamental generators,
Se and (−1)Nf , that generate Eq. (31) with the shortest paths. Either way, the resulting spin Hamiltonian is given
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by

HIsing TQFT =
{
Hpx+ipy

}bosonized

=
∑
ey

[
−
(
t+ ∆

2

)
(WL(ey))(XeyZr(ey))(WR(ey))−

(
t−∆

2

)
XeyZr(ey)

]

+
∑
ex

[
− t

2
(WL(ex))(XexZr(ex))(WR(ex))−

t

2
(XexZr(ex))

+ i
∆

2
(WL(ex))(XexZr(ex))−

i∆

2
(XexZr(ex))(WR(ex))

]
− µ

∑
f

(1−Wf ) . (33)

As before, we have imposed the zero-flux condition Fv =
1 as a constraint. We have turned a non-interacting
fermionic model Hpx+ipy into an interacting spin model
HIsing TQFT. The parameters (t, µ, ∆) here are chosen
to be again in the regime described in Sec. III A. Since
the Hamiltonian in Eq. (33) with the zero-flux constraint
is dual to the non-interacting lattice px + ipy topological
superconductor, we can understand the properties of its
ground state very well. In particular the ground state is
chiral with c = 1/2 and has a nonzero finite correlation
length. Therefore, we have obtained an exactly solvable
chiral spin liquid Hamiltonian.

The presence of the zero-flux condition Fv = 1 as a con-
straint on the spin system allowed us to quickly obtain
the parent Hamiltonian that describes the ground state
of the interacting spin system by using the bosonization
mapping in Fig. 16. This simplification is enabled by the
fact that the ground state happens to be in the sector
Fv = 1. However, the zero-flux constraint should not
be viewed as something intrinsic to the actual Hilbert
space of the spin (qubit) system. Therefore, instead of
imposing the zero-flux condition as a hard constraint, we
can alternatively include the flux penalty Hamiltonian
HF

penalty with a large flux energy parameter ∆Φ as a soft
constraint to penalize fluxes. This will allow the con-
straint to be violated if we add energy to the system. A
pair of π fluxes will create a pair of vortex quasiparticles,
and each will bind a Majorana zero mode. The existence
of a Majorana zero mode around each π flux is typically
shown in the continuum limit [60]; however, it still ex-
ists when we introduce a lattice structure [51]. With
the bound Majorana zero modes, the vortices are non-
Abelian Ising anyons [73]. Therefore, we expect that the
effective description of the low-energy behavior near the
ground state is the Ising TQFT. Hence, we introduce a
subscript “Ising TQFT” for the Hamiltonian in Eq. (33).
We may also think of this model as a lattice regulariza-
tion of the continuum Ising TQFT, so, in the following,
we will sometimes call it the lattice Ising TQFT model.
As the model consists of spins and is gapped and topo-
logically nontrivial, we can regard this model as a chiral
spin liquid, whether we impose the zero-flux condition as
a hard constraint or as a flux penalty Hamiltonian.

D. Gauging layers of px + ipy superconductors =⇒
Kitaev’s sixteenfold way chiral spin liquids

After introducing the lattice Ising TQFT model as an
example of a chiral spin liquid in the previous subsec-
tion, in this subsection, we are going to introduce more
exactly solvable chiral spin liquids by using bosonization
introduced in Sec. IV A.

In Ref. [51], Kitaev proved that any spin theory that
is dual to non-interacting fermions with a spectral Chern

number ν coupled to a Zf2 gauge field should fall into
a sixteenfold way classification under certain assump-
tions [50]. From the bulk perspective, we should ob-
tain 16 different kinds of topological order determined
by ν (mod 16). The periodicity in ν means that a spin
system corresponding to the spectral Chern number ν
should be topologically indistinguishable from a spin sys-
tem with the spectral Chern number ν + 16. Note, how-
ever, that, from the boundary perspective, the chiral cen-
tral charge c should be determined by ν via the formula
c = ν/2 without periodicity. Some topological data of
the sixteenfold way classification in the bulk is provided
in Table I. A review of the sixteenfold way classification
is provided in Ref. [50].

In Ref. [51], Kitaev introduced a spin model on a hon-
eycomb lattice (B phase in a magnetic field) whose dual
is a px + ipy topological superconductor (ν = 1) coupled

to a Zf2 gauge field. Here we construct spin models cor-
responding to other values of ν. Instead of working with
spins on a honeycomb lattice, we will work with the for-
malism on the square lattice discussed in Sec. IV A since
the operator duality between the spin theory and the

fermionic theory with the Zf2 gauge field is more obvious
to us on the square lattice.

A simple way to construct a fermionic system with
a higher spectral Chern number is to consider a stack
of px + ipy topological superconductors. Hence, for a
fermionic system with spectral Chern number ν, we can
simply consider ν layers of the lattice px+ipy topological
superconductors in Sec. III, each of which contributes a
chiral central charge c = 1/2. Note that, for each value
of ν, we can freely add an arbitrary number of the trivial
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ν (number of px + ipy superconductors) anyons fusion rules

0 (mod 4) {1, e,m, ψ} e× e = 1, m×m = 1, ψ × ψ = 1, ψ × e = m, ψ ×m = e, e×m = ψ

1 (mod 4) or 3 (mod 4) {1, σ, ψ} ψ × ψ = 1, ψ × σ = σ, σ × σ = 1 + ψ

2 (mod 4) {1, a, ā, ψ} a× a = ψ, ā× ā = ψ, ψ × ψ = 1, a× ā = 1, a× ψ = ā, ā× ψ = a

TABLE I. Part of the topological data of the sixteenfold way classification [51]. The symbol 1 stands for the vacuum, and ψ

stands for an emergent fermion. The symbols e, m, σ, a, and ā represent vortices induced by the Zf2 fluxes. The vortices can
be either Abelian or non-Abelian. For ν = 0 (mod 4) and ν = 2 (mod 4), the vortices are Abelian anyons. For ν = 1 (mod 4)
and ν = 3 (mod 4), vortex σ is a non-Abelian anyon due to an unpaired Majorana zero mode at its core. The topological spins
of all the vortices are determined by the formula θ = exp(iπν/8) that reflects the ν (mod16) periodicity. More data is included
in the S and T matrices and other quantities, which we do not list here.

insulators Htrivial insulator in Sec. IV B since they carry
zero chiral central charge.

We will now systematically construct all the states
in Kitaev’s sixteenfold way classification using the tech-
nique (introduced in Sec. IV A) of gauging fermion parity
and integrating out fermions on the square lattice. First,
we introduce a superlattice structure with lattice peri-
odicity determined by large 4 × 4 unit cells as shown in
Fig. 18 to have multiple layers of the lattice px+ipy topo-
logical superconductors and trivial insulators flattened
to a square lattice. Here, we assign a fermionic degree of
freedom to the center of each face. We associate different
faces within a unit with different colors corresponding to
different layer numbers 1 ≤ i ≤ 16 (which we also write
on the faces) while periodically extending the pattern
to the other unit cells. (Notice that we use the phrase
“layer number” to refer to two different things: one is
the layer number s labeling the scale of the entanglement
renormalization operation; the other is the layer number
i labeling the layers of the fermionic degrees of freedom.)
We then use faces with the same color (and hence same
layer number) to represent the degrees of freedom of ei-
ther a single layer of the lattice px + ipy topological su-
perconductor or a single layer of the topologically trivial
insulator. For example, if we want the blue faces (layer
number i = 4) to describe a single layer of the lattice
px + ipy topological superconductor, we will add chemi-
cal potential terms to all blue (i = 4) faces and introduce
horizontal and vertical hopping and pairing terms that
directly (and hence remotely) couple blue (i = 4) faces
in adjacent unit cells. As another example, if we want
the green faces (layer number i = 7) to describe a single
layer of the trivial insulator, we will only add chemical
potential terms as in Eq. (29) to those faces. Therefore,
in order to study a system with spectral Chern number
ν, we will use the first ν sublattices (i.e. layers/colors)
numbered i = 1, · · · , ν to describe px + ipy superconduc-
tors and let the remaining 16 − ν (i = ν + 1, · · · , 16)
sublattices describe trivial insulators. We can write this

as the following fermionic Hamiltonian:

Hνf =

=

ν∑
i=1

Hi, px+ipy +

16∑
i=ν+1

Hi, trivial insulator

=
ν∑
i=1

[
− t
∑
r

(
c†i, r+x̂ci, r + c†i, r+ŷci, r

)
− µ

∑
r

c†i, rci, r

+
∑
r

(
∆ c†i, r+x̂c

†
i, r + i∆ c†i, r+ŷc

†
i, r

)
+ h.c.

]

+

16∑
i=ν+1

[
−
∑
r

(1− 2c†i, rci, r)

]
. (34)

The label i running from 1 to 16 indicates the layer
(i.e. color/sublattice) number. We used the subscript
νf for the Hamiltonian to denote that we have ν layers
of fermions in topological superconducting states. Once
again, the parameters (t, µ, ∆) here are chosen to be in
the regime described in Sec. III A.

We arrive at the dual interacting spin models, with
spins on the edges of the square lattice shown at the

bottom of Fig. 18, by coupling the fermions to the Zf2
gauge field on the edges of this lattice in the presence
of a flux penalty term, and subsequently integrating the
fermions out. As a result, we obtain all the sixteenfold
way states 0 ≤ ν ≤ 16 as the ground states of the in-
teracting spin models. Since the ground states of these
interacting spin models are in the sector Fv = 1, in-
stead of introducing a flux penalty term, we can alterna-
tively impose the zero-flux condition Fv = 1 as a hard
constraint and derive another class of dual parent spin

Hamiltonians Hν = {Hνf }bosonized
that describe the six-

teenfold way states using the bosonization technique in
Fig. 16. We will not repeat the bosonization here as
the principle is the same as in Secs. IV B and IV C. The
only difference is that the Hamiltonian Hνf now involves
long-range hoppings and pairings. Since the fermions we
started with were non-interacting, the spin models con-
structed here are exactly solvable at all energies with the
hard zero-flux constraint and at low energies with a soft
flux penalty. The chiral central charge of the spin mod-
els will be c = ν/2, coming from the px + ipy topological
superconductors we started with.
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FIG. 18. A way to realize the sixteenfold way states on a square lattice. We flatten 16 fermionic layers onto a superlattice
defined on a single square lattice and subsequently apply the bosonization procedure. Fermions live at the centers of the faces.
A single unit cell for the fermions consists of 16 faces. A sublattice of fermions consists of faces with the same color (and
hence same layer number label). Each sublattice (i.e. layer/color) describes either a layer of the lattice px + ipy topological
superconductor or a layer of the trivial insulator. Therefore, we introduce hoppings and pairings of fermions only among sites
with the same color (and hence same layer number label). The bosonic degrees of freedom are spin-1/2’s living on the edges
surrounding the faces. In order to obtain the interacting spin model, we bosonize all the terms of the fermionic Hamiltonian,
as described earlier in Sec. IV A. Here, we only draw a small portion of the superlattice, and the reader should extend the
periodic structure horizontally and vertically.

We now discuss properties of the sixteenfold way spin
states obtained using this construction. When ν = 0,
from the zero chiral central charge, we learn that the

theory is non-chiral. It is nothing but the pure Zf2 lat-
tice gauge theory discussed in Sec. IV B. For ν ≥ 1, we
obtain several exactly solvable chiral spin liquids with
nonzero finite correlation lengths. When ν = 1, we get an
Ising TQFT Hamiltonian similar to Eq. (33) in Sec. IV C.
Their topological properties are the same even though
they are different lattice realizations of the Ising TQFT.
When ν = 2, we obtain a system with topological order
equivalent to Laughlin’s fractional quantum Hall state at
filling fraction 1/4 [84]. When ν = 3, the ground state
of our construction belongs to the universality class of
the bosonic Moore-Read fractional quantum Hall state
at filling fraction one [85–87]. An intuitive way to un-
derstand this is to see that the Moore-Read state has an
edge mode composed of a chiral Dirac fermion and a chi-
ral Majorana fermion. Since a chiral Dirac fermion can
be decomposed into two chiral Majorana fermions, the
edge mode effectively has three chiral Majorana fermions

and carries a chiral central charge c = 3/2, which is rem-
iniscent of the chiral Majorana fermions from the three
layers of px + ipy topological superconductors from our
construction. Since the boundary conformal field the-
ory of the bosonic Moore-Read state and that of the
ν = 3 sixteenfold way state match, we expect the two
bulk theories to be in the same universality class via
the bulk-boundary correspondence. However, our con-
struction loses the U(1) charge conservation symmetry
appearing in the Moore-Read state. It will be interesting
to see whether one can connect the two wavefunctions
directly by a constant-depth quantum circuit respecting
some locality constraints. When ν = 16, the bulk topo-
logical properties should be the same as when ν = 0,

i.e., the pure Zf2 lattice gauge theory, even though the
boundary chiral central charge is nonzero.

From the topological data listed in Table I, we can
learn that, when ν is even, the topological order is
Abelian. When ν is odd, the topological order becomes
non-Abelian since the fusion of two vortices outputs two
possibilities. The topological properties of the vortices
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are similar to the topological properties of the vortices
of the Ising TQFT at ν = 1 [50, 51]. For later conve-
nience, we refer to all spin-model ground states derived
using this construction as Kitaev’s sixteenfold way chiral
spin liquids, while keeping in mind that the non-chiral
case ν = 0 is a trivial special case.

V. ENTANGLEMENT RENORMALIZATION
CIRCUITS FOR KITAEV’S SIXTEENFOLD WAY

CHIRAL SPIN LIQUIDS

In this section, we will present the scale-invariant en-
tanglement renormalization circuits for a class of spin
states constructed in the previous section using the tech-
nique of gauging fermion parity or bosonization. Many
of these states are chiral. In Sec. V A, we will present

the circuit for the ground state of the non-chiral pure Zf2
lattice gauge theory model. In Sec. V B, we will present
the circuit for the ground state of the chiral lattice Ising
TQFT model. In Sec. V C, our discussion will culminate
with a presentation of the scale-invariant entanglement
renormalization circuits for the ground states of all Ki-
taev’s sixteenfold way chiral spin liquids. In all cases,
each layer of the entanglement renormalization circuit
will contain two subcircuits: (1) a single step of horizon-
tal entanglement renormalization in the x direction and
(2) a single step of vertical entanglement renormalization
in the y direction. We will build the entanglement renor-
malization circuits by combining the conventional MERA
circuit reviewed in Sec. II and the quasi-local evolution
discussed in Sec. III. We refer to these types of circuits
as MERA with quasi-local evolution (MERAQLE).

A. MERAQLE for the pure Zf2 lattice gauge theory

Before showing the scale-invariant MERAQLE circuits
for all Kitaev’s sixteenfold way chiral spin liquids, we
start with the simplest state among them to get a glimpse
of the entanglement structure of the models constructed
from the bosonization technique. Specifically, we dis-
cuss the scale-invariant MERAQLE circuit for the ground

state of the pure Zf2 lattice gauge theory Hamiltonian in
Eq. (30), which is obtained by gauging the fermion parity
symmetry of a trivial insulator. Since the ground state

of the pure Zf2 lattice gauge theory is the same as that of
the toric code, the MERAQLE circuit should be the same
as the conventional strictly-local MERA circuit shown in
Sec. II. Even though the theory is non-chiral, and the
MERAQLE circuit here has no quasi-local components
like the MERAQLE circuits presented in the following
subsections, it is still illuminating to see the action of the
circuit on the stabilizer generators. The insight gained
from the calculations done on the stabilizer generators
will be useful for the circuit constructions for other mod-
els that don’t have the simple toric code interpretation
and that will be discussed in later subsections.

A single step of horizontal entanglement renormaliza-
tion in this case is implemented by the subcircuit CZf

2 ,x

shown in Fig. 19. Following Sec. II B, we again use the
stabilizer formalism to analyze the transformation of the
ground state under CZf

2 ,x
. The generators of the orig-

inal stabilizer group of the ground state are shown in
Fig. 17(a). The generators of the transformed stabi-
lizer group are shown in Fig. 19(c). Even though the
subcircuit CZf

2 ,x
is an exact copy of the subcircuit CZ2,x

in Fig. 5, the interpretation is different. Here, on each
face, there is an emergent fermion mode (one can think
of the fermions as emergent if one takes the spin model
as the original model of interest). It is convenient to
introduce an AB sublattice structure for the emergent
fermions modes. The structure of the sublattices is shown
in Fig. 19(a), where the A sublattice is associated with
the pink faces, and the B sublattice is associated with
the blue faces. Recall that a product of four Z operators
around a face measures the emergent fermion parity of
the face. From the stabilizer computation in Fig. 20(b),
we learn that the emergent fermion parity operator Wf

of a blue B face is transformed into a single Z operator
under conjugation by the subcircuit CZf

2 ,x
. We can intu-

itively say that, after the renormalization procedure, the
emergent fermion degrees of freedom on the blue B faces
are effectively shifted to the ancillary qubits, and the cor-
responding fermion parities become single-qubit Pauli-Z
operators. Since the ground state originally has all the
emergent fermions frozen in the vacuum state, the qubits
associated with the red single-qubit Pauli-Z operators
will be transformed under CZf

2 ,x
to state |0〉, decoupled

from the rest of the system. The change of the stabilizer
generator corresponding to an emergent fermion parity
operator Wf on a pink A face is computed in Fig. 20(a).
One can also compute the change of the flux measuring
operators Fv in Fig. 20(c,d). One can recombine the re-
sults of the conjugation of the stabilizer generators under
the subcircuit CZf

2 ,x
in Fig. 20 to get a new set of stabi-

lizer generators shown in Fig. 19(c). For the transformed
state stabilized by the new set of stabilizer generators
shown in Fig. 19(c), we can see that, in addition to the |0〉
states to the left of the blue B faces corresponding to the
stabilizer generators equal to the red single-qubit Pauli-
Z operators, we also get disentangled qubits in the |+〉
states at the bottom of the blue B faces corresponding
to the stabilizer generators equal to the red single-qubit
Pauli-X operators. The red single-qubit Pauli-X opera-
tors are a result of the original emergent fermion parity
operators Wf acting on the blue B faces and the flux
measuring operators Fv with NE(v) being blue B faces.
The disentangled qubits are represented by the unfilled
circles in Fig. 19(b). For the remaining entangled qubits,
the stabilizer generators are colored in black in Fig. 19(c).
These are nothing but the emergent fermion parity oper-
ator Wf and flux measuring operator Fv defined on the
new horizontally elongated square lattice. If one follows
the algebra transformation carefully, one can find that
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2 ,x

FIG. 19. (a) The circuit C
Z

f
2 ,x

for a single step of horizontal

entanglement renormalization, which happens to be the same
as CZ2,x in Fig. 5(a). The filled circles represent qubits (spins)
constituting the toric code model. (b,c) The state of the sys-
tem after the circuit has been applied. Unfilled circles are the
qubits (spins) that have been disentangled by the circuit into
|0〉 and |+〉 states, as indicated by the labels in (b). (c) shows
the new stabilizer generators. The red single-site Z and X
generators stabilize the disentangled qubits, while the black
generators stabilize the pure Zf2 lattice gauge theory defined
on the new horizontally elongated square lattice. The deriva-
tion of the new stabilizer generators is presented in Fig. 20.

the new emergent fermion parity operator on the new
lattice composed of the remaining entangled qubits orig-
inally comes from the emergent fermion parity operator
of a pink A face together with the emergent fermion par-
ity operator of a blue B face next to it. In this case, since
all emergent fermionic modes of the ground state on the
original lattice are empty, the emergent fermion parity
operator on the new lattice takes eigenvalue one for the
transformed ground state.

A single step of vertical entanglement renormaliza-
tion is implemented by the subcircuit CZf

2 ,y
shown in

Fig. 21(a), which is the same as the subcircuit in Fig. 7.
We can perform analysis similar to horizontal entangle-
ment renormalization. After vertical entanglement renor-
malization, we obtain a new set of stabilizer generators
shown in Fig. 21(c) and computed by recombining the
results of the transformation of the old stabilizer gener-
ators in Fig. 22. The new generators in Fig. 21(c) are
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FIG. 20. Transformation of the stabilizer generators of
the pure Zf2 lattice gauge theory under conjugation by the
horizontal entanglement renormalization subcircuit C

Z
f
2 ,x

in

Fig. 19(a). (a)(b) Transformation of the emergent fermion
parity operators Wf . (c)(d) Transformation of the flux mea-
suring operators Fv. The new stabilizer group generated by
the operators on the right-hand sides of the subfigures is the
same as the stabilizer group generated by the operators in
Fig. 19(c). The red Pauli operators in the subfigures are the
red single-qubit stabilizer generators in Fig. 19(c) acting on
the disentangled qubits.

red single-qubit Pauli operators stabilizing the states |0〉
and |+〉 of disentangled qubits between and below blue
B faces and emergent fermion parity operators and flux
measuring operators (colored in black) with respect to
the new vertically elongated lattice defined by the re-
maining entangled qubits. The disentangled qubits are
represented by the unfilled circles in Fig. 21(b).

If we alternately apply the subcircuits CZf
2 ,x

and CZf
2 ,y

at different length scales labeled by s, we arrive at
the scale-invariant entanglement renormalization circuit
tower shown in Fig. 3. However, it contains only the
strictly-local circuit components Cs

Zf
2 ,x

and Cs
Zf

2 ,y
and still

does not have the quasi-local evolution and the auxiliary

circuit components. The ground state of the pure Zf2 lat-
tice gauge theory is a fixed-point wavefunction through-
out the whole scale-invariant entanglement renormaliza-
tion procedure.

B. MERAQLE for the lattice Ising TQFT

So far, we have not harnessed the full power of the
MERAQLE circuit as promised in Sec. I. We have only
used either the conventional MERA layers involving only
strictly local gates illustrated as Cs

Zf
2 ,x

(Cs
Zf

2 ,y
) for the

toric code in Sec. II B [88] and the pure Zf2 lattice gauge
theory in Sec. V A or the quasi-local evolution circuit
components illustrated as Csql, x (Csql, y) in Fig. 3 for the
entanglement renormalization of the lattice px+ipy topo-
logical superconductor in Sec. III B. We have not com-
bined the concept of MERA and the concept of quasi-
local evolution yet. In addition, the models we have
renormalized so far were either chiral but non-interacting
or interacting but non-chiral. Starting from this subsec-
tion, we are going to see the power of MERAQLE circuits
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(b)

FIG. 21. (a) The circuit C
Z

f
2 ,y

for a single step of vertical

entanglement renormalization, which happens to be the same
as CZ2,y in Fig. 7(a). The filled circles represent qubits (spins)
constituting the toric code model. (b,c) The state of the sys-
tem after the circuit has been applied. Unfilled circles are the
qubits (spins) that have been disentangled by the circuit into
|0〉 and |+〉 states, as indicated by the labels in (b). (c) shows
the new stabilizer generators. The red single-site Z and X
generators stabilize the disentangled qubits, while the black
generators stabilize the pure Zf2 lattice gauge theory defined
on the new vertically elongated square lattice. The derivation
of the new stabilizer generators is presented in Fig. 22.

to entanglement-renormalize interacting chiral models.

In this subsection, we describe the MERAQLE cir-
cuit for the lattice Ising TQFT model constructed in
Sec. IV C. We will formulate the subcircuit for a sin-
gle step of horizontal entanglement renormalization and
the subcircuit for a single step of vertical entanglement
renormalization separately. Our goal for a single step
of horizontal entanglement renormalization of the lattice
Ising TQFT is shown in Fig. 23(a). We aim to construct
a quantum circuit CIsing, x such that, when we apply it
to the ground state of the lattice Ising TQFT Hamil-
tonian HIsing TQFT in Eq. (33) under the zero-flux con-
dition Fv = 1, the subcircuit disentangles half of the
spins, effectively generating a horizontally coarse-grained
lattice with the size of the unit cells doubled horizon-
tally. Furthermore, the state becomes the ground state
of HIsing TQFT defined on the new (elongated) square lat-
tice under a new zero-flux condition. It means that we
again have an interpretation of emergent fermions defined
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FIG. 22. Transformation of the stabilizer generators of the
pure Zf2 lattice gauge theory under conjugation by the vertical
entanglement renormalization subcircuit C

Z
f
2 ,y

in Fig. 21(a).

(a)(b) Transformation of the emergent fermion parity opera-
tors Wf . (c)(d) Transformation of the flux measuring opera-
tors Fv. The new stabilizer group generated by the operators
on the right-hand sides of the subfigures is the same as the
stabilizer group generated by the operators in Fig. 21(c). The
red Pauli operators in the subfigures are the red single-qubit
stabilizer generators in Fig. 21(c) acting on the disentangled
qubits.

on the faces of the new lattice in the ground state of the
lattice px + ipy topological superconductor. Our goal of
a single step of vertical entanglement renormalization is
similarly shown in Fig. 23(b).

The central idea that we will use to realize this goal
is that, for our lattice construction of the Ising TQFT,
we have the dual interpretation in terms of emergent
fermions living on the faces and prepared in the lat-
tice px + ipy topological superconducting state with the

quantum Zf2 gauge field background containing no flux.
We will use as our inspiration the lessons learned in

Sec. V A for the pure Zf2 lattice gauge theory, which
is the bosonization of a trivial insulator. Specifically,
if we can empty half of the emergent fermion modes,
then we can disentangle half of the constituent spins cor-
responding to those empty modes using the subcircuits

CZf
2 ,x

and CZf
2 ,y

for the pure Zf2 lattice gauge theory.

This is expected because, intuitively, the area around the
emptied fermionic modes locally behaves like the ground

state of the pure Zf2 lattice gauge theory. To be mathe-
matically more precise, recall that, from the calculations
in Fig. 20(a) and Fig. 22(a), we know that, intuitively,
the emergent fermionic degrees of freedom in the empty
modes of the blue B faces can be shifted to the disen-
tangled qubits in state |0〉 on the left of the blue B faces
under CZf

2 ,x
or at the bottom of the blue B faces under

CZf
2 ,y

. Furthermore, from the zero-flux condition Fv = 1

with NE(v) being blue B faces and from the emptiness
of the emergent fermionic modes on the blue B faces,
through the calculations in Fig. 20(a,c) (Fig. 22(a,c)),
we deduced that the qubits sitting at the bottom (on the
left) of the blue B faces should be in the |+〉 state after
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FIG. 23. We aim to (a) horizontally and (b) vertically entanglement renormalize the Ising TQFT model. We want to design
subcircuits CIsing, x and CIsing, y such that we effectively have a new (elongated) square lattice with unit cells doubled in size
in the horizontal direction and the vertical direction, respectively. In the final state, the spins represented by unfilled circles
are disentangled spins in the |0〉 or |+〉 states. The remaining entangled spins of the final state represented by filled circles
form the edges of the new coarse-grained square lattice. In addition, we want to have the initial and the final spin state having
the interpretation of emergent fermions in the lattice px + ipy topological superconductor state. The details of the subcircuit
CIsing, x are provided in Fig. 24. The details of the subcircuit CIsing, y are provided in Fig. 25.

the circuit CZf
2 ,x

(CZf
2 ,y

). To achieve a similar goal for

the lattice Ising TQFT model, we here again introduce
an AB sublattice structure to the emergent fermions on
the faces of the lattice Ising TQFT model. The sublat-
tice structures for horizontal renormalization and vertical
renormalization are both shown on the left-hand sides
of the subfigures in Fig. 23. We require that the blue
B faces here play the same role as the blue B faces in

the pure Zf2 lattice gauge theory and want to disentan-
gle the spins to the left and at the bottom of the blue
B faces, as claimed in Fig. 23. Therefore, we need to
find a way to empty the emergent fermionic modes on
the blue B faces. However, the way to empty half of
the fermionic modes from a lattice px + ipy topological
superconductor is nothing but the quasi-adiabatic evolu-
tion we introduced in Sec. III B! Recall that the quasi-
adiabatic evolution empties the blue B fermionic modes
while keeping the remaining modes in the lattice px+ ipy
topological superconducting state. The only difference
between Sec. III B and the present section is that, in the
former, the fermions are the fundamental constituents,
whereas in the latter they serve as the emergent degrees
of freedom on the faces. Thus, we need to adapt the
quasi-adiabatic evolution from Sec. III B to the spin sys-

tem studied here. To construct the corresponding spin
circuit, we will use the bosonization duality, with the
zero-flux condition Fv = 1 as a hard constraint on the
spin side.

We first study the process that will horizontally
entanglement-renormalize the emergent px + ipy super-
conducting fermions. Here, we only want to work in the
zero-flux sector Fv = 1 and change only the emergent
fermion configuration, so, for our convenience, we tem-
porarily impose a hard zero-flux constraint on the Hilbert
space. Since there exists a gapped adiabatic process be-
tween the px + ipy superconductor Hamiltonians before
and after the coarse-graining process in Sec. III B, there
should also be a corresponding gapped adiabatic pro-
cess for spins under the zero-flux constraint by choosing
the interpolating spin Hamiltonian as the bosonization
of the interpolating fermionic Hamiltonian Hpx+ipy, x(λ)
in Eq. (11). The bosonization duality ensures that the
energy spectra on both sides are the same. With this
gapped adiabatic path, we are able to construct the
quasi-adiabatic quantum circuit that takes the ground
state of the bosonized px+ipy topological superconductor
Hamiltonian, i.e., HIsing TQFT in Eq. (33), to the ground
state of the bosonized Hamiltonian of the px+ ipy super-
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FIG. 24. The horizontal entanglement renormalization subcircuit CIsing, x is separated into two circuit components CIsing, x =
C
Z

f
2 ,x
Cbosonized
px+ipy,x . (a) The circuit component Cbosonized

px+ipy,x based on quasi-local evolution illustrated on the right of Fig. 2(a). It

can be written as the bosonization of the quantum circuit Cpx+ipy, x constructed in Sec. III B. The circuit component Cbosonized
px+ipy,x

takes the emergent fermions from a px + ipy topological superconductor state on both the pink A faces and the blue B faces to
the px + ipy topological superconductor state on the pink A faces only, leaving the blue B faces with empty emergent fermionic
modes. (b) The circuit component C

Z
f
2 ,x

, i.e. the horizontal entanglement renormalization subcircuit C
Z

f
2 ,x

described in Fig. 19.

Initially, the emergent fermionic modes on the blue B faces are empty and have fermion parity +1. After we apply the circuit
component C

Z
f
2 ,x

, the bottom and the left spins of the B faces become disentangled, as in Fig. 19(b). The disentangled spins are

shown as unfilled circles. The new lattice is defined by the remaining entangled qubits, represented by filled circles. Effectively,
we have larger faces horizontally. The state of the new emergent fermions on the new lattice will be the ground state of the
px + ipy topological superconductor.

conductor with active fermionic hoppings and pairings
on every other site horizontally. The resulting state is
nothing but the desired state with Fv = 1 and an al-
ternating pattern of pink A sites being in the px + ipy
topological superconducting state and blue B sites rep-
resenting empty emergent fermionic modes on the faces.
(Note that here we only entanglement-renormalize the
emergent fermionic modes. The underlying spins are still
entangled.)

To be mathematically more precise, the adiabatic
gapped path for spins with λ ∈ [0, 1] is described by the

interpolating spin Hamiltonian

Hbosonized
px+ipy, x(λ) ≡

{
Hpx+ipy, x(λ)

}bosonized
. (35)

We define the quasi-adiabatic circuit corresponding to
this gapped path of spins as Cbosonized

px+ipy, x
with the quasi-

adiabatic continuation operator given by

Dbosonized
px+ipy, x(λ) ≡ −i

∫ ∞
−∞

dt F (Egapt)×

e
iHbosonized

px+ipy, x(λ)t
∂λH

bosonized
px+ipy, x(λ) e

−iHbosonized
px+ipy, x(λ)t

. (36)

The quasi-adiabatic continuation operator is quasi-local
in the sense of Fig. 2. From the bosonization duality,
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FIG. 25. The vertical entanglement renormalization subcircuit CIsing, y is separated into two circuit components CIsing, y =
C
Z

f
2 ,y
Cbosonized
px+ipy,y . (a) The circuit component Cbosonized

px+ipy,y based on quasi-local evolution illustrated on the right of Fig. 2(a). It can

be written as the bosonization of the quantum circuit Cpx+ipy, y constructed in Sec. III B. The circuit component Cbosonized
px+ipy, y

takes the emergent fermions from a px + ipy topological superconductor state on both the pink A faces and the blue B faces
to the px + ipy topological superconductor state on the pink A faces only, leaving blue B faces with empty emergent fermionic
modes. (b) The circuit component C

Z
f
2 ,y

, i.e. the vertical entanglement renormalization subcircuit C
Z

f
2 ,y

described in Fig. 21.

Initially, the emergent fermionic modes on the blue B faces are empty and have fermion parity +1. After we apply the circuit
C
Z

f
2 ,y

, the bottom and the left spins of the blue B faces become disentangled, as in Fig. 21(b). The disentangled spins are

shown as unfilled circles. The new lattice is defined by the remaining entangled qubits, represented by filled circles. Effectively,
we have larger faces vertically. The state of the new emergent fermions on the new lattice will be the ground state of the
px + ipy topological superconductor.

the quasi-adiabatic circuit is just the bosonization of the
unitary operator Cpx+ipy, x

discussed in Sec. III B (with

the layer number s superscript dropped):

Cbosonized
px+ipy, x =

{
Cpx+ipy, x

}bosonized

. (37)

We constructed the circuit Cbosonized
px+ipy, x

under the zero-

flux constraint. However, as we mentioned before, the
actual spin Hilbert space, composed of a tensor product
of spins, does not inherently have the zero-flux constraint
[89]. The constraint is a convenient tool for deriving the
desired circuit using the bosonization duality. One might

ask whether the circuit constructed here is not a unitary
operator if the zero-flux constraint is lifted. In general, an
operator being unitary under a constraint does not neces-
sarily imply that it remains unitary when the constraint
is lifted. However, in our case, this is still true. This is
because the operator generating the circuit described in
Eq. (36) remains Hermitian even in the absence of the
zero-flux constraint since the bosonization mapping de-
scribed in Fig. 16 preserves Hermiticity of operators.

Using a similar construction, we can obtain a quasi-
adiabatic circuit Cbosonized

px+ipy, y
for vertical entanglement

renormalization of the emergent px + ipy topologi-
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cal superconducting fermions by directly bosonizing
the fermionic quasi-adiabatic unitary operator Cpx+ipy, y

for entanglement renormalization in the y direction in
Sec. III B.

Experimentally, instead of using the quasi-adiabatic
circuit, we can implement the adiabatic evolution itself
over a long but finite time period and incur an error. In
that case, instead of having the zero-flux constraint, we
can add back the flux penalty Hamiltonian HF

penalty with
a strong enough flux energy parameter ∆Φ such that the
vortices are gapped along the entire path of interpolating
Hamiltonians and Fv = 1 is satisfied for their ground
states. At the same time, we would like to keep ∆Φ

small enough to be experimentally realizable [90].

As we claimed above, the situation of the unoccu-
pancy of the blue B faces subsequent to the applica-
tion of Cbosonized

px+ipy, x
(Cbosonized
px+ipy, y

) is similar to blue B faces

of the ground state of the trivial fermionic insulator
Htrivial insulator, which in turn is the state of the emer-

gent fermions in the pure Zf2 lattice gauge theory de-
scribed by HZf

2
. It is therefore tempting to apply the

MERA subcircuits CZf
2 ,x

and CZf
2 ,y

used for the pure Zf2
lattice gauge theory in Sec. V A as our next step of the
entanglement renormalization procedure to disentangle
the qubits on the left and at the bottom of the blue B
faces. We now confirm that CZf

2 ,x
and CZf

2 ,y
are indeed

the right circuits. Notice that the emptiness of the blue
B faces guarantees that the ground state is stabilized
by the emergent fermion parity operator Wf on the blue
B faces. In addition, the ground state is stabilized by
all the flux measuring operators Fv: Fv = 1. Hence,
we can use the transformation of the stabilizer gener-
ators shown in Fig. 20(a,c,d) and Fig. 22(a,c,d)for the

case of the pure Zf2 lattice gauge theory to deduce how
the ground state transforms in the present case. Putting
together the results of the transformations in Fig. 20(a,c)
and Fig. 22(a,c), we find that the red single-qubit Pauli
operators in Fig. 19(c) and Fig. 21(c) are again stabilizer
generators in the present case. These single-qubit Pauli
operators require again that the qubits on the left and
at the bottom of the B faces are disentangled into the
|0〉 and |+〉 states, as claimed in Fig. 23. Here, the re-
maining entangled qubits form a new (elongated) square
lattice with qubits defined on the edges. By following
the transformation of the flux measuring operators in
Fig. 20(d) and Fig. 22(d), we obtain new flux measuring
operators defined on the new elongated square lattice up
to single-qubit Pauli operators colored in red. Since those
single-qubit Pauli operators are already stabilizer gener-
ators, we can safely remove them and conclude that the
new flux measuring operators are indeed stabilizer gen-
erators.

Having obtained, as a result of horizontal entanglement
renormalization, a spin model for the remaining spins de-
fined on a new coarse-grained (elongated) square lattice,
let us reinterpret this model in the dual picture consist-

ing of fermions coupled to a Zf2 gauge field. We again

iγ γ′ σx

iγ

γ′ 

−iγγ′ 

No Gauss’s Law

X
Z Z

Z Z
Z

X
Z

Z

σx

σz

−iγγ′ 

σzσz σzσz
= 1Gauss’s Law:

Fermions +  Gauge FieldZf
2 Spin-1/2 System

(a) (b)

FIG. 26. The edge orientation assignments and the cor-
responding algebra isomorphism between (a) the theory of

fermions coupled to a Zf2 gauge field and (b) the theory of
spins for the new horizontally coarse-grained lattice. After the
horizontal entanglement renormalization circuit component
C
Z

f
2 ,x

, some spins are disentangled, as shown in Fig. 23(a). We

associate edge orientation assignments with the new lattice
edges formed by the remaining spins. Compared to Fig. 12,
the lattice is elongated horizontally. We intentionally put the
operators on the horizontal edges to the left of the midpoint
to remember the original positions of the corresponding spins
on the old lattice before coarse-graining.

assign edge orientations to the new coarse-grained lat-
tice system, where all horizontal edges are oriented east,
and all vertical edges are all oriented north. These edge
orientation assignments are shown in Fig. 26, where the
emergent fermionic modes live on the new horizontally

elongated faces and the Zf2 gauge variables live on the
edges of the new horizontally elongated lattice. The ex-
istence of the new flux-measuring operators as stabilizer
generators indicates that the new state satisfies the new
zero-flux condition on the coarse-grained lattice, which
allows us to define an associated new bosonization dual-
ity between pure fermions and pure spins for the coarse-
grained lattice as shown in Fig. 27, provided that we im-
pose the new zero-flux constraint Fv = 1 on the spin side.
The edge orientation assignments and the bosonization
duality under the new zero-flux constraint of the verti-
cally coarse-grained square lattice can be drawn similarly.
So, what is the behavior of the fermions of the horizon-
tally coarse-grained lattice in Fig. 26 or Fig. 27 and the
behavior of the fermions of the vertically coarse-grained
lattice? Since our goal is to have horizontal and vertical
entanglement renormalization subcircuits with the lat-
tice Ising TQFT ground state as a fixed-point wavefunc-
tion, we hope that the emergent fermions defined on the
new faces of the horizontally or vertically coarse-grained
lattice are still in the lattice px + ipy topological super-
conducting state. In Appendix B, we show that this is
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FIG. 27. Here we have a new bosonization duality between (a)
the pure fermionic theory and (b) the pure spin theory on the
new horizontally coarse-grained (elongated) square lattice by
imposing a new zero-flux constraint Fv = 1 on the spin side.
The fermions live on the horizontally elongated faces of the
coarse-grained square lattice, while the spins live on its edges.

indeed the case. In fact, Appendix B shows a stronger
statement. There, we show that, with the AB sublat-
tice structure on the faces of the original square lattice,
whether horizontal or vertical, if the emergent fermionic
modes on the blue B faces are empty, and if the zero-
flux condition Fv = 1 is satisfied, the emergent fermion
on a given elongated face of the new lattice will be just
the original emergent fermion on the pink A face of the
old square lattice enclosed by that elongated face. Ef-
fectively, we can say that the coarse-graining operation
CZf

2 ,x
(CZf

2 ,y
) makes the blue B faces disappear and elon-

gates the pink A faces. Figuratively speaking, the pink
A faces “consume” the blue B faces [91]. Since, before
the application of CZf

2 ,x
(CZf

2 ,y
), the emergent fermions on

the pink A faces are in the lattice px+ ipy topological su-
perconducting state, the final emergent fermionic modes
on the faces of the new elongated lattice are also in the
lattice px + ipy topological superconducting state.

To summarize, the subcircuit CIsing, x for a single
step of horizontal entanglement renormalization of the
lattice Ising TQFT model is composed of two circuit
components, CIsing, x = CZf

2 ,x
Cbosonized
px+ipy,x

, whereas the

vertical counterpart CIsing, y is composed of CIsing, y =
CZf

2 ,y
Cbosonized
px+ipy,y

. The entanglement renormalization sub-

circuits are schematically shown in Fig. 24 and Fig. 25.
Roughly speaking, the reason why the subcircuits have
such decompositions is that the bosonic spin model
HIsing TQFT is dual to superconducting fermions in the

Zf2 gauge field with no flux. Thus, in hindsight, it is nat-
ural to have separate circuit components related to the

fermions and to the Zf2 gauge field.

The whole MERAQLE circuit will be a repeated appli-

cation of the circuits CIsing, x and CIsing, y. We disentangle
half of the spins each time when we apply either CIsing, x

or CIsing, y. To formalize this construction, we use s ∈ N
as a label for the scale (more precisely, the logarithm of
the length scale) at which the system resides. Then the
whole circuit can be written as

CIsing =
∏
s∈N

(
CsIsing, y CsIsing, x

)
. (38)

Therefore, we obtain a scale-invariant entanglement
renormalization circuit for the lattice Ising TQFT sys-
tem, which has intrinsic chiral topological order. The
whole entanglement renormalization circuit CIsing follows
the structure shown in Fig. 3. The quasi-local evolu-
tion circuit components Csql, x and Csql, y are Cbosonized

px+ipy, x
and

Cbosonized
px+ipy, y

, respectively; the auxiliary circuit components

are trivial here, Csaux, x = Csaux, y = I.
It is worth noting that, much like its dual px + ipy

topological superconductor in Sec. III, the ground state
of the lattice Ising TQFT Hamiltonian does not have a
zero correlation length. However, this ground state nev-
ertheless serves as the fixed-point wavefunction of the
MERAQLE circuit we constructed. This is enabled by
the quasi-locality of the MERAQLE circuit which in-
creases the range of correlations reduced by the lattice
coarse-graining procedure.

C. MERAQLE for all the sixteenfold way chiral
spin liquids

Having discussed entanglement renormalization of the
lattice Ising TQFT as the simplest demonstration of the
power of MERA with quasi-local evolution to renormal-
ize interacting chiral topologically ordered states, we are
now ready to present the MERAQLE circuits for all Ki-
taev’s sixteenfold way chiral spin liquids introduced in
Sec. IV D.

Recall that Kitaev’s sixteenfold way chiral spin liq-
uids can be constructed by bosonizing a stack of triv-
ial fermionic insulators and lattice px + ipy topological
superconductors under the zero-flux condition. Hence,
the MERAQLE circuits for these chiral spin liquids will
be generalizations of the MERAQLE circuit [Sec. V A]

for the pure Zf2 lattice gauge theory as the bosonized
trivial fermionic insulator and of the MERAQLE circuit
[Sec. V B] for the lattice Ising TQFT as the bosonized lat-
tice px+ipy topological superconductor. Our goal, shown
in Fig. 28, is to realize single steps of entanglement renor-
malization of the ν-th chiral spin liquid horizontally and
vertically. Similar to Sec. V B, in order to ensure that the
chiral spin liquid is a fixed-point wavefunction, we want
to find coarse-graining operations that disentangle half of
the spins and leave the remaining spins in the same chi-
ral spin liquid state defined on a new elongated square
lattice. For the new elongated square lattice, we have
a redefinition of how the spins are associated with the
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FIG. 28. Subfigure (a) shows a single step, Cν, x, of horizontal entanglement renormalization of the ν-th Kitaev’s sixteenfold
way chiral spin liquid. Subfigure (b) shows a single step, Cν, y, of vertical entanglement renormalization of the ν-th Kitaev’s
sixteenfold way chiral spin liquid. After a single step of horizontal or vertical renormalization, half of the spins are disentangled
into states |0〉 or |+〉. The disentangled spins are represented by unfilled circles. After renormalization, the faces of the square
lattice are elongated horizontally or vertically and are defined by the remaining entangled spins represented by the filled circles.
The remaining spins forming the new elongated square lattice are again in the same Kitaev’s sixteenfold way chiral spin liquid
state. The primed emergent fermion layer numbers mark emergent fermionic modes to be disentangled and removed by the
renormalization. We also use dimmer colors on primed faces to further distinguish them from other (unprimed) faces within the
same emergent fermion layer. The subcircuit Cν, x for horizontal entanglement renormalization is described in detail in Fig. 29,
while the subcircuit Cν, y for vertical entanglement renormalization is described in detail in Fig. 30.

edges such that the face lengths are doubled horizontally
or vertically. For the horizontally coarse-grained lattice,

the dual picture of fermions coupled to a Zf2 gauge field
is defined by the new duality mapping through the new
edge orientation assignments depicted in Fig. 26. The
dual picture for vertically coarse-grained lattice is de-
fined similarly. After horizontal or vertical renormaliza-
tion, the emergent fermions live on the newly defined
elongated faces.

Let us now describe this procedure in more detail. As
in Sec. V B, we start with the observation that, if some of
the emergent fermionic modes on the faces were empty,
then some of the spins on the edges adjacent to these
fermionic modes would behave like the ground state of

the pure Zf2 lattice gauge theory. This means that we
can apply the quantum circuit CZf

2 ,x
or CZf

2 ,y
, initially

designed for the pure Zf2 lattice gauge theory, to disen-
tangle these spins. Hence, we can directly apply circuits
CZf

2 ,x
or CZf

2 ,y
to disentangle some of the spins bordering

half of the faces associated with trivial fermionic insulator
layers. On the other hand, for fermionic modes associ-
ated with each px+ ipy topological superconductor layer,

as in Sec. V B, we make use of the quasi-adiabatic evolu-
tion circuit developed in Sec. III B to get a renormalized
state with half of the emergent fermionic modes empty, at
which point we can again disentangle half of the adjacent
spins. Therefore, as shown at the top of Fig. 28(a,b), we
introduce a sublattice structure for each layer of emer-
gent fermions, including the layers with emergent trivial
insulators. To avoid clutter associated with A and B
symbols, we instead use the prime symbol and dimmer
colors (instead of label B) to label the fermionic modes
to be emptied and removed. We do this for all sixteen
fermionic layers, independently of whether a given layer
is associated with a superconductor or a trivial insulator.

We now work out more precisely the interpolating spin
Hamiltonian for emptying half of the fermionic modes
associated with superconductor layers. We first consider
the (quasi-)adiabatic evolution for horizontal entangle-
ment renormalization. As before, since we want to work
in the zero-flux sector, we impose the zero-flux condition
Fv = 1 as a hard constraint on the spin system. Adapt-
ing the notation in Sec. IV D, we start by writing down
an interpolating fermionic Hamiltonian for 16 layers of
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fermions:

Hνf , x(λ) =

=

ν∑
i=1

Hi, px+ipy, x(λ) +

16∑
i=ν+1

Hi, trivial insulator (39)

with λ ∈ [0, 1]. For each fermion layer i = 1, · · · , ν,
Hi, px+ipy, x(λ) is nothing but the original Hpx+ipy, x(λ)
in Eq. (11), where the A and B labels are now replaced
by the absence and presence of the prime symbol, respec-
tively. For the layers i = ν+1, · · · , 16 with trivial insula-
tor Hamiltonians, we also impose horizontally alternating
patterns of fermionic modes labeled by the absence and
presence of the prime symbol. Therefore, we can express
the trivial insulator Hamiltonians as

Hi, trivial insulator =

= −
∑
r

[
(1− 2c†i, rci, r) + (1− 2c′†i, rc

′
i, r)
]
. (40)

The Hamiltonian Hνf , x(λ) is periodic in r. For
each r, we have a unit cell of 16 (number of layers) ×
2 (with and without prime symbols) = 32 fermionic sites.
Notice that the trivial insulator part of the Hamiltonian
does not depend on the parameter λ. The gap of Hf

ν, x(λ)
is guaranteed by the gap of each individual term. For the
initial state of ν layers of lattice px + ipy topological su-
perconducting states and 16−ν layers of trivial insulating
states, after the adiabatic evolution under Hνf , x(λ), the
primed fermionic modes of the superconducting layers are
emptied. Note that the primed fermionic modes of the
trivial insulating layers are empty throughout the whole
adiabatic evolution.

Under the zero-flux constraint, the interpolating spin
Hamiltonian for the ν-th Kitaev’s sixteenfold way chiral
spin liquid is then given by

Hbosonized
νf , x (λ) ≡

{
Hνf , x(λ)

}bosonized
. (41)

The spin operator
{
Hνf , x(λ)

}bosonized
is the bosoniza-

tion of the fermionic Hermitian operator Hνf , x(λ) with
respect to the square lattice shown in Fig. 29(a).

Similar to the adiabatic evolution for lattice Ising
TQFT in Sec. V B, due to the bosonization duality, the
gap of the interpolating spin Hamiltonian is guaranteed
by the existence of the gap in the fermionic Hamilto-
nian Hνf , x(λ). As a consequence, if we were to imple-

ment the adiabatic evolution given by Hbosonized
νf , x (λ), we

would have emptied the emergent fermionic modes on all
the primed faces, which corresponds to setting emergent
fermion parity operators on these faces to Wf = 1.

Having derived the gapped Hamiltonian path, we can
use Eqs. (12, 13) to write down the quasi-adiabatic cir-
cuits on both the fermionic side and the spin side. The
quasi-adiabatic circuit for the i-th layer of supercon-
ducting fermions Ci, px+ipy, x

is generated by the quasi-

adiabatic continuation operator Di, px+ipy, x(λ) obtained

by replacing H(λ) → Hi, px+ipy, x(λ) in Eq. (13). Sim-
ilarly, the quasi-adiabatic continuation operator on the
spin side Dbosonized

νf , x (λ) is defined by replacing H(λ) →
Hbosonized
νf , x (λ) in Eq. (13). The corresponding quasi-

adiabatic circuit, defined as the time evolution under
Dbosonized
νf , x (λ) for λ from 0 to 1, is Cbosonized

νf , x . Since the

bosonizations of the interpolating fermionic Hamiltonian
for each of the 16 layers commute with each other and
with the zero-flux constraint, following an argument sim-
ilar to the one from Eq. (35) to Eq. (37) in Sec. V B, we
can simplify the expression for Cbosonized

νf , x by writing it in

terms of the fermionic quasi-adiabatic circuits Ci, px+ipy, x

for the different fermion layers labeled by i:

Cbosonized
νf , x =

ν∏
i=1

{
Ci, px+ipy, x

}bosonized

, (42)

where the ordering of the product does not matter
since all the factors commute. Because we flattened
sixteen layers of fermions into a single square lattice,

the bosonized unitary operator
{
Ci, px+ipy, x

}bosonized

in-

volves Wilson lines that cross other colors (i.e. lay-
ers) to connect neighboring faces of the same color (i.e.
layer). The circuit Cbosonized

νf , x is schematically illustrated

in Fig. 29(a). From Eq. (42), we see that Cbosonized
νf , x is

quasi-local in the sense of Fig. 2. As in Sec. V B, no-
tice that the zero-flux constraint commutes with all spin
Hamiltonians obtained by bosonizing fermionic Hamilto-
nians. This means that the spin Hamiltonians we have
derived and the resulting renormalization circuits are in-
dependent of the presence of the constraint. Topologi-
cally, after the application of the quasi-adiabatic circuit,
the spin system without the constraint is still in the same
Kitaev’s sixteenfold way spin liquid phase but with ad-
ditional emergent fermions in the vacuum state.

The interpolating spin Hamiltonian Hbosonized
νf , y (λ) and

the quasi-adiabatic circuit Cbosonized
νf , y in the vertical di-

rection can be constructed in the same way. The circuit
Cbosonized
νf , y is schematically shown in Fig. 30(a).

We are almost ready to apply CZf
2 ,x

or CZf
2 ,y

to disen-

tangle half of the spins. However, looking more closely
at the entanglement structure that CZf

2 ,x
or CZf

2 ,y
can

renormalize—and by following the corresponding stabi-
lizer transformations in Fig. 20(a,c,d) and Fig. 22(a,c,d)
as well as the spin disentangling arguments in Sec. V A

for the pure Zf2 lattice gauge theory and Sec. V B for the
lattice Ising TQFT—we realize that we need to first pre-
pare an entanglement pattern that has an empty emer-
gent fermionic modes on every other face horizontally or
vertically. Making the primed sites empty by applying
Cbosonized
νf , x and Cbosonized

νf , y does not produce such an entan-

glement structure. The solution is to shuffle the emergent
fermionic modes after performing the quasi-adiabatic cir-
cuits. As shown in Fig. 29(b) (Fig. 30(b)), we want to
shuffle the modes such that we get an alternating pattern
of unprime-prime columns (rows) for horizontal (vertical)
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Cbosonized
⌫f , x

FIG. 29. The horizontal entanglement renormalization subcircuit Cν, x for the ν-th Kitaev’s sixteenfold way chiral spin liquid
can be decomposed into three circuit components: Cν, x ≡ CZf

2 ,x
Cbosonized
ν, shuffle, xCbosonized

νf , x . Faces with dimmer colors and primed

number labels indicate fermionic modes decoupled or waiting to be decoupled from the rest of the emergent fermions. These
primed (and dimly colored) faces play a role similar to the role of blue B faces in Fig. 23. (a) The circuit component Cbosonized

νf , x .

The bosonization of a fermionic quantum circuit composed of quasi-adiabatic circuits (constructed in Sec. III B) for ν layers of
lattice px + ipy topological superconductors to renormalize them horizontally. After the circuit component Cbosonized

νf , x , all the
emergent fermionic modes on the primed faces are empty and therefore disentangled from the rest of the emergent fermionic
system. The circuit is quasi-local in the sense of Fig. 2. (b) The circuit component Cν, shuffle, x. We perform a series of{

SWAPfi, j

}bosonized

gates to shuffle the emergent fermionic degrees of freedom. This circuit component is independent of ν.

(d) The circuit component C
Z

f
2 ,x

. This strictly-local circuit is the same as the circuit in Fig. 5 and Fig. 19. The disentangled

spins are drawn as unfilled circles.

entanglement renormalization. In addition, we require
that primed faces immediately to the right of (above) to
unprimed faces should be in the same emergent layers for
horizontal (vertical) entanglement renormalization. By
doing so, we arrive at the desired emergent empty mode
structure on every other horizontal or vertical face.

To realize the shuffling operation Cbosonized
ν, shuffle, x, we first

note that, if we want to swap two fermionic labeled by
i and j, we can use the following fermionic swap gate
[92–94]:

SWAPfi, j = 1 + c†i cj + c†jci − c†i ci − c†jcj . (43)

The fermionic swap gate is both unitary and Hermitian.
It satisfies the property that

SWAPfi, j ci SWAPfi, j = cj ,

SWAPfi, j cj SWAPfi, j = ci. (44)

With this gate applied multiple times for different pairs of
fermion sites, we can achieve an arbitrary permutation of
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FIG. 30. The vertical entanglement renormalization subcircuit Cν, y for the ν-th Kitaev’s sixteenfold way chiral spin liquid
can be decomposed into three circuit components: Cν, y ≡ CZf

2 ,y
Cbosonized
ν, shuffle, yCbosonized

νf , y . Faces with dimmer colors and primed

number labels indicate fermionic modes decoupled or waiting to be decoupled from the rest of the emergent fermions. These
primed (and dimly colored) faces play a role similar to the role of blue B faces in Fig. 23. (a) The circuit component Cbosonized

νf , y .

The bosonization of a fermionic quantum circuit composed of quasi-adiabatic circuits (constructed in Sec. III B) for ν layers
of lattice px + ipy topological superconductors to renormalize them vertically. After the circuit component Cbosonized

νf , y , all the
emergent fermionic modes on the primed faces are empty and therefore disentangled from the rest of the emergent fermionic
system. The circuit is quasi-local in the sense of Fig. 2. (b) The circuit component Cν, shuffle, y. We perform a series of{

SWAPfi, j

}bosonized

gates to shuffle the emergent fermionic degrees of freedom. This circuit component is independent of ν.

(d) The circuit component C
Z

f
2 ,y

. This strictly-local circuit is the same as the circuit in Fig. 7 and Fig. 21. The disentangled

spins are drawn as unfilled circles.

the fermionic degrees of freedom. However, the fermions
in our case are emergent, so we have to bosonize the swap

gates
{

SWAPfi, j

}bosonized

. It can be shown that the spin

operator
{

SWAPfi, j

}bosonized

is both unitary and hermi-

tian regardless of the presence of the zero-flux constraint
Fv = 1.

We now use the
{

SWAPfi, j

}bosonized

gates constructed

above to shuffle the fermionic degrees of freedom. As we
have already mentioned above, the horizontal Cbosonized

ν, shuffle, x

and vertical Cbosonized
ν, shuffle, y shuffling operations for the emer-

gent fermions are shown in Fig. 29(b) and Fig. 30(b),
respectively. The shuffling operation puts next to each
other the primed and unprimed faces belonging to the
same fermionic layer i and the same enlarged unit cell r.

Now we can apply CZf
2 ,x

and CZf
2 ,y

. We again use

the stabilizer transformation shown in Fig. 20(a,c,d) and
Fig. 22(a,c,d). From the Wf = 1 condition on the primed
faces and the zero-flux condition on every vertex, we see
that half of the spins disentangle, as shown by the unfilled
circles in the bottom plots of Fig. 29(c) and Fig. 30(c).
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This achieves our goal indicated in the bottom plots of
Fig. 28. Roughly speaking, the empty fermionic modes
on the primed faces are shifted to the qubits labeled by
unfilled circles and red state labels 0 since the fermion
parity operators Wf are transformed into single-qubit
Pauli-Z operators on these qubits under CZf

2 ,x
and CZf

2 ,y
.

In addition, the transformation of the zero-flux condition
Fv = 1, with NE(v) being a primed face, together with
the single-qubit Pauli-Z operators, leads to single-qubit
Pauli-X operators on the qubits at the bottom of primed
faces.

However, we here encounter a problem similar to the
one in the previous subsection. It is not obvious whether
the remaining entangled spins on the new lattice are still
in the ν-th Kitaev’s sixteenfold way chiral spin liquid
after CZf

2 ,x
or CZf

2 ,y
. Note that we can make edge ori-

entation assignments, like the ones shown in Fig. 26, for
the new elongated square lattice for the purpose of dual-
izing the spin theory to a theory of fermions coupled to a

Zf2 gauge field. Even though the dual gauge flux is zero
everywhere (as can be seen from the transformation of
stabilizer generators), the dual fermions might not cor-
respond to ν layers of lattice px + ipy topological super-
conductors and 16 − ν layers of trivial insulators. Once
again, this issue is addressed in Appendix B. There, we
show that, with the alternating pattern of primed faces
being in the emergent empty modes, under the circuit
CZf

2 ,x
and CZf

2 ,y
, the primed faces effectively disappear,

while the unprimed faces become larger by consuming
the original space occupied by the primed faces. This
is also reflected in Fig. 29(c) and Fig. 30(c). Since, be-
fore CZf

2 ,x
and CZf

2 ,y
, the unprimed faces are in the ν-

th Kitaev’s sixteenfold way chiral spin liquid following
Cbosonized
νf , x and Cbosonized

νf , y , and since the shuffling oper-

ations Cbosonized
ν, shuffle, x and Cbosonized

ν, shuffle, y respect this structure,
we can conclude that the final state is indeed the ν-th
Kitaev’s sixteenfold way chiral spin liquid. Hence, the
subcircuit for a single step of horizontal entanglement
renormalization of the ν-th Kitaev’s sixteenfold way chi-
ral spin liquid is Cν, x ≡ CZf

2 ,x
Cbosonized
ν, shuffle, xCbosonized

νf , x . Sim-

ilarly, the vertical entanglement renormalization subcir-
cuit is Cν, y ≡ CZf

2 ,y
Cbosonized
ν, shuffle, yCbosonized

νf , y .

Finally, we can write down the entire scale-invariant
entanglement renormalization circuit. It consists of suc-
cessive applications of the same quantum subcircuits Cν, x
and Cν, y but at different length scales. If we use an addi-
tional superscript s ∈ N to label the scale at which those
subcircuits operate, the full circuit is

Cν =
∏
s∈N

(
Csν, y Csν, x

)
. (45)

The ν-th Kitaev’s sixteenfold way chiral spin liquid is
a fixed-point wavefunction of this circuit. The ap-
plication of a single layer of the MERAQLE circuit(
Csν, x Csν, y

)
disentangles 3/4 of the original spins and

leaves the remaining 1/4 of the spins in the same ν-
th Kitaev’s sixteenfold way chiral spin liquid but on a

lattice with the unit cell length twice the size of the
original one. The circuit has the structure displayed in
Fig. 3: the quasi-local evolution circuit component Csql, x

is Cbosonized
νf , x ; the auxiliary circuit component Csaux, x is

the shuffling circuit Cbosonized
ν, shuffle, x consisting of strictly local

gates
{

SWAPfi, j

}bosonized

; the circuit component Cs
Zf

2 ,x
is

the strictly-local subcircuit CZf
2 ,x

for the pure Zf2 lattice

gauge theory. We can see the corresponding structure for
Csql, y, Csaux, y, and Cs

Zf
2 ,y

in the vertical direction as well.

Here, we finally see the full power of the MERAQLE
framework for chiral spin liquids with nonzero finite cor-
relation lengths. Due to its quasi-local evolution circuit
components, we circumvent the correlation-length-based
no-go argument for conventional MERA circuits.

VI. CONCLUSIONS

In this paper, we solved the problem of finding scale-
invariant entanglement renormalization circuits for inter-
acting chiral topological states. We presented a new type
of quantum circuit called MERAQLE to renormalize the
entanglement structure of several chiral spin liquids be-
longing to Kitaev’s sixteenfold way classification. Even
though the chiral topological states we considered have
nonzero finite correlation lengths and thus cannot be
fixed-point wavefunctions of conventional scale-invariant
MERA circuits, by inserting continuous time evolutions
generated by time-dependent quasi-local Hamiltonians
into the skeletons of conventional MERA circuits, we are
able to overcome this issue. The reason is that quasi-
local evolution can generate correlations between distant
sites, and the conventional wisdom of correlation length
reduction `′ = `/b, b > 1 for each layer of entangle-
ment renormalization with strictly-local discrete gates no
longer applies here. In other words, coarse-graining op-
erations involving quasi-local evolutions are capable of
preserving correlation lengths. It is interesting to see
that the distinction between a quantum circuit based on
strictly-local gates and one also equipped with quasi-local
evolutions can be profound. Our analysis demonstrates
that the locality constraint of a quantum circuit can be
subtle, and requiring a circuit to respect strict locality or
quasi-locality could have a significant difference.

We can also rephrase our result in the quantum com-
puting language. Recall that we can define a quantum
complexity class for a set of tasks that can be accom-
plished with access to a set of quantum operations and a
certain amount of computational resources [55, 95]. The
tasks we care about here are preparing large-scale en-
tangled quantum states [96–99] by incorporating fresh
ancillary qubits under the condition that the states must
be fixed-point wavefunctions throughout certain scale-
invariant procedures. Therefore, in this terminology, if
we define locality with respect to the (coarse-grained)
lattice of each layer, then we conclude that our result
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separates the complexity class with access to strictly lo-
cal quantum gates and quasi-local Hamiltonians from the
complexity class with access to strictly local quantum
gates only, provided that every layer of the scale-invariant
procedures has a constant depth. This is because prepar-
ing sixteenfold way chiral spin liquids can not be done
with constant depth in each layer solely using the latter
set of quantum operations.

Our result also offers a new perspective on chiral topo-
logical order. Chiral topologically ordered states are
interesting since they have different topological prop-
erties as compared to non-chiral topologically ordered
states. For example, chiral topologically ordered states
can have framing anomalies [100] and gapless bound-
ary modes [73]. Also, because of these features, when
compared to non-chiral topologically ordered states, we
so far do not have many analytical tools to study the
entanglement structures of chiral topologically ordered
states on lattices [101]. Our analytical work of construct-
ing exact state preparation quantum circuits adds an
important cornerstone to the study of quantum many-
body behavior of chiral topological order. It is worth
mentioning a related demonstration of the existence of
locally-commuting parent Hamiltonians for chiral U(1)
symmetry-protected topological states (no anyons) using
infinite-dimensional on-site Hilbert spaces [102], which
evades the no-go theorem in Ref. [47]. In comparison
with their result, our MERAQLE circuits give fixed-point
wavefunctions for intrinsic chiral topological states with
a finite-dimensional Hilbert space on each site.

In this paper, we focused on constructing quantum cir-
cuits for states within Kitaev’s sixteenfold way classifica-
tion on square lattices, which is in contrast with other
circuit constructions involving also mid-circuit measure-
ments and feedback [103]. While we focused on the case
of a square lattice, we expect our approach to be imme-
diately generalizable to other lattices, including the hon-
eycomb lattice [51, 85, 86, 104–106]. It is an open ques-
tion whether we can use the MERAQLE framework to
produce a chiral topological state outside the sixteenfold
way classification. With an eye towards topological quan-
tum computing, it would be useful to have entanglement
renormalization circuits for chiral models with the ability
to perform braiding-based universal quantum computa-
tion, such as many Read-Rezayi fractional quantum Hall
states [107–109]. On the practical side, it is also inter-
esting to develop implementations of our scheme in the
Noisy Intermediate-Scale Quantum (NISQ) era [110] for
preparing chiral topological states in synthetic quantum
matter, where non-chiral Z2 spin liquid states have al-
ready been prepared using superconducting qubit quan-
tum processors [111] and Rydberg atom arrays [19, 36].
We leave these questions to our future work.
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Appendix A: Details of quasi-adiabatic evolution

In this appendix, we offer a detailed introduction to
quasi-adiabatic evolution.

Traditionally, if there is a gapped path between the
initial Hamiltonian and the final Hamiltonian, the adi-
abatic theorem dictates that, starting from the ground
state of the initial Hamiltonian, we can reach the ground
state of the final Hamiltonian with an arbitrarily small er-
ror provided that the adiabatic evolution is slow enough.
However, for practical purposes, it is convenient to be
able to implement the adiabatic process faster without
introducing too much error.

The idea of quasi-adiabatic evolution solves this prob-
lem. For an adiabatic gapped path H(λ) parameterized
by λ, we can use the quasi-adiabatic continuation oper-
ator to take the ground state of the initial Hamiltonian
H(λ = 0) to the ground state of the final Hamiltonian
H(λ = 1) exactly in finite time. We define the quasi-
adiabatic continuation operator as [61–63]

D(λ) = −i
∫ ∞
−∞

dt F (Egapt)·

exp (iH(λ)t) ∂λH(λ) exp (−iH(λ)t) .
(A1)

The parameter Egap is chosen to be the smallest en-
ergy gap of the Hamiltonian H(λ) along the adiabatic
gapped path. The function F (t) satisfies the follow-

ing condition: its Fourier transform F̃ (ω) is an odd

function and decays as F̃ (ω) = −1/ω when |ω| ≥ 1.
Our continuous Fourier transform and inverse Fourier
transform conventions are F̃ (ω) =

∫∞
−∞ dt F (t)eiωt, and

F (t) = 1
2π

∫∞
−∞ dω F̃ (ω)e−iωt. The function F (t) is con-

structed as follows [62, 112]. Given a monotonically
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decreasing positive function ε(y) with a convergent in-
tegral

∫∞
1
ε(y)/y dy (for example, ε(y) = 1

log((2+y)2) or

ε(y) = 1
log(log((2+y)4)) ), we construct the function F :

F (t) =
i

2

∫
du
(
δ(u)− gε,{ρn}(u)

)
sign(t− u), (A2)

with the function gε,{ρn}(u) defined as [112]

gε,{ρn}(u) =
1

N
∞∏
n=1

sin ρnu

ρnu
, (A3)

where the sequence of parameters, {ρn}∞n=1, is carefully
chosen such that:

1. Each term is positive: ρn > 0.

2. The sequence is monotonically decreasing: ρn ≥
ρn+1.

3. The term ρn satisfies ρn ≥ e ε(n)/n for all n ≥
n0 with n0 a positive integer and e being Euler’s
number.

4. The series
∑∞
n=1 ρn converges with

∑∞
n=1 ρn ≤ 1.

Note that g(u) is a continuous even function. The param-
eter N is set such that the Fourier transform of gε,{ρn}
satisfies g̃ε,{ρn}(ω = 0) = 1.

With all the requirements mentioned above being sat-
isfied, it can be shown that gε,{ρn} decays as [112]

gε,{ρn}(y) = O
(
e−|y|ε(|y|)

)
. (A4)

In addition, the Fourier transform g̃ε, {ρn}(ω) of this func-
tion is identically zero for |ω| ≥ 1.

It is easy to see from Eq. (A4) that, for all 0 <
α < 1, we can find a positive constant Cα such that∣∣gε,{ρn}(y)

∣∣ ≤ Cα exp (− |y|α). We say that the function
gε,{ρn} decays subexponentially [113]. We should always
keep in mind that the function F , the function gε,{ρn},
and the resulting quasi-adiabatic continuation operator
are ε- and {ρn}-dependent. However, we will drop the
symbols ε and {ρn} from the subscript of gε,{ρn}, assum-
ing that we have chosen some function ε and a specific
set of parameters {ρn} satisfying the requirements men-
tioned above. Using the fact that the function g decays
subexponentially, it is not hard to show, from the defini-
tion of F , that the function F also decays subexponen-
tially [62].

Since the function F decays subexponentially, it also
decays superpolynomially, which means it decays faster
than any polynomial function. We say that a Hamilto-
nian H consists of superpolynomially decaying interac-
tions if we can write it as H =

∑
r

∑
RHr, R, where (i)

Hr, R is an operator supported on sites within the disk
of radius R ∈ N centered at position r and (ii) for any
function decaying polynomially in R, the operator norm
‖Hr, R‖ is bounded by some constant times this function.

In Ref. [62], it is shown that, if the Hamiltonian H(λ)
consists of superpolynomially decaying interactions, the
quasi-adiabatic continuation operator D(λ) also consists
of superpolynomially decaying interactions. If the Hamil-
tonian is finite-range or consists of subexponentially de-
caying interactions, D(λ) is composed of subexponen-
tial interactions, i.e., ‖Dr, R(λ)‖ ≤ Cα exp(−Rα) for any
α < 1 and some α-dependent constant Cα > 0 [61, 62].

It can be shown that ∂λ|ψ0(λ)〉 = iD(λ)|ψ0(λ)〉, where
|ψ0(λ)〉 is the ground state of H(λ). Therefore, we can
transfer the ground state of H(λ = 0) to the ground state
of H(λ = 1) via time evolution under D(λ) for finite time
λ ∈ [0, 1].

Appendix B: Emergent fermions after a single step
of entanglement renormalization

In Sec. V B, when we discussed the entanglement renor-
malization of the lattice Ising TQFT, we encountered the
following question: for the spins that remain entangled
after the application of the subcircuit CIsing, x (CIsing, y),
are the dual fermions defined on the new coarse-grained
square lattice [see e.g. Fig. 26] still in the lattice px + ipy
superconducting state with the right parameters? In ad-
dition, in Sec. V C, when we discussed the entanglement
renormalization of the ν-th Kitaev’s sixteenfold way chi-
ral spin liquid, we also encountered a similar question:
after the application of Cν, x (Cν, y), are the remaining
entangled spins in the ν-th Kitaev’s sixteenfold way chi-
ral spin liquid defined on the new coarse-grained square
lattice? In other words, are the dual fermions in a quan-
tum state with ν layers of topological superconductors
and 16− ν layers of trivial insulators? In this appendix,
we will answer these questions affirmatively by consider-
ing a very generic setup that will apply to all the cases
just mentioned.

Recall that, before the circuit components CZf
2 ,x

or

CZf
2 ,y

are applied, we have a quantum state whose

emergent (equivalently dual via the bosonization map)
fermionic modes are empty on every other horizontal or
vertical face. As for the fermionic modes on remaining
active faces, in the lattice Ising TQFT case, they together
form a lattice px+ipy superconducting state, whereas, in
the case of the ν-th Kitaev’s sixteenfold way chiral spin
liquid, they behave as a flattening of ν layers of topologi-
cal superconductors and 16−ν layers of trivial insulators.
Our goal is to show that the circuit components CZf

2 ,x

and CZf
2 ,y

remove the empty fermionic modes and keep

the active fermionic modes on the faces of the new coarse-
grained lattice. This would realize our goal of having the
lattice Ising TQFT state and the ν-th Kitaev’s sixteen-
fold way chiral spin liquid as fixed-point wavefunctions of
the renormalization circuit. Therefore, in this appendix,
to prove this functionality of CZf

2 ,x
and CZf

2 ,y
, we consider

a generalized setup of an alternating pattern of inactive
blue faces, associated with empty fermionic modes, and
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(a)

(b)

FIG. 31. We have an alternating pattern of active pink faces
and inactive blue faces corresponding to the sublattice struc-
ture of the emergent (equivalently dual) fermions for the case
of (a) horizontal entanglement renormalization and (b) verti-
cal entanglement renormalization. The dual fermionic modes
on the inactive blue faces are empty. We want to know
how the bosonized generic quadratic fermionic term on the

pink active faces, such as {iγaγ′
b}

bosonized
from face a to face

b, transforms under conjugation by (a) C
Z

f
2 ,x

for horizontal

entanglement renormalization and (b) C
Z

f
2 ,y

for vertical en-

tanglement renormalization. The figure shows that, under
C
Z

f
2 ,x

and C
Z

f
2 ,y

, the bosonized original quadratic fermionic

term {iγaγ′
b}

bosonized
maps onto the corresponding bosonized

quadratic fermionic term
{
iγN
a γ

′
b
N
}bosonized

defined on the

new coarse-grained lattice as if the original fermion operators
were living on the new elongated faces. The superscript N
is used to label the fermion operators defined on the faces
of the new lattice. The detailed calculations behind this re-
sult are shown in Fig. 32 for C

Z
f
2 ,x

and Fig. 33 for C
Z

f
2 ,y

.

The prefactorf denotes the constant prefactor that must be
included in front of the product of the fermionic operators
shown in the figure in order to make the quadratic fermionic
term under consideration.

active pink faces, associated with fermionic modes in the
ground state of a quadratic fermionic Hamiltonian com-
posed of hoppings and pairings that are not necessarily
translation-invariant. For the case of horizontal entan-
glement renormalization, the setup is shown on the left
of Fig. 31(a). Here, the inactive (frozen in the empty

fermionic state) blue faces correspond to the B faces in
Fig. 24(b) and the primed faces in Fig. 29(c) before the
application of CZf

2 ,x
. A similar setup for the case of ver-

tical entanglement renormalization is shown on the left
of Fig. 31(b). Here, the inactive (frozen in the empty
fermionic state) blue faces correspond to the B faces in
Fig. 25(b) and the primed faces in Fig. 30(c) before the
application of CZf

2 ,y
.

We want to prove now that, after the circuit com-
ponent CZf

2 ,x
(CZf

2 ,y
), the new dual fermions are in the

state of the old dual fermions associated with the origi-
nal active pink faces. The emergent (equivalently dual)
fermionic mode on an elongated face of the new lat-
tice will be just the original emergent fermionic mode
on the active pink face of the old lattice enclosed by
that elongated face. Effectively, we make the inactive
blue faces disappear, while the active pink faces become
larger by consuming the original area occupied by the
primed faces. This intuitive explanation of our objec-
tive here is reflected in the coloring of the faces of the
new lattice in Fig. 31. Our strategy for showing this is
to work with the transformation of the parent Hamilto-
nian of the whole spin system under conjugation by CZf

2 ,x

(CZf
2 ,y

). Specifically, we want to show that the bosonized

quadratic fermionic terms on the active pink faces under
the zero-flux condition are mapped to the same bosonized
quadratic fermionic terms on the new lattice under the
corresponding new zero-flux condition as if the associ-
ated fermionic modes were just living on bigger elongated
faces. Figure 31 demonstrates a typical situation. Ini-

tially, we have a bosonized hopping term {iγaγ′b}
bosonized

for the emergent fermions on distant active pink faces a
and b. We want to prove that, under conjugation by CZf

2 ,x

(CZf
2 ,y

), this operator turns into the bosonized hopping

term
{
iγNa γ

′N
b

}new bosonized
. The notation γNa or γ′Na in-

dicates a Majorana fermion operator on the face of the
new lattice that encloses the old active pink face a (the
superscript N stands for “new”). The bracket notation

{·}new bosonized
denotes the bosonization procedure with

respect to the edge orientation assignments on the new
elongated square lattice, as shown in Fig. 27 for the hor-
izontally coarse-grained lattice. Instead of directly work-

ing with the generic operator {iγaγ′b}
bosonized

with arbi-
trary faces a and b, we can break such an operator into a
product of the generators of the algebra coming from the
bosonization of the parity-conserving fermionic algebra
acting only on the active pink faces. These generators
are the shortest bosonized horizontal Majorana hopping
terms, the shortest bosonized vertical Majorana hopping
terms, and the bosonized fermion parity operators [114],
all of which in the fermionic picture act on the fermionic
modes associated only with the active pink faces. We will
compute the transformation of these generators.

The computation will be long but straightforward. We
will treat the cases of horizontal entanglement renormal-
ization (Sec. B 1) and vertical entanglement renormaliza-
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tion (Sec. B 2) separately. The zero-flux condition Fν = 1
on the original square lattice will be assumed. Following
the notation in the main text, throughout our computa-
tions below, we will sometimes still use the letter B or
the prime symbols to label the inactive blue faces. We
will also use the letter A to label the active pink faces.

1. Horizontal Entanglement Renormalization

In this subsection, we study the action of CZf
2 ,x

, which

is part of horizontal entanglement renormalization.
Under the zero-flux condition Fv = 1, let |Ψ〉 be the

ground state of a bosonized fermionic Hamiltonian that
freezes the emergent fermionic modes on inactive blue
faces in the empty state:

Hbosonized
AB, x =

{
Hf
AB, x

}bosonized

(B1)

with

Hf
AB, x = −

∑
ZA

hZA
−
∑
IB

(
−iγIBγ′IB

)
. (B2)

The notation ZA is used to label different quadratic
terms hZA

associated with emergent fermionic modes on
the active pink faces, and IB is used to label emergent
fermionic modes on the inactive blue faces. Note that
the ground state |Ψ〉 is in the sector Fv = 1, ∀v and has{
−iγIBγ′IB

}bosonized
= ZN(IB)ZE(IB)ZS(IB)ZW (IB) =

1. The notation N(f) denotes the adjacent qubit north
of face f , and E(f), S(f), and W (f) denote the adjacent
qubits east of, south of, and west of face f , respectively.
The fermionic Hamiltonian component −∑ZA

hZA
need

not to be translationally invariant under shifting the la-
bels of the sites associated with the active pink faces, as
is the case of the ν-th Kitaev’s sixteenfold way chiral spin
liquid.

Now we investigate CZf
2 ,x
|Ψ〉. Our objective is to show

that CZf
2 ,x
|Ψ〉 is dual (via bosonization) to the ground

state of the same fermionic Hamiltonian −∑ZA
hZA

, but
now defined on the faces of the new coarse-grained lattice.
Notice that CZf

2 ,x
|Ψ〉 will be the ground state of the uni-

tarily transformed Hamiltonian CZf
2 ,x

Hbosonized
AB, x C†

Zf
2 ,x

.

Therefore, in order to study CZf
2 ,x
|Ψ〉, we will study

this new Hamiltonian, CZf
2 ,x

Hbosonized
AB, x C†

Zf
2 ,x

. We first

study the transformation of the component involving ac-

tive pink faces, CZf
2 ,x
{hZA

}bosonized C†
Zf

2 ,x
. As mentioned

above, a generic quadratic term involving distant ac-

tive pink faces, such as {iγaγ′b}
bosonized

on the left-hand
side of Fig. 31(a), can be written as a product of the
shortest bosonized Majorana hopping operators and the
bosonized fermion parity operators that, in the fermonic
picture, are only supported on the fermionic sites on the
active pink faces. Therefore, it is sufficient to study how

these generators transform under conjugation by CZf
2 ,x

.

For the shortest bosonized horizontal Majorana hopping
operator between active pink faces, we take as an example
the shortest bosonization of the operator iγ1γ

′
2 depicted

on the left-hand side of Fig. 32(a):

{iγ1γ
′
2}

bosonized

=i {γ1γ
′
1′γ′1′γ1′γ1′γ′2}

bosonized

=− {iγ1γ
′
1′}bosonized {−iγ1′γ′1′}bosonized {iγ1′γ′2}

bosonized

=−
(
XE(1)ZS(1)

) (
ZN(1′)ZE(1′)ZS(1′)ZW (1′)

)
·(

XE(1′)ZS(1′)

)
=
(
ZS(1)ZN(1′)ZE(1′)ZW (1′)

) (
XE(1)XE(1′)

)
. (B3)

We used γ2
f = γ′2f = 1. The corresponding bosonized

result is illustrated on the left-hand side of Fig. 32(a).
Note that our way of denoting qubits is redundant: e.g.,

E(1) = W (1′). We now conjugate {iγ1γ
′
2}bosonized

by
CZf

2 ,x
:

CZf
2 ,x
{iγ1γ

′
2}

bosonized C†
Zf

2 ,x

=CZf
2 ,x

(
ZS(1)ZN(1′)ZE(1′)ZW (1′)

)
C†
Zf

2 ,x
·

CZf
2 ,x

(
XE(1)XE(1′)

)
C†
Zf

2 ,x

=ZS(1)ZW (1′)XE(1′)

=ZW (1′)

(
XE(1′)ZS(1)

)
=ZW (1′)

{
iγN1 γ

′N
2

}new bosonized
. (B4)

The bracket with a superscript {·}new bosonized
denotes

bosonization on the new horizontally elongated square
lattice, and the superscript N for γNf denotes an emer-
gent Majorana fermion operator on face f of the new
lattice. We used labels on the old active pink face to
indicate the new faces containing them since we expect
there will be a correspondence between the new faces and
the old active pink faces. Note that, throughout the cal-
culation, for the subscripts of all the X and Z operators,
the qubit labeling N(f), E(f), S(f), and W (f) is asso-
ciated with face f of the old lattice. It is only for the
new Majorana operators γNf and γ′Nf do we use the face
labeling on the new lattice. We will also use this con-
vention throughout the later calculations. The result of
the above computation is shown on the right-hand side
of Fig. 32(a).

With the same labeling of the lattice faces, we now con-
sider the shortest bosonized vertical Majorana hopping

operator {iγ1γ
′
3}bosonized

. We can easily see that

CZf
2 ,x
{iγ1γ

′
3}

bosonized C†
Zf

2 ,x

= CZf
2 ,x

(
XS(1)ZW (3)

)
C†
Zf

2 ,x

=XS(1)ZW (3)

=
{
iγN1 γ

′N
3

}new bosonized
. (B5)
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FIG. 32. The subfigures show how the bosonized genera-
tors of the fermionic algebra associated with the active pink
faces change under conjugation by C

Z
f
2 ,x

. Inactive blue faces

are labeled by numbers with primes, while active pink faces
are labeled by numbers without primes. (a) The change of
the shortest bosonized horizontal Majorana hopping term

{iγ1γ
′
2}

bosonized
under C

Z
f
2 ,x

. (b) The change of the short-

est bosonized vertical Majorana hopping term {iγ1γ
′
3}

bosonized

under C
Z

f
2 ,x

. (c) The change of the bosonized fermion par-

ity operator {−iγ1γ
′
1}

bosonized
under C

Z
f
2 x

. The notation

prefactorf denotes the constant prefactor that must be in-
cluded in front of the product of the fermion operators shown
in the figure in order to make the quadratic fermionic term un-
der consideration, and the ordering of the fermion operators is
specified above. The notation prefactors denotes the constant
prefactor that must be included in front of the product of the
spin operators shown in the figure. When an X operator and
a Z operator both act on a qubit, the Z operator acts first.
The red single-qubit Pauli-Z operator sitting at the center of
the new face 1 is acting on a disentangled qubit. This oper-
ator takes eigenvalue one in the transformed quantum state
C
Z

f
2 ,x
|Ψ〉. Therefore, up to this operator taking eigenvalue

one, the transformed generators match the bosonized fermion
operators on the new elongated faces containing the original
fermion operators being transformed.

This is shown in Fig. 32(b).

For the bosonized fermion parity operator on face 1,

we have

CZf
2 ,x
{−iγ1γ

′
1}

bosonized C†
Zf

2 ,x

= CZf
2 ,x
ZN(1)ZE(1)ZS(1)ZW (1)C†Zf

2 ,x

=ZN(1)ZE(1)ZS(1)ZW (1)ZE(1′)

=ZE(1)

(
ZN(1)ZS(1)ZW (1)ZE(1′)

)
=ZW (1′)

{
−iγN1 γ′N1

}new bosonized
. (B6)

This is shown in Fig. 32(c). We can see that the
old bosonized hopping and fermion-parity operators
are mapped to the corresponding new bosonized hop-
ping and fermion-parity operators on the new lattice
up to some Pauli-Z operators. Therefore, a generic

bosonized quadratic term {hZA
}bosonized

will be mapped

to
{
hNZA

}new bosonized
up to a product of Pauli-Z opera-

tors acting on qubits residing on the left edges of inactive
blue faces. We use the notation hNZA

to mean the same
as hZA

but with all the Majorana operators replaced ac-
cording to γf → γNf , γ′f → γ′Nf .

We will now analyze the transformation of the operator{
−iγIBγ′IB

}bosonized
on the inactive blue faces:

CZf
2 ,x

{
−iγIBγ′IB

}bosonized C†
Zf

2 ,x

=CZf
2 ,x
ZN(IB)ZE(IB)ZS(IB)ZW (IB)C†Zf

2 ,x

=ZW (IB). (B7)

This is nothing but the computation done in Fig. 20(a).
Combining the above results, we finally obtain the

transformation of the full Hamiltonian:

CZf
2 ,x

Hbosonized
AB, x C†

Zf
2 ,x

=−
∑
ZA

 ∏
IB∈SB [hZA

]

ZW (IB)

 · {hNZA

}new bosonized

−
∑
IB

ZW (IB), (B8)

where

SB [hZA
] ≡ {IB |ZW (IB) ∈ CZf

2 ,x
{hZA

}bosonized C†
Zf

2 ,x
}.

(B9)

The operator product
(∏
IB∈SB [hZA

] ZW (IB)

)
in front

of
{
hNZA

}new bosonized
is simply due to the single-qubit

Pauli-Z operators resulting from the transformation of
the bosonized horizontal hoppings and fermion parity op-
erators in Eq. (B4) and Eq. (B6).

We are now prepared to state some properties of
the state CZf

2 ,x
|Ψ〉. Due to the emptiness of the old

inactive blue faces in the ground state |Ψ〉, we have
ZN(IB)ZE(IB)ZS(IB)ZW (IB) = 1. From Eq. (B7), we
learn that ZW (IB) = 1 in the transformed ground state
CZf

2 ,x
|Ψ〉. In addition, the transformation of the zero-

flux condition Fv = 1 computed in Fig. 20(c,d) gives
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F
[Fig. 20(c)]RHS

vN
= 1 and F

[Fig. 20(d)]RHS

vN
= 1 for CZf

2 ,x
|Ψ〉.

The notation vN denotes a vertex on the new lattice.
The shorthand notation F

[Fig. 20(c)]RHS

vN
denotes the oper-

ator shown on the right-hand side of Fig. 20(c), whereas

the notation F
[Fig. 20(d)]RHS

vN
denotes the operator shown

on the right-hand side of Fig. 20(d). Therefore, with

ZW (IB) = 1 and F
[Fig. 20(c)]RHS

vN
= 1, we obtain XS(IB) =

1 for CZf
2 ,x
|Ψ〉. That is, W (IB) and S(IB) are disentan-

gled qubits in states |0〉 and |+〉, respectively. Addition-

ally, from ZW (IB) = 1, XS(IB) = 1, and F
[Fig. 20(d)]RHS

vN
=

1, we see that, for CZf
2 ,x
|Ψ〉, we have FNvN = 1, where FNvN

is the flux measuring operator associated with the ver-
tex vN defined on the new coarse-grained lattice shown
as the black 6-qubit operator in Fig. 19(c). That is, the
state CZf

2 ,x
|Ψ〉 satisfies the new zero-flux condition on the

new coarse-grained lattice. The new zero-flux condition
justifies the definition of the new bosonization mapping

{·}new bosonized
for the new lattice.

Putting together the above properties of CZf
2 ,x
|Ψ〉, we

arrive at the desired result that CZf
2 ,x
|Ψ〉 is the ground

state of the Hamiltonian

HN new bosonized
A, x −

∑
IB

ZW (IB) −
∑
IB

XS(IB) (B10)

with

HN new bosonized
A, x ≡

{
HN f
A, x

}new bosonized

HN f
A, x ≡ −

∑
ZA

hNZA
(B11)

under the new zero-flux condition FNvN = 1. The operator

product
(∏
IB∈SB [hZA

] ZW (IB)

)
in Eq. (B8) is not shown

here since it is equal to one for CZf
2 ,x
|Ψ〉, so CZf

2 ,x
|Ψ〉 is

the ground state of Eq. (B10) both with and without(∏
IB∈SB [hZA

] ZW (IB)

)
. The Hamiltonian in Eq. (B10)

has the simple interpretation as the bosonized original
Hamiltonian −∑ZA

hZA
on the active pink faces but

now defined on the new faces and with the new zero-flux
condition. The terms −∑IB ZW (IB) and −∑IB XS(IB)

describe the disentangled qubits.

2. Vertical Entanglement Renormalization

In this subsection, we present a similar argument for
vertical entanglement renormalization.

Under the zero-flux condition Fv = 1, let |Ψ〉 be the
ground state of the following parent Hamiltonian with
a vertically alternating pattern of active pink faces and
inactive blue faces:

Hbosonized
AB, y =

{
Hf
AB, y

}bosonized

, (B12)

where

Hf
AB, y = −

∑
ZA

hZA
−
∑
IB

(
−iγIBγ′IB

)
. (B13)

We can borrow all the arguments from our discussion
of horizontal entanglement renormalization above and
show that the transformed quantum state CZf

2 ,y
|Ψ〉 is the

ground state of

HN new bosonized
A, y −

∑
IB

XW (IB) −
∑
IB

ZS(IB) (B14)

with

HN new bosonized
A, y ≡

{
HN f
A, y

}new bosonized

HN f
A, y ≡ −

∑
ZA

hNZA
. (B15)

The bracket with a superscript {·}new bosonized
denotes

bosonization on the new vertically elongated square lat-
tice under the new zero-flux condition FNvN = 1, where

the operator FNvN is the flux measuring operator asso-

ciated with the vertex vN defined on the new verti-
cally coarse-grained lattice shown as the black 6-qubit
operator in Fig. 21(c). The qubits W (IB) and Z(IB)
are disentangled qubits. Through the computations in
Fig. 22(a,c,d), we find that XW (IB) = 1, ZS(IB) = 1,

and FNvN = 1 for CZf
2 ,y
|Ψ〉. The quadratic fermionic term

hNZA
is the same as hZA

but with all the Majorana opera-

tors replaced according to γf → γNf , γ′f → γ′Nf . Here the
superscript N for Majorana fermion operators labels the
fermionic operators defined on the faces of the vertically
coarse-grained lattice, and we used the label f on the old
active pink face to denote the new face containing it. The
Hamiltonian in Eq. (B14) has a simple interpretation as
the bosonized original Hamiltonian −∑ZA

hZA
on the

old active pink faces but now defined on the new ver-
tically elongated faces with the new zero-flux condition.
The terms −∑IB XW (IB) and −∑IB ZS(IB) describe
the disentangled qubits.

Just as in the case of horizontal entanglement renor-
malization, we need to analyze the transformed bosonized

quadratic fermionic term CZf
2 ,x
{hZA

}bosonized C†
Zf

2 ,x
.

The transformation of a typical quadratic term like

{iγaγ′b}
bosonized

on the left-hand side of Fig. 31(b) can
be computed from the transformations of the genera-
tors of the bosonized fermionic algebra supported on the
active pink faces, as shown in Fig. 33. For the short-
est bosonized horizontal Majorana hopping operator be-

tween active pink faces like {iγ1γ
′
3}bosonized

on the left-
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FIG. 33. The subfigures show how the bosonized genera-
tors of the fermionic algebra associated with the active pink
faces change under conjugation by C

Z
f
2 ,y

. Inactive blue faces

are labeled by numbers with primes, while active pink faces
are labeled by numbers without primes. (a) The change of
the shortest bosonized horizontal Majorana hopping term

{iγ1γ
′
3}

bosonized
under C

Z
f
2 ,y

. (b) The change of the short-

est bosonized vertical Majorana hopping term {iγ1γ
′
2}

bosonized

under C
Z

f
2 ,y

. (c) The change of the bosonized fermion par-

ity operator {−iγ2γ
′
2}

bosonized
under C

Z
f
2 y

. The notation

prefactorf denotes the constant prefactor that must be in-
cluded in front of the product of the fermion operators shown
in the figure in order to make the quadratic fermionic term un-
der consideration, and the ordering of the fermion operators is
specified above. The notation prefactors denotes the constant
prefactor that must be included in front of the product of the
spin operators shown in the figure. When an X operator and
a Z operator both act on a qubit, the Z operator acts first.
The red single-qubit Pauli-Z operator sitting at the center of
the new face 2 is acting on a disentangled qubit. This oper-
ator takes eigenvalue one in the transformed quantum state
C
Z

f
2 ,y
|Ψ〉. Therefore, up to this operator taking eigenvalue

one, the transformed generators match the bosonized fermion
operators on the new elongated faces containing the original
fermion operators being transformed.

hand side of Fig. 33(a), its conjugation by CZf
2 ,y

is

CZf
2 ,y
{iγ1γ

′
3}

bosonized C†
Zf

2 ,y

= CZf
2 ,y

(
XE(1)ZS(1)

)
C†
Zf

2 ,y

=XE(1)ZS(1)

=
{
iγN1 γ

′N
3

}new bosonized
. (B16)

The qubit labeling subscripts of all the X and Z opera-
tors are associated with the faces of the old lattice. It is
only for the new Majorana operators γNf and γ′Nf do we
use the face labeling on the new vertically coarse-grained
lattice. The result of the computation is shown on the
right-hand side of Fig. 33(a).

For the shortest bosonized vertical Majorana hopping

operator, like {iγ1γ
′
2}bosonized

on the left-hand side of
Fig. 33(b), we first express it in terms of spin operators:

{iγ1γ
′
2}

bosonized

=− {iγ1γ
′
1′}bosonized {−iγ1′γ′1′}bosonized {iγ1′γ′2}

bosonized

=−
(
XS(1)ZW (2′)

) (
ZN(2′)ZE(2′)ZS(2′)ZW (2′)

)
·(

XS(2′)ZW (2)

)
=
(
ZN(2′)ZE(2′)ZS(2′)ZW (2)

) (
XS(1)XS(2′)

)
. (B17)

The conjugation of {iγ1γ
′
2}bosonized

under CZf
2 ,y

is there-

fore

CZf
2 ,y
{iγ1γ

′
2}

bosonized C†
Zf

2 ,y

= CZf
2 ,y

(
ZN(2′)ZE(2′)ZS(2′)ZW (2)

)
C†
Zf

2 ,y
·

CZf
2 ,y

(
XS(1)XS(2′)

)
C†
Zf

2 ,y

=ZS(2′)ZW (2)XS(1)

=ZS(1′)

{
iγN1 γ

′N
2

}new bosonized
. (B18)

The result of the computation is shown on the right-hand
side of Fig. 33(b).

For bosonized fermion-parity operators on active pink
faces like the one on the left-hand side of Fig. 33(c), we
have its conjugation under CZf

2 ,y
given by

CZf
2 ,y
{−iγ2γ

′
2}

bosonized C†
Zf

2 ,y

= CZf
2 ,x
ZN(2)ZE(2)ZS(2)ZW (2)C†Zf

2 ,y

=ZN(2)ZE(2)ZS(2)ZW (2)ZN(2′)

=ZN(2)

(
ZN(2′)ZE(2)ZS(2)ZW (2)

)
=ZS(1′)

{
−iγN2 γ′N2

}new bosonized
. (B19)

These calculations for the generators show that a generic

bosonized quadratic fermionic term {hZA
}bosonized

can be

mapped to
{
hNZA

}new bosonized
up to a product of Pauli-Z

operators acting on qubits that live on bottom edges of
inactive blue faces.
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As in the case of horizontal entanglement renormal-
ization, we can put these results together to argue
that CZf

2 ,y
|Ψ〉 is the ground state of the Hamiltonian in

Eq. (B14).
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