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Engineering quantum Hall phases in a synthetic bilayer graphene system
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Synthetic quantum Hall bilayer (SQHB), realized by optically driven monolayer graphene in the quantum Hall
regime, provides a flexible platform for engineering quantum Hall phases as discussed in Ghazaryan et al. [Phys.
Rev. Lett. 119, 247403 (2017)]. The coherent driving which couples two Landau levels mimics an effective
tunneling between synthetic layers. The tunneling strength, the effective Zeeman coupling, and two-body
interaction matrix elements are tunable by varying the driving frequency and the driving strength. Using infinite
density matrix renormalization group techniques combined with exact diagonalization, we show that the system
exhibits a non-Abelian bilayer Fibonacci phase at filling fraction ν = 2

3 . Moreover, at integer filling ν = 1, the
SQHB exhibits quantum Hall ferromagnetism. Using Hartree-Fock theory and exact diagonalization, we show
that excitations of the quantum Hall ferromagnet are topological textures known as skyrmions.
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I. INTRODUCTION

Fractional quantum Hall (FQH) phases are paradigm ex-
amples of topological order, providing the rich physics asso-
ciated with anyonic statistics [1–3]. Moreover, non-Abelian
anyon statistics [4–8] have been shown to be a powerful
resource for performing topological quantum computation
[9–11]. Currently, there is intense interest in the realization
of FQH states in the multicomponent systems [12–15]. In
contrast to the single-component system, the multicomponent
FQH system with extra degree of freedom enables wider
tunablity and exhibits a richer quantum phase diagram. Sev-
eral non-Abelian FQH phases have been proposed for bilayer
FQH systems, including the Moore-Read state at filling ν = 1

2
[16], interlayer and intralayer Pfaffian states at filling ν = 2

3
[17,18], and bilayer Fibonacci state at filling ν = 2

3 [19,20].
In addition to these topological order states, the multicom-

ponent quantum Hall system may also exhibit synthetic quan-
tum Hall ferromagnetism. In such a ferromagnet, all electrons
spontaneously align their (iso)spin in order to minimize the
Coulomb exchange interaction, while their kinetic energy is
quenched into highly degenerate Landau levels (LLs). Adding
an additional particle to the ferromagnet triggers a skyrmion
excitation, which is characterized by a winding of the magne-
tization. Skyrmion excitations have been the subject of many
theoretical [21–24] and experimental studies [25–27].

It has been shown that the monolayer graphene coupled
to a light field enables flexible control on the quantum level
[28–30]. For example, optical driving can be used to induce
topologically nontrivial band structure through Floquet mech-
anism [30,31]. So far, Floquet topological insulators have

mainly been studied from the perspective of single-particle
physics, but more recently, it has also been proposed to modify
effective interaction terms via optical driving [29]. This paves
the way to the optical engineering of FQH phases. Specifi-
cally, when a classical light field couples to two LLs near
resonance, the optical transitions between the two Landau
levels mimic an effective tunneling between two synthetic
“layers,” so the system can be interpreted as a synthetic
quantum Hall bilayer (SQHB). In contrast to real bilayers, the
tunneling strength in the SQHB is freely tunable via the laser
intensity. The detuning of the coupling can be used to adjust
the chemical potential of the two synthetic layers.

One particularly intriguing case is when the first LL (LL1)
and the second LL (LL2) are coupled (LL1-LL2). Then, the
repulsion between singlet pairs becomes small [29]. To some
extent, these interactions resemble a hollow-core model, that
is, an interaction model based on Haldane pseudopotentials Vm

[32], in which V1 �= 0, but V0 = 0. Generally, such interactions
favor the formation of many-body singlet states, and at filling
fraction ν = 2

3 , the ground state of the hollow-core Hamilto-
nian has been reported to be a non-Abelian phase. Both the
interlayer Pfaffian phase [18] and the bilayer Fibonacci phase
[17] have been discussed in this context, but the topological
phase of the SQHB at ν = 2

3 has remained unclear in the
previous study, mainly due to the limitation of small system
size accessible to the exact diagonalization (ED). Here, by us-
ing the infinite density matrix renormaliztion group (iDMRG)
[33–35] along with ED, we identify the non-Abelian phase
of the LL1-LL2 synthetic bilayer system to be the bilayer
Fibonacci phase. With this, the SQHB becomes an interesting
environment for topological quantum computing.
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The striking FQH behavior of the LL1-LL2 SQHB is a
consequence of the peculiar shape of its pseudopotentials.
The behavior is very observed in a system where LL0 and
LL1 are coupled. As we show in this paper, the qualitative
change of interactions in LL0-LL1 or LL1-LL2 bilayers can
also be observed at integer filling ν = 1, although interactions
typically play a much smaller role in the integer quantum
Hall regime. Specifically, we show that the LL0-LL1 bilayer
exhibits synthetic quantum Hall ferromagnetism at ν = 1,
whereas the LL1-LL2 bilayer does not, due to its tendency
toward singlet formation.

The synthetic ferromagnetic behavior can also be con-
trolled by the laser detuning: it acts as an effective Zeeman
term which lifts the (iso)spin degeneracy and competing with
the ferromagnetic exchange energy whose scale is given by
the strength of the Coulomb interaction. When the ferromag-
netic exchange interaction dominates over the Zeeman energy,
the addition of one particle leads to a spin flip of many
particles in order to keep neighboring spins almost aligned
with each other. This collective spin flip leads to a winding
texture, which is known as a skyrmion. Using Hartree-Fock
mean-field theory and exact diagonalization, we show that the
LL0-LL1 SQHB system exhibits such skyrmion excitations,
whereas the LL1-LL2 system does not.

The paper is organized as follows: In Sec. II, we review
the formalism of the graphene quantum Hall state and the
SQHB. In Sec. III, we provide the detailed numerical evidence
showing that the SQHB with filling fraction ν = 2

3 is a bilayer
Fibonacci phase. In Sec. IV, the isospin texture excitation in
the quantum Hall ferromagnetic regime is discussed. Finally,
in Sec. V, we summarize our results.

II. SYNTHETIC BILAYER GRAPHENE SYSTEM

In this section, we describe the SQHB system, that is, a
single-layer quantum Hall system in which a synthetic bilayer
degree of freedom is induced by a laser coupling between
Landau levels. Such a system can be realized in monolayer
graphene under a strong magnetic field [36]. We assume
that both the electronic spin and valley degrees of freedom
are fully polarized. In the quantum Hall regime, the single-
particle eigenstates in graphene are given by spinors of the
form

ψσ,n,m =
[
C−

n | n − 1, m 〉
C+

n σ | n, m 〉
]
, (1)

where C±
n =

√
1±δ0,n

2 . The quantum number σ = ±1 labels
the states of positive and negative energy, respectively. The
kets | n, m 〉 denote the eigenstates of a nonrelativistic quantum
Hall system, with 〈r|n, m〉 being the Landau level (LL) wave
function of the nth LL with orbital quantum number m. In
the symmetric gauge, the orbital quantum number m denotes
the angular momentum. In the Landau gauge, it represents the
momentum which is conserved along one spatial direction.
The single-particle energy of the state ψσ,n,m is given by

Eσ = σ
h̄vF

lB

√
2n, (2)

where lB = √
h̄/eB is the magnetic length, B is the magnetic

field strength, and vF is the Fermi velocity. In the following,
we only consider the positive-energy part and, therefore, drop
the subscript σ for simplicity.

Unlike the nonrelativistic LL spectrum, the relativistic
energy spectrum is not quantized at equally spaced values in
the graphene quantum Hall system. We can thus selectively
couple two distinct LLs via a monochromatic laser with
frequency ωL, according to the usual selection rule |n| ↔ |n ±
1|. These two laser-coupled LLs represent the two “layers” of
our synthetic bilayer quantum Hall system.

In the following, we consider a coupling between a (par-
tially) filled LL and an empty (n + 1)th LL. We assume that
the driving laser is a plane wave such that the coupling is non-
vanishing only between states with the same orbital quantum
number m. Other selection rules are possible if the light is
designed to have orbital angular momentum [28,37]. Under
the rotating-wave approximation (RWA), the Hamiltonian of
the synthetic bilayer system is given by [29]

H = H0 + Hint,

H0 =
∑

m

(
− δ

2
τ z

n,m + �τ x
n,m

)
,

Hint =
∑

n1+n2=n3+n4

∑
{m}

V n1,n2,n3,n4
m1,m2,m3,m4

c†
n1,m1

c†
n2,m2

cn3,m3 cn4,m4 , (3)

where cn,m and c†
n,m are the annihilation and creation operators

in the nth Landau level with angular momentum quantum
number m, δ = En+1 − En − ωL is the detuning, and � is the
Rabi frequency. The isospin operators are given by τ z

n,m =
c†

n,mcn,m − c†
n+1,mcn+1,m and τ x

n,m = c†
n,mcn+1,m + c†

n+1,mcn,m.
The first term in H0 corresponds to an effective Zeeman
coupling for the quantum Hall system with spin degree of
freedom and the second term corresponds to the tunneling
in the bilayer quantum Hall system. The interaction matrix
elements V n1,n2,n3,n4

m1,m2,m3,m4
are for Coulomb scattering of a pair of

electrons in Landau orbitals {n1, m1} and {n2, m2} to orbitals
{n3, m3} and {n4, m4}, but the sum over ni is restricted to
n1 + n2 = n3 + n4 by the RWA.

In a conventional bilayer system, the spatial overlap be-
tween single-particle states in different layers is negligible
and, thus, Coulomb terms which would scatter an electron
from one layer into the other do not play a role. With this, the
layer index of each particle is conserved in the scattering term.
For the synthetic bilayer, however, the situation is different,
as two particles can exchange their individual indices. This
leads to the four different types of scattering process which are
shown in Fig. 1(c): The intralayer interaction in the nth LL and
(n + 1)th LL are V n

intra = ∑
{m} V n,n,n,n

m1,m2,m3,m4
c†

n,m1
c†

n,m2
cn,m3 cn,m4

and V n+1
intra , respectively. For a pair of electrons in different

layers, there are two types of interlayer interactions: the
standard process which keeps the electrons in their layer is de-
noted by V ‖

inter = 2
∑

{m} V n,n+1,n+1,n
m1,m2,m3,m4

c†
n,m1

c†
n+1,m2

cn+1,m3 cn,m4 .
In addition to this, the SQHB allows for an exchange in-
teraction in which the layer index is changed, i.e., V ×

inter =
2

∑
{m} V n,n+1,n,n+1

m1,m2,m3,m4
c†

n,m1
c†

n+1,m2
cn,m3 cn+1,m4 .

We may expand these different scattering potentials in
terms of Haldane pseudopotentials V n

m ,V n+1
m ,V ‖

m ,V ×
m . As
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FIG. 1. Illustration of the SQHB system. (a) A monolayer
graphene in the quantum Hall regime is driven by light with Rabi
frequency � and optical frequency ωL , corresponding to a detuning
δ from the LL transition. (b) In the rotating frame, the system
effectively becomes a quantum Hall bilayer. The tunneling strength
is given by the Rabi frequency � and the energy difference between
the two layers is determined by the laser detuning δ. (c) The effective
Coulomb interaction in the SQHB picture: V n

intra and V n+1
intra are the

intralayer interactions that scatter electrons in the same layer. V ‖
inter is

the interlayer interaction that preserve the layer index. The interac-
tion V ×

inter exchanges the layer index of the two electrons during the
scattering process. Such a process is absent in the usual quantum Hall
bilayer.

shown in Ref. [29], the scattering of interlayer singlets is
described by the pseudopotentials V ‖

m − V ×
m , whereas the scat-

tering of interlayer triplets is given by V ‖
m + V ×

m . Noting that
a symmetric (antisymmetric) layer configuration has to be
combined with an antisymmetric (symmetric) spatial wave
function, the interlayer scattering at even (odd) values of m is
given by the pseudopotentials for interlayer singlets (triplets):

V inter
m =

{
V ‖

m + V ×
m if m is odd,

V ‖
m − V ×

m if m is even.
(4)

The form of the interlayer potential highlights the role
which is played by the exchange interaction V ×

m : while sup-
pressing the scattering at m = 0, it enhances interactions at
m = 1. As shown in Ref. [29], the strength of this effect
depends crucially on the Landau levels which are coupled:
when the zeroth and the first Landau levels are coupled
(LL0-LL1), the effect of the exchange interaction is only quan-
titative (in the sense that V inter

0 remains the strongest interlayer
interaction channel). In contrast, when the first and the second
Landau levels are coupled (LL1-LL2), a qualitative change
of V inter

m is seen. In this case, V inter
1 > V inter

0 , that is, the first
Haldane pseudopotential dominates the interlayer interaction.
Therefore, the synthetic bilayer with LL1-LL2 coupling has a
strong tendency to form spin-singlet phases.

III. BILAYER FIBONACCI PHASE

A huge variety of spin-singlet phases have been dis-
cussed for bilayers at filling fraction ν = 2

3 . These phases
include Abelian composite fermion and Halperin phases, and
also non-Abelian phases such as bilayer Fibonacci state and
interlayer-Pfaffian state [17–20]. Strikingly, in the SQHB
nonzero overlaps have been reported for these non-Abelian
phases, but a clear identification of the phase has remained
a challenge. Below, we provide a variety of numerical evi-
dences which demonstrate that the SQHB exhibits the bilayer
Fibonacci phase. Specifically, we compute various charac-
teristics of topological phases, including entanglement spec-
tra, entanglement entropy, ground-state degeneracies, using
the large-scale infinite density matrix renormalization group
(iDMRG) algorithm on infinite cylinder geometry, as well as
ED in a spherical geometry.

Before presenting the numerical evidences for the Fi-
bonacci phase, let us briefly discuss the role played by the
parameters in the single-particle Hamiltonian. The single-
particle orbitals are superpositions of the two synthetic layers,
and for � � δ, the orbitals are simply the symmetric and
antisymmetric combinations. The energy splitting between the
two states is of the order of 2�, with the antisymmetric orbits
being the lower manifold. If this single-particle gap becomes
large as compared to the interaction energy, i.e., � � e2

2εlB
, we

can treat the system as a single-layer quantum Hall system.
In this case, the ground state at ν = 2

3 is the hole conjugate
of the ν = 1

3 Laughlin state. The system undergoes a phase
transition as the Rabi frequency � is decreased. In the weak
coupling regime, the ground state forms a layer singlet state
[29], which is identified as the Fibonacci phase below.

For the bilayer Fibonacci phase, there are six topologically
distinct types of quasiparticles. Three of them are Abelian
quasiparticles denoted by 
n, where n = 0, 1, 2. The Abelian
quasiparticles follow the fusion rule 
a × 
b = 
(a+b)%3.
The 
0 sector corresponds to the vacuum sector I since
it satisfies 
0 × 
n = 
n. On the other hand, there is a
“Fibonacci” quasiparticle τ which satisfies the fusion rule
τ × τ = 1 + τ . The braiding statistics of the Fibonacci anyon
allows for universal topological quantum computation. The
remaining two quasiparticles can be described by 
aτ with
a = 1, 2 [19,20].

The evidences for characterizing the bilayer Fibonacci
phase are the following: (1) We perform the adiabatic con-
tinuation (AC) to show that the ground state on the sphere
is in the same class as the bilayer Fibonacci phase. (2) We
obtain two topologically distinct degenerate ground states
| ψ1 〉 and | ψ2 〉 on an infinite cylinder. Combined with the
center-of-mass translation, this leads to a sixfold ground-state
degeneracy. (3) The counting of edge states is done within
the orbital entanglement spectrum obtained from these two
ground states, and it matches the counting expected for the
bilayer Fibonacci phase. (4) By calculating the difference
of the entanglement entropy and the momentum polarization
between the two ground states | ψ1 〉 and | ψ2 〉, we obtain the
topological entanglement entropy and the topological spin of
the non-Abelian anyon. Their values are consistent with the
bilayer Fibonacci phase.

085430-3



CIAN, GRASS, VAEZI, LIU, AND HAFEZI PHYSICAL REVIEW B 102, 085430 (2020)

A. Adiabatic continuation on the spherical geometry

The finite-size limitation of the ED calculation makes it
challenging to extract useful topological information. How-
ever, since topological phase transitions require the closing of
the energy gap, it is possible to test the topological behavior
by adiabatically deforming the system Hamiltonian into a
simpler model Hamiltonian for which the topological phase is
known. We adiabatically change the electron interaction by in-
terpolating between the Coulomb interaction of the synthetic
graphene bilayer and a hollow-core model, that is, an inter-
action Hamiltonian with the interlayer pseudopotential V inter

1
being the only nonzero pseudopotential. Such a model has
been shown to support the bilayer Fibonacci phase [20]. The
Hamiltonian which interpolates between Coulomb interaction
and hollow-core model is given by

Hλ = (1 − λ)Hint + λV̂ inter
1 , (5)

where 0 � λ � 1. Hint is the Coulomb interaction of the
synthetic bilayer graphene system, and V̂ inter

1 is the interac-
tion term generated by an interlayer Haldane pseudopotential
model with V inter

m = δm,1. If the ground state of the synthetic
bilayer graphene and the V̂ inter

1 interaction are in the same
universality class, the ground-state wave function and the
ground-state energy should change smoothly when the param-
eter λ in the Hamiltonian in Eq. (5) varies adiabatically, and
the gap above the ground state should not close.

To access the energy spectrum of the Hamiltonian in
Eq. (5), the ED calculation is performed in the spherical
geometry. The number of electrons Ne and total number of
quantum fluxes Nφ are related by Nφ = 1

ν
Ne − S, where S is

the shift of FQH state on sphere. For the bilayer Fibonacci
phase, the shift S = 3. We start with infinitesimal Rabi fre-
quency � and zero detuning δ and, therefore, occupation of
each synthetic layer is conserved. Thus, we can examine the
entanglement spectrum with a fixed total layer polarization
(or total pseudospin). The stability upon increasing the Rabi
frequency � to a finite value in the weak coupling regime is
shown in Fig. 2(b). The energy gap remains open under small
perturbation of �.

The energy spectrum of the adiabatic continuation with
Ne = 12 is shown in Fig. 2(a). The energy gap remains open
in the process of the adiabatic continuation. This suggests that
the ground state of the synthetic bilayer graphene is in the
phase defined by V̂ inter

1 , i.e., the bilayer Fibonacci phase.
Figures 2(c) and 2(d) show the orbital cut entanglement

spectrum (OES) for zero and nonzero values of λ. The low-
energy part of the ES corresponds to the degeneracy of the
edge excitation with angular momentum Lz relative to the
ground state [38]. The counting of the edge excitation allows
us to determine the topological order of a system. However,
finite-size effects close the entanglement gap in most angular
momentum sectors, which makes the correct counting diffi-
cult. However, we are able to verify that the counting for
the SQHB [see Fig. 2(c)] is compatible with the counting
1,1,3,6 which is characteristic for the Fibonacci phase, and
which we obtain when λ is chosen to be close to 1 [see
Fig. 2(d)].

FIG. 2. Adiabatic continuation via exact diagonalization. (a) En-
ergy spectrum in the process of adiabatic continuation for Ne = 12,
Nφ = 15. The energy gap remains open during the adiabatic continu-
ation process. This indicates that the ground-state wave function and
bilayer Fibonacci phase are in the same class. (b) Energy spectrum
for Ne = 8, Nφ = 10, and λ = 0 as function of the Rabi frequency
�. The system undergoes a phase transition to the particle-hole
conjugate of Laughlin state when � � 1. (c), (d) Show the orbital
cut entanglement spectrum for Ne = 12, Nφ = 15, with λ = 0 and
0.8, respectively.

B. Ground-state degeneracy and entanglement spectrum

On topological nontrivial geometries, such as the torus,
non-Abelian phases exhibit characteristic ground-state degen-
eracies. The same degeneracies as for the torus can also be
observed for infinite cylinders, for which we have computed
the ground states via infinite DMRG (iDMRG) [34].

We perform the iDMRG simulation and obtain two or-
thogonal states | ψ1 〉 and | ψ2 〉. The two wave functions are
nearly degenerate. Along with the center-of-mass translation,
we have a (at least) sixfold degenerate ground state on the
infinite cylinder. It should be noted, though, that this is as
a lower bound on the degeneracy since there is no feasible
way to guarantee that iDMRG finds all degenerate ground
states. In order to further confirm our result, we initialize
the infinite matrix product state (MPS) ansatz with different
configurations for perimeter of the infinite cylinder 4lB �
L � 10lB. After a few DMRG sweeps with moderate bond
dimension (around 450), the wave function always converges
to two orthogonal states.

In the following section, we examine the topological prop-
erties of the two wave functions by calculating the orbital
entanglement spectrum (OES), topological entanglement en-
tropy (TEE), and the topological spin. In order to resolve
the entanglement spectrum in different total spin sectors, we
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(a) (b)

K

FIG. 3. Entanglement spectrum via iDMRG simulation. Orbital
entanglement spectra for the two degenerate ground states at circum-
ference L = 30lB. The maximum bond dimension χmax = 15 000.
Two distinct orbital cuts are presented for each ground state. The
low-lying spectra agree with the CFT prediction as described in the
main text.

assume that the Rabi frequency � is infinitesimal and, there-
fore, the total pseudospin Sz = N↑ − N↓ is a good quantum
number, where N↑ and N↓ denote the number of electrons in
the nth and (n + 1)th LLs, respectively. Figure 3 shows the
entanglement spectrum of the ground states | ψ1 〉 and | ψ2 〉.
The level counting of the OES can be obtained using the thin
torus patterns and generalized exclusion rules [20]. For the
ground state | ψ1 〉, the counting is 1, 1, 3 when the partition
has even charge Q and it is 1, 2, 5 when the partition has odd
charge Q, as shown in Figs. 3(a) and 3(b). For state | ψ2 〉, the
spectrum follows 1, 2, 5 for even Q and 1, 3, 6 for odd Q as
shown in Figs. 3(c) and 3(d).

C. Topological entanglement entropy and topological spin

The entanglement entropy Sa
vN of a FQH system with an

anyon type a on the infinite cylinder scales as

Sa
vN = αL − γ a, (6)

where α is a nonuniversal constant, L is the perimeter of
the cylinder. By γ a, we denote the topological entanglement
entropy of the anyon type a, which is related to the quantum

(a)

(b))

FIG. 4. iDMRG simulation of the differences in (a) entanglement
entropy (�SvN ) and (b) momentum polarization (�M) for the two
degenerate states as a function of circumference (L). The black lines
show the theoretical value of �SvN = Sτ

vN − SIvN and �M = hτ − hI
for bilayer Fibonacci phase as described in the main text.

dimension da of the anyon a, and the total quantum dimension
D of the topological phase via the relation γ a = log(D/da).

We calculate the difference of the entanglement entropy
between the two ground states. Since the quantum dimensions
of the two topological sectors are given by dI = 1 and dτ =
F = 1+√

5
2 , which is the golden ratio, we have

�SvN = Sτ
vN − SIvN = log(dτ /dI) ≈ 0.48. (7)

Figure 4(a) shows the result of �SvN. Due to finite-size effects
and the truncation error of the bond dimension, the data
exhibit a significant systematic error. Although we do not
determine the quantum dimension unambiguously, the results
are still consistent with bilayer Fibonacci phase dτ = F .

The momentum polarization Ma computes the Berry phase
in the process of twisting the left half of the infinite cylinder.
It is defined as Ma = Tr(ρa

LK ) where ρL is the density matrix
of the anyon type a in the left half of the infinite cylinder and
K is the momentum operator on the cylinder. The momentum
polarization is related to three topological invariants: the shift
S, the topological spin h, and the central charge c [35]:

Ma = − νSL2

(4π )2
+ ha − c

24
(mod 1), (8)

where L is the perimeter of the infinite cylinder, and ν is the
filling fraction. The difference of the momentum polarization
between the two topological sectors is of the form

�M = Mτ − MI = hτ − hI (mod 1). (9)

The difference of topological spin is given by hτ − hI = 2
5 .

Figure 4(b) shows our calculation of the momentum polariza-
tion, which is consistent with the conformal field theory (CFT)
prediction [19].

IV. SPIN TEXTURES AT INTEGER FILLING

The results presented in the previous section show that the
synthetic quantum Hall bilayer is a promising candidate for
realizing intriguing non-Abelian phases of matter. The crucial
ingredient which gives rise to the non-Abelian behavior is
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the strong enhancement of the interlayer pseudpotential V inter
1 ,

when the synthetic layers are given by LL1 and LL2. It
is interesting to further investigate the role of these exotic
interactions in the synthetic bilayer. This section takes a look
onto the integer quantum Hall regime, which in comparison
to the regime of fractional filling factors is technically less
difficult to realize. In this context, we will focus on the
charged excitation of the integer quantum Hall system, in
which interactions may give rise to interesting spin structures.

In the integer quantum Hall regime, interactions play a role
when the gap between two Landau levels becomes compara-
ble to the Coulomb interaction energy. In the literature, such
a situation has first been considered for systems where the
two Landau levels are given by manifolds of opposite spin,
separated by the Zeeman gap [21]. It has been shown that,
if ferromagnetic exchange interactions overweigh the single-
particle gap, then the elementary charged excitation will be a
collective excitation of many electrons occupying the upper
Zeeman manifold. This results in a spin texture which slowly
winds around when going from the center to the edge of the
system, known as a skyrmion. Similar pseudospin textures
have been discussed for bilayer quantum Hall systems [24].
Here, we will investigate the spin textures in the synthetic
quantum Hall bilayer using exact diagonalization and mean-
field techniques.

The single-particle part of the synthetic bilayer system is
described in Eq. (3),

H0 =
∑

m

− δ

2
τ z

n,m + �τ x
n,m =

∑
m

ωgτ̃
z
n,m, (10)

where the effective Zeeman energy ωg =
√

δ2

4 + �2, τ̃ z
n,m =

cos θτ z
n,m + sin θτ x

n,m and θ = tan−1 −2�
δ

. As in usual spin
systems, the Zeeman energy tends to polarize the electrons
(at finite � in a dressed state), and the Coulomb interaction
competes with it. However, in contrast to a physical bilayer,
the effect of Coulomb interaction is significantly different in
the synthetic bilayer. In the following, we present our results
from a mean-field approach and from an exact numerical
treatment.

A. Mean-field approach

In the case of nonrelativistic spin- 1
2 quantum Hall systems,

it has been shown that skyrmionic spin textures are obtained
within a mean-field description [22]. This approximation re-
places the fourth-order operator products in Hint by second-
order products

c†
1c†

2c3c4 = 〈c†
1c4〉c†

2c3 − 〈c†
2c4〉c†

1c3

+〈c†
2c3〉c†

1c4 − 〈c†
1c3〉c†

2c4.

By applying this approximation, one obtains a quadratic
Hamiltonian, and truncating to M orbitals per Landau level,
the system is described by a 2M × 2M matrix. To ease
the notation, we define ai ≡ cn+1,mi , bi ≡ cn,mi , a†

i ≡ c†
n+1,mi

,

b†
i ≡ c†

n,mi
. Further, we denote interaction matrix elements by

V x1,x2,x3,x4
1234 , with xi = {a, b}, and the subscript being a short-

hand notation for the orbitals mi of the scattered electrons.
We distinguish between three contributions to the mean-field

interactions VHF = VH − VX + Vbg, which read as

VH =
∑
{m}

(
V aaaa

1234 〈a†
2a3〉a†

1a4 + V bbbb
1234 〈b†

2b3〉b†
1b4

+V baab
1234 〈a†

2a3〉b†
1b4 + V abba

1234 〈b†
2b3〉a†

1a4

+V abab
1234 〈b†

2a3〉a†
1b4 + V baba

1234 〈a†
2b3〉b†

1a4
)

(11)

being the Hartree potential,

VX =
∑
{m}

(
V aaaa

1234 〈a†
1a3〉a†

2a4 + V bbbb
1234 〈b†

1b3〉b†
2b4

+V baab
1234 〈b†

1a3〉a†
2b4 + V abba

1234 〈a†
1b3〉b†

2a4

+V abab
1234 〈a†

1a3〉b†
1b4 + V baba

1234 〈b†
2b3〉a†

1a4
)

(12)

being the exchange potential,

Vbg = −
∑
{m}

(
V abba

1221 a†
1a1 + V abba

1221 b†
1b1

)
(13)

being the potential which stems from a uniform positive back-
ground (identical to a completely filled b level). We stress that,
in contrast to a spin system or a real bilayer, the interactions
are not SU(2) invariant. We also highlight the existence of
flipping terms V abab

1234 and V baba
1234 , which are not present in spin

systems or real bilayers.
The mean-field Hamiltonian is then solved self-

consistently: An initial guess for the correlators defines
the Hamiltonian HMF = H0 + VHF, and the many-body
eigenstates of the Hamiltonian define the correlators.
Iteratively, this leads to a self-consistent solution. To calculate
the correlators from the eigenstates of HMF, we note that the
mean-field ground state is given by a Slater determinant over
the N lowest single-particle levels, where N is the number of
electrons.

Writing the kth single-particle level as |�k〉 = ∑
i (αk

i a†
i +

βk
i b†

i )|vac〉, the correlators with respect to the Slater
determinant over the levels 1 � k � N are given by
〈a†

i a j〉 = ∑N
k=1 αk∗

i αk
j , 〈b†

i b j〉 = ∑N
k=1 βk∗

i βk
j , and 〈a†

i b j〉 =∑N
k=1 αk∗

i βk
j . As there are different fixed points, the self-

consistent solutions will not be independent from the initial
guess, and to obtain a skyrmion solution, the initial guess
shall already contain the skyrmionic correlations. As we are
going to consider skyrmions with one electron added to
the ferromagnetic ground state, the characteristic skyrmion
correlations are as follows: If the ferromagnetic ground state
is polarized in the b manifold, the skyrmion is characterized
by one a particle in the center (m = 0), and the other parti-
cles occupy single-particle states which are superpositions of
b†

m|vac〉 and a†
m+1|vac〉. The skyrmionic correlations are then

characterized by nonzero coherences 〈a†
m+1bm〉 and 〈b†

mam+1〉,
and the spin polarization winds from a polarized in the center
to b polarized at the edge. In contrast, if the ferromagnetic
ground state is polarized in the a manifold, the skyrmion has a
b particle in the center, its single-particle orbitals are spanned
by a†

m|vac〉 and b†
m+1|vac〉, and the characteristic coherences

are given by 〈a†
m−1bm〉 and 〈b†

mam−1〉. The spin winding then
goes from b polarized in the center to a polarized at the
edge. As a side remark, we note that when the skyrmionic
coherences are chosen as the only nonzero coherences in
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a-polarized
skyrmion

b-polarized

a-polarized b-polarized
intermediate

(a)

(b)

FIG. 5. Layer occupation. The occupation difference Na − Nb =∑
m(〈a†

mam〉 − 〈b†
mbm〉) in a synthetic quantum Hall bilayer is plotted

as a function of the detuning δ. (a) The bilayer system is obtained
from coupling (� = 10−4e2/εlB) between LL0 and LL1. (b) The
bilayer system is obtained from coupling between LL1 and LL2.
We consider M = 40 states per Landau level, with N = M + 1
electrons, and initialize the self-consistent iteration scheme with
nonzero coherence 〈a†

mbm+1〉 and 〈b†
m+1am〉. For sufficiently strong

detuning, the system is trivially polarized in the manifold favored
by the detuning. When LL0 and LL1 are coupled, the b-polarized
phase extends to the regime of weak negative detuning due to the
lack of SU(2) symmetry of the interactions. The system exhibits the
skyrmion phase for the LL0-LL1, whereas for the LL1-LL2 system an
intermediate minimally polarized phase is found.

the initial guess, as has been done in Ref. [22], the Hartree-
Fock Hamiltonian decouples into M 2 × 2 matrices. We also
note that in all cases, the occupations are constrained by
the number of electrons 〈∑i(a

†
i ai + b†

i bi )〉 = N , which we
define such that N = M + 1. These occupations also provide
a natural bound for any of the coherences 〈X †Y 〉 � √

nX nY ,
where X,Y ∈ {ai, bi} and nX = 〈X †X 〉.

a. Layer occupation. A first indication of skyrmionic be-
havior can be seen from the layer occupation Na − Nb =∑

m(〈a†
mam〉 − 〈b†

mbm〉) as a function of the detuning δ, as
illustrated in Fig. 5. We consider both the LL0-LL1 synthetic
bilayer, and the LL1-LL2 synthetic bilayer. Obviously, both
systems exhibit highly polarized phases for sufficiently large
|δ|. Interestingly, when LL0 and LL1 are coupled, the b-
polarized phase nontrivially extends into the regime of neg-
ative detuning. This already indicates that, in this regime,
the layer polarization is not a single-particle effect, but due
to the fact that the Coulombic repulsion is most efficiently
minimized when the majority of particles occupy the n = 0
Landau level (the b level). On the other hand, for the case
of LL1-LL2 coupling, such a phase with interaction-induced
polarization is absent.

Another difference between the LL0-LL1 bilayer and the
LL1-LL2 bilayer can be seen from Fig. 5: while for LL0-LL1

coupling, the occupation Na linearly increases as the de-
tuning δ is decreased, the behavior in the LL1-LL2 bilayer
exhibit abrupt jumps. At δ ≈ 0, the system jumps from a
b-polarized phase into an (almost) unpolarized phase. At

orbital orbital 

orbital orbital 

(a) (b)

(c) (d)

FIG. 6. Orbital occupation. We plot the population difference
Na,m − Nb,m = 〈a†

mam〉 − 〈b†
mbm〉 between the two synthetic layers

for each orbital m, for different values of the detuning δ (in units
e2/εlB). The system is a LL0-LL1 synthetic bilayer, consisting of
M = 40 orbitals filled with N = M + 1 electrons. In (a), the detuning
favors polarization in the b manifold and, accordingly, the skyrmionic
solution is triggered by dominant coherences 〈a†

mbm−1〉 and 〈b†
m−1am〉

in the initial guess. In (b), the situation is opposite, as the detuning
favors the a manifold, and coherences 〈a†

mbm+1〉 and 〈b†
m+1am〉 have to

be chosen. In both panels, the Rabi coupling is � = 10−4e2/εlB, and
it connects orbitals with equal m, as schematically indicated below
each of the plots. In (c) and (d), all initial coherences are chosen to be
very weak (∼10−5) and random, and the skyrmionic solution is now
triggered through coupling of photons with orbital angular momen-
tum � = ±h̄, with �+ = 0.05e2/εlB in (c), and �− = 0.05e2/εlB in
(d). As illustrated below the plots, such an optical coupling connects
orbitals m and m ± 1. In all four panels, the blue curves are chosen
closer to the Zeeman-polarized regime, and the extra particle affects
the polarization of only a few orbitals. In contrast, the green curves
(which are furthest away from the Zeeman-polarized regime) show
that most orbitals throughout the system become depolarized.

δ ≈ −0.15e2/εlB, it jumps from this unpolarized phase into
the a-polarized phase. This behavior is not consistent with
a skyrmionic texture, which would allow for a continuous
depolarization of the system. Hence, from the behavior of the
layer occupation, we may already expect that skyrmions are
supported by the LL0-LL1 bilayer, but not by the LL1-LL2

bilayer.
b. Orbital occupation. In Fig. 6, we plot the orbital occu-

pation difference Na,m − Nb,m = 〈a†
mam〉 − 〈b†

mbm〉, where m
is the orbital angular momentum. It reveals how the layer
polarization changes locally, as one moves from the center
(small m) to the edge (large m) of the system. When the
detuning is chosen closer to a Zeeman-polarized regime (blue
curves), only the orbital in the center becomes depolarized
from the presence of an extra electron (on top of filling 1).
The extra particle behaves like a single-particle excitation.
In contrast, when the effect of Zeeman polarization becomes
weaker (green and orange curves), more orbitals become
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depolarized or even oppositely polarized through the presence
of the extra particle. In these cases, the layer polarization
winds from one polarization to the opposite polarization, as
one moves through the system. The extra particle behaves like
a skyrmion.

In Fig. 6(a), close to the b-polarized regime, the skyrmion
is obtained by choosing nonzero coherence 〈a†

mbm−1〉 and
〈b†

m−1am〉 in the initial guess, and the system winds from an
a polarization in the center to b polarization at the edge. For
smaller values of δ, when the system comes closer to the a-
polarized paramagnetic phase, this kind of skyrmion becomes
instable. Instead, we then obtain solutions with opposite
winding behavior, as shown in Fig. 6(b). These solutions are
obtained from nonzero coherences 〈a†

mbm+1〉 and 〈b†
m+1am〉.

In both cases, Figs. 6(a) and 6(b), the Rabi frequency
must be chosen sufficiently small (� ∼ 10−4e2/εlB) in order
to obtain skyrmionic solutions. Strikingly, for the synthetic
bilayer there is a relatively simple way of stabilizing the
spin textures in the presence of stronger coupling: this can
be achieved by replacing �

2 (a†
mbm + H.c.) with �±

2 (a†
mbm±1 +

H.c.), that is, by applying a coupling with photons with orbital
angular momentum � = ±h̄. Such a strategy has already been
suggested to create topological defects in chiral magnets [39].
As we show in Figs. 6(c) and 6(d), the OAM coupling leads to
very similar spin textures as in Figs. 6(a) and 6(b). Notably,
the self-consistent equations now converge to this solution
even without imposing them in the initial guess, and the
spin textures remain present even for strong Rabi couplings
�± ∼ 0.05e2/εlB.

c. LL1-LL2 bilayer. The behavior of the LL1-LL2 bilayer
is found to be quite different. In this case, skyrmionic cor-
relations are fully suppressed. This is true both for the sit-
uation where we initialize the system in a state with nonzero
skyrmionic correlations, and for the case where a coupling �±
is applied. The orbital populations will then remain close to
zero throughout the system, with approximately the same pop-
ulation for all of the 2M orbitals. The dominant coherences
established in the LL1-LL2 bilayer are of the form 〈a†

mam±1〉
and 〈b†

mbm±1〉. These correlations indicate antiferromagnetic
ordering: If an a-type (b-type) particle occupies an orbital m,
the neighboring orbitals m ± 1 are unlikely to be populated by
the same type of particle. Notably, these coherences acquire
large nonzero values even if they are initially set to zero. This
is possible only due to finite machine precision.

The absence of spin textures in the LL1-LL2 bilayer is not
very surprising if one recalls the tendency of singlet formation
due to its peculiar Haldane pseudopotentials. Such interac-
tions prevent the formation of a quantum Hall ferromagnet
at ν = 1 and, thus, of skyrmionic excitations in the presence
of N = M + 1 electrons. This behavior illustrates, once more,
that the LL0-LL1 bilayer and the LL1-LL2 bilayer behave
in completely different ways, despite being seemingly very
similar systems.

B. Exact diagonalization

In order to back our mean-field calculation, we have also
performed exact diagonalization on the spherical geometry.
We assume that the number of electrons is Ne = 10 and the
total number of quantum fluxes Nφ = 9. Here, we consider

-0.1

0

0.1

-8

-4

0

4

8(a)

(b)

(c)

FIG. 7. (a) The occupation difference Na − Nb as function of
detunning δ and Rabi frequency �. As δ ≈ −0.2 and � ≈ 0,
the occupation difference Na − Nb reaches zero, which indicates
the skyrmion phase. In the simulation, we choose Ne = 10, Nφ = 9.
The skyrmion phase is enclosed in the black circle. (b) The occu-
pation difference Na − Nb as function of δ with � = 10−4(e2/εl2

B ).
The skyrmion phase is highlighted in the yellow region. (c) Coulomb
interaction energy for the filled Landau level as function detuning δ.
At δ = 0, the Coulomb interaction energy of b level is intrinsically
lower than the a level. The system exhibits the skyrmion phase when
the detuning balance the unequal Coulomb interaction energy. In the
simulation, we choose Ne = 9, Nφ = 9.

LL0-LL1 coupling. In the large Zeeman energy limit, the
system energetically favors a state with a single spin flip. As
the Zeeman energy decreases, the system undergoes a phase
transition to the skyrmion phase. To explore the phase diagram
in the regime where the detuning δ and the Rabi frequency �

are comparable, we calculate the number difference between
the dressed level Na − Nb = 〈τ̃ z

0,m〉 as shown in Fig. 7(a).
In the conventional bilayer quantum Hall system with

SU(2)-symmetric interactions, the system possesses large
skyrmion excitations when the Zeeman energy vanishes.
However, in the synthetic quantum Hall bilayer system, the
largest skyrmion excitation occurs at finite negative detun-
ning, about δ = −0.2. This is in agreement with the behavior
found in the mean-field calculation (cf. Fig. 5), indicating that
this behavior is independent from the size of the system.

To understand the interplay between Coulomb interaction
and the Zeeman energy in the synthetic bilayer graphene
system, we show the ground-state energy of the filled zeroth
(first) Landau level as function of detuning in Fig. 7(c). When
the detuning δ = 0, we observe that the ground-state energy
of filled zeroth Landau level is higher than the filled first
Landau level due to the Coulomb interaction. The unbalanced
Coulomb energy competes with the formation of a skyrmion.
By decreasing the detuning, the energy of the two filled
Landau levels becomes the same. When the two Landau levels
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are energetically equally favorable, the size of the skyrmion
reaches its maximum.

V. SUMMARY AND OUTLOOK

In summary, we have demonstrated that the laser field
coupled to the single-layer graphene provides a versatile
platform to study the bilayer quantum Hall physics. By using
the infinite density matrix renormalization group and exact
diagonalization, we show that the system exhibits the bilayer
Fibonacci phase which can be of interest for topological
quantum computation with its non-Abelian anyonic statistics.
Moreover, we also explore the phase diagram for topolog-
ical spin texture excitations known as skyrmion phase in
the quantum Hall ferromagnetic regime. Apart from provid-
ing a synthetic bilayer structure, optical coupling between
Landau levels may also enable the controlled engineering
of three-body interaction terms from second-order transition
processes. Future work on optically driven quantum Hall
systems may explore this interesting scenario.
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Rev. B 91, 205139 (2015).
[19] A. Vaezi and M. Barkeshli, Phys. Rev. Lett. 113, 236804 (2014).
[20] Z. Liu, A. Vaezi, K. Lee, and E.-A. Kim, Phys. Rev. B 92,

081102(R) (2015).
[21] S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,

Phys. Rev. B 47, 16419 (1993).

[22] H. A. Fertig, L. Brey, R. Côté, and A. H. MacDonald, Phys.
Rev. B 50, 11018 (1994).

[23] H. A. Fertig, L. Brey, R. Côté, A. H. MacDonald, A. Karlhede,
and S. L. Sondhi, Phys. Rev. B 55, 10671 (1997).

[24] K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald,
L. Zheng, D. Yoshioka, and S.-C. Zhang, Phys. Rev. B 51, 5138
(1995).

[25] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West, and R.
Tycko, Phys. Rev. Lett. 74, 5112 (1995).

[26] A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Phys. Rev. Lett. 75, 4290 (1995).

[27] E. H. Aifer, B. B. Goldberg, and D. A. Broido, Phys. Rev. Lett.
76, 680 (1996).

[28] T. Graß, M. Gullans, P. Bienias, G. Zhu, A. Ghazaryan,
P. Ghaemi, and M. Hafezi, Phys. Rev. B 98, 155124
(2018).

[29] A. Ghazaryan, T. Graß, M. J. Gullans, P. Ghaemi, and M.
Hafezi, Phys. Rev. Lett. 119, 247403 (2017).

[30] T. Oka and H. Aoki, Phys. Rev. B 79, 081406(R) (2009).
[31] J. Cayssol, B. Dóra, F. Simon, and R. Moessner, Phys. Status

Solidi: Rapid Res. Lett. 7, 101 (2013).
[32] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
[33] I. P. McCulloch, arXiv:0804.2509 (2008).
[34] M. P. Zaletel, R. S. K. Mong, and F. Pollmann, Phys. Rev. Lett.

110, 236801 (2013).
[35] M. P. Zaletel, R. S. K. Mong, F. Pollmann, and E. H. Rezayi,

Phys. Rev. B 91, 045115 (2015).
[36] M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
[37] M. J. Gullans, J. M. Taylor, A. m. c. Imamoğlu, P. Ghaemi, and
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