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Cavity Higgs polaritons
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Motivated by the dramatic success of realizing cavity exciton-polariton condensation in experiment we
consider the formation of polaritons from cavity photons and the amplitude or Higgs mode of a superconductor.
Enabled by the recently predicted and observed supercurrent-induced linear coupling between these excitations
and light, we find that hybridization between Higgs excitations in a disordered quasi-2D superconductor and
resonant cavity photons can occur, forming Higgs-polariton states. This provides the potential for a new means
to manipulate the superconducting state as well as the potential for novel photonic cavity circuit elements.
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I. INTRODUCTION

The question of how to access the Higgs mode of super-
conductors has been of interest for a long time. Beginning
with the work of Littlewood and Varma [1] a number of works
have studied the interaction of the Higgs mode with other
types of excitations [2–4]. Of particular interest have been
attempts to access the Higgs mode with light. There has been
success in these endeavors, through, e.g., intense laser pulses
[5–7] or Raman spectroscopy [3]. These schemes rely on
couplings in the nonlinear regime since the Higgs mode does
not couple to light at the linear response level [8]. However,
it has recently been understood that a linear coupling between
photons and the Higgs mode of a disordered superconductor
can be induced with the addition of a uniform supercurrent
[9], part of a pattern in which a supercurrent allows access to
normally difficult-to-see superconducting modes [10]. Indeed,
such a supercurrent-mediated linear coupling has recently
been implemented successfully in NbN [11], allowing for
observation of the Higgs mode in optical measurements.

At the same time there has been a surge in interest in the
physics of superconductors coupled to cavity QED systems. A
number of schemes for realizing superconductivity with novel
pairing mechanisms [12–14] and for enhancing the strength
of the superconducting state [15,16] have been proposed us-
ing these types of systems. Our work operates at the boundary
of these two ongoing lines of inquiry, marrying developments
in the coupling of cavity photons to matter with the advances
in accessing the collective modes of superconductors.

In this work we derive a model of polaritons formed from
cavity photons and the Higgs mode of a quasi-2D supercon-
ductor. Our primary results, presented in Fig. 1, show the
two Higgs-polariton modes formed from the hybridization
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of a cavity photon mode and the Higgs mode. Notably, the
lower polariton band is below the quasiparticle continuum
and remains a well-defined excitation. Additionally, as in
Ref. [10], because the light-matter coupling is the result of an
externally imposed supercurrent, the extent of hybridization
can be further controlled via the magnitude of this current.

Motivated by the condensation of cavity exciton polaritons
seen in experiments, we speculate on the implications of form-
ing a finite coherent density of these Higgs polaritons. Since
the Higgs mode is an amplitude fluctuation, such a state would
lead to a modulation of the strength of the superconducting
order with a frequency given by the Higgs mode frequency.

The outline of the paper is as follows. In Sec. II, we outline
the methodology for our calculation and introduce the action
describing our model. Then, in Sec. III we expand the action in
terms of low-lying fluctuations and obtain the Higgs-polariton
propagator. In Sec. IV we calculate the signature of these
Higgs-polariton states in the transmission of photons through
the cavity. Finally, in Sec. V we comment on the implications
of this construction and discuss possibilities for future work.

II. MODEL

Our goal will be to obtain a coupled bosonic action of the
form

S = 1

2

∫
q
(h(−q) A(−q))Ǧ−1(q)

(
h(q)
A(q)

)
(1)

describing the evolution the Higgs mode h and cavity pho-
tons A, where Ǧ is the Green’s function describing mixed
propagation of photons and the Higgs modes. Specifically,
the diagonal elements describe propagation of photons and
the Higgs mode, with their bare forms being obtained in the
usual manner from actions in Secs. II A and II B, respectively,
while the off-diagonal elements describe mixing of the two
excitations.

To this end we will employ the following procedure:
(i) We consider a quasi-2D disordered superconductor

within a planar photonic cavity, as depicted in Fig. 2.
(ii) We expand the action of the coupled system about

the saddle-point solution corresponding to the BCS ground
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FIG. 1. The Higgs-polariton spectral function as a function mo-
mentum q and frequency ω. All quantities are given in units of
the superconducting gap �. The uncoupled Higgs and photon dis-
persions are plotted as dotted lines. Gray dashed lines indicate the
local maxima of the spectral function. A well-defined lower polariton
exists below the quasiparticle continuum as well as a broadened
upper polariton above 2�.

state, including (a) Gaussian amplitude fluctuations (the Higgs
mode) and (b) the hydrodynamic diffusive modes of the
electron fluid (cooperons and diffusons).

(iii) Upon integrating out the electronic modes we gener-
ate (a) a linear coupling between the Higgs and the photons
and (b) self-energy terms for both bosonic fields.

At the end of this procedure, presented in Sec. III, we
are left with an action in the form of Eq. (1). From the
retarded component of this Green’s function we will extract
the spectral function −2π iA = GR(ω, q) − GR(ω, q)† shown
in Fig. 1.

Schematically, both photons and the Higgs mode couple
to the low-energy modes of the system. These low-energy
modes therefore mediate a coupling between photons and the
Higgs, giving rise to Higgs polaritons. This follows a general
pattern for the coupling of light to quasiparticle bound states
and collective modes [10].

A. Cavity photons

The photon sector is described by the Keldysh action

Scav[a, ā]

=
∫

ω,q
āω,q,α

(
0 ω − iκ − ωq

ω + iκ − ωq 2iκN (ω)

)
K

aω,q,α (2)

FIG. 2. A schematic depiction of the system we consider, a
two-dimensional disordered superconducting (SC) layer with applied
supercurrent at the center of a parallel mirror cavity.

with equilibrium distribution N (ω) = coth(ω/2T ). The sub-
script K denotes that the matrix is in Keldysh space. We
consider a dispersion ωq =

√
ω2

0 + c2q2 , due to quantization
resulting from confinement perpendicular to the plane. The
frequency ω0 = πc/L, where L is the size of the cavity, is
chosen to be near the bare Higgs frequency �Higgs ∼ 2�.
The cavity confinement naturally leads to a quantization of
the photon field into discrete modes and we consider just the
lowest of these, with all higher modes at energy and far from
resonance with the Higgs frequency. The decay of photons in
the cavity is described by the constant κ .

The action for the photon mode operators is supplemented
by the polarization vectors for the corresponding modes. In
the case which we consider here, coupling to a quasi-2D
superconductor at the center of a planar microcavity, the
polarization vectors are

ε1

(
q,

L

2

)
= i

√
2

L
ẑ × q̂, ε2

(
q,

L

2

)
= −i

√
2

L

ω0

ωq
q̂, (3)

where the z axis is perpendicular to the plane of the quasi-2D
superconductor located at z = L/2. Note that in the limit of
small q these eigenvectors form an approximately orthonor-
mal basis [17]. The vector potential is expressed in terms of
mode operators a as

Aω,q =
√

2πc2

ωq
[εα (q)aω,q,α + ε∗

α (−q)ā−ω,−q,α]. (4)

We take the photon field to be in the radiation gauge
∇ · A = 0.

B. Superconductor

The superconductor is described by a Keldysh nonlinear
sigma model (KNLσM) [18,19]

iSNLσM = −i
ν

4λ
Tr �̌†(γ̂ q ⊗ τ̂0)�̌ − πν

8
Tr {D(∂Q̌)

2

+ 4i[i(σ̂0 ⊗ τ̂3)∂t + iγ Q̌bath + �̌]Q̌}, (5)

where D, ν are respectively the diffusion constant and density
of states of the fermionic normal state, λ is the BCS interac-
tion strength, and γ is a relaxation rate describing coupling
to a bath. All objects with a check (X̌ ) are 4 × 4 matrices
in the product of Nambu and Keldysh spaces, with τ̂i and σ̂i

representing Pauli matrices in the Nambu and Keldysh spaces,
respectively. Tr is used to represent a trace over all matrix
and spacetime indices, i.e., Tr (· · · ) = ∫

dtdt ′dr tr(· · · ), and
Ǎ ◦ B̌ indicates a matrix multiplication over all relevant in-
dices (including convolutions over time indices). ∂X̌ = ∇X̌ −
i[(e/c)Ǎ, X̌ ] denotes a matrix covariant derivative and is the
means by which the photonic sector couples to the electronic
degrees of freedom. The bath is modeled in the relaxation
approximation by

Q̌bath(ε) =
(

1 2F (ε)
0 −1

)
K

⊗ τ̂0. (6)

The degrees of freedom of the model are the quasiclassical
Green’s function Q̌tt ′ (r), which is subject to the nonlinear con-
straint Q̌ ◦ Q̌ = 1̌, the vector potential Ǎ = ∑

α Aαγ̂ α ⊗ τ̂3,
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and the BCS pair field �̌ = ∑
α (�αγ̂ α ⊗ τ̂+ − �∗

αγ̂ α ⊗ τ̂−),
where γ̂ cl = σ̂0, γ̂

q = σ̂1 are the Keldysh space vertices for
the classical and quantum fields.

Because Eq. (5) is a somewhat compact expression it is
useful to highlight how quantities of interest enter the action.
In particular:

(i) The Higgs mode h appears through the substitution
�̌ → �̌BCS + ȟ.

(ii) The coupling of the matter system to photons, A,
appears through the covariant derivative term D(∂̂Q̌)2.

(iii) Both the photons A and Higgs field h couple to the
matter field Q̌, the role of which will be to mediate a coupling
between the former two fields.

It is well established that the Higgs mode of a supercon-
ductor does not couple linearly to light due to the absence of
electromagnetic moments [8]. One may readily verify that for
a uniform BCS state there is no linear coupling of the photons
to diffusion modes in Eq. (5), and therefore no linear coupling
between the Higgs mode and photons is possible. However,
as was pointed out recently [9], in the presence of a uniform
supercurrent Missing Ref Link of [20] there is an allowed
coupling at linear order. The supercurrent can be included into
the KNLσM by the addition of a constant vector potential
term A(r, t ) → A(r, t ) − (c/e)pS , where pS is the associated
superfluid momentum [21]. Following this substitution, the
low-energy electronic modes Q̌, coupled linearly to both the
photons and Higgs, therefore mediate a bilinear coupling.

C. Saddle-point structure

The saddle-point equations for Eq. (5) are the Usadel
equation [22]

∂ (DQ̌sp∂Q̌sp) + i{iτ̂3∂t Q̌sp} + i[�̌ + iγ Q̌bath, Q̌sp] = 0 (7)

and BCS gap equation

1

λ
= 1

4�

∫ ∞

−∞
dε tr

[
τ̂−Q̂K

sp(ε)
]
, (8)

which together determine the mean-field state. At the saddle-
point level, the quasiclassical Green’s function has the struc-
ture

Q̌sp =
(

Q̂R
sp Q̂K

sp

0 Q̂A
sp

)
, (9)

with the relation QA
sp = −τ̂3[QR

sp]†τ̂3 due to causality,
and in equilibrium Q̂K

sp(ε) = Feq(ε)[Q̂R
sp(ε) − Q̂A

sp(ε)], where
Feq(ε) = tanh(ε/2T )—a manifestation of the fluctuation-
dissipation relation.

In what follows we choose the global U (1) phase of the
order parameter such that the mean-field value is real. All
electromagnetic quantities use Gaussian units.

III. HIGGS POLARITONS

We now derive the action of Gaussian fluctuations about
the BCS saddle point, describing amplitude mode fluctua-
tions, the low-energy excitations of a disordered supercon-
ductor (diffusons and cooperons), and cavity photons. The
technical details are presented in Secs. III A, III B, and III C.

Those interested in the final answer may skip to the end
of Sec. III C, where the final product of the calculation is
summarized.

A. Saddle-point solution

Due to the causality structure it is sufficient to solve for the
retarded component of the quasiclassical Green’s function,

Q̂R
sp(ε) = cosh(θε )τ̂3 + i sinh(θε )τ̂2, (10)

where θε is a complex angle parametrizing the solution of the
retarded Usadel equation

� cosh θε − (ε + iγ ) sinh θε = i
�

2
sinh 2θε, (11)

and � = 2D|pS|2 is the depairing energy associated with
the supercurrent. Conjugating Eq. (11) and taking ε → −ε

establishes the useful relation −θ∗
−ε = θε . In the absence of

supercurrent the Usadel equation is solved by

cosh θ0
ε = ε

ζR(ε)
, sinh θ0

ε = �

ζR(ε)
, (12)

where we have defined ζR/A(ε) = ± sgn ε
√

(ε ± iγ )2 − �2

[23]. We provide an exact solution of Eq. (11) in the presence
of finite supercurrent in Appendix A.

The Usadel equation is supplemented by the BCS gap
equation Eq. (8) to form a closed, self-consistent system of
equations for the saddle point corresponding to the disordered
limit of the usual BCS self-consistency problem.

B. Gaussian fluctuations

Now we parametrize fluctuations of Q̌ about the saddle-
point solution as

Q̌ = Ř−1 ◦ e−W̌ /2σ̂3τ̂3 ◦ eW̌ /2 ◦ Ř, (13)

similarly to Refs. [19,21], where in frequency space

Ř(ε) =
(

eτ̂1θε/2 0
0 eτ̂1θ

∗
ε /2

)
K

(
τ̂0 Feq(ε)τ̂0

0 −τ̂0

)
K

. (14)

In this parametrization the first matrix describes the spectrum,
while the second enforces the fluctuation-dissipation structure
on the matrix Q̌. One can verify that for W̌ = 0 Eq. (13)
reproduces Eq. (10).

The matrix W̌ anticommutes with σ̂3 ⊗ τ̂3 and describes
fluctuations on the soft manifold Q̌ ◦ Q̌ = 1̌. There are in total
8 independent components of W̌ but only 4 of these couple
to the amplitude mode or photon. We therefore write the
matrix W̌ ,

W̌εε′ (q) = i

(
cRτ̂1 dclτ̂0

dqτ̂0 cAτ̂1

)
K

, (15)

in terms of the cooperon cR/A and diffuson dα fields.
The Higgs mode is introduced by the substitution �̌ →

(�0γ̂
cl + hαγ̂ α ) ⊗ iτ̂2, with �0 a real constant. Having made

these substitutions, we expand the action to second order in
the fields c, d, h, and A. Only the second-order terms are
of significance as the 0th-order terms do not include the
fluctuation fields and the first-order terms vanish due to the
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FIG. 3. Diagrammatic representation of the induced coupling be-
tween the Higgs mode (dashed line) and photon (wavy line) mediated
by the diffusion modes W of the electron system. The vertices for
the Higgs coupling and photon coupling correspond to the second
and third terms of Eq. (16), respectively, while the fermion bubble
corresponds to the first term.

saddle-point equation and gauge condition. We are left with

iS = πν

∫
ε,ε′,q

{
1

4

[ 
dε′εD̂−1
εε′ 
dεε′ + 
cε′ε Ĉ−1

εε′ 
cεε′
]

+ [

cε′ε ŝc

εε′ + 
dε′ε σ̂1ŝd
εε′

]
h(ε − ε′)

+ e

c
D

[

cε′ε r̂c

εε′ + 
dε′ε σ̂1r̂d
εε′

]
pS · 
A(ε − ε′)

}
, (16)

where the dependence on the momentum q has been sup-
pressed, 
c = (cR, cA), for the fields d, h, and A we use the
notation 
X = (X cl, X q), and

D̂−1
εε′ = D−1

ε′ε σ̂+ + D−1
εε′ σ̂−, Ĉ−1

εε′ = diag
(
CR

εε′, CA
εε′

)−1
. (17)

The fluctuation propagators can be expressed in terms of the
function θ ,

Dεε′ = {−Dq2 + ER(ε) + EA(ε′) + �[1 − cosh(θε − θ∗
ε′ )]

× cosh(θε + θ∗
ε′ )}−1,

C (R/A)
εε′ = {−Dq2 + E (R/A)(ε) + E (R/A)(ε′)

−�[1 + cosh(θε − θε′ )] cosh(θε + θε′ )}−1,

ER(ε) = (EA)∗ = iε cosh θε − i�0 sinh θε. (18)

The three terms of Eq. (16) each represent a different
process within the system. The first term is responsible for
the dynamics of the diffusion modes of the disordered system.
The latter two terms of Eq. (16) constitute a linear coupling
between diffusons or cooperons and both the photons and
Higgs mode. Together with the bare photonic action Eq. (2)
and bare Higgs term arising from Eq. (5) these are all the
necessary constituents to complete the procedure outlined in
Sec. II. All that remains is to eliminate the diffusion modes
from the description by tracing over them.

C. Hybrid bosonic action

Upon integrating out the diffusion modes this generates
a linear coupling between the Higgs mode and photon field,
depicted schematically in Fig. 3, as well as additional terms in
the action for each individually:

S = 1

2

∫
ω,q

(
h(−q) 
A(−q))Ǧ−1(ω, q)

( 
h(q)

A(q)

)
(19)

with [24]

Ǧ−1(ω, q) =
(− 2ν

λ
σ̂1 − �̂h(ω) ĝ(ω)
ĝ(−ω)T D̂−1

0,A(ω, q) − �̂A(ω)

)
.

(20)

D0,A(ω, q) is the correlator of the vector potential and can
be obtained from the action for the photon mode operators
Eq. (2) and the relation Eq. (4). Eq. (20), along with the
explicit expressions for its elements, Eqs. (23), (25), and (26),
constitutes one of the main results of this work.

The generated terms g and � are then expressed in terms
of the couplings s and r and the diffuson and cooperon
propagators D and C (R/A). Explicitly, defining

F[ω, x̂, ŷ] = −iν
∫

dε
([

x̂c
ε−ε+

]T Ĉε+ε− ŷc
ε+ε−

+ [
x̂d
ε−ε+

]T
σ̂1D̂ε+ε− σ̂1ŷd

ε+ε−

)
, (21)

we have

�̂h(ω) = F̂ (ω, ŝ, ŝ),

�̂
i j
A (ω) = e2

c2
D2 pi

S pj
SF̂ (ω, r̂, r̂) + �̂MB;i j,

ĝ(ω) = e

c
DpSF̂ (ω, ŝ, r̂), (22)

where �A
0 is the photon polarization operator arising from

the saddle point and ε± = ε ± ω/2. We will be particularly
interested in the retarded Green’s function, which is the q-cl
component of Eq. (20) in Keldysh space and as such below we
give the explicit forms for the elements of the retarded Green’s
function.

In evaluating these terms we set q → 0 in the fermionic
bubbles since any finite q terms are an extra factor of vF /c
smaller. In the absence of a supercurrent, the action for the
Higgs mode gives the well-known result Re �Higgs = 2�0 +
O(γ 2), with the finite imaginary part arising only from quasi-
particle damping. Nonetheless, the Higgs mode is still damped
due to branch cuts in the complex plane. It is this analytic
structure that gives rise to the asymptotic decay h(t → ∞) ∝
cos(2�t )/

√
t derived by Volkov and Kogan [25].

While the calculation for the elements of the Green’s
function can performed for arbitrary supercurrent (cf.
Appendices A and C) the results can be understood by
considering the behavior at small supercurrent. Working to
lowest order in pS we can drop the supercurrent dependence
everywhere but the prefactor to ĝ(ω) in Eq. (22). Using the
gap equation the Higgs component of the retarded propagator
takes the form

[
GR

h (ω)
]−1 = ν

∫ ∞

0
dε

{
2�2

0 − ωz+
ζR(ε+)ζR(ε−)[ζR(ε+) + ζR(ε−)]

× F (ε−) − 2�2
0 + ωz∗

−
ζA(ε+)ζA(ε−)[ζA(ε+) + ζA(ε−)]

× F (ε+) + z+z∗
− + �2

0 + ζR(ε+)ζA(ε−)

ζR(ε+)ζA(ε−)[ζR(ε+) + ζA(ε−)]

× [F (ε+) − F (ε−)]}. (23)
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In the limit of infinitesimal damping this reduces to the
familiar expression

[
GR

h (ω)
]−1 = 2ν

∫ ∞

�0

dε
F (ε)

ζR(ε)

ω2 − 4�2
0

(ω + i0)2 − 4ε2
. (24)

Substituting in the expressions for s and r allows us to write

gR(ω) = 4
e

c
DpSi�0ν

×
∫ ∞

0
dε

{
z

ζR(ε+)z− + ζR(ε−)z+
ζ 2

R (ε+)ζ 2
R (ε−)[ζR(ε+) + ζR(ε−)]

F (ε−)

− z∗ ζA(ε+)z∗
− + ζA(ε−)z∗

+
ζ 2

A (ε+)ζ 2
A (ε−)[ζA(ε+) + ζA(ε−)]

F (ε+)

+ ε
ζR(ε+)z∗

− + ζA(ε−)z+
ζ 2

R (ε+)ζ 2
A (ε−)[ζR(ε+) + ζA(ε−)]

× [F (ε+) − F (ε−)]}, (25)

where ε± = ε ± ω/2, z± = ε± + iγ , in agreement with
Ref. [9], and ζR/A is as in Eq. (12). Additionally, we can see
that Higgs mode couples only to the component of A along
pS . As discussed in Sec. II, for small enough q the photon
polarizations, Eq. (3), form an orthonormal basis in the plane
and we can rotate into a frame where one photon mode is po-
larized along pS and one is polarized perpendicular. We may
then focus our attention on the former for the consideration of
polariton formation as this is the only component for which
Eq. (25) is nonzero in this basis.

Finally, the contribution to the photonic self-energy is ex-
actly the current-current correlator responsible for the Mattis-
Bardeen optical conductivity [26]. Explicit calculation gives

�R
MB = iD

e2

c2
ν

∫ ∞

0
dε

{
z+z∗

− + �2
0

ζR(ε+)ζA(ε−)
[F (ε+) − F (ε−)]

+ z+z− + �2
0

ζR(ε+)ζR(ε−)
F (ε−) − z∗

+z∗
− + �2

0

ζA(ε+)ζA(ε−)
F (ε+)

}
.

(26)

Summary. At this point it is worth recapitulating what
we have obtained. By tracing out the low-lying diffusive
modes of the superconductor we have found that the bare
photon and Higgs sectors are renormalized. Additionally a
bilinear coupling between sectors is induced, mediated by the
electronic degrees of freedom. We are then left with a 2 × 2
bosonic retarded Green’s function in Higgs-photon space

[ĜR(ω)]−1 =
([

GR
h (ω)

]−1
gR(ω)

gR(ω) [DR(ω)]−1

)
. (27)

Here Gh and D describe the propagation of Higgs modes and
photons, respectively, and g provides an amplitude for mixed
propagation. Due to these off-diagonal elements the bosonic
eigenmodes are of a mixed light-matter character.

The behavior of the hybrid modes is more easily seen
by considering the spectral function −2π iA = GR(ω, q) −
G†

R(ω, q). The dispersions of the eigenmodes can be observed
by considering trA(ω, |q|), shown in Fig. 1. For our nu-
merical calculations, we used Tc = 9.5 K, ν = 1.6me/(2π ),
D = 9.4 cm2/s, and T = Tc/2. The depairing energy � was
taken to be 0.1�. Cavity parameters were ω0 = 1.5� and

FIG. 4. Cut of the polariton spectral function A at q = 0 (dashed
line) and q = � (solid line). The upper polariton is a broad feature as
a function of frequency and is overdamped, but the lower polariton
lies below the particle-hole continuum and appears as a sharp peak.

κ = 0.1�. As expected, the upper polariton branch is in
the continuum and overdamped. The lower polariton branch,
however, is below the two-particle gap, and well defined. This
can be clearly seen by looking at cuts of the spectral function
for fixed |q| as shown in Fig. 4.

IV. HIGGS-POLARITON SIGNATURE IN PHOTON
TRANSMISSION

As is the case for exciton polaritons, the clearest way to
observe these new Higgs polariton states in experiment is
to measure the spectrum of emitted photons after the cavity
photon modes have been driven [27]. Because the polariton
states have finite overlap with the cavity photon modes, this
allows for imaging of the dispersion of the polariton modes.

Here we now derive the transmission of photons through
the superconductor-cavity system we have considered thus far,
following the usual input-output formalism [28] for a double-
sided cavity [29]. An alternative calculation using standard
functional integral techniques is presented in Appendix E. The
two approaches lead to the same formula for the transmission,
Eq. (36), discussed below.

As the first step to obtaining the transmission, we rewrite
the action Eq. (19), solely in terms of photon creation and
annihilation operators. This is accomplished by first integrat-
ing over the Higgs field h to obtain a photon self-energy
term, and then changing basis from the vector potential to
the photon occupation operators using Eq. (4). Discarding
the counterrotating terms, and making use of the approximate
form of the polarization vectors at small q, we obtain the
cavity photon Green’s function

D̂−1
a (ω, q) = (ω − ωq)σ̂1

− 4πc2

Lωq
[�̂MB(ω) + ĝT (−ω)Ĝh(ω)ĝ(ω)]. (28)

The subscript a distinguishes the propagator for the photon
operators from that for the vector potential, which appears in

013143-5



RAINES, ALLOCCA, HAFEZI, AND GALITSKI PHYSICAL REVIEW RESEARCH 2, 013143 (2020)

Sec. III. The damping rate κ does not appear in Eq. (28). We
will introduce damping by coupling the photon modes to a
white-noise bath on either side of the cavity, which we will
see reproduces the action in Eq. (2) as well as allows us to
compute the transmission within the input-output formalism.
In particular, the coupling to the bath is

Sa−b =
∑

i

∫
ω,q,�

�i;�(q)[b̄i;�(ω, q)σ̂1a(ω, q) + c.c.] (29)

where the index i ∈ {l, r} indicates the left and right sides of
the cavity, �i is the coupling to each bath, and the bath action
is

Sbath =
∑

i

∫
ω,q,�

b̄i;�(ω, q)(ω − �)σ̂1bi;�(ω, q). (30)

The saddle-point equations of motion for the photon fields are
then

[
DR

a (∂t , q)
]−1

acl(t, q) =
∫

�

�i;�(q)bcl
i;�(t, q), (31)(

i
∂

∂t
− �

)
bcl

i;�(t, q) = �i;�(q)acl(t, q). (32)

Henceforth we suppress the superscript cl. We now make the
Markovian approximations �i;�(q) = √

κi and furthermore
assume that the coupling to the two baths is the same: κi = κ .
If we define the input and output fields in the usual way,

bi;in(out)(t, q) =
∫

�

bi;�(t, q)e−i�(t−t0(1) ), (33)

Eq. (32) allows us to obtain the boundary condition

bi;out − bi;in = √
κa. (34)

Furthermore, plugging the retarded solution of Eq. (32) into
Eq. (31) gives[

D̃R
a

]−1
a ≡ ([

DR
a

]−1 + iκ
)
a = −i

√
κbi;in. (35)

We now see that [D̃R
a ]−1 corresponds to the retarded prop-

agator in Eq. (2) plus the self-energy from the coupling
to the superconductor. We now consider the case where
the input signal comes only from the left side of the cav-
ity, bl;in �= 0, br;in = 0. Going to Fourier space, we can
readily solve Eq. (35) and (34) to obtain the transmission
coefficient

t (ω, q) = br;out(ω, q)

bl;in(ω, q)
= −iκD̃R

a (ω, q). (36)

The transmission probability T (ω, q) = |t (ω, q)|2 is plotted
in Fig. 5. Using the definition of the photonic spectral function
Aphot(ω, q) = −(1/π ) Im D̃R

a (ω, q) we can express the trans-
mission probability as

T (ω, q) = πκ2Aphot(ω, q)

Im D̃R
a (ω)

. (37)

Peaks in the transmission then indicate the polariton branches
filtered through the photonic states.

FIG. 5. Transmission probability through the cavity as a function
of photon frequency ω and momentum transverse to the cavity plane
q. The maximum spectral weight for the polariton branches is shown
as dashed lines, and the pair-breaking energy 2� is plotted as a dotted
line. Note the similarity to Fig. 1.

V. DISCUSSION AND CONCLUSION

In this work we have shown that supercurrent-induced
coupling between cavity photons and the amplitude mode
of a disordered superconductor allows for the formation of
polaritons from their hybridization. These polaritons exhibit
damping inherited from the finite lifetime inherent to the
cavity and the presence of the particle-hole continuum leading
to the decay of Higgs excitations. Despite this, the lower
polariton branch, lying within the two-particle spectral gap,
remains a well-defined mode peaked around a single energy.
Such excitations join the growing zoo of light-matter hybrids
that can be formed in cavity-superconductor systems.

In conclusion we point out a particularly interesting sce-
nario, the detailed description of which we defer to a future
study, involving Bose-Einstein condensation of Higgs polari-
tons. As is well-established experimental fact in the case of
exciton polaritons [27,30,31], one should be able to popu-
late these Higgs-polariton states by driving the appropriate
cavity photon mode. A question that requires more careful
consideration is whether these states, once populated, satisfy
the conditions necessary for the formation of a spontaneously
coherent condensate. This is not, in principle, an unreasonable
possibility. Polariton-polariton interactions, which are needed
for thermalization of a driven population, naturally arise from
the quartic terms in the action describing the Higgs mode
itself. If the bottom of the photon dispersion is detuned below
the Higgs energy, then the energy of the lower polariton
branch is pushed even farther below the quasiparticle contin-
uum, as is the case with the usual Hamiltonian hybridization.

In a Hamiltonian theory with frequency-independent
damping, the decay rate of the polariton branch is a weighted
average of the two modes’ decay rates, depending on the
hybridization strength and detuning. Here there is additional
frequency dependence due to the non-Lorentzian nature of the
Higgs spectral function. Nonetheless, as the lower polariton
branch is significantly within the two-particle spectral gap,
there is little support for the decay of the Higgs into quasiparti-
cles and thus the dominant contribution to the polariton decay
should be the photonic lifetime, comprised of the intrinsic
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cavity losses and the Mattis-Bardeen absorption contribution
from the thin film with the latter generally being the stronger
of the two in our system. If the photonic lifetime is long
enough then the polaritons could come into equilibrium with
each other before decaying, allowing for the formation of a
quasithermal ensemble. More rigorous work must certainly be
done to make a definitive case for condensation, but many of
the necessary ingredients are immediately evident.

Assuming that a situation can be engineered where these
objects form a condensate, the question naturally arises as
to the nature of that state. Since the polariton states have a
nonzero overlap with both cavity photon and Higgs modes,
a finite coherent population of polaritons implies that both
the photon field and the Higgs field acquire a nonzero expec-
tation value. However, it is a highly nontrivial task to write
down a theory for the condensed state. The Higgs mode is
known to decay asymptotically as cos(2�t )/

√
t in the ring-

down regime following its excitation [25]. Other related time-
dependent solutions have been considered by Yuzbashyan,
Levitov, and others, who found a rich variety of integrable
dynamics; however they all describe evolution of the order pa-
rameter following a quench in the clean BCS model [32–34].
Complicating matters in our case are the presence of disorder
and the inherent time dependence of the Higgs mode that
would necessarily be reflected in the solution.

Condensation could be potentially realized by the now
standard optical parametric oscillation technique, wherein the
nonlinearity of of the lower polariton branch allows pairs of
excitations near the inflection point of the dispersion to decay
into a higher-energy idler excitation and a near-zero momen-
tum signal excitation, as has been used to great effect in
the experimental realization of exciton-polariton condensation
[35,36]. Thus, sufficiently strong driving of the modes near the
inflection point should allow for incoherent population of the
small momentum states at the minimum of the dispersion, giv-
ing the opportunity for condensation without externally im-
posed coherence. Compared with the usual exciton-polariton
case, here there is an additional tuning parameter for achieving
this regime in the form of the supercurrent.

Because the Higgs mode represents a change to the mag-
nitude of the superconducting order parameter, accurately de-
scribing condensation’s impact on superconductivity requires
a new self-consistent solution of a time-dependent Usadel
equation. The condensation of Higgs polaritons would likely
yield a diversity of dynamical behaviors, involving oscillatory
and other types of steady state dynamics of the gap �(t ),
depending on the nature of the drive and the details of ther-
malization and relaxation.
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APPENDIX A: SOLUTION OF THE BULK USADEL
EQUATION WITH A UNIFORM SUPERCURRENT

Writing the retarded quasiclassical Green’s function as

ĝR(ε) = cosh θε τ̂3 + i sinh θε τ̂2, (A1)

one obtains the retarded Usadel equation in the form

� cosh θε − ε sinh θε = i
�

2
sinh 2θε. (A2)

In the absence of a supercurrent it is straightforward to solve
the Usadel equation for a bulk superconductor:

tanh θε = �

ε
. (A3)

For a finite supercurrent the solution is not so simple. It is
convenient to reparametrize the problem using the Ricatti
parametrization:

cosh θε = 1 + ξ 2
ε

1 − ξ 2
ε

, sinh θε = 2ξε

1 − ξ 2
ε

. (A4)

In terms of the Ricatti parameter ξ the Usadel equation can be
rewritten

ξ 4 + 2(ε̃ + i�̃)ξ 3 − 2(ε̃ − i�̃)ξ − 1 = 0, (A5)

where we have defined ε̃ = ε/� and �̃ = �/�. This rewrit-
ing introduces two extraneous roots of complex magnitude
1, with the remaining two roots describing the advanced and
retarded solutions of the Usadel equation. Being a quartic
equation, there is a closed form solution. The difficulty arises
in uniquely determining the root corresponding to the retarded
solution for every ε. Here we may use our knowledge of the
structure of the solution and the limiting cases to simplify
things.

First, we note that Eq. (A5) is a self-inversive polynomial.
In this case, this implies that for any root x, −1/x∗ is also
a root. We also know that there are always at least two
unimodular roots. This means that there are two possible
cases: either there are four unimodular roots or there are two
unimodular extraneous roots and two distinct physical roots x,
−1/x∗.

Equation (A5) can be rewritten

(e−iφξ 2 − 2ξρ + eiφ )(eiφξ 2 + 2iξμ − e−iφ ) = 0, (A6)

with μ, ρ, and φ currently undetermined. By matching the
coefficients of the linear and cubic terms and comparing with
the original equation we obtain a system of equations which
can be solved for the relations

ρ = sec 2φ(ε̃ cos φ + �̃ sin φ),

μ = − sec 2φ(�̃ cos φ + ε̃ sin φ). (A7)

The remaining nontrivial equation comes from the
quadratic term and gives us the depressed cubic
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equation

y3 + (�̃2 + ε̃2 − 1)y + 2ε̃�̃ = 0 (A8)

for y = sin 2φ. Defining the quantities

p = �̃2 + ε̃2 − �2, q = 2ε̃�̃, (A9)

the nature of the solutions is different depending on the sign
of 4p3 + 27q2. This is the position of the branch point. For
4p3 + 27q2 > 0 there is only one real solution to Eq. (A8). For
the other case we must however choose the correct root. We
do so by choosing the solution that is continuously connected
to the real solution for 4p3 + 27q2 > 0. In this way we arrive
at

y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−2
√

−p
3 sgn q cosh

[
1
3 cosh−1

(−3|q|
2p

√
−p
3

)]
, 4p3 + 27q2 > 0 ∩ p < 0,

2
√

p
3 sinh

[
1
3 sinh−1

( 3q
2p

√
p
3

)]
, 4p3 + 27q2 > 0 ∩ p > 0,

2
√

−p
3 cos

[
1
3 cos−1

( 3q
2p

√
−p
3

) − 4π
3

]
, 4p3 + 27q2 � 0.

(A10)

We must now choose the correct angle φ. The four possible
choices of φ correspond to a permutation of the form of the
roots. In general, we can choose a prescription for φ such that
the full solution can then be written in the form

ξε = eiφε [ρε −
√

(ρε + i0)2 − 1], (A11)

which is to be compared with the supercurrent-free result

ξ 0
ε = ε̃ −

√
(ε̃ + i0)2 − 1. (A12)

The correct prescription is

sin−1(· · · ) ∈ [−π, π ],

φ =
{ 1

2 sin−1 y, |ε| > �,

−π
2 − 1

2 sin−1 y, |ε| < �.
(A13)

All the above is done for the case of infinitesimal damping.
The finite-damping case can be solved by analytically contin-
uing the above solution from ε + i0 → ε + iγ .

APPENDIX B: EVALUATION OF THE DIFFUSIVE
MODE VERTICES

The vertices r̂εε′ and ŝεε′ appearing in Eq. (16) can be
expressed in terms of the parametrization, Eq. (14), of the
saddle-point solution as[

sc
εε′

]
(R/A)β = i

2
trτ̂1 Î(R/A)X̌

β2
εε′ ,

[
sd
εε′

]
(cl/q)β = i

2
trσ̂∓X̌ β2

εε′ ,

[
rc
εε′

]
(R/A)β = i

2
trτ̂1 Î(R/A)

(
X̌ 03

εε X̌ β3
εε′ + X̌ β3

εε′ X̌ 03
ε′ε′

)
,

[
rd
εε′

]
(cl/q)β = i

2
trτ1σ̂∓

(
X̌ 03

εε X̌ β3
εε′ + X̌ β3

εε′ X̌ 03
ε′ε′

)
, (B1)

where we have defined

X̌ st
εε′ = Řε σ̂sτ̂t Ř

−1
ε′ σ̂3τ̂3 (B2)

and ÎR/A = (σ̂0 ± σ3)/2. If we define θ̄± = (θε ± θε′ )/2 and
θ̃± = (θε ± θ∗

ε′ )/2, and use the shorthand notation F = F (ε)
and F ′ = F (ε′), we can express the traces as

ŝc
εε′ =

[− cosh θ̄+ −F cosh θ̄+
cosh θ̄∗

+ −F ′ cosh θ̄∗
+

]
,

ŝd
εε′ =

[
(F ′ − F ) sinh θ̃+ (FF ′ − 1) sinh θ̃+)

0 sinh θ̃∗
+

]
,

r̂c
εε′ = 2i

[
sinh 2θ̄+ cosh θ̄− F sinh 2θ̄+ cosh θ̄−
sinh 2θ̄∗

+ cosh θ̄∗
− −F ′ sinh 2θ̄∗

+ cosh θ̄∗
−

]
,

r̂d
εε′ = 2i

[
(F − F ′)eθ̃+ cosh θ̃+ sinh θ̃− (1 − FF ′)eθ̃+ cosh θ̃+ sinh θ̃−

0 sinh 2θ̃∗
+ sinh θ̃∗

−

]
. (B3)

APPENDIX C: EXACT PARAMETRIZATION OF THE
BOSONIC ACTION FOR FINITE SUPERCURRENT

The expression for the Higgs-photon action can be put
into a more familiar form, reminiscent of Ref. [9], using the
parametrization

θε = θ0
ε + φε, (C1)

where θ0
ε is the spectral angle for the quasiclassical Green’s

function in the absence of a supercurrent [cf. Eq. (12)]. In
terms of the Ricatti parametrization introduced in Appendix
A we have

tanh φε = �
(
1 + ξ 2

ε

) − 2zξε

z
(
1 + ξ 2

ε

) − 2�ξε

, (C2)
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where z = ε + iγ . Using this parametrization the inverse cooperon and diffuson propagators are

D−1
ε+ε− = −Dq2 + iζR(ε+) cosh φ+ + iζA(ε−) cosh φ∗

− − �

ζR(ε+)2ζA(ε−)2

[
ζR(ε+)ζA(ε−) + (

z+z′
− − �2

0

)
cosh(φ+ − φ∗

−)

−�0(ω + 2iγ ) sinh(φ+ − φ∗
−)

][(
z+z′

− + �2
0

)
cosh(φ+ + φ∗

−) + 2�0ε sinh(φ+ + φ∗
−)

]
,[

C (R/A)
ε+ε−

]−1 = −Dq2 + iζR(ε+) cosh φ+ + iζR(ε−) cosh φ−

− �

ζR(ε+)2ζR(ε−)2

[
ζR(ε+)ζA(ε−) + (

z+z− − �2
0

)
cosh(φ+ − φ−) − �0ω sinh(φ+ − φ−)

]
× [(

z+z− + �2
0

)
cosh(φ+ + φ−) + 2�0z sinh(φ+ + φ−)

]
, (C3)

where we have defined z′ = ε − iγ . Note that while z′ = z∗
for real ε, the distinction is important if we wish to extend
the function to the complex plane. The above, in combination
with the matrix elements derived in Appendix B, can be in-
serted into Eq. (22) to obtain the Gaussian bosonic propagator
to all orders in the supercurrent.

APPENDIX D: SMALLNESS OF COUPLING
IN THE CLEAN SYSTEM

Consider the case of a clean BCS superconductor (in
Coulomb gauge) in the presence of a superfluid velocity vs.
In this case the Nambu Green’s function is given by

Ĝ−1(εn, k) = iεn + vs · k − ξkτ̂3 − �τ̂1 (D1)

and couples to the external vector potential via the vertex
e(vkτ̂0 + vsτ̂3) · A. The supercurrent-mediated coupling be-
tween photon and Higgs is proportional to the bubble diagram

χhA(ωm, q → 0) = −T vs

∑
kn

tr[Ĝ(εn + ωm, k)τ̂1Ĝ(εn, k)τ̂3].

(D2)
Inserting the Green’s functions in the form

Ĝ = iεn + vs · k − ξτ3 − �τ̂1

(iεn + vs · k)2 − E2
, (D3)

in terms of the BdG quasiparticle energy E =
√

ξ 2 + �2, and
performing the trace and Matsubara sums, we obtain

χhA(ωm, q → 0) = −4�vs

∫ ∞

−EF

dξ
ξν(ξ )

2E

× 〈nF (vs · k + E ) − nF (vs · k − E )〉φ
(iωm)2 − 4E2

,

(D4)

where 〈· · ·〉φ indicates an angular average. We now write

k = k f [1 + sgn(ξ )
√

ξ

EF
], and define F (E , k) ≡ 〈nF (vs · k +

E ) − nF (vs · k − E )〉φ , which allows us to write

χhA(ωm, q → 0) = −4�vs

∫ ∞

−EF

dξ
ξν(ξ )

2E

×
∑

n
1
n! F

(n)(ξ, kF )
(
sgn ξ

√
ξ

E f

)n

(iωm)2 − 4E2
. (D5)

Taking the quasiclassical approximation ξ � EF and ν → νF

we see that

χhA(ωm, q → 0) = −4νF �vs

∫ ∞

−∞
dξ

ξ

2E

F (ξ, kF )

(iωm)2 − 4E2

= 0, (D6)

as the integrand is odd in energy. Thus any nonzero con-
tributions must be O(�/EF , vs/vF ). This is to be compared
with the case in the main text where the coupling is finite
even within the quasiclassical approximation, and sizable
contributions can appear at lowest order in vs.

APPENDIX E: ALTERNATIVE CALCULATION
OF THE INTERCAVITY TRANSMISSION

As an alternative to the usual input-output method [28,29],
one can obtain the transmission amplitude through the cavity
using standard functional integral techniques. To do so, we
consider the case of Higgs polaritons coupled to a white-noise
bath on either side of the cavity, through a coupling that
preserves transverse momentum:

S = Spolariton +
∑

i

∫
dω

2π

∫
d2q

(2π )2

×
∫

d�

2π
b̄i;�(ω, q)D̂−1

b;�(ω)bi;�(ω, q) +
∑

i

∫
dω

2π

×
∫

d2q

(2π )2

∫
d�

2π

√
κi[b̄i;�(ω, q)σ̂1a(ω, q)

+ ā(ω, q)σ̂1bi;�(ω, q)], (E1)

where have made the Markov approximation above. We are
interested in the probability to transition from any bath state
on one side to the other

t (ω, q) =
∫

d�

2π

∫
d�′

2π
〈bcl;l;�(ω, q)b̄q;r;�′ (ω, q)〉. (E2)

To obtain this, we introduce the source field j coupled to the
bath fields as∑

i

∫
dω

2π

∫
d2q

(2π )2
j̄i(ω, q)σ̂1

∫
d�

2π
bi;�(ω, q) + c.c.,

(E3)
which allows us to write

t (ω, q) = (−i)2 δ2Z[ j]

δ j̄q;l (ω, q)δ jcl;r;(ω, q)

∣∣∣∣
j→0

. (E4)
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We can then integrate out b, followed by a. The integration
over b can be performed by first making the shift, bi;� →
bi;� − √

κiD̂b;�σ̂1( j + a). Making the definition ĝb(ω) =
σ̂1

∫
(d�/2π )D̂b;�(ω) this leads to a self-energy term

�̂b(ω, q) =
∑

i

κiĝb(ω), (E5)

a coupling between a and j

Sa− j = −
∑

i

∫
dω

2π

∫
d2q

(2π )2

∫
d�

2π

√
κi

× [ā(ω, q)ĝb(ω) ji(ω, q) + c.c.], (E6)

and a term quadratic in j which we can ignore as it does
not couple the two baths. Using the Sokhotski-Plemelj the-
orem, and the white-noise form [DR

b;�]−1(ω) = ω + i0 − �,
we can evaluate ĝb = σ̂2 + gK

b (σ̂0 − σ̂3)/2. In terms of the

renormalized Green’s function

ˆ̃D−1
a = D̂−1

0;a − �̂h − �̂b, (E7)

we can perform the shift a → a − ˆ̃Daĝb j and then integrate
out a. We are left with

Z[ j] = exp

[
−i

∫
dω

2π

∫
d2q

(2π )2

×
∑

ii′
j̄i(ω, q)ĝ†

b(ω) ˆ̃Da(ω, q)ĝb(ω) ji′ (ω, q)

]
. (E8)

Taking the functional derivatives we obtain

t (ω, q) = −i
√

κlκrD̃R
a (ω, q) (E9)

from which, upon setting κr = κl = κ , we recover Eq. (36) as
used in the main text.
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[13] O. Cotleţ, S. Zeytinoǧlu, M. Sigrist, E. Demler, and A.
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