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Light-induced topological superconductivity via Floquet interaction engineering
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We propose a mechanism for light-induced unconventional superconductivity in a two-valley semiconductor
with a massive Dirac-type band structure. The superconducting phase results from the out-of-equilibrium exci-
tation of carriers in the presence of Coulomb repulsion and is stabilized by coupling the driven semiconductor to
a bosonic or fermionic thermal bath. We consider a circularly polarized light pump and show that by controlling
the detuning of the pump frequency relative to the band gap, different types of chiral superconductivity would
be induced. The emergence of novel superconducting states, such as the chiral p-wave pairing, results from the
Floquet engineering of the interaction. This is realized by modifying the form of the Coulomb interaction by
projecting it into the states that are resonant with the pump frequency. We show that the resulting unconventional
pairing in our system can host topologically protected chiral bound states. We discuss a promising experimental
platform to realize our proposal and detect the signatures of the emergent superconducting state.

DOI: 10.1103/PhysRevResearch.3.023039

I. INTRODUCTION

The possibility of generating superconductivity (SC) in
periodically driven systems has been long investigated in
semiconductors [1], and it has been argued that under
population inversion, repulsive interactions can lead to a
superconducting instability [2–4]. Recent developments in
nonequilibrium Floquet band engineering [5–14] have revived
interest in periodically driven and light-induced interacting
quantum phases of matter [15–24]. In particular, recently such
effects were studied in hexagonal semiconductors such as
hexagonal boron nitride or two-dimensional transition metal
dichalcogenides [25]. It has been proposed that light-induced
nonthermal population occupation can lead to interband
superconducting correlations in the presence of repulsive in-
teractions and fermionic or bosonic baths [26]. Therefore it is
intriguing to question whether a more exotic form of super-
conductivity could be achieved in such driven systems.

In this paper, we show that the extension of these ideas
could lead to creation and manipulation of topological su-
perconducting phases. In particular, we show that optical
pumping of electrons in such two-dimensional (2D) semi-
conductors can generate topologically nontrivial chiral SC
[27,28] which hosts topologically protected chiral edge states
in the prethermal regime of our driven system. The idea is
illustrated in Fig. 1(a), where we apply a circularly polar-
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ized laser field, in the presence of an external bath to create
the population imbalance, required for the development of a
nonequilibrium superconducting phase.

The key underlying mechanism for the development of
unconventional SC in our system is the following. By vary-
ing the pump’s frequency, we excite photocarriers of select
momentum classes. Due to the optical valley polarization,
this leads to an asymmetric occupation distribution around
the resonance surfaces in the two valleys, as in Fig. 1(b).
This nonequilibrium occupation creates an effective pairing
population inversion around one of the valleys [Fig. 1(c)],
which leads to an interband pairing of electrons for a repul-
sive density-density interaction; that is, the pairing population
inversion effectively changes the interaction sign. We should
note that although superconductivity due to population in-
version has not yet been observed, recent advancements in
the development of transient light-induced quantum phases of
matter make the realization of such forms of superconductiv-
ity much more conceivable.

To study this pairing, the bare density-density interaction
should be projected into the band basis, composed of Bloch
wave functions. Due to the nonzero Berry curvature of Bloch
wave functions around each valley, the effective interaction
has a chiral nature and can be decomposed into different
angular momentum channels, where each channel has a dif-
ferent dependence on the momentum of electrons. Combined
with the fact that the momentum distribution of the excited
photocarriers is controlled by the pump’s frequency, our setup
allows for engineering the dominant form of electron-electron
(e-e) interaction. Consequently, we find frequency regimes
where a chiral p-wave pairing becomes more favorable than
an s-wave pairing. Therefore our results indicate that the pe-
riodic drive could be a powerful tool to not only engineer a
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FIG. 1. (a) Left: Relevant processes in our proposal in a 2D
semiconductor around the two Dirac points represented by ±K. The
Rabi frequency around the K (−K) valley and the system-reservoir
couplings are labeled by �̄

(+)
k (�̄(−)

k ) and �, respectively. n(±)
v,k (n(±)

c,k )

and s(+)
k (s(−)

k ) represent the occupation probabilities of the valence
(conduction) band and the anomalous interband pairing between the
conduction band around valley K (−K) and the valence band around
valley −K (K), respectively. Right: Geometry of the sample; coun-
terpropagating emergent superconducting edge states with energy
±eA0v/2 depicted with blue and red colors. (b) The driven (static)
energy spectrum in the rotating frame plotted with a solid (dashed)
line colored according to their population probabilities. (c) The
interband pairing population, n(±)

sc,k = 1 − n(±)
v,k − n(∓)

c,−k, in terms of
momentum.

band but also control the form and strength of the interaction
[29–31].

II. MODEL

The system considered in this paper consists of a 2D semi-
conductor with honeycomb lattice structure, such as a single
layer of hexagonal boron nitrate (h-BN) [32,33] or transition
metal dichalcogenides (TMDs) [34,35]. The electronic band
structure consists of two degenerate valleys, and the broken
inversion symmetry leads to a gap at two Dirac points K
and −K at the corners of the Brillouin zone (BZ), which are
labeled by η = (±), respectively. The semiconductor is driven
by a laser beam, whose frequency is slightly larger than the
semiconductor gap. The Hamiltonian describing the system
is Hs = HK + He-e, where HK is a driven kinetic term and
He−e is an e-e interaction. The driven Hamiltonian for the
semiconductor has the form

HK =
∑

a,b,η=±
cη†

a,k

{[
dη

k + �η(t )
] · τab − μk1ab

}
cη

b,k, (1)

where cη†
a,k is the electron creation operator of sublattice type

a in the vicinity of valley ηK, τi with i = {x, y, z} is the Pauli
matrix acting on the sublattice space in the unit cell, and μk
is the chemical potential, which we assume to be momentum
independent. The low-energy Hamiltonian of the two valleys
is given by dη

k = (vkx, ηvky, m − κk2), where k denotes the
deviation from the K or −K points in the BZ; m, v, and
κ correspond to the band gap, the Fermi velocity, and the

band curvature, respectively; and k2 = k2
x + k2

y . The optical
driving of the system with a circularly polarized laser field
is described by minimal coupling (k → k + eA), where the
laser field’s vector potential is A(t ) = A0(cos ωt, sin ωt, 0),
with A0 and ω labeling the amplitude and frequency of the
pump, respectively, and we set h̄ = 1. Up to linear order in
A0 the associated Rabi vector of the optical pump is �η(t ) =
eA0v[cos ωt, η sin ωt,−2 κ

v
(kx cos ωt + ky sin ωt )]. For sim-

plicity, we ignore the effect of the physical spin, which only
affects our results when the spin-orbit coupling is comparable
to the semiconductor gap [3].

In the following, we denote the corresponding eigenener-
gies and eigenstates of the undriven Hamiltonian by ε

η

α,k and
|uη

α,k〉, where the valence and conduction bands are labeled by
α = {v, c}, respectively.

For the e-e interaction, we consider a repulsive density-
density potential U (r − r′), with the corresponding Hamilto-
nian

He-e =
∫

d2rd2r′ ∑
a,b

ψ†
a (r)ψ†

b (r′)U (r − r′)ψb(r′)ψa(r),

(2)

where ψ†
a (r) represents the electronic creation operator with

the sublattice index a. To study the possibility of Cooper pair-
ing between electrons, we suppose that the dominant form of
the interaction is a screened Coulomb interaction [36]. There-
fore, in passing to the momentum space, such interactions are
treated as a constant coupling. Denoting the Fourier transform
of Coulomb potential by Ukk′ , this implies that Ukk′ = g/N ,
where g is the interaction strength and N stands for the number
of particles in the unit cell. We also restrict our interactions to
intravalley scatterings such that in Ukk′ , k, and k′ belong to
the same valley.

To create an effective pairing population inversion, we need
a thermal bath. Our bath can have a fermionic or bosonic na-
ture; however, here we only consider a bosonic bath composed
of photons or phonons, which is experimentally more feasible,
and leave the study of the fermionic bath to Appendix B 2.
Specifically, here we assume that our bath can induce relax-
ation processes between the valence and conduction bands via
absorption and emission of photons.

III. MASTER EQUATION

To examine the out-of-equilibrium nature of SC in the
presence of a thermal reservoir at temperature T , we use
the master equation approach. Assuming that the system-bath
coupling is sufficiently weak and the bath has a short auto-
correlation time, we employ the Born-Markov approximation
to trace out photons from the equations of motion (EOMs).
We also consider large pump frequencies compared with Rabi
frequencies, which allows us to use the rotating wave approxi-
mation (RWA). As a result, we obtain an effective static master
equation for the density matrix of the system ρs [37],

∂tρs(t ) = − i[Hs, ρs]

+
∑

α=v,c

�α

(
Lα,kρsL

†
α,k − 1

2
{L†

α,kLα,k, ρs}
)

, (3)
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where the dissipator operators are Lv,k = L†
c,k = c†

c,kcv,k.
Associated with these dissipators we suppose momentum-
independent decay rates �α corresponding to an effective
population nB such that �v = �nB and �c = �(1 + nB), see
the Appendices.

IV. ROTATING FRAME TRANSFORMATION

By applying the RWA to the time-dependent term �(t ) in
Eq. (1), this term in the rotating frame is replaced by the static
vectors �̄

(+)
k and �̄

(−)
k around the K and −K Dirac points,

whose magnitudes are given by |�̄(+)
k | � eA0v and |�̄(−)

k | �
eA0v

3k2/(4m2), respectively, see the Appendices.
The modification of the e-e interactions becomes trans-

parent through a mode decomposition of the field operator
ψa(r) = ∑

α={v,c};η,k
1√
S
uη,a

α,kei(ηK+k).rcη

α,k in Eq. (2), where S
is the quantization area. The resulting projected Hamiltonian
has a contribution in the Cooper channel for the interband
pairing as [38]

He-e =
∑

k,k′,η=±
Ūkk′cη†

v,kc−η†
c,−kcη

c,k′c
−η

v,−k′ , (4)

where the projected density-density interaction is Ūkk′ =
(g/N )〈uη

v,k|uη

v,k′ 〉〈u−η

c,−k|u−η

c,−k′ 〉. We see that the Bloch wave
functions which encompass the topological characteristics of
the system control the form of e-e interactions. The crucial
effect of the Berry curvature of the band structure on the
e-e interactions is embedded in the Bloch wave function
overlaps in Ūkk′ which after inserting for the eigenstates can
be decoupled in three channels according to their angular mo-
menta 〈uη

v,k|uη

v,k′ 〉〈u−η

c,−k|u−η

c,−k′ 〉 = ∑
l=0,1,2 f (l )

k f (l )
k′ e−il (φk−φk′ ),

where f (0)
k = (1 + dz,k/dk )/2, f (1)

k = vk/dk, f (2)
k =

v2k2/[2dk(dk + dz,k )], and dk = |dk|, see the Appendices.
Correspondingly, for momenta close to the corners of BZ,
for small k and k′ this gives Ūkk′ � g[1 + F

4 (2k.k′ − 2ẑ.k ×
k′ − k2 − k′2)]/N, where F = v2/m2 is the Berry curvature
at the Dirac point. Recently, such topologically induced
modifications of the e-e interaction have been associated with
modification of the excitons’ spectrum [39,40].

V. MEAN-FIELD ANALYSIS

To study the possibility of the Cooper pair condensation,
we use a mean-field (MF) approximation for the e-e interac-
tion and express it as

He-e = −
∑

η=±;k,k′
�

η∗
k Ū −1

kk′ �
η

k′ +
∑

η=±;k

(
�

η∗
k c−η

c,−kcη

v,k + H.c.
)
.

(5)

Notice that we introduce two pairing order parameters �
(±)
k ,

depending on whether the valence electrons around the K
valley and the conduction electrons around the −K valley
are bound to each other or vice versa. Employing the MF
expression above, we can use Eq. (3) to write a closed set of
equations for the occupation numbers nη

α,k = tr(ρsc
η†
α,kcη

α,k ),

the polarization pη

k = tr(ρsc
η†
c,kcη

v,k ), and the anomalous pair-

ing sη

k = tr(ρsc
−η

c,−kcη

v,k ). This approach leads to legitimate

results at the onset of the SC phase transition, where the dis-
tinction between the Bogoliubov quasiparticles and electrons
is negligible. The EOMs for nη

α,k and pη

k in the absence of
pairing are familiar and known as the optical Bloch equa-
tions in the literature [41,42], and we leave their derivation to
Appendix B. Here, we only present the EOM of the anoma-
lous pairing, which is less familiar,

∂t s
η

k = −iεt,ksη

k − i�η

k

(
1 − nη

v,k − n−η

c,−k

) − 1
2�t s

η

k, (6)

where we define the total decay rate as �t = �v + �c and
the total kinetic energy as εt,k = εv,k + εc,k. We note that
on the right-hand side of this equation, the two occupation
probabilities in the parentheses belong to two different val-
leys, which is a manifestation of the Cooper pairing. In the
steady state, where the right-hand side of Eq. (B34d) vanishes,
sη

k satisfies sη

k = −i�η

knη

sc,k/(iεt,k + �t/2), where we define

the interband pairing population as nη

sc,k = 1 − nη

v,k − n−η

c,−k.
Since nη

v,k and nη

c,−k can be independently populated due to
the optical valley selection rules, under nonequilibrium con-
ditions the pairing population can acquire a finite value.

Using the MF definition of the anomalous pairing sk, the
self-consistency equation at the onset of the phase transition
becomes �

η

k � −∑
k′ Ūkk′sη

k′ . However, since in dissipa-
tive systems, sk′ may have a finite imaginary part, this
equation should be modified by a more accurate Keldysh
approach [3,25]. For weak decay rates, we get �

η

k �
−∑

k′ Ūkk′Re[sη

k′/�
η

k′], where the real part in brackets indi-
cates the dissipative suppression of the pairing and ensures
that �

η

k remains real. Correspondingly, in the steady state this
equation gives

�
η

k = −
∑

k′
Ūkk′

εt,k

ε2
t,k + �2

t
nη

sc,k′�
η

k′ , (7)

where we remark that nη

sc,k′ effectively determines the inter-
action sign [3,25]. The asymmetry of the Rabi frequencies
at the two valleys results in the corresponding steady-state
occupation probabilities differing significantly as depicted in
Fig. 1(b). For the polarization we have chosen, this leads to
a positive (negative) value for n(+)

sc,k (n(−)
sc,k) as is displayed in

Fig. 1(c). Thus, with a repulsive interaction, we can have
a SC instability by developing a nonvanishing value for the
order parameter �

(−)
k , while �

(+)
k remains vanishing. Thus,

in what follows we drop the valley superscript in �k for the
nonvanishing order parameter.

We also highlight that the form of Ūkk′ crucially determines
the form of the resulting gap. In fact, the self-consistency
equation above can be solved using a simple ansatz for the
gap function of the form

�
(l )
k = e−ilφk f (l )

k �(l ), (8)

where l = {0, 1, 2} should be ascribed to the angular momen-
tum of the s-, p-, and d-wave pairing modes and f (l )’s play
the role of the SC form factors. Using this ansatz and inserting
εt,k = 2μ, the linearized gap equations for the three different
types of pairing decouple, and the critical coupling strength
for each channel reads

1

g(l )
crit

= 1

N

∑
k′

f (l )2
k′

2μ

4μ2 + �2
t

(
1

2ζ
(−)
−k′ + 1

− 1

2ζ
(+)
k′ + 1

)
,

(9)
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FIG. 2. Critical coupling, gcrit , for development of supercon-
ductivity in three s-, p-, and d-wave channels. We choose �/m =
0.0002, v/(ma) = 0.4, κ/(ma2) = 0.04, μ/m = 0.01, and nB =
0.001, where a is the lattice constant. (a) gcrit vs drive frequency
with evA0/m = 0.02 and E�/m = 0.5. Inset: f (l ) form factors as a
function of the resonant frequency. (b) gcrit vs drive amplitude: We
choose ω/m = 2.5. Inset: gcrit as a function of the UV energy cutoff
with the drive amplitude evA0/m = 0.2.

where ζ
η

k = (�̄η2
k,x + �̄

η2
k,y)/(ε2

d,k + 1
4�2

t ) and the detuning fre-
quency is εd,k = εc,k − εv,k − ω. Since we only consider
direct optical transitions, ζ

η

k is essentially the pairing popu-
lation in each momentum class, in the weak-drive limit.

As illustrated in Fig. 1(c), the main contribution to nsc,k
comes from around the resonance energy ring, denoted by kr ,
where the detuning frequency vanishes, εd,kr = 0. Hence we
consider a given UV cutoff E� around this surface and show
that the resulting phenomena are independent of the exact
value of this parameter.

The frequency of the pump determines which momentum
classes are resonantly excited. Equation (7) indicates that only
the states with negative nsc,k can form pairing. Moreover,
since the projected Coulomb interaction has momentum de-
pendence, the critical value of the coupling strength depends
on the pump frequency. This behavior is depicted in Fig. 2(a),
where we notice that the preferred form of pairing transforms
from s wave to p wave as the drive frequency increases. This
transition is associated with the momentum dependence of the
SC form factors. Since nsc,k is peaked around the resonant
surface, we only need to consider the momentum dependence
of the form factors around this surface. Consequently, for
a given frequency the radius of the resonance ring kr (ω) is
obtained, which can be inserted to determine the form fac-
tors f (l )[kr (ω)]. These functions are displayed in the inset of
Fig. 2(a). Here, we observe a similar behavior to that in the
main plot of Fig. 2(a), where by increasing the frequency the
initially dominant s-wave form factor becomes subdominant
with respect to the p-wave form factor.

Other than the pump’s frequency, critical coupling de-
pends on the amplitude of the pump, too. This is displayed
in Fig. 2(b), where the horizontal axis has been chosen to
be the dimensionless parameter evA0/�, which appears in
the gap equation through ζk. We notice that the critical cou-
pling strength of all the three SC modes always decreases
as the pump amplitude increases. Specifically, in the low-
intensity limit (evA0 � �), the critical coupling is inversely

proportional to the intensity ∝ ( �
evA0

)2, which could be associ-
ated with the fact that the peak value of the excited population
(|n(±)

sc,k| � ζ
(+)
k ) increases linearly with the intensity. At higher

intensities, where evA0 � �, this behavior changes, since the
width of n(±)

sc,k, i.e., the number of momentum classes partici-
pating in pairing, keeps increasing, and therefore we do not
observe a saturating behavior. Furthermore, in the inset of
Fig. 2(b), we depict gcrit as a function of the energy cutoff,
which shows that once E� becomes comparable to the band
gap, the cutoff dependence of g−1

crit becomes insignificant. Fi-
nally, note that gcrit can be controlled directly by the chemical
potential and its minimum value is reached when μ = �t/2.
This feature provides a high tunability in choosing the other
parameters of our system, see the Appendices.

VI. SIGNATURES OF TOPOLOGICAL SC

Given the diversity of proposals to realize topological
phases in driven-dissipative systems, it is crucial to present the
experimental signature of the light-induced topological phase
in our proposal. Here, we show that the interband p-wave
pairing hosts edge supercurrents which are experimentally
detectable. To analyze the edge modes, the SC behavior of
the system can be described by an effective MF Hamiltonian
which includes a kinetic energy and a SC pairing between
the valence (conduction) electrons at K (−K). Due to the
nonequilibrium nature of superconductivity in our system,
only electrons around the resonance ring participate in SC.
Hence the steady-state Hamiltonian corresponds to electrons
with momentum close to the resonance surface with mo-
menta k ≈ kr + δk, where δk � kr denotes the momentum
deviation from the resonance surface. Thus the effective MF
Hamiltonian should be projected into these states. This struc-
ture is comparable to conventional superconductors, where
electrons at the Fermi energy control the properties of the
superconductor and edge modes [43,44]. To examine the ex-
istence of localized states at a hard boundary parallel to the y
direction, we set ky = 0 and replace the momentum deviation
from the resonant point, δkx, with −i∂x. The resulting Hamil-
tonian becomes

Heff ≈ evA0

2
σzτz + �k

2
σxτx

+ μσ0τz +
(

1 − v2k2
r

2m2
− v2kr,x

m2
i∂x

)
σzτ0,

(10)

where the SC order has a p-wave structure (�kr = �0kr). The
effective Hamiltonian commutes with σzτz, and consequently,
the eigenstates are in two independent sectors corresponding
to σzτz = ±1. We put the boundary at x = 0, and the sample
is in the x < 0 region. The two chiral states resulting from
momenta close to each resonant momentum have energies
E± = ± eA0v

2 and are separated with a gap of roughly �0 from
the continuum states close to the resonant momenta. Their
corresponding wave functions are

|�±〉 = eλx sin(q±x)√
2

(|1〉σz | ± 1〉τz − i| − 1〉σz | ∓ 1〉τz ), (11)

where λ = m2

ev3A0

�kr
kr

, q± = ±μ+(1−v2/2m2 )evA0

|kr |evA0v2/m2 . Spinors |s〉σz

(|s〉τz ) correspond to eigenspinors of σz (τz ) Pauli matrices
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with eigenvalue s. The ± sign corresponds to the two sectors
with σzτz = ±1. It is noteworthy that these edge states have
opposite chirality in the two sectors as shown in Fig. 1(a) and
can solely emerge when the pairing has a p-wave structure.
Furthermore, these states carry supercurrents with no potential
drop, which distinguishes them from normal edge currents
and was experimentally detected before in graphene [14]. To
verify the development of the edge states outlined above, we
can use the method used before to distinguish the edge and
bulk supercurrents in the steady-state superconducting phase
[45]. To this end, we consider a TMD sample where part of
the sample (including part of the edge) is illuminated by an
appropriate laser beam. We then measure the supercurrent car-
ried through the edge which is illuminated by the laser field.
It is also shown that in a magnetic field, fluxoid quantization
generates a periodic modulation of the edge condensate which
is observable as a fast-mode oscillation of the critical current
versus the magnetic field. It should be noted that the fast-mode
frequency is distinct from the conventional Fraunhofer oscil-
lation displayed by the bulk supercurrent and the frequency
of such oscillations should increase with the superconducting
area [45]. Interestingly, in our setup the superconducting area
can be readily increased by an increase in the laser beamwidth,
which makes such measurements convenient for our setup.

The edge states’ supercurrent is contrasted with the bulk
states’ current through its dependence on the size of the su-
perconducting region and an external magnetic field. Such
measurements have been realized through experiments on
samples with different sizes [45], which in our setup is simply
controlled by the width of the pump beam.

VII. EXPERIMENTAL FEASIBILITY

Finally, we provide an estimate for the pump’s amplitude
based on typical energy scales in 2D two-valley semiconduc-
tors. Specifically, to verify the feasibility of the realization
p-wave SC in our model, we need to estimate the required
critical coupling constant. Promising 2D semiconductors to
realize the phenomena outlined here are h-BN or TMDs with
a band gap of the order of 5 eV [46,47]. In these materials
the screened Coulomb interaction g typically is comparable to
the band gap of these materials [36] or can be enhanced via
Coulomb engineering [48]. From Fig. 2(b), we deduce that to
obtain log10(gcrit/m) � 0, one requires an electric field such
that the ratio evA0/� would be of the order of 102. Since
typically the inverse decay rate is of the order of picoseconds
[49], this implies that the required Rabi frequency for our
proposal should be 10 THz. For a typical semiconductor, this
Rabi frequency corresponds to an electric field of 5 × 106

V/m. Recently, strong fields with an electric field of 4 × 107

V/m have been used in generating a light-induced Hall effect
in graphene [14]; therefore we believe that our proposal is
within experimental reach.

VIII. OUTLOOK

The Floquet engineering of the interaction described here
is a versatile effect which can be generalized to other lat-
tice symmetries where the band structure has a nontrivial
topological structure. Correspondingly, interesting directions

to explore in the future are the study of similar effects in
multilayer twisted semiconductors and the generation of other
interacting topological phases. While here it suffices to study
the prethermal regime of the system, which at the high fre-
quencies considered in our proposal can last for many periods
of the drive [50,51], for longer time scales scattering pro-
cesses with acoustic phonons, which mediate momentum and
tend to thermalize the system, become important. It would be
fascinating to explore under what circumstances the supercon-
ducting state proposed here survives in the presence of such
processes [52,53]. Finally, for large decay rates a mean-field
approach is not satisfactory, and the effects of the fluctuations
should be investigated [54–56].
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APPENDIX A: ROTATING WAVE TRANSFORMATION

The equations of motion (EOMs) in our derivation are
solved in the rotating frame. Here, we mention how we derive
the required rotation. We first consider a generic traceless
2 × 2 Hamiltonian hk = dη

k · τ, where τi with i = {x, y, z} are
the Pauli matrices. The eigenstates of this Hamiltonian up to
some phase factors are given by

∣∣uη

c,k

〉 = 1

[2dk(dk + dz,k )]1/2

(
dk + dz,k

dη

+,k

)
,

∣∣uη

v,k

〉 = 1

[2dk(dk + dz,k )]1/2

(
dη

−,k
−(dk + dz,k )

)
, (A1)

where we have dropped the valley index in dk and dz,k, which
have the same form in the two valleys and are defined as
dη

±,k = dη

k,x ± idη

k,y.
To apply the rotating wave approximation to a nondiago-

nal Hamiltonian, we need to first transform the Hamiltonian
into the energy basis where it is diagonal and then apply
a time-dependent rotation to the two energy levels so that
the time dependence of the two transformed eigenstates be-
comes approximately the same. The first transformation is
done through a similarity transformation by the unitary matrix
U η

k = (|uη

v,k〉 |uη

c,k〉), where we have used the eigenstates
of the undriven Hamiltonian, and the second transformation
is realized by the diagonal time-dependent transformation
diag(eiωt/2, e−iωt/2). The combination of these two trans-
formations is Rη

k(t ) = (|uη

v,k〉eiωt/2 |uη

c,k〉e−iωt/2). Therefore,
denoting the electronic spinors in the laboratory frame and
the rotating frame as �T

k ≡ (cη

a,k, cη

b,k ) and �̃T
k ≡ (c̃η

v,k, c̃η

c,k ),
respectively, we have �

η

k = Rη

k(t )�̃η

k . We apply this transfor-
mation to all of the terms in the Hamiltonian system. While
the undriven Hamiltonian is trivially diagonalized, the pump
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Hamiltonian should be obtained after averaging over time. To
evaluate the temporal average of the drive term, it would be
convenient to decompose the time-dependent terms as

�(t ) = �c cos(ωt ) + �η
s sin(ωt ), (A2)

where �c = eA0v(1, 0,−2 κ
v

kx ) and �η
s =

eA0v(0, η,−2 κ
v

ky). Correspondingly, the expression that

must be averaged over time is Rη†
k (t )�η(t )Rη

k(t ). The final
result of this calculation becomes

�̄
(+)
k = eA0v

(
1 + κk2

m
− v2k2

4m2
, 0, 0

)
(A3)

and

�̄
(−)
k = eA0v

(
v2(k2

y − k2
x )

4m2
,−v2kxky

2m2
, 0

)
. (A4)

Similarly, we need to transform the electron-electron inter-
action term by rotating the electronic creation and annihilation
operators and averaging over time. The final result of this
calculation, in addition to the right-hand side of Eq. (8) in the
main text, has other contributions which include the overlap of
the valence and conduction wave functions at close momenta
which makes such terms negligible.

Here, we mention that in order to integrate the gap
equation, we consider an energy cutoff with respect to the
resonance surface. The resonance ring in the BZ is defined
by ω = 2dk=kr , demanding that

kr = 1

2

√
ω2 − 4m2

v2 − 2mκ
, (A5)

where kr is the radius of the resonance ring. We can also use
the above equation to define the integral bounds of the radial
momentum through the UV energy cutoff E� as follows:

k(±)
� = 1

2

√
(ω ± E�)2 − 4m2

v2 − 2mκ
. (A6)

Furthermore, we note that we have used this relation in the
main text to define the form factors as a function of the
frequency f (l )(ω). In particular, to determine the frequency
where a transition from the s-wave SC to p-wave SC occurs,
we should satisfy

f (0)[kr (ω)] = f (1)[kr (ω)], (A7)

where f (0)
k = (1 + dz,k/dk )/2, f (1)

k = vk/dk. From here, we
can observe that in order to satisfy this condition, it is de-
sirable to have a positive band curvature κ so that dz,k and
correspondingly f (0)

k would decrease with the momentum.
Therefore, since f (1)

k increases monotonically with the mo-
mentum, this condition can be satisfied with smaller values of
the momentum deviation from the valley center.

Regarding the numerical parameters chosen in the main
text, we should mention that in Fig. 2 the magnitude of v

is chosen such that it results in a large value for kr � 2/a,
which may not be accessible in lattice models. A more re-
alistic parameter regime is obtained by increasing v, which
reduces the required values of kr and still captures the same
competition between the p-wave and s-wave superconducting

states but now with a larger value for the critical coupling
log10(gcrit/m) � 1 which has been numerically verified in our
simulations. This issue can also be resolved, and it does not af-
fect the feasibility results of our paper since the magnitude of
the critical coupling strength can be decreased by choosing a
smaller value for the chemical potential closer to the optimum
value of the chemical potential, i.e., μ = �t/2 as mentioned
in the main text.

Finally, having a finite deviation from the Dirac points
has an additional dynamical effect which helps our proposal
indirectly. We note that in our proposal, to develop a su-
perconducting state, it is essential to have a large Coulomb
interaction which can occur as a result of screening the
Coulomb interaction. However, this screening can also lead to
large exciton binding energy in TMDs. Therefore it might ap-
pear that exciton formation could compete with the formation
of SC. This issue can be avoided by a strong optical pumping
of the system well above the band gap. More precisely, for the
formation of excitons, the excited electrons should relax to
the bottom of the conduction band. The effective energy asso-
ciated with inverse relaxation rate through optical phonons is
2 meV [57], which is two orders of magnitude smaller than the
Rabi frequency being more than 100 meV. Correspondingly,
in our derivation, we ignore the exciton formation processes.

APPENDIX B: DERIVING THE EQUATIONS OF MOTION

1. Bosonic bath

In this section, we obtain the equations of motion (EOMs)
in the presence of a bosonic bath. In general, the bath used in
our formalism and its coupling to our system can be described
by the following Hamiltonian:

Hb =
∑

k

νkb†
kbk, (B1)

Hs-b =
∑

k

λk
(
bkc†

c,kcη

v,k + H.c.
)
. (B2)

Using such a bath leads to a master equation

∂tρs(t ) = −i[Hs, ρs] +
∑

α=v,c

�αL[Lα,k]ρs, (B3)

where the action of the Lindbladian superoperator L with a
quantum jump operator L on the density matrix ρ is defined as
L[L]ρ = LρL† − 1

2 {L†L, ρ}. While in general the decay rates
depend on the coupling constant λk and the density of states
of the bath, to simplify our formalism, we consider constant
decay rates, �v = �nB and �c = �(1 + nB), where nB denotes
the effective Bose-Einstein population of the bath, which we
assume is momentum independent.

Here, we are interested in the EOMs for the occupa-
tion probability nη

α,k, the polarization σ
η

k , and the anomalous

pairing sη

k = tr(ρsc
−η

c,−kcη

v,k ). For convenience of labeling we
define the notation nη

αα,k ≡ nη

α,k and nη

cv,k ≡ σ
η

k . To derive

the EOMs for an arbitrary operator O = tr(ρsÔ) in the
Schrodinger equation, we use ∂tO = tr(Ô∂tρ). To write down
the EOMs for these quantities, we also need the following
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identities:

tr(Ô[H, ρ]) = tr([Ô, H]ρ), (B4)

tr(ÔL[L]ρ) = 1
2 tr([L†, Ô]Lρ) + 1

2 tr(L†[Ô, L]ρ). (B5)

We can study the contributions of the Hamiltonian and Lind-
bladian in the time evolution separately. For the kinetic
Hamiltonian part with HK = c†

α,khαβ,kcη

β,k we can use the
following identities:

∂t n
η

μν,k

∣∣
HK

= tr
(
cη†
μ,kcη

ν,k∂tρ
)

= −i
∑

α={v,c}

(
hνα,knη

μα,k − hαμ,knη

αν,k

)
. (B6)

Similarly, for the interband pairing we get

∂t s
η

k

∣∣
HK

= tr
(
c−η

c,−kcη

v,k∂tρ
) = −i(εc,k + εv,k )sη

k. (B7)

We can also compute the commutators of the anomalous pair-
ing and the electron-electron interaction, which is

He-e =
∑

η=±1;k

(
�

η∗
k c−η

c,−kcη

v,k + H.c.
) + const. (B8)

The corresponding commutator becomes

∂t s
η

k

∣∣
He-e

= −i�k
(
1 − nη

v,k − n−η

c,−k

)
. (B9)

For the Lindbladian contributions we employ Eq. (B5) to
obtain

∂t n
η

v,k

∣∣
L = −�nBnη

v,k + �(1 + nB)nη

c,k, (B10a)

∂t n
η

c,k

∣∣
L = �nBnη

v,k − �(1 + nB)nη

c,k, (B10b)

∂tσ
η

k

∣∣
L = −�

(
1
2 + nB

)
σ

η

k , (B10c)

∂t s
η

k

∣∣
L = −�

(
1
2 + nB

)
sη

k. (B10d)

After combining the Hamiltonian and Lindbladian contribu-
tions, we get

∂t n
η

v,k = −i
(
�

η

k,x − i�η

k,y

)
σ

η∗
k + i

(
�

η

k,x + i�η

k,y

)
σ

η

k − i�η

ksη∗
k + i�η∗

k sη

k − �nBnη

v,k + �(1 + nB)nη

c,k, (B11a)

∂t n
η

c,k = i
(
�

η

k,x − i�η

k,y

)
σ

η∗
k − i

(
�

η

k,x + i�η

k,y

)
σ

η

k − i�−η

−ks−η∗
−k + i�−η∗

−k s−η

−k + �nBnη

v,k − �(1 + nB)nη

c,k, (B11b)

∂tσ
η

k = i(εc,k − εv,k − ω)ση

k − i
(
�

η

k,x − i�η

k,y

)(
nη

c,k − nη

v,k

) − �
(

1
2 + nB

)
σ

η

k , (B11c)

∂t s
η

k = −i(εc,k + εv,k )sη

k − i�η

k

(
1 − nη

v,k − n−η

c,−k

) − �
(

1
2 + nB

)
sη

k. (B11d)

Notice that should we want to take exciton formation into account, in Eq. (B11c), which is the EOM for the polarization, we
need to consider the Hartree-Fock contribution of the electron-electron interaction in the particle-hole channel. This adds a
term −i

∑η

k′ Ūkk′σ
η

k′ on the right-hand side of this equation. We can show that in our system, exciton formation and the Cooper
instability do not compete with each other. Therefore, even in the presence of a finite density of excitons, we can still have a phase
transition into a superconducting state. Thus, in our derivation, we drop such terms to simplify our analysis. From Eqs. (B11c)
and (B11d) we can obtain the anomalous pairing

sη

k = −�
η

k

(
1 − nη

v,k − n−η

c,−k

)
εt,k − i�

(
1
2 + nB

) (B12)

and the polarization

σ
η

k =
(
�

η

k,x − i�η

k,y

)(
nη

c,k − nη

v,k

)
εd,k + i�

(
1
2 + nB

) , (B13)

where εd,k ≡ εc,k − εv,k − ω. These relations can be inserted in the first two EOMs in the steady state,

0 = ζ
η

k

(
nη

c,k − nη

v,k

) + δ
η

k

(
1 − nη

v,k − n−η

c,−k

) − γvnη

v,k + γcnη

c,k, (B14)

0 = −ζ
η

k

(
nη

c,k − nη

v,k

) + δ
−η

k

(
1 − n−η

v,−k − nη

c,k

) + γvnη

v,k − γcnη

c,k, (B15a)

where we have defined

γv ≡ nB

1 + 2nB
, γc ≡ 1 + nB

1 + 2nB
. (B15b)

The equations at the two valleys should be solved together. This gives

(
ζ

(+)
k + δ

(+)
k + γv

)(
n(+)

v,k − 1

2

)
− (

ζ
(+)
k + γc

)(
n(+)

c,k − 1

2

)
+ δ

(+)
k

(
n(−)

c,−k − 1

2

)
= γc − γv

2
, (B16a)

(
ζ

(+)
k + δ

(−)
k + γc

)(
n(+)

c,k − 1

2

)
− (

ζ
(+)
k + γv

)(
n(+)

v,k − 1

2

)
+ δ

(−)
k

(
n(−)

v,−k − 1

2

)
= γv − γc

2
, (B16b)
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(
ζ

(−)
−k + δ

(−)
k + γv

)(
n(−)

v,−k − 1

2

)
− (

ζ
(−)
−k + γc

)
(n(−)

c,−k − 1

2
) + δ

(−)
k

(
n(+)

c,k − 1

2

)
= γc − γv

2
, (B16c)

(
ζ

(−)
−k + δ

(+)
k + γc

)(
n(−)

c,−k − 1

2

)
− (

ζ
(−)
−k + γv

)(
n(−)

v,−k − 1

2

)
+ δ

(+)
k

(
n(+)

v,k − 1

2

)
= γv − γc

2
, (B16d)

where the effective Rabi frequency and pairing amplitude are given by

ζ
η

k =
(
�̄

η2
k,x + �̄

η2
k,y

)
ε2

d,k + (
1
2 + nB

)2
�2

, (B17)

δ
η

k =
∣∣�η

k

∣∣2

ε
η2
t,k + (

1
2 + nB

)2
�2

, (B18)

respectively. The resulting equations can be rewritten in a matrix form,⎛
⎜⎜⎜⎜⎝

ζ
(+)
k + δ

(+)
k + γv −ζ

(+)
k − γc 0 δ

(+)
k

−ζ
(+)
k − γv ζ

(+)
k + δ

(−)
k + γc δ

(−)
k 0

0 δ
(−)
k ζ

(−)
−k + δ

(−)
k + γv −ζ

(−)
−k − γc

δ
(+)
k 0 −ζ

(−)
−k − γv ζ

(−)
−k + δ

(+)
k + γc

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

n(+)
v,k − 1

2

n(+)
c,k − 1

2

n(−)
v,−k − 1

2

n(−)
c,−k − 1

2

⎞
⎟⎟⎟⎟⎠ = 1

2
(γc − γv )

⎛
⎜⎝

1
−1
1

−1

⎞
⎟⎠. (B19)

Here, we are mainly interested in studying the onset of the SC
phase transition, which implies that we can ignore the pairing
amplitude in the above equations so that the matrix on the left
becomes block diagonal. In the limit where the effective Rabi
frequency around the −K valley, i.e., �̄

(−)
k , is negligible, after

using the conservation of the particle densities in the valence
and conduction bands of the two valleys separately (n(η)

v,k +
n(η)

c,k = 1), these probability populations become

n(+)
v,k = 1

2
+ γc − γv

2
(
2ζ

(+)
k + γv + γc

) , (B20)

n(+)
c,k = 1

2
− γc − γv

2
(
2ζ

(+)
k + γv + γc

) , (B21)

n(−)
v,−k = 1, (B22)

n(−)
c,−k = 0. (B23)

Let us further assume that nB = 0, which results in γv = 0
and γc = 1. In this limit, it is evident that we can have an
effective SC population inversion around one of the valleys
because

1 − n(+)
v,k − n(−)

c,−k � 1

2
− 1

2
(
2ζ

(+)
k + 1

) , (B24)

1 − n(−)
v,−k − n(+)

c,k � −1

2
+ 1

2
(
2ζ

(+)
k + 1

) . (B25)

We should hint that in the weak-drive limit, the right-hand side
reduces to +ζ

(+)
k and −ζ

(+)
k . More generally, after defining

the interband pairing population, n(η)
sc,k ≡ 1 − n(η)

v,k − n(−η)
c,−k, we

have

n(+)
sc,k ≡ 1 − n(+)

v,k − n(−)
c,−k = −1

2(1 + 2nB)

(
1

2ζ
(+)
k + 1

− 1

2ζ
(−)
−k + 1

)
, (B26)

n(−)
sc,k ≡ 1 − n(−)

v,−k − n(+)
c,k = 1

2(1 + 2nB)

(
1

2ζ
(+)
k + 1

− 1

2ζ
(−)
−k + 1

)
, (B27)

where we have used the fact that at every momentum we have
n(+)

v,k + n(+)
c,k = 1. These equations lead to the linearized gap

equation in the main text.
Finally, in deriving the final form of the gap equation from

the mean-field solution, we note that in dissipative superfluid
or superconducting systems, in general it is possible that the
condensate attains a time dependence [55]. Let us decom-
pose the total Hamiltonian into its system and system-bath
components H = Hs + Hs-b, where the former has kinetic and
interaction contributions as Hs = Hk + Hint . After integrating
out the reservoir degrees of freedom the effective Hamilto-
nian that is obtained for the system’s degrees of freedom is
quadratic and non-Hermitian. Therefore the total quadratic

Hamiltonian that is obtained from summing this contribution
and Hk would be non-Hermitian, too. Consequently, if we try
to use the corresponding non-Hermitian free energy to find
saddle-point solutions, it would lead to inconsistency as the
contributions of the quadratic terms are non-Hermitian while
those of the interaction terms are Hermitian. This problem
is solved by using the Keldysh action, which has a forward
and backward temporal contour such that by differentiating
between the retarded, advanced, and Keldysh Green’s func-
tions, the Hermiticity of the action is always built into it. The
detailed Keldysh calculation is explained in Ref. [3]. In the
limit where the dissipation rate is small, this result agrees with
the modified mean-field approximation.
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2. Fermionic bath

Here, we show that we can obtain similar results with a
fermionic bath at a fixed temperature T ,

Hb =
∑
k,α

ωα (k)b†
α,kbα,k, (B28)

where α = {v, c}. We consider a system-bath coupling which
allows the exchange of particles between the system and the

reservoir,

Hs-b =
∑
k,α

tα (k)
[
cη†
α,kbα,k + b†

α,kcη

α,k

]
. (B29)

Starting with the system-bath coupling term, we assume a
thermal Fermi-Dirac distribution for the bath degrees of free-
dom (DOFs) at temperature T , so that these DOFs can be
traced out. After applying the RWA and eliminating the os-
cillating terms, we arrive at the following master equation for
the density matrix of the driven semiconductor:

∂tρs(t ) = −i[Hs(t ), ρs] +
∑

k,α=v,c

�α (k)
(
nF

α,kL[c†
α,k]ρs + (

1 − nF
α,k

)
L

[
cη

α,k

]
ρs

)
, (B30)

where nF
α,k = nF (εα,k ) is the Fermi-Dirac distribution. The decay rates �α (k) = 2π

∑
a |ta|2ν(εα,k )uα∗

a,kuα
a,k, where ν(ε) repre-

sents the density of states of the bath’s electrons at energy ε.
For the pairing amplitude between the valence α = v and conduction band α = c, this yields

∂t sk|H = tr
(
cη†

c,kcη†
v,k∂tρ

) = i(εc,k + εv,k )sk. (B31)

For the Lindbladian part we get

∂tÔ = 1
2�αβnF

a

(
tr
([

cη

α,k, Ô
]
cη†
β,kρ

) + tr
(
cη

α,k

[
Ô, cη†

β,k

]
ρ)

) + 1
2�αβ

(
1 − nF

a

)(
tr
([

cη†
α,k, Ô

]
cη

β,kρ
) + tr

(
cη†
α,k

[
Ô, cη

β,k

]
ρ
))

, (B32)

where we have used the creation and annihilation operators in the rotating frame. Consequently, we can assume that oscillating
terms in the rotating frame can be ignored. This way, we can time average over the Lindbladian, which results in considering
only the diagonal terms in the above with α = β.

∂tÔ|RW = 1
2�ααnF

α

(
tr
([

cη

α,k, Ô
]
cη†
α,kρ

) + tr
(
cη

α,k

[
Ô, cη†

α,k

]
ρ
)) + 1

2�αα

(
1 − nF

α

)(
tr
([

cη†
α,k, Ô

]
cη

α,kρ
) + tr

(
cη†
α,k

[
Ô, cη

α,k

]
ρ
))

.

(B33)

Without loss of generality, in the rest of this section, we assume momentum-independent dissipation rates, and we label its
diagonal components as �α . The terms obtained from expanding the right-hand side are similar to the terms obtained in the
bosonic case. The final result of this expansion reads

∂t n
η

v,k = −i
(
�

η

k,x − i�η

k,y

)
σ

η∗
k + i

(
�

η

k,x + i�η

k,y

)
σ

η

k + i�η

ks∗
k − i�η∗

k sk − �v

(
nη

v,k − nF
v,k

)
, (B34a)

∂t n
η

c,k = i
(
�

η

k,x − i�η

k,y

)
σ

η∗
k − i

(
�

η

k,x + i�η

k,y

)
σ

η

k + i�−η

−ks−η∗
−k − i�−η∗

−k s−η

−k − �c
(
nη

c,k − nF
c,k

)
, (B34b)

∂tσ
η

k = i(εc,k − εv,k − ω)ση

k − i
(
�

η

k,x − i�η

k,y

)(
nη

c,k − nη

v,k

) − 1

2
(�c + �v )ση

k , (B34c)

∂t s
η

k = −i(εc,k + εv,k )sη

k − i�η

k

(
nη

v,k + n−η

c,−k − 1
) − 1

2
(�c + �v )sη

k, (B34d)

where as before we have ignored the terms which are relevant in exciton formation. Next, we derive the steady-state solution by
assuming constant densities and pairing amplitudes in the rotating frame. We start by obtaining the equations for the anomalous
pairing,

sη

k = −�
η

k

(
1 − nη

v,k − n−η

c,−k

)
εt,k − i

2�t
, (B35)

where we have defined εt,k = εc,k + εv,k and �t = �c + �v . In the next step, we consider the EOM for the polarization
σk ,

σ
η

k =
(
�

η

k,x − i�η

k,y

)(
nη

c,k − nη

v,k

)
εd,k + i

2�t
, (B36)

where we have defined εd,k = εc,k − εv,k − ω. Inserting these two equations in the occupation probabilities, we get

0 = ζ
η

k

(
nη

c,k − nη

v,k

) + δ
η

k

(
1 − nη

v,k − n−η

c,−k

) − γv

(
nη

v,k − nF
v,k

)
, (B37a)

0 = −ζ
η

k

(
nη

c,k − nη

v,k

) + δ
−η

k

(
1 − n−η

v,−k − nη

c,k

) − γc
(
nη

c,k − nF
c,k

)
, (B37b)
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where the effective Rabi frequency and the effective pairing amplitudes are

ζ
η

k = �̄
η2
k,x + �̄

η2
k,y(

ε2
d,k + 1

4�2
t

) , (B38)

δ
η

k = |�η

k|2(
ε2

t,k + 1
4�2

t

) . (B39)

As in the bosonic case, we need to solve four equations simultaneously,

(ζ (+)
k + δ

(+)
k + γv )

(
n(+)

v,k − 1
2

) − ζ
(+)
k

(
n(+)

c,k − 1
2

) + δ
(+)
k

(
n(−)

c,−k − 1
2

) = γv

(
nF

v,k − 1
2

)
, (B40a)

(ζ (+)
k + δ

(−)
k + γc)

(
n(+)

c,k − 1
2

) − ζ
(+)
k

(
n(+)

v,k − 1
2

) + δ
(−)
k

(
n(−)

v,−k − 1
2

) = γc
(
nF

c,k − 1
2

)
, (B40b)

(ζ (−)
−k + δ

(−)
k + γv )

(
n(−)

v,−k − 1
2

) − ζ
(−)
−k

(
n(−)

c,−k − 1
2

) + δ
(−)
k

(
n(+)

c,k − 1
2

) = γv

(
nF

v,−k − 1
2

)
, (B40c)

(ζ (+)
k + δ

(+)
k + γc)

(
n(−)

c,−k − 1
2

) − ζ
(−)
−k

(
n(−)

v,−k − 1
2

) + δ
(+)
k

(
n(+)

v,k − 1
2

) = γc
(
nF

c,−k − 1
2

)
, (B40d)

where �t = �v + �c, γα = �α/�. We can rewrite these equations in a matrix form,⎛
⎜⎜⎝

ζ
(+)
k + δ

(+)
k + γv −ζ

(+)
k 0 δ

(+)
k

−ζ
(+)
k ζ

(+)
k + δ

(−)
k + γc δ

(−)
k 0

0 δ
(−)
k ζ

(−)
−k + δ

(−)
k + γv −ζ

(−)
−k

δ
(+)
k 0 −ζ

(−)
−k ζ

(−)
−k + δ

(+)
k + γc

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

n(+)
v,k − 1

2

n(+)
c,k − 1

2

n(−)
v,−k − 1

2

n(−)
c,−k − 1

2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

γv (nF
v,k − 1

2 )
γc(nF

c,k − 1
2 )

γv (nF
v,−k − 1

2 )
γc(nF

c,−k − 1
2 )

⎞
⎟⎟⎠. (B41)

In general, one needs to invert the matrix on the left to find the solutions for the occupation probabilities. As the first step,
we consider the linearized gap equation where we only consider the solutions of the above equation in the zeroth order of �k.
Furthermore, we consider the zero-temperature limit where nF,v/c

k = 0, 1, where �
(−)
−k = 0 for k around the K′ Dirac cone. This

yields

n(+)
v,k + n(−)

c,−k − 1 = γvγc
(
γcζ

(+)
k − γvζ

(−)
−k

) + (
γ 2

c − γ 2
v

)
ζ

(−)
−k ζ

(+)
k(

γcζ
(−)
−k + γvγc + γvζ

(+)
k

)(
γcζ

(+)
k + γvγc + γvζ

(−)
−k

) + O(�2), (B42)

n(−)
v,−k + n(+)

c,k − 1 = γvγc
(
γcζ

(−)
−k − γvζ

(+)
k

) + (
γ 2

c − γ 2
v

)
ζ

(−)
−k ζ

(+)
k(

γcζ
(−)
−k + γvγc + γvζ

(+)
k

)(
γcζ

(+)
k + γvγc + γvζ

(−)
−k

) + O(�2). (B43)

We can further simplify these relations in the limit that the
Rabi frequency around the K ′ point is negligible,

n(+)
v,k + n(−)

c,−k − 1 � −γcζ
(+)
k

(γv + γc)ζ (+)
k + γcγv

+ ζ
(−)
−k

γc
, (B44)

n(−)
v,−k + n(+)

c,k − 1 � γvζ
(+)
k

(γv + γc)ζ (+)
k + γcγv

− ζ
(−)
−k

γv

. (B45)

The above relations can be employed for the interband pairing,
which can be used to derive the gap equation. To perform this

task, we need to write the self-consistency definition of mean-
field order parameter. The result of this calculation yields

�
η

k = −
∑

k′
Ūkk′

εt,k′

ε2
t,k′ + �2

t
nη

sc,k�
η

k′ , (B46)

where we have used the definition nη

sc,k = 1 − nη

v,k′ − n−η

c,k′ . As
in the bosonic bath case, we can see that this equation can only
be satisfied around one of the valleys, which for our choice of
the laser’s polarization will be the K valley. Therefore we can
drop the valley index and rewrite this equation as

�k = −
∑

k′
Ūkk′

εt,k′

ε2
t,k′ + �2

t

(
γcζ

(+)
k

(γv + γc)ζ (+)
k + γcγv

− ζ
(−)
−k

γc

)
�k′ . (B47)

Since the only difference between this gap equation and the
gap equation in the bosonic bath case is in the effective value
of nη

sc,k, we can use the same ansatz for the pairing amplitude
as before,

�
(l )∗
k = e−ilφk f (l )

k �(l ). (B48)

Using this ansatz, we can evaluate the critical value of the
coupling constant g numerically. After employing the same

integration method, we obtain a similar behavior for gcrit as a
function of the frequency of the pump, and we observe that
a transition from a s-wave SC pairing to a p-wave pairing is
possible. This shows that the phenomenon we observe is due
to the specific form of the electron-electron interaction that
we engineer and independent of the type of bath that we use
in our model.
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APPENDIX C: CHIRAL EDGE STATES

Here, we investigate the possibility of having protected
edge states which can carry supercurrent for our system [58].
In particular, we study the possibility of having localized
modes in the presence of a hard-wall boundary which is par-
allel to ŷ which requires the wave function to vanish at x = 0.

We assume that we are in the regime where the SC pairing
order parameter has acquired a significant value and is no
longer negligible as we previously imagined in the course
of obtaining the dominant form of the SC order parameter.
Besides, we recall that the main effect of the dissipation in
our system is to allow the formation of out-of-equilibrium
steady states where pairing is possible for electrons around
the resonant ring corresponding to momentum k ≈ kr + δk,
where |δk| < |kr |. Similar to our calculations in the main text,
this goal is achievable with a relatively small value of the
system-bath coupling. Therefore, for our purpose, which is to
study the topological properties of the system after reaching
this state, we can ignore the system-bath coupling and only
consider the Hermitian terms of the effective Hamiltonian in
our system.

In the rotating frame the kinetic energies of the valence and
conduction bands around the two valleys are

ε
η

α={v,c},k = μ + α
(

dk − ω

2

)
, (C1)

where on the right we set α = ±1, which corresponds to the
conduction and valence band energies, respectively. Corre-
spondingly, the second-quantized form of the kinetic term
reads HK = ∑

α,k εα,kcη†
α,kcη

α,k. Up to quadratic order, dk ≈
m + k2

2m (v2 − 2mκ ).
For states with momentum close to resonant momentum

kr = 1
2

√
ω2−4m2

v2−2mκ
, we get dkr+δk ≈ ω

2 + kr ·δk
m (v2 − 2mκ ). Us-

ing this approximation, the kinetic energies read

ε
η

α={v,c},k = μ + α
ṽ2

m
kr · δk, (C2)

where ṽ2 = v2 − 2mκ . The light-induced modification of the
band structure is implemented through the Rabi vectors in the
two valleys �

η

k as found in Eqs. (A3) and (A4). To simplify
our study, we consider ky = 0. The resonance surface is re-
duced to the resonance points at kr = ±kr x̂. Without loss of
generality we also set the band curvature to zero (κ = 0). The
magnitude of the Rabi vectors then reads as

�
(+)
k,x =

(
1 − v2

(
k2

r + 2kr,xδkx
)

4m2

)
�0, �

(−)
k,x

= v2

4m2

(
k2

r + 2kr,xδkx
)
�0, (C3)

where �0 = eA0v.
We note that after thermalization, the pairing obtains a

finite value in the basis above where the kinetic energies are
diagonalized. Thus, as the next step, we add the Bogoliubov–
de Gennes (BdG) pairing Hamiltonian of the system to the
Hamiltonian above.

Next, we transform the pairing Hamiltonian of the system
in the momentum space in the mean-field limit where �

(−)
k ≡

�k is finite and �
(+)
k is vanishing. The pairing Hamiltonian is

HSC =
∑

k

�kc(−)†
v,+kc(+)†

c,−k + H.c., (C4)

where the superconducting order parameter �k = �0(kx ±
iky) corresponds to a chiral p wave. As outlined above, we
initially consider ky = 0.

The sum of the kinetic and pairing Hamiltonian can be
combined in a BdG form, Htot = ∑

k �
†
kHtot�k, by using the

four-component spinor �
†
k = (c(−)†

v,k c(+)
c,−k c(+)

v,−k c(−)†
c,k ).

The corresponding first-quantized Hamiltonian has the form

Htot =

⎛
⎜⎜⎜⎝

εv,k �k 0 �
(−)
k,x − i�(−)

k,y

�∗
k −εc,k −�

(+)
−k,x − i�(+)

−k,y 0
0 −�

(+)
−k,x + i�(+)

−k,y −εv,k 0
�

(−)
k,x + i�(−)

k,y 0 0 εc,k

⎞
⎟⎟⎟⎠. (C5)

We first consider the limit where the pairing amplitude is vanishing in the Hamiltonian above, Hkin = HSC|�=0,

Hkin =

⎛
⎜⎜⎜⎝

εv,k 0 0 �
(−)
k,x − i�(−)

k,y

0 −εc,k −�
(+)
−k,x − i�(+)

−k,y 0
0 −�

(+)
−k,x + i�(+)

−k,y −εv,k 0
�

(−)
k,x + i�(−)

k,y 0 0 εc,k

⎞
⎟⎟⎟⎠. (C6)

Due to the block-diagonal structure of the Hamiltonian, we can diagonalize it by applying a simple rotation. The eigenenergies
at the two valleys are

ε̃
η

α,k = εα,k ± (
ε2
α,k + �

η2
k

)1/2
, (C7)

which around the resonance surface can be approximated as ε̃
η

α,k � εα,k ± �
η2
k . Thus we define

E (1,2) = μ ± �
(+)
k , E (3,4) = μ ± �

(−)
k . (C8)
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The required rotation can be obtained by finding the eigenstates of the above Hamiltonian around the resonant region,

∣∣φ(1)
k

〉 = 1√
2

⎛
⎜⎜⎝

1
0
0

e
iθ

�+
k

⎞
⎟⎟⎠,

∣∣φ(1)
k

〉 = 1√
2

⎛
⎜⎜⎝

1
0
0

−e
iθ

�+
k

⎞
⎟⎟⎠,

∣∣φ(3)
k

〉 = 1√
2

⎛
⎜⎜⎝

1
0
0

e
iθ

�−
k

⎞
⎟⎟⎠,

∣∣φ(4)
k

〉 = 1√
2

⎛
⎜⎜⎝

1
0
0

−e
iθ

�−
k

⎞
⎟⎟⎠, (C9)

where we have defined θ
η

k = tan(−1)(�η

k,y/�
η

k,x ) and used �
η

−k = �
η

k. Now, we can rewrite the original Hamiltonian, HSC, in
this rotated basis,

H̃tot =

⎛
⎜⎜⎜⎜⎝

μ + �
(+)
k 0 �k/2 �k/2

0 μ − �
(+)
k �k/2 �k/2

�∗
k/2 �∗

k/2 −μ − �
(−)
k 0

�∗
k/2 �∗

k/2 0 −μ + �
(−)
k

⎞
⎟⎟⎟⎟⎠. (C10)

We can rewrite this Hamiltonian in a more compressed way by introducing the Pauli matrices for the intravalley and intervalley
matrix elements denoted by σi and τi, respectively, where i = {0, x, y, z}. Using this notation, the rotated Hamiltonian becomes

H̃tot = �k

2
(σx + σ0)τx + μσ0τz + �

(+)
k + �

(−)
k

2
σzτz + �

(+)
k − �

(−)
k

2
σzτ0. (C11)

Since this Hamiltonian is a 4 × 4 matrix which is difficult to analytically diagonalize, we start by studying a modified version
of this Hamiltonian where the �k

2 σ0τx term is vanishing. As we will show later, this is viable because part of the Hamiltonian
hosts protected topological edge states when the pairing has a chiral p-wave structure. In the presence of this term, in general
the edge states can hybridize with the bulk states which are away from the resonance points. However, since the occupation of
Cooper pairs is negligible away from the resonance points, in our nonequilibrium setting the hybridization of bulk states will be
negligible. Hence, in the following, we consider the following Hamiltonian:

Heff = �k

2
σxτx + μσ0τz + �

(+)
k + �

(−)
k

2
σzτz + �

(+)
k − �

(−)
k

2
σzτ0. (C12)

We can easily verify that since this Hamiltonian commutes with the matrix σzτz, the two matrices can be simultaneously
diagonalized. The latter matrix has eigenvalues of ±1, and therefore we can diagonalize Heff in the ±1 sectors of σzτz.

(a)+1 sector. Let us first consider the +1 sector by inserting kx = kr,x + δkx. To translate the momentum-space Hamiltonian
to the real space, we insert δkx → −i∂x. Here, we can introduce the following relevant eigenstates: |1〉 ≡ |σz = 1, τz = 1〉 and
|2〉 ≡ |σz = −1, τz = −1〉. To simplify our notation, we introduce the Pauli matrices ξi in the space of |1, 2〉 states. After using
Eq. (C3) the resulting Hamiltonian becomes

Heff = μξz + �0

2
ξ0 +

(
1 − v2k2

r

2m2

)
�0ξz − v2kr,x�0δkx

m2
ξz + �kr

2
ξx

= �0

2
ξ0 +

[
μ +

(
1 − v2k2

r

2m2
+ iv2kr,x∂x

m2

)
�0

]
ξz + �kr

2
ξx. (C13)

Let us denote the eigenstates of this Hamiltonian by |ψ〉. Next,
we apply a gauge transformation |ψ〉 → |ψ ′〉 = e−iγkr x|ψ〉,
where we choose γ such that the constant terms in the brackets
above will cancel each other. This gives

γk = −m2 μ + (
1 − v2k2

r
2m2

)
�0

v2kr,x�0
. (C14)

After this insertion our Hamiltonian becomes

H′
eff = �0ξz + iv2kr,x∂x

m2
�0ξz + �kr

2
ξx. (C15)

This Hamiltonian has a localized eigenstate given by

|ψ ′(x)〉 = eλkr x|ηy = −1〉, λkr = �kr

kr,x

m2

v2�0
. (C16)

Since this eigenstate vanishes at x → ∞, it satisfies the
boundary condition for a semi-infinite strip geometry with a
boundary at x = 0 and extended along x → −∞.

In a geometry where we impose hard-wall boundary condi-
tions, the wave function should vanish at x = 0. Hence, under
such conditions the wave functions with momenta around
the two resonance points kx = kr and kx = −kr are super-
posed. To obtain the localized wave functions with momentum
around k = −kr x̂, we notice that due to the odd parity of the
SC order parameter, �−kr = −�kr , we have λ−kr = −λkr and
γ ′

−k = γ ′
k. More importantly, we should note that the spinor of

the localized state at −kr is the same as the spinor of the state
at kr , namely, |ξy = −1〉. Thus we can build a superposition
of the states with opposite momenta kr and −kr , to form a
state which vanishes at x = 0 and decays exponentially for
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x → −∞ according to

|ψ〉 = sin(γkr x)eλkr x|ξy = −1〉 = sin(γkr x)eλkr x(|σx =1, τx =1〉− i|σx = −1, τx = −1〉) (C17)

and whose energy is Eψ = �0/2. This state is the only localized state on the x = 0 boundary, which originates from the +1
sector which corresponds to τxσx = 1.

(b)−1 sector. In the other sector we project the Hamiltonian to the subspace where τxσx = −1. This subspace is spanned
by the following states: |3〉 = |σz = 1, τz = −1〉 and |4〉 = |σz = −1, τz = 1〉, where as before we use ξi’s to denote the Pauli
matrices in this basis. Consequently, the Hamiltonian required for the Volovik approach becomes

Heff = −μξz − �0

2
ξ0 +

(
1 − v2k2

r

2m2

)
�0ξz + v2kr,x�0δkx

m2
ξz + �kr

2
ξx

= −�0

2
ξ0 +

[
−μ +

(
1 − v2k2

r

2m2
− iv2kr,x∂x

m2

)
�0

]
ξz + �kr

2
ξx, (C18)

which should be compared with Eq. (C13). As before we apply a phase shift to the wave function as |ψ〉 → |ψ ′〉 = e−iγkr x|ψ〉.
The required phase is given by

γ ′
kr

= m2 −μ + (
1 − v2k2

r
2m2

)
�0

v2kr,x�0
. (C19)

Similar to the +1 sector, we can find a localized state around x = 0, by superposing the localized states in the vicinity of kr and
−kr . The final resulting state is

|ψ ′〉 = sin(γ ′
kr

x)eλkr x|ξy = 1〉 = sin(γ ′
kr

x)eλkr x(|σz =1, τz = −1〉+ i|σz = −1, τz = 1〉), (C20)

whose energy is −�0/2.
The analysis above demonstrates that in the absence of

the matrix τxσ0 in the Hamiltonian Heff , we have two chiral
localized states on the edge with energies ±�0. To show
that the states are chiral with opposite chirality, we need to
consider small momentum ky parallel to the x = 0 edge. Such
small momentum corresponds to the addition of a term of
the form �0kyτxσy. One can readily see that the edge states
|ψ〉 and |ψ ′〉 are eigenstates of kyτxσy with eigenvalue ±1,
correspondingly. As a result, they disperse linearly with par-
allel momentum with opposite velocities and form oppositely
chiral supercurrents.

Now the presence of pairing elements associated with τxσ0

in general can mix the corresponding eigenstates in the two
sectors. This can be easily shown by evaluating the matrix
elements of τxσ0 between the localized states and continuum
states in the two sectors. For large system sizes due to the

exponential decay of the localized states at the boundaries,
the hybridization of the localized states from different sectors
is negligible. However, we should still consider the possibility
of the hybridization of the localized states of one sector with
the bulk states of the other sectors. To answer this question,
let us first find the functional form of the bulk states. Here, we
only consider the +1 sector, and the bulk states of the other
sector can be obtained in a similar manner. The eigenvalues
are conveniently obtained by diagonalizing the corresponding
Hamiltonian, which (for the two sectors) gives

E (+1) = �0

2
±

√
�2

k +
(

v2kr�0

m2

)2

δk2
x , (C21)

E (−1) = −�0

2
±

√
�2

k +
(

v2kr�0

m2

)2

δk2
x . (C22)

The associated eigenstates are

|�(δkx )〉 = sin(γkr x)([εδkx +
√

v2m2kr�0]|σx = 1, τx = 1〉 ± �k|σx = −1, τx = −1〉)/
√
N , (C23)

|� ′(δkx )〉 = sin(γ ′
kr

x)([εδkx +
√

v2m2kr�0]|σx = 1, τx = −1〉 ± �k|σx = −1, τx = 1〉)/
√
N , (C24)

where N = [εδkx +
√

v2m2kr�0]
2 + �2

k is the normalization
factor. As discussed above, τxσ0 mixes the two sectors (both
for localized and continuum states). Since γ and γ ′ for
nonzero μ and kr are independent, the matrix elements be-
tween states from the two sectors (localized or continuum)
vanishes. As a result, the projection of the τxσ0 term into the
states close to the resonance vanishes, and these terms do
not contribute to the effective Hamiltonian close to resonant
momenta.

However, as mentioned previously, these matrix elements
are negligible because in order to match the traveling com-
ponent of the corresponding localized states and bulk states
with different momenta, we need to incorporate states with
momenta largely different from the resonant momentum.
Consequently, since such states do not contribute to su-
perconductivity, their corresponding matrix elements can be
ignored.
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