
PHYSICAL REVIEW RESEARCH 4, 043031 (2022)

Decoding conformal field theories: From supervised to unsupervised learning
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We use machine learning to classify rational two-dimensional conformal field theories (CFTs). We first use
the energy spectra of these minimal models to train a supervised learning algorithm. In contrast to conventional
methods that are typically qualitative and also involve system size scaling, our method quantifies the similarity
of the spectrum of a system at a fixed size to candidate CFTs. Such an approach allows us to correctly predict the
nature and the value of critical points of several strongly correlated spin models using only their energy spectra.
Our results are also relevant for the ground-state entanglement Hamiltonian of certain topological phases of
matter, described by CFTs. Remarkably, we achieve high prediction accuracy by only using the lowest few
Réyni entropies as the input. Finally, using autoencoders, an unsupervised learning algorithm, we find a hidden
variable that has a direct correlation with the central charge and discuss prospects for using machine learning to
investigate other conformal field theories, including higher-dimensional ones.
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I. INTRODUCTION

Conformal field theories (CFTs), which are quantum field
theories with conformal invariance, appear in many areas of
physics including condensed matter, statistical physics, and
string theory [1,2]. This procedure turns out to be especially
powerful in two spacetime dimensions (one spatial dimen-
sional and one temporal dimension), where the conformal
group is infinite-dimensional, and certain two-dimensional
CFTs may be classified by a finite number of primary fields
[1,2]. These CFTs, which are realized in a number of phys-
ically relevant systems, including the low-energy theory of
the quantum critical point of the transverse-field Ising model
[3], the edge states (along with the ground-state entanglement
Hamiltonian) of fractional quantum Hall systems [4,5], and
the Polyakov action describing the world sheet in string theory
[6], are important for being rare examples of analytically
tractable strongly interacting quantum field theories.

Therefore, given some data of a quantum system, it is im-
portant to identify whether that system is described by a CFT.
This data, obtained from either experimental measurements
or numerical simulations, could be the lowest few energy lev-
els of a given Hamiltonian or Rényi entanglement entropies,
which can be measured by probing multiple copies of the
system’s state [7–11]. In particular, it is interesting to ask if
this information can be used to detect whether a system is at
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a critical point and what kind of CFT describes it best. To
address this question, we turn to machine learning.

Machine learning has been increasingly used to study a
wide range of problems in different areas of physics recently
[12]. Notable examples include classifying phases of mat-
ter [13–15], studying nonequilibrium dynamics of physical
systems [16–18], studying the string theory landscape [19],
and AdS/CFT correspondence [20], simulating dynamics of
quantum systems [21], quantum state tomography [22,23],
and augmenting capabilities of quantum devices [24,25].

In this paper, we use both unsupervised and supervised ma-
chine learning to investigate various two-dimensional CFTs,
as sketched in Fig. 1. For supervised learning, we use a deep
neural network. Our first training data set is the lowest energy
level of exactly solvable two-dimensional CFTs. The chosen
CFT models include the well-known Ising critical point and
the SU(2)k anyonic chain parafermonic model (see Table I
for a full list). We then ask the machine to locate and predict
the nature of critical points of quantum spin chains to high
accuracy. By looking at the confidence of the network, we are
able to correctly identify the value of the critical point. Re-
markably, our approach requires a single system size, whereas
common methods (such as entanglement scaling [26]) require
finite-size scaling. We further elaborate on the advantage of
our method compared to conventional methods and provide
examples in the Appendix. Given that the entanglement spec-
tra (ES) of various topological phases of matter are also
described by CFTs [5,27], we train our network with the
lowest few Réyni entropies. While the relationship between
Réyni entropies and ES is nonlinear and requires all Réyni
entropies to solve for the ES exactly, we are able to extract the
CFT that describes the ES of two different spin-ladder systems
to high accuracy with only having access to the lowest few
Réyni entropies. Finally, we use the autoencoder algorithm
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FIG. 1. Schematic illustration of the machine-learning algo-
rithms to identify different CFTs. The pre-processed energy spec-
trum or Renyi entropies are stored into a vector that serves as an input
to the algorithms. We consider two scenarios: supervised learning
and unsupervised learning. In the former, labels of the CFT class
are provided to a neural network classifier, which predicts the CFT
theory that describes the given CFT data. In the latter, we use an
autoencoder neural network, which learns an efficient representation
of the energy spectra. The first half of the network acts as an encoder
that maps the input to a single scalar variable ω, and the second
half decodes ω and reconstructs the original input. We find that ω

is directly correlated to the central charge.

[28], i.e., an unsupervised learning algorithm, and we find that
the value of the hidden variable is directly related to the central
charge. This gives us a hint that the machine can detect the
complexity of CFTs.

II. MACHINE LEARNING AND CFT BASICS

We first review the CFT knowledge needed to generate
our training data (see Ref. [1] for a detailed review of CFTs
and Ref. [28] for machine learning), which is taken to be the
lowest 20 energy levels of a finite-size model. We take our
system to have periodic boundary conditions, although our
approach can be readily generalized to include other bound-
ary conditions. In this paper, we restrict ourselves to rational
CFTs (RCFTs), which only contain a finite number of primary
fields, and we furthermore focus on CFTs with field content
such that they are modular invariant (see the Appendix for
definitions and details). Our methods may easily be applied to
CFTs with nonmodular invariant field content.

TABLE I. List of all conformal field theories, i.e., classes, we
include in our supervised training. We use color dots to indicate the
CFT shown in Figs. 2 and 3.

Model Class Central charge

(A3, A2)—Ising 0 1/2
(A4, A3)—Tricritical 1 7/10
(D4, A4) 2 4/5
(A6, D4) 3 6/7
Z4 parafermion 4 1
Z5 parafermion 5 8/7
Z6 parafermion 6 5/4
N = 1 SCFT, k = 5 7 81/70
N = 1 SCFT, k = 7 8 55/42
(Ak+1, Ak ), k = 5−8 9−12 1−6/(k(k + 1))

The discrete energy levels (in units of 2π/L, where L
is the length of the system and h̄ = 1) of a generic fi-
nite one-dimensional model which flows to a CFT is given
by [1]

E = E1L + E0 + 2πv

L

(
− c

12
+ hL + hR

)
, (1)

where E1, E0, and v are nonuniversal constants, and c is the
central charge of the CFT. We are also omitting subleading
dependence on L due to corrections to the scaling limit. Here,
hL = h(0)

L + mL and hR = h(0)
R + mR, where h(0)

L , h(0)
R corre-

spond to scaling dimension of the primary fields and mL and
mR are non-negative integers describing the descendant fields.

As a definite example, we now discuss the structure of
the primary descendant fields for the critical Ising model,
the simplest nontrivial CFT and an example of a Virasoro
minimal model. With modular invariance imposed, there are
three primary fields for this model, h(0)

L,R = 0, 1
16 and 1

2 . The
number of descendant fields can be calculated by expanding
the so-called character function, as reviewed in the Appendix.
Upon doing so, one finds the lowest ten energy levels of this
CFT (with the ground-state energy set to zero) are 2πv

L ×
{0, 1

8 , 1, 9
8 , 9

8 , 2, 2, 2, 2, 17
8 }. The energy spectrum of some of

the other models we consider are discussed in the Appendix,
and the list of all CFTs we consider for unsupervised learning
is given in Table I. We stress that this is by no means a
complete list of RCFTs, as there is actually an infinite number
of them.

We use a neural network to classify the input CFT spectra
into their corresponding CFT classes (see Fig. 1). Specifically,
we use a multilayer perceptron with with the input and out-
put being the first 15 energy levels and their corresponding
CFT class labels from the 13 CFT classes in Table I (see
Appendix for a discussion on the stability of the network with
respect to the different number of classes). For the training,
we optimize the categorical cross entropy over samples of
the preprocessed energy spectra of different CFT classes with
their corresponding labels. The preprocessing step, which
transforms the input such that the ground-state energy is set to
zero and the other energies are rescaled so the largest energy
level is 1 is crucial as it removes the contributions of the
nonuniversal constants in the input data (see Appendix).

Note that conventional methods for identifying CFTs re-
quire data from different system sizes to extract the central
charge and universal part of the spectrum. In particular, the
central charge can be obtained from the scaling of the en-
tanglement entropy in the ground state with the system size.
The CFT class can then be identified by visually comparing
the energy spectrum of the system with the predicted spectra
of different CFT classes consistent with the obtained central
charge [26,29]. In contrast, our method only requires the spec-
trum at fixed system size encompasses all the above steps in
single black box and returns the CFT class corresponding to
the input data. Note that using this method, the CFT type is
not uniquely identified by looking at the spectrum at a fixed
system size. The output of the algorithm is the most likely
CFT in its library that describes the input spectrum (see also
Appendix for a more detailed comparison).
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FIG. 2. Predictions of our supervised machine learning ap-
proaches on the model HI spectrum data as a function of the
transverse field h. (a) The confidence, i.e., entropy, S, of the neural
network. (b) The Gaussian distance, d2, between the energy spectrum
of HIsing and the energy spectrum of the first nine CFTs in Table I. The
numbers in the legend refer to the CFT class.

III. CRITICAL SPIN CHAINS

We now use the network trained on ideal CFT energy
spectra with added noise to make predictions for two physical
models. Specifically, we feed the machine energy spectra from
two many-body quantum spin models obtained using exact
diagonalization. By analyzing the output of the machine, we
are able to predict the location of the critical point and the type
of CFT that describes it.

We first consider the transverse Ising model, HI(h) =
−∑L

i=1 σ z
i σ z

i+1 − h
∑L

i=1 σ x
i . Here, σ i

α are the Pauli matrices
on site i and h is a global magnetic field. For h = 1, the low-
energy theory of HI is a CFT whose central charge is c = 1/2
[minimal model (A3, A2)]. We perform exact diagonalization
(for L = 22) for different h and feed the energy spectrum into
the network. In Fig. 2(a), we observe that the entropy S of the
output layer, S = −∑

i pi ln pi, where pi corresponds to the i
th value of the output softmax layer, is minimal at h = 1 and
has a large probability of being described by minimal model
(A3, A2). This indicates that the network has not only correctly
predicted the location of the critical point for this model but
also the nature of the critical point, i.e., the CFT class, the
central charge, and the primary fields describing the critical
point.

Before moving on to the next model, we discuss another
quantitative approach for identifying CFTs from energy spec-
tra. We consider a clustering algorithm, using the Gaussian
kernel of the Euclidean distance, i.e., d2(x, cm) = e−||x−cm||22 ,
where x is the input spectra and cm is the center of the mth
cluster [28]. In our paper, the ideal center of clusters is known
from the CFT theory. Therefore, given an energy spectra, we
calculate and compare the kernel on the rescaled input and the
cluster centers of each CFT. In Fig. 2(b), we plot d2 for the
Ising model and various CFTs. We observe that d2 is peaked
around the critical point for only the Ising model [Fig. 2(b)],
similar to the neural network approach [Fig. 2(a)]. However,

FIG. 3. Predictions of our supervised machine learning ap-
proaches on a HI (h) with h = 1 (see Fig. 2) plus three-body
interaction terms that are controlled by a parameter λ. (a) The entropy
of probabilities, S, of the neural network. (b) The Gaussian distance,
d2, between the energy spectrum of HT and the energy spectrum of
the first nine CFTs in Table I. The numbers in the legend refer to the
CFT class.

we believe the neural network approach will be more reliable
as it does not rely on a single energy spectrum.

We now move to a more complicated model, which has two
critical points described by different CFTs and both two-body
and three-body interactions. The Hamiltonian of this model,
originally introduced in Ref. [30], is given by HT = 2HI(1) +
λH3, where H3 = ∑

j σ
x
j σ

z
j+1σ

z
j+2 + σ z

j σ
z
j+1σ

x
j+2. For λ = 0,

this model is described by a minimal model (A3, A2) as dis-
cussed above. When λ ≈ 0.856, the low-energy theory of this
model is described by a different minimal model, (A4, A3).
Again, we feed the network the many-body energy spectrum
for various λ. In Fig. 3(a),we observe that the machine is
correctly able to identify the location and underlying CFTs
of the two critical points with high accuracy. Similar results
are seen for the Gaussian kernel method [Fig. 3(b)].

IV. RÉNYI ENTROPIES

We now consider training with Réyni entropies. This is mo-
tivated by the fact that the (bipartite real-space) entanglement
Hamiltonian, He, of two-dimensional topological phases is of-
ten described by (either chiral or nonchiral) one-dimensional
CFTs [5,27]. Unfortunately, it is hard to experimentally mea-
sure the eigenvalues of He, i.e., the ES (although there are
various theoretical proposals on how to do so [31]). Instead,
one typically measures the Réyni entropy by preparing multi-
ple copies of the state and interfering them [9]. Furthermore,
one can calculate Sn with quantum Monte Carlo, making
the calculation of entanglement more manageable for larger
systems [11,32]. We will demonstrate that, given a critical He

[33], one can train neural networks with Réyni entropies to
correctly identify the underlying CFT.

The nth Réyni entropy is defined as Sn = 1
1−n ln Trρn

A,
where ρA is the reduced density matrix and n is some positive
integer not equal to 1. The ES [eigenvalues of − ln(ρA)] can
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FIG. 4. Probability of the neural network predicting the correct
CFT of the entanglement Hamiltonian for the SLM (TLM), depicted
with squares (diamonds) as a function of number of Réyni entropies
included in training samples. The overall accuracy of the network is
benchmarked using the test data, shown as dark blue circles.

be obtained with knowledge of Sn for all n. In practice, one
can obtain an estimate of ES with only a finite number of Sn

[7,32]. In these approaches, the ES is obtained from the roots
of a polynomial equation, whose coefficients are related to
Réyni entropies through Newton’s identities. However, root-
finding algorithms are sensitive to errors in the coefficients,
making such schemes unstable in the presence of errors in Sn

measurements [34]. We approach this problem using machine
learning.

If He is a CFT, the ith ES level is given by εi = ε0 + ε1L +
2πv

L ni, where ni is the universal part of the spectrum [see
Eq. (1)]. We remind the reader ni is different set of numbers
for each respective CFT. Sn, which is only a function of v

L (for
a given CFT), can then be written as

Sn = (1 − n)−1 ln

[(∑
i=0

e−n 2πv
L ni

)/(∑
i=0

e− 2πv
L ni

)n]
. (2)

We restrict the sum in Eq. (2) to the lowest 100 ES levels.
For training, we consider a finite range of v

L ∈ (0.2, 10). This
range is chosen not to include large (small) v

L , where excited
state information is washed out (choice of cutoff plays an
important role). Also, note that for larger n, Sn becomes less
dependent on the cutoff by definition. Thus, in the chosen
range of v

L , the choice of cutoff, i.e., simply truncating the
sum, has little effect on our results.

Instead of each sample being a vector of energy levels
as in the previous section, it is a vector of Réyni entropies,
(S2, S3, . . . ). Here, we include up to 28 Réyni entropies,
starting with S2. We train our machine with 10 000 different
samples for each CFT class (same classes used for energy
spectrum training). We generate the data uniformly by ran-
domly choosing v

L . We obtain a training accuracy of up to
94%, depending on the number of Sα included. Generally,
upon increasing the number of Sα included, the accuracy in-
creases (see Fig. 4). See Appendix for details of the networks
and training.

We test our model on two exactly solvable systems studied
in Ref. [27]. These are quantum spin ladders which we refer to
as the square ladder model (SLM) and triangle ladder model
(TLM). The ground states of these two models may be written
exactly [27], from which we obtain the reduced density matrix
at the critical point. The critical theory of the SLM (TLM)
is described by the minimal model (A3, A2) [(D4, A4)]. We
numerically calculate Sn for L = 18 and use these numerical
results as input into our trained neural network. We find that

FIG. 5. Unsupervised learning: The hidden variable as a function
of the central charge for different CFT families (different colors
and markers). We observe that within a family, the one-dimensional
hidden variable ω is a monotonous function of the central charge.

the neural network correctly predicts the CFT that describes
He for both models with high accuracy. As expected, this
accuracy generally increases as one increases the number of
Sα included in the training set (see Fig. 4).

V. UNSUPERVISED LEARNING

We now turn to using unsupervised learning to explore
two-dimensional CFTs. Our data consists of three families of
CFTs (see Fig. 5 for the list of CFTs used for unsupervised
training). We use autoencoders [35] to find a compressed rep-
resentation of the CFTs (see Fig. 1). Previously, autoencoders
have been able to detect the order parameter, i.e., magnetiza-
tion, in the Ising model [14]. The autoencoder is comprised
of an encoder function ω = f (x) and a decoder function
r = g(ω), where the hidden variable ω encodes a compressed
representation of the input x. The hidden variable is used by
the decoder to find the reconstruction r. By restricting the
dimension of ω, the network only approximately reconstructs
the input, however, it learns the important features of the
training data and encodes it in ω. Each class has 100 examples
which consists of the lowest 100 energies of the CFT (with
same noise added as our energy based classification section.)

We train different autoencoders on a set of energies cor-
responding to different CFT classes by minimizing C =

1
Nm

∑
m ||rm − xm||22, where the sum is taken over Nm exam-

ples in the training set. The xm is a input of the first layer and
rm is a output of the last layer (see Appendix).

We consider the simplest case of h = 1 and show the value
of ω for different CFT spectra in Fig. 5. We observe that
within a single family of CFTs, the magnitude of the hidden
variable has positive correlation with k, and hence the central
charge.

Finally, we note recent work used supervised machine
learning to investigate CFT correlation functions and the
emergence of conformal invariance [36]. Recently, it has been
demonstrated that for the specific conformal field theory like
Ising CFT, one can use an unsupervised learning method to
classify them without dimensional reduction [37,38]. How-
ever, the information of the critical point should be known
in advance, which is different from our paper. Our paper
specifies conformal field theory by using the hidden variable
when restricting to a single-family without knowing the crit-
ical point in advance. In the future, it would be interesting to
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include correlation functions in our unsupervised training to
see if we could distinguish different families of CFTs.

VI. DISCUSSION

There are several directions where our paper can be readily
extended. For example, the entanglement Hamiltonian of a
CFT can always be written in terms of the boost operator
[39,40] to which our methods may be applied. For critical one-
dimensional systems, the ES for particular entanglement cuts
correspond with the spectra of boundary CFTs [41–43], which
are also known [44–46]. We believe the methods developed in
this paper can be straightforwardly extended to these CFTs.

ACKNOWLEDGMENTS

We are grateful to M. Dalmonte, W. DeGottardi, and
M. A. Rajabpour for useful discussions and S. Tanaka for
sharing numerical data. E-.J.K., A.S., and M.H. acknowl-
edge support from AFOSR-MURI No. FA95501610323,
U.S. Department of Energy, Quantum Systems Accelerator
program, and the Simons Foundation. A.S. is additionally
supported by a Chicago Prize Postdoctoral Fellowship in
Theoretical Quantum Science. R.L. acknowledges support by
the DoE BES QIS program (Award No. DE-SC0019449),
AFOSR, DoE ASCR Quantum Testbed Pathfinder program
(Award No. DE-SC0019040), NSF PFCQC program, NSF
PFC at JQI, ARO MURI, and ARL CDQI. S.W. acknowledges
support from the NIST NRC Postdoctoral Associateship
award.

APPENDIX A

1. Two-dimensional conformal field theories

In this Appendix, we summarize the important aspects of
the two-dimensional CFTs relevant to the results presented in
this paper. Detailed discussions of two-dimensional CFTs can
be found in Refs. [1,2,47].

The Virasoro minimal models are the complete set of uni-
tary CFTs with a finite number of irreducible representations
under the Virasoro algebra; however, if a CFT is also invariant
under a larger symmetry group, it may be an RCFT by having
a finite number of irreducible representations under the ex-
tended symmetry algebra. This is the case for parafermionic
models and superconformal minimal models, which contain
conserved parafermionic and fermionic currents, respectively.

The two-dimensional CFTs we consider may be speci-
fied by a central charge, c, and a finite set of holomorphic
and antiholomorphic fields, denoted by φhL (z) and φhR (z̄),
respectively. Here, we use complex coordinates z = x + it and
z̄ = x − it to parametrize the two-dimensional coordinates
(x, t ). The numbers (hL, hR), which are called the conformal
dimensions of the associated primary fields, are real numbers
which are generically independent. With this data, it is known
that the finite-size energy spectrum of a two-dimensional CFT
(in units of 2π/L) is given by Eq. (1), where the lowest
states correspond to primary fields and the higher states are
known as descendants. However, the degeneracy of the states
corresponding to primary operators and their descendants can
be nontrivial [48].

We now review the degeneracy structure of the energy
spectrum. In this paper, we simply present the result for the
partition function and refer the reader to Ref. [1] for details.
We consider an RCFT on a torus with complex-valued periods
equal to ω1, ω2, and define the modular parameter of the torus
as τ = ω2/ω1. Then we can write the partition function of an
RCFT on the torus as [1]

Z (τ ) =
∑
hL,hR

MhL,hRχhL (τ )χhR (τ̄ ), (A1)

where

χhL,R (τ ) =
∞∑

n=0

dim(hL,R + n)qhL,R+n−c/24 (A2)

are the so-called characters associated with a given primary
operator φhL,R . Here, MhL,hR counts the number of occurrences
of the primary φhL (z) × φhR (z̄) in the CFT and we use the
parametrization q = e2π iτ .

The reason for considering the partition function on the
torus is to demand that Z (τ ) be left invariant under the modu-
lar transformations τ → τ + 1 and τ → −1/τ . This strongly
constrains the structure of the spectrum investigated in the
main body of the paper. It is believed that only modular
invariant CFTs can be realized by a one-dimensional quantum
lattice model, although nonmodular invariant CFTs may arise
as boundaries of two-dimensional lattice theories with bulk
topological order [49]. In the following, we discuss the form
of χhL for the CFT families we are interested in.

2. Virasoro minimal models

In Virasoro minimal models, the central charge of the Vi-
rasoro algebra takes values of the type [29]

cp,q = 1 − 6
(p − q)2

pq
, (A3)

where p, q are coprime integers such that p, q � 2. Then
the allowed conformal dimensions of the (anti)holomorphic
representations are

hr,s = (pr − qs)2 − (p − q)2

4pq
, with r, s ∈ N∗, (A4)

where

1 � r � q − 1, 1 � s � p − 1. (A5)

The (p, q) and (q, p) models are the same.
From the previous discussion, we know that the allowed

values of (hL, hR) and their degeneracies can be inferred by
the set of modular invariant partition functions on the torus.
The complete set of such partition functions has been entirely
worked out for the unitary minimal models using the so-called
ADE classification [50].

As a definite example, we consider the Ising CFT (c =
1/2), in which case there is only a single modular invariant
choice of operators. If one expands the partition function in
terms of the parameters q = e2π iτ , q̄ = e−2π iτ̄ , the full energy
spectrum and its degeneracy can be read off from the coef-
ficients and powers of the expansion. For the Ising CFT, the
partition function turns out to be diagonal, meaning one only
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allows fields of the form φhL (z) × φhR (z̄), with hL = hR, and
we can read off the spectrum from the degeneracy of q alone.
Just giving the q dependence, and keeping terms up to q5 and
the level-3 descendants, the expansion is

q
1

12 (1− 6
3(4) )ZIsing = 1 + 8

√
q + q + 2q9/8 + 4q2

+ 3q17/8 + 5q3 + O(q25/8). (A6)

This expression should be read as follows: With energies mea-
sured with respect to the ground state and in units of 2π/L, we
have unique states with E = 0, 1/8, 1, a twofold degenerate
state with E = 9/8, a fourfold degenerate state with E = 2, a
threefold degenerate state with E = 17/8, etc. This explains
how the energy level structure of the Ising model given in the
main text was obtained.

3. Zk parafermion CFTs

Zk parafermion CFTs have a central charge given by c =
2(k−1)

k+2 [29]. The conformal dimensions of the primary fields
of these CFTs are

hr,s = r(r + 2)

4(k + 2)
− s2

4k
, (A7)

where r = 0, 1, ..., k and s = −r + 2,−l + 4, ..., r. The as-
sociated character is [51]

χ(r,s)(τ ) = η(q)cr
s (q), (A8)

where cr
s (q) is given by

cr
s (q) =

∞∑
l,m=0

(−1)l+mq(k+r)lm+ 1
2 (l+1)l+ 1

2 (m+1)m

× q− c−1
24 +hr,s

η(q)3

(
q

1
2 l (r+s)+ 1

2 m(r−s)

− q
1
2 l (2k−r−s+2)+ 1

2 m(2k−r+s+2)+k−r+1
)
, (A9)

and η(q) is the Dedekind eta function. The partition function
is then given by

Z (τ ) =
2k−1∑
s=0

k∑
r=0

|χr,s(τ )|2. (A10)

One may show that the theories for k = 1, 2, 3 correspond to
Virasoro minimal models, but for k � 4 we have new RCFTs.
In this paper, we include parafermionic theories with k =
4, 5, 6, 7. The energy spectra of these models can be obtained
by the q expansion of Eq. (A10).

4. N = 1 superconformal minimal models

The N = 1 superconformal minimal models have central
charge c = 3

2 − 12
k(k+2) , with k � 2 an integer [29]. The scaling

dimension of the primary field is

hr,s = [(k + 2)r − ks]2 − 4

8k(k + 2)
+ 1

32
(1 − (−1)r+s), (A11)

where 1 � r � k − 1 and 1 � s � k + 1. Fields with r + s
even have a conformal dimension given by

h′
r,s = hr,s + 1

2 + δr+s,2. (A12)

The characters and partition function for this case are much
more involved, and we refer the readers to Refs. [52,53] for
their explicit expressions.

APPENDIX B: DETAILS OF THE NEURAL NETWORK
ARCHITECTURES AND TRAINING

In this section, we present the details of the neural networks
used in this paper and explain the training process.

1. Supervised learning with energy spectra

For the supervised learning approach that led to results
shown in Figs. 2 and 3 in the main text, we use the following
neural network architecture with the input and output being
the first 15 energy levels and their corresponding CFT class
labels from the 13 CFT classes in Table 1 in the main text:

The layers are represented by their domain and the ex-
pressions above the arrows indicate the activation functions
of each layer. To train the network, we take samples of the
energy spectra of different CFT classes and add a noise term
drawn randomly from the uniform distribution in (−ε, ε).
This is physically motivated by the existence of experimental
measurement errors or subleading corrections to Eq. (1). It
also serves as a form of data augmentation than can prevent
overfitting [28]. We also preprocess the input such that the
ground-state energy is set to zero and the other energies are
rescaled so the largest energy level is 1. This removes the
contributions of the nonuniversal constants in the input data.
We then optimize the categorical cross entropy over 3000
samples for each class with ε = 0.1. The optimization is per-
formed using the Adam optimizer with hyperparameters given
in Ref. [54] in 2000 epochs with the batch size set to 128.

2. Supervised learning with Rényi entropies

For the results shown in Fig. 4, in the main text we use the
following network architecture:

where n is the number of Réyni entropies we use. Similar to
the classification of the energy spectra, we train the network
by optimizing the cross entropy using the Adam optimizer
[54], this time with 500 epochs and batch size set to 128.

3. Unsupervised learning

We use the following architecture for the autoencoder used
to obtain results shown in Fig. 5:

where h is the dimension of the hidden variable ω. We train
the network by optimizing C, using the Adam optimizer with
2000 epochs and batch sizes equals to 256.

APPENDIX C: PREPROCESSING PROCEDURE

In this section, we discuss how to eliminate the nonuni-
versal constants E0, E1, L, v. We refer to this procedure as
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FIG. 6. We use a similar neural network model as in Fig. 2(a) in
the main text, but train with a different number of classes. The peak
at h = 1 is stable in different models.

preprocessing. We have the following relation:

E = E1L + E0 + 2πv

L

(
− c

12
+ hL + hR

)
. (C1)

Let Hi be the ith value of hL + hR, which is an integer. No-
tice that the lowest level, H0, is zero for all CFTs investigated
in this paper. Defining {X0, X1, ...Xn} as our nonuniversal en-
ergies, we have

Xi = E1L + E0 + 2πv

L

(
− c

12
+ Hi

)
. (C2)

We then have the energy differences from the ground state:

2πv

L
Hi = Xi − (E1L + E0) + 2πv

L

c

12
. (C3)

We then rescale the highest shifted energy to be 1. This gives
a set of n preprocessed energies, {x0, x1, ...xn}, given by

xi = Xi − (E1L + E0) + 2πv
L

c
12

2πv
L Hn

= Hi

Hn
. (C4)

We see that xi is independent of E0, E1, L, v.

APPENDIX D: COMPARISON OF MODELS
TRAINED USING DIFFERENT CLASSES

We train our neural network (same architectures) using the
same spectral data, but change the number of classes in the
training set. The rest of the parameters are kept the same as
those used in Fig. 2(a) in the main text. In Fig. 6, we observe
that the critical point (h = 1) is visible in all cases and is
stable. The less significant peaks, however, are not stable.

APPENDIX E: COMPARISON WITH THE
CONVENTIONAL METHOD

Here we review two conventional methods (entropy scaling
with system size and rescaled energy comparison) of ex-
tracting central charge from simulation or experimental data.
These methods can be used separately or in combination with
each other.

The first scheme relies on using the entropy scaling of the
ground state. Specifically, it has been shown that the entan-

FIG. 7. (a) Scaling of the entanglement entropy S in the ground
state at a conformal critical point as a function of the system size L.
The slope of the linear-log plot gives the central charge c. (b) Visual
comparison of the rescaled energies of a simulated model with pre-
dicted CFT energies. The correct CFT is class 1, corresponding to
the (A4, A3) minimal model.

glement entropy S of a subsystem of size � in the ground state
at one-dimensional (1 + 1D) conformal critical points is an
extensive quantity that scales universally as [26,55,56]

S(L) = c

3
ln

(
L

πa
sin

π�

L

)
+ CA′ , (E1)

where c is the central charge, L is the length of the spin chain,
a is the lattice constant, and CA′ is a nonuniversal constant.
Therefore, by finding the ground state, e.g., using numerical
methods, and examining S at different values of L, for a
subsystem size at a fixed relative length �/L, one can obtain
the central charge c from the slope of the linear-log plot of
S versus L as shown in Fig. 7(a). After extracting the central
charge, we can find the corresponding CFT class by visually
comparing the given energy spectrum with the CFT prediction
in Eq. (C1). We describe this approach in more detail in the
following.

To visually compare the spectral data with CFT predic-
tion, one needs to first rescale the data. We follow Ref. [29]
and rescale energies such that the energy of first excitation
in the CFT matches that of the data. As an example, in
Fig. 7(b), we compare the spectral data of HT = 2HI(1) +
λH3, where HI(h) = −∑L

i=1 σ z
i σ z

i+1 − h
∑L

i=1 σ x
i and H3 =∑

j σ
x
j σ

z
j+1σ

z
j+2 + σ z

j σ
z
j+1σ

x
j+2 at λ ≈ 0.856, shown in gray

lines with various CFT classes shown in color dots. As shown
in the main text, this model is described by the minimal
model (A4, A3) (CFT class 1 in Fig. 7). Moreover, the central
charge scaling can correctly identify this model as there is no
other CFT with c = 7/10 in the CFT classes we considered.
However, we observe that in the absence of the central charge
value, it is not straightforward to find the correct CFT by
visually inspecting Fig. 7(b). In contrast, we use a different
rescaling method and, by using the machine-learning ap-
proach, we can quantify the similarity of the data to different
CFT classes and identify the correct one (as shown in Figs. 2
and 3 in the main text) using the energy spectrum at a fixed
system size.
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