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Boson sampling for generalized bosons
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We introduce the notion of “generalized bosons” whose exchange statistics resemble those of bosons, but
the local bosonic commutator [a, a†] = 1 is replaced by an arbitrary single-mode operator that is diagonal in the
generalized Fock basis. Examples of generalized bosons include boson pairs and spins. We consider the analog of
the boson sampling task for these particles and observe that its output probabilities are still given by permanents,
so that the results regarding hardness of sampling directly carry over. Finally, we propose implementations of
generalized boson sampling in circuit-QED and ion-trap platforms.
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I. INTRODUCTION

Quantum random sampling protocols allow us to demon-
strate an advanta ge of quantum computational devices over
classi cal computers [1–3]. In a quantum random sampling
protocol, the task is to sample from the output distribution
of certain random quantum computation. Surprisingly, even
if those computations are not universal, the sampling task
can in many cases be computationally difficult for classical
computers [4–18].

This is the case even for random linear-optical computa-
tions: In boson sampling [4], a uniformly random linear mode
transformation is applied to a multimode bosonic input state
and measured in the photon-number basis. Boson sampling
protocols come in many different variants, ranging from the
original proposal of Aaronson and Arkhipov [4] with Fock-
state input states (FBS), to Gaussian boson sampling (GBS)
with Gaussian input states [5,6,19] and GBS with threshold
detectors [20]. The hardness of simulating those schemes
can be traced back to the hardness of computing their out-
put probabilities, which are given by certain polynomials in
submatrices of the linear-optical unitary [4,6,7,21–23]. Impor-
tantly, the discovery of GBS has enabled recent experimental
demonstrations [3,24] on much larger scales than is possible
for FBS [25] due to the experimental difficulty of Fock state
preparation. Hence, one might hope that finding variants of
boson sampling that are tailored to other quantum systems
could yield further improvements on the one hand, and enable
demonstrations of quantum advantage in those systems in the
first place on the other.
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In this paper, we further extend boson sampling protocols
to a wider class of quantum systems, that include interact-
ing bosons. Specifically, we introduce generalized bosons,
which is a wide class of particles that hold bosonic commu-
tation relations between different sites but have nonbosonic
local commutation relations. For generalized bosons, the local
standard bosonic commutation relations are replaced by an
arbitrary diagonal operator in the local Fock basis. A natural
question that we address in this paper is therefore whether
quantum advantage can be demonstrated using those gener-
alized bosonic modes analogously to standard bosons.

Specific instances of generalized bosons were first in-
troduced in Refs. [26–28] and find applications for solving
integrable systems [29–32], and even interacting bosonic sys-
tems via perturbation theory [33]. As we discuss in more
detail below, modes obeying generalized commutation rela-
tion can also be found in AMO systems. While standard
bosons are noninteracting, systems with nontrivial diagonal
commutation relations can be viewed as interacting. Exam-
ples include conventional spin degrees of freedom, and the
so-called paraboson [34,35] that has recently been studied in
ion-trap systems [36]. Below, we present and analyze another
variant of generalized bosons in a circuit-QED setup taking
the form of boson pairs [37–41].

Within this framework, we show that boson sampling can
be simulated efficiently by generalized bosons using Fock
state preparations, occupation number measurements, and lin-
ear mode mixing. Consequently, all the complexity results for
the original boson sampling protocol carry over. While lin-
ear mode mixing is naturally implemented in noninteracting
systems only, we reinterpret a result by Peropadre et al. [43]
to show an approximate, but efficient, simulation of mode-
mixing for generalized bosons in certain limits. Finally, we
provide specific implementation proposals for a circuit-QED
and an ion-trap platform.

On a high level, our work can be viewed as addressing
the question of whether there is an intermediate system in
between qubits and noninteracting standard bosons in terms
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TABLE I. Various generalized bosons and their generalized bosonic algebra, defined in terms of either the function F (n) or f (n), see
Eq. (2). For spin-S boson, the spin operators are Sx = ∑2S

j=1 σx , Sy = ∑2S
j=1 σy, θ (x) is the Heaviside step function which is zero for x < 0 and

one for x � 0. For q-bosons, N is defined such that [bq, N] = bq, [b†
q, N] = −b†

q. [n]q = qn−q−n

q−q−1 , [n]q! = ∏n
j=1[ j]q, Nm is the number operator

of m-paraboson.

Boson type Definition F (n) f (n)

Standard boson a 1
√

n!

Boson pair [37–41] b = a2 2 + 8n
√

(2n)!

Spin-S boson [44,45] b = Sx − iSy (n − 2S) θ (2S − n) ( n!(2S)!
(2S−n)! )

1
2

q-boson [26–28] bb† − qb†b = qN , q ∈ C
[n+1]q!

[n]q! − [n]q!
[n−1]q!

√
[n]q!

m-paraboson [34,35] [b, b†] = 1 + (2m + 1)eiπNm 1 + (2m + 1)eiπn
∏n

k=1( 2k+2m+3+(2m+1)e2πk

2 )
1
2

of the level of interaction. Our results show that performing
mode mixing transformations “bypasses” the interactions of
generalized bosonic systems, giving rise to the same output
probabilities.

II. GENERALIZED BOSONS

Let us start by being more specific about the definition
of generalized bosonic particles. Recall the standard bosonic
commutation relations between bosonic annihilation and cre-
ation operators ai and a†

i for a mode i

[ai, a†
j ] = δi j, [a†

i , a†
j ] = [ai, a j] = 0, (1)

where [ · , · ] denotes the commutator and δi j is the Kronecker
delta.

For generalized bosons, the last two commutation relations
in Eq. (2) remain unchanged, while the first commutation
relation is modified by multiplying the Kronecker delta by
an arbitrary diagonal operator characterized by a function F :
N → C of the single-mode occupation number. Specifically,
we define generalized bosonic operators bi, b†

i annihilating
and creating an excitation in mode i, respectively, by their
commutation relations

[bi, b†
j] = δi, j

∞∑
ni=0

F (ni ) |ni〉 〈ni| , [b†
i , b†

j] = [bi, b j] = 0.

(2)

Here, the generalized Fock state |ni〉 with occupation number
ni in mode i is defined by the action of the creation operator
b†

i on the vacuum as (b†
i )ni |0〉 = f (ni ) |ni〉, where f : N → C

is a function that alternatively characterizes the generalized
boson. f and F are related and their exact correspondence
is discussed in the Appendix A. For convenience, we call
f (n) the bosonic factor and only use f (n) in the following.
A multimode Fock state of generalized bosons on M modes
can thus be written as

|n1, n2, . . . , nM〉 =
(

M∏
i=1

1

f (ni )

)
b†n1

1 b†n2
2 · · · b†nM

M |0〉 . (3)

We give some examples of generalized bosons and their cor-
responding bosonic factors in Table I.

The basic idea of the FBS protocol due to Aaronson and
Arkhipov [4] is to send a Fock state of N photons in M modes
into a uniformly random linear mode-mixing circuit described
by a unitary matrix � ∈ U (M ), and subsequently, to measure

the output state in the Fock basis. The linear optical network �

performs modemixing so that the input mode operators {ai}M
i=1

are transformed to output operators ãi = ∑M
j=1 �i ja j . The

probability of obtaining an outcome k = (k1, . . . , kM ) given
that the input configuration is given by l = (l1, . . . , lM ) for
ki, li ∈ N such that

∑
i ki = ∑

i li = N is then given by

Pr(k|l) = |Perm(�[k|l])|2(∏
i li!

)(∏
i ki!

) . (4)

Here, the permanent Perm of an N × N matrix A = (Ai, j )i, j is
defined like the determinant, but with only positive signs as

Perm(A) =
∑
σ∈SN

(
N∏

i=1

Ai,σ (i)

)
, (5)

where SN is the symmetric group of N elements. Moreover,
�[m|n] is an (N × N ) matrix constructed by repeating the ith
column of � li many times, and the jth row ki many times.

III. BOSON SAMPLING FOR GENERALIZED BOSONS

We are now ready to present the main theoretical result of
our work, namely that the output probabilities of sampling
from generalized bosons with Fock-state inputs are propor-
tional to the output probabilities of standard FBS.

Theorem Consider a linear transformation � ∈ U (M ) of
M modes of a generalized bosonic algebra on those modes
with bosonic factor f . Then the probability of measuring
outcome k given a Fock input state |l〉 is given by

Pr(k|l) =
(

N∏
i=1

f (ki )

f (li )ki!

)2

|Perm(�[k|l])|2. (6)

We prove the Theorem in the Appendix B. Consequently,
the complexity of FBS for generalized bosons remains the
same as the complexity in the standard boson case [4]. As
it turns out, it is also possible to construct an analog of the
Gaussian phase-space formalism and a corresponding GBS,
which however, is highly unnatural for generalized bosons and
hence, we defer a detailed discussion to the Appendix C. An
alternative approach to this theorem is to define creation and
annihilation operators of generalized bosons: b = g(n̂)a, b† =
a†g(n̂), g(n) = f (n+1)

f (n)
√

n+1
and reproduce the derivation of FBS

of regular bosons, where g(n̂) can be regarded as a scaling fac-
tor acting on regular bosonic creation/annihilation operators.
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We have pointed out that the output probabilities of FBS
are essentially unchanged under varying diagonal commuta-
tion relations between the bosons. But does this connection
extend beyond being a mathematical curiosity? While the
preparation of Fock states, the implementation of a linear-
optical mode transformation, and a measurement in the Fock
basis are natural operations in the context of quantum optics,
whether the same is true for generalized bosons is unclear
a priori. Vice versa, our result implies that FBS can be im-
plemented whenever those operations are possible. For those
platforms, it can then be used as a quantum advantage bench-
mark to compare their performance in a hard-to-simulate
regime with other platforms.

IV. GENERAL IMPLEMENTATION SCHEME

We now describe the main i dea of implementing FBS
for generalized bosons. While Fock-state preparations and
measurements are natural, and for every fixed particle num-
ber there exists a unitary that realizes linear mode mixing,
it does not seem possible to implement this unitary effi-
ciently in general. Recall that a mode-mixing transformation
exp(−itH ) arises naturally for standard bosons evolved for
time t under the quadratic Hamiltonian H = ∑M

i, j=1 hi, ja
†
i a j

with coefficient matrix h ∈ CM×M . In contrast, the nontrivial
commutation relation of generalized bosons create arbitrary
higher-order terms in the Baker-Campbell-Hausdorff expan-
sion when evolving an operator bi under a Hamiltonian that
is quadratic in the generalized bosonic operators bi, b†

i . In
other words, quadratic Hamiltonians of generalized bosons
are interacting, and vice versa, noninteracting evolution is
generated by highly complex Hamiltonians.

We observe that the implementation of boson sampling
in a spin- 1

2 chain of Peropadre et al. [43] provides a recipe
for implementing a linear mode-mixing unitary, not only
for spin-1/2 particles—a particular instance of generalized
bosons—but also for arbitrary generalized bosons. To see why
this is the case, we first recap the derivation in Ref. [43].
The key idea is to prevent interactions between individual
bosons from happening. To achieve this, Peropadre et al. [43]
perform a space-time mapping, allowing them to swap input
modes with output modes in a single oscillation so that there
are no collisions during the time evolution. Specifically, they
consider a system of 2M modes separated into M input and
M output modes, which is evolved for a short, constant time
under the Hamiltonian

HBS =
M∑

i, j=1

(a†
j,outRjiai,in + H.c.) (7)

acting on standard bosonic modes with annihilation operators
{ai,in}M

i=1 and {ai,out}M
i=1 on the two halves of the system, re-

spectively. Here R ∈ U (M ) is a unitary matrix. It turns out that
evolving the initial Fock state |φ(0)〉 = |lM〉in ⊗ |0M〉out under
this Hamiltonian for time π/2 results precisely in a state

|φ(π/2)〉 = (−i)N
N∏

i=1

M∑
j=1

R j,ia
†
j,out |0〉 , (8)

so that a measurement in the Fock basis on the output modes
reproduces the boson sampling protocol.

Peropadre et al. [43] show that for spin-1/2 systems, in
the dilute limit1 of M ∈ �(N4) and for initial states with only
0 or one particles in a mode will go to zero as O(N2/

√
M )

in Frobenius norm in the asymptotic limit. Importantly, this
translates into a total-variation distance bound between the
corresponding output distributions of O(N2/

√
M ). Hence,

their result can be read as showing that in this regime, the
Hamiltonian (9) approximately realizes linear mode mixing
under the unitary R.

We now extend this construction to arbitrary generalized
bosons. To this end, we consider the analogous Hamiltonian
to Eq. (7) as given by

HgBS =
M∑

i, j=1

b†
j,outRjibi,in + H.c, (9)

evolved for time π/2 with initial state |φ(0)〉 conceived of
as a generalized Fock state. The generalized bosonic algebra
will introduce an error into the output state, since during
the time evolution bosons will “meet” and thus experience
the nontrivial diagonal commutation relation. In fact, we
find that the result of Peropadre et al. [43] does not depend
on the specifics of the generalized bosonic algebra, since
the proof proceeds precisely by bounding the probability of
two generalized bosons (or spins in their case) meeting to
arrive at an overall total-variation distance bound. Thus, time
evolution under the Hamiltonian (9) for time π/2 implements
linear mode mixing under R up to total-variation distance error
O(N2/

√
M ) .

In the following, we devise two possible implementations
of the generalized boson sampling protocol by simulating the
Hamiltonian (9) in circuit-QED and trapped-ion platforms,
respectively. Each protocol includes the preparation of a Fock-
state of generalized bosons, a simulation of Hamiltonian time
evolution under HgBS, and a measurement in the Fock basis of
generalized bosons.

V. CIRCUIT-QED IMPLEMENTATION

We start by considering photon pairs as the generalized
boson where the annihilation operator is simply the square of a
standard boson annihilation operator: bi ≡ a2

i with [ai, a†
j ] =

δi, j . It is straightforward to show that [bi, b†
j] = ∑∞

ni=0(2 +
8ni ) |ni〉 〈ni| δi j . This expression is clearly diagonal in the Fock
basis as required by the definition of generalized bosons; see
also Table I. Although photon pairs have been generated in
various parts of the electromagnetic spectrum, our scheme
requires modemixing of photon pairs that is quartic in the
standard bosonic operators. Fortunately, the generation and
manipulation of such photon pairs have been extensively
studied in circuit-QED systems [37–41,46]. In particular, we
consider an array of nonlinear resonators interacting with
a bus waveguide via a nonlinear process [see Fig. 1(a)] as

1Note that the hardness proof of FBS also requires the dilute limit
of M ∈ �(N5).
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(a)

(b)

FIG. 1. Boson sampling with generalized bosons. (a) Circuit-
QED implementation for boson pairs bi = a2

i as cavity excitations.
The mode-mixing operation is implemented as a nonlinear photon-
pair tunneling. (b) Trapped-ion implementation of super-spins.
Generalized boson (superspin) is encoded in internal atomic states.
As described in the text, the mode-mixing unitary operation is
implemented in a Trotterized way by a sequential application of
Molmer-Sorensen [42] laser beams to each pair of ions. In both cases,
the final step is to perform local population measurement.

described by the Hamiltonian

Heff =
∑

i

gia
†2
i c + H.c. − 	c†c − χ

∑
i

a†
i a†

i aiai (10)

in the frame rotating at the cavity frequency ωc. Here, χ, gi,

and 	 are the circuit parameters defined in the Appendix E,
ai is the cavity annihilation operator and c is the bus bosonic
resonator mode annihilation operator satisfying [c, c†] = 1. In
particular, we assume that the coupling g can be externally
controlled. We note that our implementation allows for the
dynamical independent laser control of coupling coefficients
gi = gi(t ). By adiabatically eliminating the bus cavity mode,
we find the effective Hamiltonian Hpair = ∑

Ji, j (t )b†
i b j with

the tunneling being Ji, j = gi(t )g∗
j (t )/	 − χδi, j . We note that

the on-site interaction χ will be ignored in the following as
it can be eliminated by either choosing the coupling con-
stants such that |gi|2/	 = χ or by coupling to an additional
Josephson junction in analogy to [37]. The Hamiltonian Hpair

is formally equivalent to HgBS required to perform the mode-
mixing operation [43]. In the case in which the coefficients
gi are time-independent, the resulting Ji, j is only a rank-one
matrix and therefore does not allow for the implementation
of an arbitrary unitary mode transformation. A more general
interaction pattern can be obtained by, e.g., using a multi-
mode cavity. Alternatively, due to the independent dynamical
control over coupling terms gi, any Hamiltonian can be imple-
mented in a Trotterized fashion as shown in the Appendix E.

We now discuss the Fock-state b† |0〉 preparation step
of the protocol. Arbitrary Fock-state preparation has been
demonstrated experimentally in circuit QED setups [47]. For
that, we first assume the noninteracting limit gi → 0. In this

case in the nonrotating frame of the Hamiltonian Eq. (10)
is local and diagonal in the Fock basis |ni〉 with eigenval-
ues εn = nωc − n(n − 1)χ . In order to prepare the desired
Fock state, we now assume the system is initially prepared
in the vacuum state |0〉. The system is then weakly driven
with the driving Hamiltonian Hdr = �dr/2

∑
i(ai exp(iωdrt ) +

a†
i exp(−iωdrt )), where ωdr and �dr are the frequency and

the amplitude of the driving. In the limit of weak driving
�dr �χ , upon tuning the driving frequency to the two-photon
resonance ωdr = ε2/2, the system undergoes a two-photon
Rabi oscillation |0i〉 → b†

i |0〉 with the period given by a two-
photon Rabi frequency �2 = √

2�2
dr/(4χ ).

The leading error in Fock state preparation is due to
populating the state |1〉 with probability p1 � �2

dr/(4|ε1 −
ωdr|2). This probability can be minimized by reducing the
Rabi frequency, trading off against decoherence. A further
improvement may be achieved by employing the adiabatic
protocol [48], which assumes control over the detuning of the
drive.

The final step of the protocol is the measurement of the
photon number distribution. This can be done by standard
means, e.g., by employing the quantum nondemolition mea-
surement protocol as experimentally demonstrated in [49,50].
The fidelity of the measurement is limited by the cavity
decoherence.

VI. TRAPPED-ION IMPLEMENTATION

We now discuss implementation of spin-S generalized
bosons using a trapped-ion quantum simulator, as schemati-
cally shown in Fig. 1(b). To this end, we consider a chain of
ions in a linear Paul trap [51]. Each ion is considered to be a
two-level system {|g〉α, |e〉α} with the corresponding transition
frequency denoted as ωeg. We encode the superspin S(i) as
a collective excitation of a subset of ions {α}i such that the
lowering operator can be defined as: S(i)

± ≡ N−1/2 ∑
{α}i

σ
(α)
± ,

where N is the number of ions encoding the superspin and
σ

(α)
− ≡ |g〉α〈e|, σ

(α)
+ ≡ |e〉α〈g|.

We split our implementation into three steps: state prepa-
ration, unitary mode mixing via Eq. (8), and measurement.
The initial superspin Fock (Dicke)-state preparation can be
performed using the technique experimentally demonstrated
in Ref. [52]. It consists of two steps: first, the preparation
of the motional Fock state by selectively driving the first
motional blue sideband. The second step consists of driving
the target superspin ions resonantly with the red motional
sideband thereby transferring the excitation into the Dicke
state N−1/2 ∑

{α}i
|e〉α .

We now discuss a Trotterized way [53] of implementing
time evolution under the long-range Heisenberg-exchange
type interaction Hint = J(i, j)S

(i)
+ S( j)

− + H.c. featuring in
the Hamiltonian (7). As extensively discussed in the
literature [54], such an interaction between any pair of
ions can be generated, driving ions in a generalized
Mølmer-Sorensen [42], with tailored laser configuration
[55]. More precisely, we consider a pair of bichromatic laser
beams driving the transition e ↔ g with the laser frequencies
respectively tuned to ωeg + 	 and ωeg − 	 where 	 is laser
detuning. As we discuss in the Appendix D, this generates
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the ion-ion interaction characterized by the Hamiltonian
H (XY )

(α,β ) ≈ J (α,β ){σ (α)
+ σ

(β )
− + H.c.}, where the interaction

coefficient scales as J(α,β ) = J0/|α − β|ζ with 0 < ζ < 3,

and J0 is interaction constant. We note that a complex-valued
flip-flop interaction can be achieved by adjusting laser phases.
Time evolution under the desired Hamiltonian Hint can then be
obtained in a Trotterized way by running the interaction H (XY )

α,β

for each pair of ions for a time δtα,β inverse proportional to
the interaction strength J(α,β ) to preserve the spin symmetry
δtα,β

i, j ≈ δti, j × J̃/Jα,β , where J̃ = min{i}α{ j}β [Ji, j]. To the
lowest order in the Floquet-Magnus expansion we find:

Heff ≈ J0N

∑
i, j δti, j{S(i)

+ S( j)
− + H.c.}∑

i, j

∑
α,β δti, j × |α − β|ζ . (11)

By performing the summation and assuming the densest
unitary operation (δti, j = δt) for ζ ≈ 0 and N = 2, cor-
responding to S = 1, we find the interaction between NS

superspins to be of the order max(J (α,β ) ) = 4 × J0/(N2
S −

NS ). We note that this scaling can potentially be improved
by performing optimization of the Mølmer-Sorensen laser
configuration [56]. The number of available superspins can
be estimated as max(J (α,β ) ) > γ , where the decoherence rate
is γ ≈ 1Hz. By taking J0 ≈ 1kHz we find the number of
available superspins to be of the order of NS ≈ 50.

Measurement results in the collective basis can be inferred
from just local spin measurements due to the restriction to the
collective states of each superspin.

VII. OUTLOOK

Universal circuit sampling and boson sampling formalize
natural notions of random computations in the circuit model
and the linear-optical model of computation, respectively.
Viewed from the perspective of generalized bosons, these sys-
tems are captured by spins and standard bosons, respectively.
In contrast to standard bosons, spins are strongly interact-
ing. Our results can be viewed as addressing the question of
whether there is an intermediate system between qubits and
noninteracting standard bosons in terms of the level of interac-
tion. Indeed, generalized bosons provide a natural framework
for thinking about this question and we make some progress
by showing that boson sampling can be simulated in such
intermediate systems. Having said that, it is less clear that this
is indeed the most natural notion of random computation in
these contexts. An exciting open question is thus to identify,
as well as assess, the computational complexity of natural
random computations for various physical platforms.

A key open question for generalized boson sampling is the
question of whether it is possible to certify samples produced
in such models. For standard bosons, state preparations can in-
deed by verified by making use of the formalism of Gaussian
quantum information [57]. As we discuss in more detail in the
Appendix, this formalism does not carry over to generalized
bosons, and it is therefore an interesting opening to show
how generalized bosonic state preparations can be efficiently
verified.
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APPENDIX A: GENERALIZED BOSONS

In this section, we introduce the definition of generalized
bosons. In the next section, we will then show that FBS will
still yield a permanent when sampling from the output dis-
tribution of linear mode mixing applied to generalized Fock
states.

To define generalized bosons, first, recall the definition of
a standard boson from regular quantum field theory [58]. Let
A be a nonempty set. We can associate each i ∈ A with a pair
of operators ai, a†

i , corresponding to annihilating and creating
a boson, respectively. Those operators satisfy the following
commutation relations

[ai, a†
j ] ≡ aia

†
j − a†

j ai = δi j, [a†
i , a†

j ] = [ai, a j] = 0,

(A1)

where δi j is the Kronecker delta.
For generalized bosons, we proceed analogously, except

that we relax the diagonal commutation relation requirement
in the following sense

[bi, b†
j] = δi, j

∞∑
ni=0

F (ni ) |ni〉 〈ni| , [b†
i , b†

j] = [bi, b j] = 0,

(A2)

where F : N0 → C may be an arbitrary complex-valued
scalar function. We recover the definition of standard bosons
by defining F (n) ≡ 1, ∀n ∈ N0, which corresponds to the
identity operator.

We define the generalized Fock basis by the action of the
generalized bosonic creation operator on the vacuum state as

(b†)n |0〉 = f (n) |n〉 , (A3)

where f : N0 → C is an alternative characterization of a gen-
eralized boson that is equivalent to F . For n = 0, we always
have f (0) = 1 due to Eq. (A3).

To see this, let us first show how F is determined by f . To
this end, observe the following standard relation for the action
of a creation and annihilation operator on a Fock state |n〉 :

b† |n〉 = f (n + 1)

f (n)
|n + 1〉 , b |n〉 = f (n)

f (n − 1)
|n − 1〉 .

(A4)

Given this, we can compute:

F (n) = 〈n| [b, b†] |n〉 = f (n + 1)2

f (n)2
− f (n)2

f (n − 1)2
. (A5)
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Conversely, we can construct f given F recursively via the
following relation

f 2(n + 1)

f 2(n)
= f (1)2

f (0)2
+

n∑
i=1

F (i).∀n � 1, (A6)

and the requirement of f (0) = 1, as well as the observa-
tion that f (1)2

f (0)2 = F (0) so that f (1) = √
F (0). So once we

fixed F (i) ∀i ∈ N and f (0) = 1, f is recursively determined
by Eq. (A6). In particular, if we choose F (i) = 1,∀i we
obtain f (n) = √

n! as we would expect.
So the bosonic factor completely determines all the struc-

ture of generalized bosons and vice versa. We will see how
the order structure of f (n) will play an important role in our
context.

We can then define the multimode Fock state of generalized
bosons in M modes as

|n1, n2, ..., nM〉 =
(

N∏
i=1

1

f (ni )

)
b†n1

1 b†n2
2 ...b†nN

M |0〉M . (A7)

APPENDIX B: BOSONS SAMPLING
WITH GENERALIZED BOSONS

We now derive FBS for generalized bosons and show its
output probability is still proportional to a permanent of mode-
mixing matrix �.

Theorem Consider a linear transformation � ∈ U (M ) of
M modes of a generalized bosonic algebra on those modes
with bosonic factor f . Then the probability of measuring
outcome k, given a Fock input state |l〉 , is given by

Pr(k|l) =
(

N∏
i=1

f (ki )

f (li )ki!

)2

|Perm(�[k|l])|2, (B1)

where �[m|n] is an (N × N ) matrix constructed by repeat-
ing the ith column of � li many times, and the jth row ki many
times.

Proof. The unitary transformation � acts like the
following:

b → �†b, b† → �T b. (B2)

We can expand the �†b by using the multinomial expansion
theorem (to use multinomial expansion, we must only require
[bi, b j] = [b†

i , b†
j] = 0). We first compute � acting on the

input state |l〉 = |l1, l2, . . . , lM〉 . We have

� |l1, l2, ..., lM〉 (B3)

=
M∏

i=1

1

f (li )

∑
{ni j ,

∑M
j=1 ni j=li}

li!∏M
i, j=1 ni j!

(
M∏

j1=1

� j11b†
j1

)n1 j1
(

M∏
j2=1

� j22b†
j2

)n2 j2
)

...

(
M∏

jM=1

� jM Mb†
jM

)nM jM

|0〉M . =
∑

∑M
j=1 k j=N

Ck|l |k〉 ,

(B4)

where the coefficientCk|l is given by

Ck|l =
M∏

i=1

li!

f (li)

M∏
j=1

f (k j )
∑

{ni j :
∑M

j=1 ni j=li,
∑M

i=1 ni j=k j}

∏
i, j=1 �

ni j

ji∏M
i, j=1 ni j!

. (B5)

We use the following combinatorial identity [4,22]:

∑
{ni j∈N0:

∑M
j=1 ni j=li,

∑M
i=1 ni j=k j }

∏
i, j=1 �

ni j

ji∏M
i, j=1 ni j!

=
(

M∏
i=1

1

li!

)(
M∏

j=1

1

k j!

)
Perm(�[k|l]). (B6)

Finally, we get (notice that f (0) = 1)

Ck|l =
(

N∏
i=1

f (ki )

f (li)ki!

)
|Perm(�[k|l])|, (B7)

which finishes the proof as Pr(k|l) = |Ck|l|2.
In particular, when we choose the standard-bosonic f (n) =√

n!, (B7) reduces to the output probabilities of standard FBS

Pr(k|l) = |Perm(�[k|l])|2(∏
i li!

)(∏
i ki!

) , (B8)

which recovers the result of FBS [4,22].
Since the prefactors of the probabilities will always be a

constant in the collision-free subspace, i.e., whenever ki, li ∈

{0, 1}, the hardness results of Aaronson and Arkhipov [4]
directly apply to generalized boson sampling.

APPENDIX C: GAUSSIAN BOSON SAMPLING
FOR GENERALIZED BOSON

In this section, we generalize the Gaussian-state formalism
to generalized bosons. As it turns out, key features of this
formalism do not generalize, making it somewhat contrived.
Nonetheless, it can be used to show that the outcome proba-
bility of the analog of GBS are also given by Hafnians.

To begin with, we introduce the definition of a coherent
state, central to the Gaussian formalism, in Appendix (C 1).
We then derive the P and Q function in Appendix (C 2) and
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use it to compute the outcome probabilities of generalized
GBS in Appendix (C 4).

1. Generalized Coherent States

In this section, we introduce the coherent state of general-
ized bosons. We define |α〉 = 1√

N (α)
eαa† |0〉 for a generalized

bosonic operator a with bosonic factor f as

|α〉 = 1√
N (α)

∞∑
n=0

(αa†)n

n!
|0〉 = 1√

N (α)

∞∑
n=0

(α)n

n!
f (n) |n〉 ,

(C1)
where N (α) is a normalization factor that enforces 〈α|α〉 = 1,
as given by

N (α) =
∞∑

n=0

|α|2n f 2(n)

n!2
. (C2)

We can then compute the inner product of two generalized
coherent states 〈β| and |α〉 as

〈β|α〉 = 1√
N (α)N (β )

∞∑
n=0

(β∗α)2n f 2(n)

n!2
. (C3)

Indeed, if we choose the bosonic factor to be f (n) = √
n!,

then we obtain N (α) = e|α|2 , which reproduces the standard
coherent state

|α〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉 = e− |α|2
2 eαâ†

e−α∗â |0〉 . (C4)

2. P and Q

Phase space methods are widely used in quantum optics.
The advantage of phase space methods is that in order to com-
pute an expectation value of an observable, one only needs to
compute an integral over phase space instead of calculating a
trace. Specifically, the P and Q functions are the most widely
used representations of observables and density matrices in
phase space [59,60], respectively.

In this section, we define the P and Q functions for general-
ized bosons. Before we start studying the P and Q functions,
we need to first figure out the normalization constant of the
generalized coherent basis. In the single mode case, we have
the integral ∫

|α〉 〈α| d2α = κI, (C5)

where κ is a positive constant. For example, for the q-boson
coherent state, we have κ = π , and for the spin coherent state,
we have κ = 4π

2S+1 . The expectation of an operator O can then
be written as an integral over a two-dimensional phase space
with coordinates α, α∗:

Tr[ρO] =
∫

d2α
1

κ
〈α| ρO |α〉 . (C6)

We use this expression in order to define the phase space
representation of a density matrix ρ, named Q-function, as
Qρ (α) = 1

κ
〈α| ρ |α〉 where the κ−1 factor serves to ensure that

the Q-function is normalized in the sense of∫
Qρ (α)d2α = 1. (C7)

Intuitively, we can think of the Q-function as the projec-
tion of the density matrix ρ onto the coherent-state basis. In
the M-mode case, the Q-function is then given by Qρ (α) =
κ−M 〈α| ρ |α〉, where |α〉 = |α1〉 ⊗ · · · ⊗ |αM〉.

Since the Q-function is the phase space representation of
a density matrix ρ, similarly, we also map the observable
to its corresponding phase space representation, namely the
Pfunction. For the purpose of this work, we only need observ-
ables which are projective measurements in the Fock basis.
The Pfunction of a single-mode projective Fock measurement
|n〉 〈n| is defined as the function Pn : C → R which satisfies

|n〉 〈n| =
∫

d2α |α〉 〈α| Pn(α). (C8)

For the multi-mode case, the Pfunction Pn is defined by the
analogous relation |n〉 〈n| = ∫

d2Mα |α〉 〈α| Pn(α).
Given those definitions, we can write the probability of

measuring a multi-mode Fock state |n〉 = |n1, n2, ..., nN 〉 on
a density matrix ρ as

Pr(n) =
∫

d2MαQρ (α)Pn(α). (C9)

For generalized bosons, the Q-function can be obtained
straightforwardly while the Pfunction is nontrivial. Since
|n〉 = |n1〉 ⊗ · · · ⊗ |nN 〉 is a product state, its Pfunction is
a product of single-mode Pfunctions acting on each mode
individually. This can be seen by generalizing Eq. (C11) to
multi-mode Fock states. It turns out that the single-mode P-
function for |n〉 〈n| can be written as

Pn(α) = N (α)
1

f (n)2

(
∂2

∂α∂α∗

)n

δ(α)δ(α∗). (C10)

To see this, let us verify it by the definition of Pfunction. By
integrating Pn(α) over phase space

∫
d2α |α〉 〈α| Pn(α) =

∫
d2α |α〉 〈α| N (α)

1

f (n)2

(
∂2

∂α∂α∗

)n

δ(α)δ(α∗)

= 1

f (n)2

∫
d2α

∞∑
k,l=0

αkα∗l

k!l!
f (k) f (l ) |k〉 〈l|

(
∂2

∂α∂α∗

)n

δ(α)δ(α∗)

= 1

f (n)2

∫
d2αδ(α)δ(α∗)

(
∂2

∂α∂α∗

)n ∞∑
k,l=0

αkα∗l

k!l!
f (k) f (l ) |k〉 〈l| = |n〉 〈n| . (C11)
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Here, we use the property of the delta function because once
we take the partial derivative ( ∂2

∂α∂α∗ )n inside integral, only
the |n〉 component remains after integration. Because the delta
function eliminates all the terms depending on α after partial
derivatives, |n〉 is the only component that does not depend on
α after we take the partial derivative.

The P-function of a multi-mode Fock state |n〉 is then given
by

Pn(α) = 1∏M
i=1 f (ni )2

e
∑M

i=1 ln(N (αi ))
M∏

j=1

(
∂2

∂α j∂α∗
j

)n j

× δ(α j )δ(α∗
j ). (C12)

3. Generalized Gaussian states

Given the phase-space representation in terms of the P
and Q function, we define a Gaussian state for generalized
bosons analogously to the standard case, if it has a Gaussian
Q-function in the sense that

Qρ (α) = 1

g
√|σQ|e− 1

2 α†σ−1
Q α (C13)

for some positive semidefinite matrix σQ, called the
covariance matrix. Here, α = (α1, α2, ...αM )T ,α† =
(α∗

1 , α
∗
2 , ...α

∗
M ), |σQ| is the determinant of σQ, and g is a

normalization constant which makes
∫

Q(α)d2Mα = 1 with
d2Mα = ∏M

i=1 d2αi.

Let us point out, however, that Gaussian states are highly
unnatural for generalized bosons. Let us elaborate this point:
generally speaking, given a basis, one can define a Gaus-
sian state in the Q representation for generalized bosons.
Here, we did so by introducing a generalized coherent
state, and defining the Q-function in the generalized coher-
ent state basis. However, in contrast to the standard boson,
the displacement operator will not prepare a Gaussian state,
and neither will the squeezing operator prepare a Gaussian
state. Hence, it is unclear how to prepare a generalized
Gaussian state.

Put differently, coherent and squeezed states of standard
bosons always have a Gaussian Q function, and moreover,
zero stellar rank within the stellar-rank formalism introduced
by Chabaud et al. [61,62]. Conversely, a coherent or squeezed
state of generalized bosons may not need to have a Gaussian
Q function, the clear classification of states in terms of their
stellar rank will not be applicable in general cases. In particu-
lar, the inner product between coherent states is not Gaussian,
see Eq. (C3).

4. Gaussian Boson Sampling for Generalized Boson

Let us now derive the outcome probability of GBS for
generalized bosons and show that we still get a Hafnian by
assuming our state has a Gaussian Q-function. To do so, we
write Pn as

Pn(α) = 1∏M
i=1 f (ni )2

e
∑M

i=1 ln(N (αi ))
M∏

j=1

(
∂2

∂α j∂α∗
j

)n j

× δ(α j )δ(α∗
j ). (C14)

We then evaluate the phase space integral (C9) with the ex-
pressions for the Q function (C13), and the P function (C14),
obtaining

Pr(n) = 1∏M
i=1 f (ni )2

1

g
√|σQ|

M∏
j=1

(
∂2

∂α j∂α∗
j

)n j

× eln(N (α)− 1
2 α†σ−1

Q α|α j→0. (C15)

From this, we recover standard GBS [5,6] by choosing
N (α) = e|α|2 and f (n) = √

n! because the expression in the
argument of the exponential can be written as a quadratic form
in the matrix I2M − σ−1

Q , where I2M is the 2M-dimensional
identity matrix.

Indeed, from the perspective of generalized bosons, it looks
like for the standard boson case, the resulting expression is
a miracle since we get the exponential quadratic term e|α|2

for the normalization coefficient N (α). However, observe that
only the second derivative on each mode contributes to the
outcome probability if we only measure outcomes n j ∈ {0, 1}
in every mode. This is because when letting α j → 0, the expo-
nential term will approach unity since N (0) = 1 for arbitrary
generalized bosons. This corresponds to the second-order
term in the series expansion of ln(N (α)) around α = 0. Let
us therefore compute the series expansion of N (α) in |α| =√

α∗α around |α| = 0 as

ln(N (|α|)) = c0 + c1|α|2 + c2|α|4 + c3|α|6 + . . . . (C16)

As argued above, when restricting to nj ∈ {0, 1} for 1 �
j � M, only the term linear in |α|2 = α∗α will give a nontriv-
ial contribution to the outcome probability. Hence, only c1 is
effective in this case, because all the higher order terms in |α|
will be eliminated by α → 0. We obtain

Pr(n) = 1∏M
i=1 f (ni )2

ec0M

g
√|σQ|

M∏
j=1

(
∂2

∂α j∂α∗
j

)n j

× ec1|α|2− 1
2 α†σ−1

Q α|α j→0. (C17)

Then we do the similar calculations as shown in Refs. [5,6]
which is based on the derivative expansion formula [63] con-
verting partial derivatives of an exponential quadratic function
to a summation over all perfect matching permutations (PMP)
of product of matrix elements. Such a summation over PMP of
products of matrix elements is exactly the Hafnian function.
We have our final result:

Pr(n) = ec0M

g
∏M

i=1 f (ni )2

1√|σQ|Haf(As). (C18)

Here

As =
(

0
⊕M

i=1 c(i)
1 IM⊕M

i=1 c(i)
1 Im 0

)(
I2M − σ−1

Q

)
. (C19)

We finished the proof.
We also find that parallel results hold for the case of

nonzero displacement. In this case, the Q function looks like:

Qρ (α) = 1

g
√|σQ|e− 1

2 (α−dν )†σ−1
Q (α−dν ). (C20)
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We calculate the probability to observe a Fock state |n1, ..., nM〉 where ni ∈ {0, 1} is [63]. We arrive at

Pr(n) = ec0M exp[− 1
2 d†

ν σ−1
Q dν]

g
∏M

i=1 f (ni )2
√|σQ|

M∏
j=1

(
∂2

∂α j∂α∗
j

)n j

exp

[
1

2
αt Aα + Fα

]∣∣∣∣
α=0

. (C21)

We get

Pr(n) = ec0Me− 1
2 d†

ν σ−1
Q dν

g
∏M

i=1 f (ni )2
√|σQ|

|π |∑
j=1

π j∈{2M}

⎡
⎢⎢⎣
⎛
⎜⎜⎝

|B1
j |∏

k=1
B1

j ∈π j

Fk

⎞
⎟⎟⎠Haf(AB2

j
)

⎤
⎥⎥⎦

= ec0Me− 1
2 d†

ν σ−1
Q dν

g
∏M

i=1 f (ni )2
√|σQ|

[
Haf(AS ) +

∑
j1, j2, j1 �= j2

Fj1 Fj2 Haf(AS−{ j1, j2}) + ... +
2M∏

j

Fj

]
, (C22)

where the first sum is over all partitions of the set of 2M
indices, the product is over all indices in the blocks B1

j , and
the remaining indices in blocks B2

j form AB2
j
, a submatrix of

A, of which we then take the Hafnian.

APPENDIX D: TRAPPED-ION IMPLEMENTATION

In this section we discuss the details of physical implemen-
tation of the boson sampling protocol in trapped-ion setups.

1. Setup

The setup we have in mind is shown in Fig. 1 of the main
text. More precisely, we consider a chain of ions in a Paul trap.
Each ion is considered to be a two-level system {|g〉i, |e〉i}
with the corresponding transition frequency ωeg. We encode
superspin S(α) as collective excitation of a subset of ions {i}α
such that the lowering operator can be defined as:

S(α)
± ≡ 1√

N

∑
{i}α

σ
(i)
± , (D1)

where N is the number of ions encoding the superspin and
σ

(i)
− ≡ |g〉i〈e|, σ

(i)
+ ≡ |e〉i〈g|.

Mølmer-Sorensen interaction

As extensively discussed in the Ref. [54], the Ising-
type interaction between ions can be generated using the
Moelmer-Sorensen [42] laser configuration. More precisely,
we consider a pair of bichromatic laser beams driving the tran-
sition e ↔ g with the laser frequencies respectively tuned to
ωeg + 	 and ωeg − 	, where 	 is some detuning having two
different Rabi frequencies �±. Here we assume the possibility
of selective driving of a pair of ions as shown in Fig. 1. This
generates the ion-ion interaction characterized by the Ising
Hamiltonian

HI = Ji, jσ
(i)
x σ ( j)

x + h
(
σ (i)

z + σ ( j)
z

)
, (D2)

where the interaction coefficient scales as Ji j = J0/|i − j|ζ
with 0 < ζ < 3 and h denotes the transverse field.

2. Mode-mixing operation

In this section, we discuss the implementation of the
two-mode mixing operations on a pair of superspins. More
precisely, we show how an interaction with the Hamiltonian
Hint = J (α,β )S(α)

+ S(β )
− + H.c. can be achieved in the setup de-

scribed above. As discussed and experimentally demonstrated
in [54], the basic XY Hamiltonian between any two spins can
be achieved from the Ising Hamiltonian Eq. (D2) in the limit
of a large transverse field. In this case only the excitation-
number preserving terms remain relevant and we find:

H (XY )
i, j = Ji, j{σ (i)

+ σ
( j)
− + H.c.} + h

(
σ (i)

z + σ ( j)
z

)
. (D3)

Since the interaction preserves the number of excitations, we
can absorb the transverse-field term by transforming into the
interaction picture with respect to it. The desired Hamiltonian
Hint can be obtained in a Trotterized way by running the
interaction Eq. (D3) for each pair of ions for a time δti, j

inverse proportional to the interaction strength Ji, j to preserve
the spin symmetry Eq. (D1) δtα,β

i, j ≈ δtαβ × J̃/Ji, j , where
J̃ = min{i}α{ j}β [Ji, j]. To the lowestorder in Floquet-Magnus
expansion we find:

Heff ≈
∑

i, j δti, jJi, j{σ (i)
+ σ

( j)
− + H.c.}∑

i, j δti, j

≈ J0N

∑
α,β δtαβ × {S(α)

+ S(β )
− + H.c.}∑

α,β

∑
i, j δtαβ × |i − j|ζ

This Hamiltonian is equivalent to the Hamiltonian of interest
Hint. We can now estimate the order of magnitude of the in-
teraction strength for the nearest-neighbor superspins. Using
[54,64] ζ ≈ 1 and J0 = 1 kHz we find the overall interaction
constant for the nearest and next-nearest neighbor superspins
being respectively, J (α,α+1) ≈ 44 Hz and J (α,α+2) ≈ 21 Hz.
For comparison the typical decoherence rates can be estimated
to be of the order of 1 Hz [54].

APPENDIX E: CIRCUIT-QED IMPLEMENTATION

In this section we provide details of the circuit-QED
implementation of the boson-pair generalized boson. The
preparation step is discussed in the main text. Here we only
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focus on the implementation of the mode-mixing unitary op-
eration. In this derivation we closely follow [37].

1. Mode-mixing Hamiltonian

We now consider the implementation of the mode-mixing
unitary operation. Here, for simplicity, we only consider two
cavities (ωi=1,2 denote frequency and ai is the mode annihi-
lation operator) which interact with four Josephson junctions
(ωJ denote frequency and J is the mode annihilation operator)
and two two-level systems. The Hamiltonian of the system
reads [37] H = H0 + Hd :

H0 =ωc

∑
λ

a†
λaλ + ωJ

∑
λ

J†
λJλ + ω0c†c − EJ

24

∑
i

φ4
i , (E1)

Hd =
∑

i

�i(t )J†
i + H.c., (E2)

where the phases are:

φ1 = φaa1 + φbb + φJJ1 + H.c.,

φ2 = φaa2 + φbb + φJJ2 + H.c.,

and φa,b,J denote the corresponding participation ratios. The
Rabi frequencies are assumed to be given by:

�i(t ) = �ie
−iωd t

We now transform into the interaction frame with respect
to the driving frequency ωd and discard the rapidly rotating
terms. Renormalizing the frequencies, such as to include the
Stark shifts due to driving the effective Hamiltonian, can be
put under the following form (we ignore quartic terms for b
as we assume it does not contain more than one photon at the
time):

Heff =
∑

i

(gia
†2
i c + H.c.) − 	c†c − χ

∑
i

a†
i a†

i aiai,

where gi = − 1
2φbφ

2
c φJ

�i
	J

is a complex effective tunneling co-
efficient, 	J = ωd − ωJ , and the induced quartic nonlinearity

is χ = φ4
c

4 . The detuning is denoted as 	 = 2ωa − ω0 − ωd .
In the following we will drop the on-site nonlinear term pro-
portional to χ . As discussed in [37] it can be dynamically
compensated by coupling to an additional Josephson qubit.

a. Adiabatic elimination of cavity bus

We now perform the adiabatic elimination of the cavity bus
degree of freedom c, assuming the driving is weak enough
such that gi � 	. The resulting Hamiltonian is

Heff =
∑
i, j

gig∗
j

	
a†2

i a2
j .

Now assuming the coupling coefficients are time-dependent
gi = gi(t ) we can implement any coupling between any pair
of sites in a Trotterized fashion in complete analogy to
Appendix (D 2).

2. Fock-state preparation

We now consider the preparation of Fock state 1√
2
a2

i |0〉 in
the system described by the Hamiltonians (E1) and (E2) but
with the driving Hamiltonian to be of the form

Hd = �dr

∑
i

cos(ωdrt )(ai + a†
i ).

In rotating-wave approximation we get for each site:

Heff = �dr

2
(ai + a†

i ) − 	aa†
i ai − χa†

i a†
i aiai,

with 	a = ωdr − ωa. We now assume the system is initially
prepared in the Fock |0〉 state and the frequency of the drive
is tuned into resonance with the two-photon resonance such
that 	a = −χ . The system undergoes Rabi oscillations |0〉 →
|2〉 with the Rabi frequency given by �2 = √

2�2
dr/(4χ ). The

estimate of fidelity can be obtained by comparing the Rabi
frequency and the corresponding detunings as discussed in the
main text.
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