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Unsupervised learning of interacting topological and symmetry-breaking phase transitions
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Symmetry-protected topological (SPT) phases are short-range entangled phases of matter with a nonlocal
order parameter which are preserved under a local symmetry group. Here, by using an unsupervised learning
algorithm, namely, diffusion maps, we demonstrate that we can detect phase transitions between symmetry-
broken and topologically ordered phases, and between nontrivial topological phases in different classes. In
particular, we show that the phase transitions associated with these phases can be detected in different bosonic
and fermionic models in one dimension. This includes the interacting Su-Schrieffer-Heeger model, the Affleck-
Kennedy-Lieb-Tasaki model and its variants, and weakly interacting fermionic models. Our approach serves as
an inexpensive computational method for detecting topological phase transitions associated with SPT systems
which can also be applied to experimental data obtained from quantum simulators.
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I. INTRODUCTION

In the last two decades, theoretical prediction and ex-
perimental observation of topological phases of matter [1]
have been one of the most remarkable advancements in the
field of condensed matter physics. In topological quantum
phases of matter, although the energy spectrum is gapped, a
Landau-Ginzburg framework based on the existence of local
order parameters cannot explain some of the most important
features of these systems such as the existence of symmetry-
protected edge states [2]. While initially most efforts were
mostly focused on noninteracting topological insulators [3–9],
in recent years, attention has turned to interacting topological
phases of matter.

Classifying topological insulators and superconductors
which are described by noninteracting fermionic Hamil-
tonians is less challenging than characterizing interacting
topological phases of matter. In particular, since the spectrum
of noninteracting models are often exactly solvable, classify-
ing them can be done rigorously via several methods including
the classification of random matrices [10], of Dirac operators
[11], or, more abstractly, via K theory [12]. Nevertheless, for
interacting topological systems, more refined methods such
as group cohomology methods have been proposed [13,14].
Correspondingly, for the former systems, using the wave
functions of the Hamiltonian or the Green’s functions in the
momentum space, one can define their corresponding topo-
logical invariants, while for the latter, one needs to define
nonlocal order parameters in the real space [15–18], which
is both computationally and experimentally costly to probe
[19,20]. Therefore identification of topological properties in a
given set of interacting topological systems is computationally
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more involved, and designing efficient computational methods
to detect possible topological phase transitions is an indis-
pensable task for studying these phases.

On the other hand, over the past few years, machine learn-
ing (ML) has emerged as a powerful tool to assist physicists
to study a plethora of different problems in condensed matter
and quantum sciences. A nonexhaustive list of notable exam-
ples includes classifying phases of matter [21–24], studying
nonequilibrium dynamics of physical systems [25–27], simu-
lating dynamics of quantum systems [28–30], and augmenting
capabilities of quantum devices [31,32]. In particular, in clas-
sifying applications, most such techniques rely on supervised
ML techniques where the ML algorithm after being trained
with labeled systems learns to classify systems with new
parameters [21,27,33–38]. However, more interestingly, in
unsupervised machine learning no prior knowledge of the
phase of the systems is provided, and the algorithm by detect-
ing the hidden structure of the input data learns to cluster wave
functions or Hamiltonians in different phases [22,39,40].

II. GOAL

In this paper, we use an unsupervised learning model
(ULM), namely, the diffusion maps algorithm (DMA),
to detect different topological phase transitions associated
with symmetry-protected interacting topological phases with
short-range entanglement also known as symmetry-protected
topological (SPT) systems [13]. However, we note that our
method can only detect the presence of topological phase
transitions and cannot distinguish between different topo-
logical phases. The diffusion maps algorithm, which can
capture the hidden geometrical and topological structure of
data sets [41,42], has recently been used to classify phases
of matter in the local order of the Ising model [43], thermal
topological vortex structures and temperature-driven phase
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transitions [44,45], and noninteracting topological insulators
[46–48].

Here, by applying this algorithm to different bosonic and
fermionic systems in one dimension which host a SPT phase,
we demonstrate that this technique can approximately identify
topological phase transitions and reproduce the phase dia-
gram of models which in addition to symmetry-broken phases
can host one or several interacting SPT phases. Hence, in
systems where, based on physical symmetry arguments, it is
known that there are finite possibilities for the formation of
symmetry-broken phases, detection of additional phases via
our method is evidence that the system can host nontrivial SPT
phases. We should highlight that since we only need snapshots
of the ground-state wave functions of the system, unlike other
methods which, to detect topological phases, rely on nonlocal
(stringlike) operators [15,49–52] or nonlinear functions of the
wave functions such as entanglement entropy and the entan-
glement spectrum of the wave function [53–55], our approach
is computationally more convenient. We also note that since
we use ground states directly, this approach is also suitable for
experimental data obtained from quantum simulators [56] and
noisy intermediate-scale quantum (NISQ) devices [57].

III. DIFFUSION MAPS

The DMA is based on the classical idea of integration
that the global structure of a manifold can be determined by
traversing it provided that local transition rules to move from
one point to another are at hand. To do so, we create a Markov
matrix of transitions for the points in the input data set, which
guides a random walker to traverse the data set through a
diffusion process, which results in gaining information about
the global geometrical properties of the input data. However,
in order to probe the structure of the input data at different
scales, a family of transition matrices are employed, and hence
the name diffusion “maps.”

More concretely, suppose we have n input data, each repre-
sented by an N-dimensional vector �xα = (x1

α, . . . , xN
α ) in RN ,

where Greek letters denote the sample indices. For every two
sampled vectors �xα, �xβ , we use the Euclidean metric to define
their distance. To set the local rules of transition between two
points, we start by defining a symmetric positivity-preserving
function which for most applications could be a Gaussian
kernel:

k(�xα, �xβ ) = exp

(
−|�xα − �xβ |2

ε

)
, (1)

where ε is the scaling hyperparameter of the DMA which
determines the speed of the diffusion process of the corre-
sponding random walker and correspondingly the number of
clusters. We also define the diffusion matrix K , which is a
version of the graph Laplacian matrix with components Kαβ =
k(�xα, �xβ ). To interpret this matrix as a probability distribution,
we need to normalize it by the diagonal matrix D whose
components are given by Dαα = dα , where dα = ∑

β Kαβ and
plays the role of the local degree of the graph. Then, the
normalized Laplacian matrix is defined by

M = D−1K. (2)

Physically, the matrix M denotes the transition probabilities
between different samples such that the probability of transi-
tion from sample α to sample β in t time steps is given by
the t th power of this matrix, i.e., Mt

αβ . We also notice that M
is a stochastic matrix [58] with positive entries where each
column sums to 1 and hence the largest eigenvalue is 1. We
should also notice that there are other choices for the distance
function. One can change the L2 norm to an Lp norm for
p � 3. As p → ∞, we get the so-called Chebyshev’s distance
d (�xα, �xβ ) = maxi|xαi − xβi|. One finds that in some cases,
Chebyshev’s distance may give sharper boundary conditions
[47]. We have tried other distance functions, and our results
for these distance functions are presented in the Supplemental
Material [59].

Next, we compute the diagonal representation of M. As
in principal component analysis (PCA), where we only keep
the largest eigenvalues to determine the number of clusters
[60], here we also keep the largest eigenvalues in the diagonal
representation of M. We note that due to the spectral decay of
the eigenvalues only a finite number of terms are necessary
to achieve a given relative accuracy in reproducing M via
its diagonal representation. Therefore, to reach an accuracy
labeled by δ, we only need to keep the eigenvalues larger than
1 − δ in the spectrum. Since δ is arbitrary, we can fix it and
then study how the number of relevant clusters varies with the
scale parameter ε to probe the underlying geometric structure
at different scales. We note that the main advantage of this
method over more conventional ULMs such as PCA is that
while maintaining the local structures of the data sets, it can
also recognize their underlying nonlinear manifolds due to its
nonlinear kernel, which makes it advantageous compared with
other unsupervised learning methods [59].

IV. MODEL INTRODUCTION AND RESULTS

Let us now apply the DMA explained above to our
quantum many-body problem. We imagine we are given a
Hamiltonian with a set of unknown parameters θ ∈ Rs. We
assume that we have direct access to the ground state of an
N-particle many-body Hamiltonian and we can sample from
its many-body wave function in the configuration space. In
particular, in this paper, for spin-σ chains our sampled wave
function determines the configuration of the spins in the real
space, and therefore the components of the αth input vec-
tor are xi

α = {±σ }. For our fermionic and hard-core bosonic
Hamiltonians, the measured wave function is represented in
the Fock space, and therefore xi

α = {0, 1}. In this setting, the
schematic flowchart of our classification approach is illus-
trated in Fig. 1, where ψground(θ) denotes the ground-state
wave functions. In general, this state is a superposition of
different product states. In the next step, the sampling is
performed in the space of these product states resulting in
the vectors �xα (θ) by which we can produce the corresponding
Laplacian matrix M(θ). Since across quantum phase transi-
tions usually a change in the relevant degrees of freedom
that describe the system occurs, we expect that for a given
accuracy δ, once the scale ε is chosen properly, the number
of clusters obtained from M(θ) should reveal the underlying
phase diagram of the system.
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FIG. 1. Schematic illustration of the machine-learning algo-
rithms to identify different phases. (a) Flowchart of the diffusion
maps algorithm. From a given Hamiltonian, one (1) obtains the
ground state and projectively samples from the ground state, (2)
forms the diffusion matrix and tunes the hyperparameters, and (3)
obtains the phase diagram by finding the conspicuous transitions in
the number of eigenvalues. (b) Different ground states in a cluster
can transform into each other via a diffusion process in the data set
basis.

To determine the proper regime for ε as the parameter that
describes the dynamics of the diffusion process [42], we use
the approximate analysis of the spectrum of M proposed in
Refs. [43,44]. Assuming clusters of samples with r particles
in different configuration states, the diffusion matrix K will
acquire a block-diagonal form with each block correspond-
ing to a single such cluster. In this representation, diagonal
elements are close to the identity, while off-diagonal compo-
nents are bounded by O(e−r/ε ). Denoting the number of such
clusters with Nc, after diagonalizing K , we will approximately
have Nc eigenvalues larger than 1 − e−r/ε , and therefore the
accuracy can be approximated by δ ∼ e−r/ε . Thus by choosing
ε ∼ −r/ ln δ, we can find the number of clusters of a partic-
ular size r. Consequently, since the number of particles in
the clusters can change between 1 and N , we need to span
the corresponding range of ε, to obtain the best value of ε

empirically where changes in Nc show a conspicuous change
for different values of θ. Therefore sharp changes in Nc as a
function of θ can be presumed to trace the topological phase
transitions.

In what follows we employ the procedure above and con-
sider some of the most well-known models which describe
SPT phases, and we demonstrate that we can reproduce their
phase diagram with an acceptable precision. We summa-
rize our models in Table I, where for all models we have
δ = 0.000 01), and we use periodic boundary conditions. For
all of these models we generate the many-body ground state of
the system in the Fock space and then sample from the states
whose superposition creates the ground state of the system.
We collect 500 samples for each set of fixed parameters in the
Hamiltonian.

Model 1: Nontrivial SPT vs symmetry-protected trivial
phases. In this section, we ask whether we can distinguish be-
tween ground states with a trivial symmetry-protected phase
and those with a nontrivial SPT phase [56]. As one of the
simplest models, we start with the interacting version of the
Su-Schrieffer-Heeger (SSH) model, which has been recently
realized via Rydberg atoms and describes a topological phase
transition between a SPT nontrivial phase and a symmetry-
protected trivial phase. This model can be described by
hard-core bosons b2

i = 0 = b†2
i . We consider two alternating

coupling constants denoted by J and J ′ between adjacent sites
(n, n + 1), where the former couples sites with odd n and the
latter couples sites with even n,

HJ,J ′ =
∑

i j

Ji j (bib
†
j + b jb

†
i ). (3)

As shown in Ref. [56] this model is mapped to the fermionic
SSH model, whose energy spectrum consists of two bands
separated by a spectral gap 2(|J| − |J ′|). Most importantly,
this model for |J ′| > |J| is a topologically trivial phase, while
for |J ′| < |J| it becomes a SPT phase which with open bound-
ary conditions hosts delocalized zero-energy edge modes. In
this case, the symmetry group G = Z2 × Z2 based on group
cohomology classification only has one nontrivial topological
phase since H2[Z2 × Z2;U (1)] = Z2. Using Jordan-Wigner
transformation, the original representation of this model trans-
forms into a spin chain Hamiltonian [56]:

H = −J ′ ∑
i

σ−
2i−1σ

+
2i − J

∑
i

σ−
2i σ

+
2i+1 + H.c. (4)

We use the natural spin basis as our sampling result. We can
see in Fig. 2(a) that our method reproduces the phase diagram
obtained in Ref. [56].

Model 2: Affleck-Kennedy-Lieb-Tasaki model. In this sec-
tion, compared with model 1, as a more challenging situation,
we ask whether our approach can detect SPT phases with
more involved symmetries where symmetry-broken phases
may exist, too. The Haldane phase of S = 1 antiferromagnetic
spin chains is a well-known example of such SPT phases with
a Z2 × Z2 symmetry group whose parent Hamiltonian can
host several symmetry-broken phases. An example of a state
in the Haldane phase which can be written in a closed form
is the Affleck-Kennedy-Lieb-Tasaki (AKLT) state [61]. This
state is a special case of the ground state of the following
bilinear-biquadratic spin-1 Hamiltonian ( �Si are spin-1 oper-
ators) when θ = 1/3:

Hbb =
∑

i

cos(θbb)(�Si · �Si+1) + sin(θbb)(�Si · �Si+1)2. (5)

TABLE I. Summary of one-dimensional Hamiltonians. Phase types: Haldane phase (H), dimerized phase, dimer phase, ferromagnetic
phase (FM), antiferromagnetic phase, XY phase, valence bound state, Z2 symmetry-breaking phase (Z2 SB), and critical phase.

Hamiltonian H Parameters Type of phase ε N

−J ′ ∑
i σ

−
2i−1σ

+
2i − J

∑
i σ

−
2i σ

+
2i+1 + H.c. J, J ′ Topological, trivial 0.088 9∑

i cos(θ )(�Si · �Si+1) + sin(θ )(�Si · �Si+1)2 θ H, dimer, FM 1
32 9∑

i(�Si · �Si+1) + B
∑

i Si
x + ∑

i D(Si
z )2 B, D Spin polarized, Z2 SB, H 1

32 10

H = −∑
<i j>σ c†

iσ c jσ − 2	s
∑

j c†
j↑c†

j↓ ± i	p/2
∑

j (c
†
j+1↑c†

j↓ + c j+1↓c j↑) + H.c. 	s, 	p N = 0, ±1 1
32 6
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FIG. 2. Phase diagrams of models 1 and 2. The color bar in
(a) and vertical axis in (b) represent the number of eigenvalues larger
than 1 − δ (see text). (a) Model 1 is an interacting bosonic SPT model
with a topological phase and a trivial phase with phase boundaries at
J = ±J ′. (b) Model 2 is biquadratic spin chain model whose ground
state at θ = 1/3 is the AKLT state. The dashed lines illustrate the
phase boundaries obtained via density matrix renormalization group
(DMRG) methods.

However, by varying θ this model describes two topological
and nontopological phase transitions.

We can apply the DMA to this model with N = 9 and plot
the resulting phase diagram [Fig. 2(b)], which is akin to the
results in Ref. [62]. Here, we again see another successful
detection of an SPT phase where two additional symmetry-
broken phases may compete with each other.

Model 3: Variant of the AKLT model. As another more
complicated model, we study a variant of the AKLT model
where in addition to symmetry-broken and topological phases
we also have a time-reversal-invariant (TRI) phase with the
same symmetries as the Haldane phase [63],

H =
∑

i

(�Si · �Si+1) + B
∑

i

Si
x +

∑
i

D
(
Si

z

)2
. (6)

This Hamiltonian is invariant under translational symmetry
Z2, time-reversal symmetry Sy → −Sy, and Z2 parity symme-
try. The complete description of the phase diagram is found in
Ref. [63]; it contains a TRI phase with Sz = 0, two symmetry-
broken phases Zx,y

2 , and the Haldane phase. Our results for this
model are depicted in Fig. 3(a). In this figure, by comparing
our phase diagram with those obtained in Ref. [63], we can see
a noticeable transition between the Zx

2 phase, the TRI phase,
and the Haldane phase. However, the distinction between
the Zy

2 phase and the Haldane phase is less pronounced, and
we only see a partial change of color between these two
regions. Model 4. In models 1–3, based on group cohomol-
ogy arguments the topological classification of the phases
is described by the Z2 group, and there is only one topo-
logically nontrivial phase. In model 4, in addition to spin-1
chains, we consider a weakly interacting fermionic spin-1/2
Hamiltonian which can host more than one nontrivial SPT
phase whose topological classification is described by the
Z2 × Z2 group. This model respects both time-reversal sym-
metry and Sz spin-rotation symmetries. Hence, in the absence
of interactions, based on the tenfold classification, its topo-
logical phases are described by the Z group. Nevertheless, by
adding interactions to this Hamiltonian, the resulting topolog-
ical classes of this system will reduce to the Z2 × Z2 group.

FIG. 3. Phase diagrams of models 3 and 4. (a) Model 3 is a
variant of the AKLT model which hosts one trivial phase (TRI),
two symmetry-breaking phases (Zy

2 and Zx
2), and one topologically

ordered phase (Haldane). The topological classification of the system
is described by the Z2 group. The dashed line shows the approxi-
mate boundaries of the Haldane phase obtained via exact methods.
(b) Model 4 is a weakly interacting fermionic model with uncon-
ventional pairing. C labels the states via their distinct zero modes in
different phases and is obtained via exact diagonalization. Color bars
represent the number of eigenvalues larger than 1 − δ (see text).

The Bogoliubov–de Gennes (BdG) form of this Hamiltonian
is given by [64]

H = −
∑

<i j>σ

c†
iσ c jσ − 2	s

∑
j

c†
j↑c†

j↓

±i	p/2
∑

j

(c†
j+1↑c†

j↓ + c j+1↓c j↑) + H.c., (7)

where the last term is an unconventional pairing between
electrons on adjacent sites. This model can host three phases
labeled by M = 0,+1,−1, which represents the states with
distinct zero modes 1. We simulate this model with N = 6 and
plot the resulting phase diagram in Fig. 3(b).

As we can see in this figure, our approach can regenerate
the phase diagram of this model as obtained in Ref. [64] with
a high accuracy. To be more specific, we see sharp transitions
between the topologically nontrivial phases with M = ±1 and
trivial phases labeled by M = 0. While in principle, from this
plot we cannot distinguish the M = ±1 phases from each
other, from the fact that we see a conspicuous change in
the number of eigenvalues at their intersection at 	s,p 
 0
we may speculate that the two regions correspond to distinct
phases. This indicates that DMA not only can differentiate
between topologically trivial phases and topologically non-
trivial phases, but also can provide evidence for differentiating
between different topological phases with similar properties.

V. DISCUSSION AND OUTLOOK

In this paper, we have used an unsupervised learning al-
gorithm called diffusion maps to detect topological phase
transitions between different symmetry-broken phases and

1As demonstrated in [64] by stacking two chains with C = +1, we
get another nontrivial phase with two zero modes. In the presence of
strong interactions the phase with C = −1 and C = 3 are identified
and hence the classification is Z4.
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different SPT phases. Our results demonstrate that using dif-
fusion maps as a computationally inexpensive method can
provide helpful evidence for the presence of SPT phase tran-
sitions and SPT phases. Since previously this algorithm has
been used for detecting other symmetry-broken phase transi-
tions in one dimension [43], and due to the lack of intrinsic
topological order in one dimension, our results demonstrate
that the DMA can detect all different types of equilibrium
phase transitions in one dimension.

From a conceptual viewpoint, the reason behind the
efficacy of the DMA in detecting SPT phases is thought-
provoking. One possible explanation is that the DMA in the
continuum limit approximates the differential heat equation.
On the other hand, the spectrum of elliptic differential opera-
tors, such as the heat kernel appearing in the heat equation, can
include important information about topological invariants
[65,66]. Based on our results, we speculate that these concep-
tual relations between the spectrum of differential operators

and SPT invariants have practical application for computa-
tional and experimental purposes.

An immediate question to be pursued in future is the de-
tection of SPT phases in higher dimensions via the DMA.
Another intriguing question to investigate is the detection of
long-range topological order in symmetry-enriched topolog-
ical phases [67] which can be realized in two and higher
dimensions without using thermal sampling [46]. Also, detec-
tion of topological phases in nonequilibrium phases of matter,
especially Floquet systems, is left for future studies.
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In this supplemental, we consider two additional spin chain models which can host SPT phases. We consider the following
Hamiltonian with periodic boundary condition as considered for other models in the main text, [1]:

H =
∑
i

Si
xS

i+1
x + Si

yS
i+1
y + λSi

zS
i+1
z +D(Si

z)
2. (S.1)

We can use the same techniques and with L = 9 and 2500 samples to implement the diffusion map algorithm (DMA) by using
Euclidean distance and Chebyshev’s distance. We can see sharper phase boundary condition by using Chebyshev’s distance. We
use L2 and L∞ to denote them, respectively. We plot the phase diagram via the DMA. The phase diagram Fig. 1 matches with
the predictions in [1] to a great extent. In particular the distinction between the antiferromagnetic phase (AFM), Haldane and
the ferromagnetic phases are completely distinguishable, however, we observe a less evident transition between the Haldane and
the dimerized phases. We also notice that we have not detected the XY phase whose presence is still undetermined via exact
methods [1].

The second model that we consider here is the following spin Hamiltonian with periodic boundary condition [1]:

H =
∑
i

Ji(Si · Si+1 − β(Si · Si+1)
2). (S.2)

Ji = 1 for i even, Ji = ω for i is odd. We can see our method Fig. 2 matches qualitatively with [1] and we can see a sharp
transition between the topological Haldane phase and two symmetry broken phases i.e. valence bond state (VBS) and dimerized
phases. We can also predict β = − 1

3 [1] for the transition from VBS to Haldane phase.

I. PCA AND K-MEANS ALGORITHM

To compare the performance of the diffusion maps algorithm and other unsupervised methods, here, we try one of the
most standard unsupervised algorithm called PCA (principle component analysis) on our sampling and compute the mean of 2
components. After doing this, we choose the number of clusters and use the standard k means algorithm. It should be highlighted
that we do not have to pick the number of clusters in the diffusion map algorithm. We choose model 3 [2] in our main text.

H =
∑
i

(~Si · ~Si+1) +B
∑
i

Si
x +

∑
i

D(Si
z)

2. (S.3)

Here, we find that this method fails to identify the phase transition in fig 3 completely. This superior performance of the diffusion
maps in comparison to other unsupervised learning methods, is due to the fact that in this approach we use non-linear kernel
functions which allow us to detect complicated non-linear structures in data sets.

[1] T. Kennedyand H. Tasaki, Hidden symmetry breaking and the haldane phase in s= 1 quantum spin chains, Communications in mathematical
physics 147, 431 (1992).

[2] Z.-C. Guand X.-G. Wen, Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order, Physical
Review B 80, 155131 (2009).
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FIG. 1. Phase diagram of Hamiltonian in Eq.S.1 in terms of λ,D obtained via the diffusion maps algorithm. Dashed lines represent the exact
phase boundaries obtained by DMRG methods.
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FIG. 2. Phase diagram of Hamiltonian in Eq.S.2 in terms of β, ω obtained via the diffusion maps algorithm. Dashed lines represent the exact
phase boundaries obtained by DMRG methods.
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FIG. 3. PCA and k means on model 3
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