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Floquet vortex states induced by light carrying an orbital angular momentum

Hwanmun Kim ,1,2 Hossein Dehghani,1,3 Iman Ahmadabadi,1,2 Ivar Martin,4 and Mohammad Hafezi1,2,3

1Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
2Department of Physics, University of Maryland, College Park, Maryland 20742, USA

3Departments of Electrical and Computer Engineering and Institute for Research in Electronics and Applied Physics,
University of Maryland, College Park, Maryland 20742, USA

4Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

(Received 30 June 2021; revised 7 October 2021; accepted 6 January 2022; published 14 February 2022)

We propose a scheme to create an electronic Floquet vortex state by irradiating a two-dimensional semicon-
ductor with a laser light carrying nonzero orbital angular momentum. We analytically and numerically study the
properties of the Floquet vortex states, with methods analogous to the ones previously applied to the analysis
of superconducting vortex states. We show that such Floquet vortex states are similar to superconducting vortex
states, and they exhibit a wide range of tunability. To illustrate the potential utility of such tunability, we show
how such states could be used for quantum state engineering.
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Introduction. Quantum vortices and the localized quantum
states associated with them have long been a subject of ac-
tive interest in diverse areas of physics [1–6]. To create and
observe such quantum vortex states, numerous efforts have
been made in diverse systems such as Bose-Einstein conden-
sates [7–12], superconductors [13,14], and magnetic materials
[15–17]. While the quantum vortex states themselves exhibit
many exotic quantum and classical many-body phenomena
[18–23], their stability as topological defects makes them a
promising quantum platform for applications such as quantum
information processing [24–26].

Recently, Floquet systems have become popular as a useful
way to engineer exotic quantum states [27–37]. Moreover,
there have been many recent advancements in the spatial
control of optical beams in atomic systems [38–41]. These
techniques have the potential to be applied to electronic sys-
tems and can provide a wide range of tunability in quantum
state engineering.

In this Letter, we present a scheme to create Flouqet quan-
tum vortex states by shining a light field carrying orbital
angular momentum (OAM) on a two-dimensional (2D) semi-
conductor, as illustrated in Fig. 1. In small detuning and the
weak-field limit, we show that electronic Floquet vortex states
are localized around the optical vortices with a localization
length bounded by the shape and intensity of the optical field.
We also show that the number of vortex state branches is
directly given by the vorticity of the light, which quantifies the
OAM carried by each photon. Such a close relation with OAM
of light distinguishes these vortex states from the edge states
of the uniform Floquet Chern insulator [28] or the vortex
states introduced in Refs. [30,31]. While many characteristics
of these Floquet vortex states carry a close analogy with super-
conducting systems, we show that the Floquet vortex states in
the current system benefit from a very broad range of tunabil-
ity. For example, the freedom to choose the size of the optical

vortex can be used as a knob to control the non-linearity of
the vortex state spectrum. To demonstrate how such tunability
can be exploited for quantum state engineering, we construct a
scheme of quantum information processing based on optically
manipulating Floquet vortex states, with simple single-qubit
and two-qubit operations.

Model. We consider H0 = (vkx, vky, M ) · σ as our model
for a spinless 2D semiconductor [42,43]. For brevity, we have
set h̄ = 1. Here, σ = (σx, σy, σz ) are Pauli matrices. M is a
half of the band gap and v is a parameter determining the

curvature of the band dispersion ±
√

M2 + v2(k2
x + k2

y ), where

the positive (negative) energy states correspond to the conduc-
tion (valence) band. We vertically shine a linearly polarized
laser field with a nonzero orbital angular momentum (OAM),
A(r, t ) = A(r)eiωt x̂ + c.c. on a semiconductor, as illustrated
in Fig. 1 where ω is the frequency of the laser field. The OAM
of the laser field is represented in the azimuthal phase factor of
A(r) = A0(r)eimφ , where r =

√
x2 + y2 and φ = arctan(y/x).

The integer m here is the vorticity of the field, and we refer
to the vortex structure with nonzero vorticity in the light
field as an optical vortex. Due to this vortex structure, A0(r)
should vanish at r = 0. We set the size of the optical vortex
to ξ , which means that A0(r) smoothly saturates to Amax at
r � ξ . With minimal coupling k = (kx, ky) → k + eA(r, t ),
we obtain the time-periodic Hamiltonian

H (t ) = H0 + evA(r, t ) · σ. (1)

When ω > 2M, the frequency detuning δ = ω − 2M be-
comes positive and the conduction and valence bands become
resonant at the resonance ring of momentum, |k| = k0 =
v−1

√
ω2/4 − M2. From Eq. (1), the applied laser field gener-

ates a position-dependent Rabi frequency �(r) = evA0(r) and
hybridizes the conduction and valence bands while opening
an energy gap about 2�0 around the resonance ring, where
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FIG. 1. (a) A 2D semiconductor illuminated by a laser light car-
rying OAM. The applied light field has an optical vortex structure
of size ξ . The figure illustrates the case of vorticity m = 1. (b) The
laser field has frequency ω, and couples the conduction and the
valence bands of the semiconductor with a gap 2M. The detuning
is δ = ω − 2M. In the rotating frame, the hybridization gap of about
2�0 develops around the resonance ring whose radius and thickness
are k0 and kδ , respectively. (c) For a light field with nonzero vorticity
m, |m| branches of Floquet vortex states develop in the middle of
the hybridization gap. Around zero energy, each branch has a linear
dispersion with energy separation ω0 between nearby states in the
branch. Note that the energy spectrum is illustrated with respect to
the electronic pseudo-OAM, l .

�0 = limr→∞ �(r). To describe these hybridized bands, we
consider the transformation into a rotating frame, U (t ) =
Pce−iωt/2 + Pveiωt/2, where Pc (Pv) is the projection operator
into the conduction (valence) band. In the weak-field limit
�0 � √

ωδ, we can drop the fast oscillating terms from
the rotated Hamiltonian −iU †(t )∂tU (t ) + U †(t )H (t )U (t ) and
obtain the effective Hamiltonian under the rotating wave
approximation (RWA). Furthermore, we consider the small
detuning regime δ � ω. In this regime, we can write δ �
v2k2

0/M and vk0 � M. Then, for the small momenta |k| =
O(k0) (see Supplemental Material [44]),

HRWA = δ

2

(
k2

k2
0

− 1

)
σz + [�(r)e−imφσ+ + H.c.], (2)

where σ± = (σx ± iσy)/2.
Floquet vortex states. Because of the breaking of transla-

tional symmetry by the optically induced vortex, it is possible
to have electronic states with energies inside the spectral gap
that are localized in the vicinity of the vortex. From Eq. (2),
we can estimate the spatial extent of such states. First, one
can readily observe that the diagonal components are dom-
inant over off-diagonal elements for most of the k’s except
in the vicinity of the resonance ring. This means that the
hybridization mostly occurs at the momenta in the narrow
region near the resonance ring, and the thickness of this region
can be estimated by finding the range of |k| that makes the
off-diagonal elements of Eq. (2) comparable to or larger than
the diagonal elements. We find that the hybridization of the
two bands occurs at |k| − k0 = O(kδ ), where kδ ≡ k0�0/δ,
that characterizes the momentum range over which the Rabi
frequency and dispersion of Eq. (2) are comparable around the
resonant momentum ring. If any intragap state develops within
this hybridization gap, such a state should be a superposition

of the Bloch states within this momentum region. Therefore
k−1
δ serves as a lower bound for the spatial size of such an

intragap state. If a localized intragap state develops around
the optical vortex, this state cannot extend to the region where
A0(r) saturates to Amax since the field is nearly uniform and
therefore the system remains gapped. Therefore such a local-
ized intragap state has an upper bound O(k−1

δ + ξ ) for its size.
By using the semiclassical argument introduced in

Ref. [45], one can show that |m| branches of intragap states
develop around the optical vortex with vorticity m (see Sup-
plemental Material [44]). We call these states Floquet vortex
states, and we can obtain a fully quantum-mechanical de-
scription of the dispersion and wave function of these states
by applying mathematical methods used for superconducting
vortices [4,46–48]. To do so, we note that while the effective
Hamiltonian in Eq. (2) does not commute with the elec-
tronic OAM, L̂ = −i∂φ , it does commute with the electronic
pseudo-OAM, l̂ = −i∂φ + (m/2)σz. Then the eigenstates of
this effective Hamiltonian can be written in the form of vortex
states,

ψn,l (r) = (ei(l−m/2)φun,l,+(r), ei(l+m/2)φun,l,−(r))T . (3)

Here, the branch index n = 1, . . . , m represents different
branches of Floquet vortex states. One can also show that this
system satisfies the particle-hole symmetry which requires
ψn,−l (r) = iσyψ

∗
|m|+1−n,l (r) and En,−l = −E|m|+1−n,l , where

En,l is the corresponding eigenenergy for ψn,l (r). In the large
optical vortex regime k−1

δ � ξ , the low-energy spectra of
these Floquet vortex states are given by [48]

En,l = mlω0 + [n − (|m| + 1)/2]ω̃0, (4)

where

ω0 = δ
∫ ∞

0
�(r)

r e−(2k0/δ)
∫ r

0 �(r′ )dr′
dr

k0
∫ ∞

0 e−(2k0/δ)
∫ r

0 �(r′ )dr′dr
,

ω̃0 = δ(π/2)

k0
∫ ∞

0 e−(2k0/δ)
∫ r

0 �(r′ )dr′dr
.

Here, the energy separations between nearby states and
branches, ω0 and ω̃0, respectively, are solely determined by
the bulk properties and the details of the radial beam profile
A0(r). These parameters are independent of the system size
and therefore the energy separation between states remains
in the thermodynamic limit. This analytic expression of the
dispersion is valid for the low-energy and the low-l regime,
|En,l | � �0 and |l| � √

δ/�0. Figure 2(a) presents how this
analytically found dispersion agrees with the numerical dis-
persion obtained by diagonalizing Eq. (2) (see Supplemental
Material [44]). As shown in the figure, the number of intra-
gap state branches is given by |m|. The analytic dispersion
and the numerical dispersion agree for the low-energy and
low-l regime, and deviate from each other as the energy or l
moves away from zero. Nevertheless, we can still use Eq. (4)
to get a rough estimate of the pseudo-OAM differences be-
tween different intragap state branches, in the large optical
vortex regime (see Supplemental Material [44]). Assuming
the entire intragap state branches are linearly dispersing, the
different branches at the same energy would have a pseudo-
OAM momentum difference of ω̃0/ω0 = O(k0k−1

δ

√
kδξ ). This
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FIG. 2. (a) Numerically calculated energy spectra in terms of
pseudo-OAM l . We use ω = 2.05M, Amax = 0.09M(ev)−1, and
A0(r) = Amax[1 − exp{−r2/(2ξ 2)}], ξ = 20kδ , and suppose a disk
sample of radius 25ξ . Note that we only exhibit spectra near the zero
energy while the bulk gap is about 2�0. The numerical spectra agree
with the analytically expected dispersion in Eq. (4) including the
number of intragap state branches and the slope of the linear disper-
sion for small |El | and l . Electronic density profiles of selected states
are presented in the insets. (b) Dispersions for m = 1 with identical
parameters with (a) except the optical vortex size ξ and the disk size
500kδ . As ξ reduces, the linear region of the spectrum shrinks while
the energy separation between the nearby states increases.

large difference in the angular momentum prevents the vortex
modes from different branches to hybridize each other. With
the same assumption, the number of states in a single branch
can be also estimated as 2�0/ω0 = O(k0ξ ).

Note that these Floquet vortex states around the optical
vortex are distinguished from the edge states of topological
Floquet Chern insulators [28] or the vortex states introduced
in Refs. [30,31]. For an edge state of the Floquet Chern in-
sulator to develop, the bulk part of the system should have
a nonzero Chern number, while the Floquet vortex states we
are discussing appear regardless of the Chern number of the
system. This point becomes clear by investigating the system
under irradiation of a circularly polarized light beam which
also carries a nonzero OAM (see Supplemental Material [44]).
While the bulk part of such a system becomes a Floquet Chern
insulator as explained in Ref. [28], there are still |m| branches
of Floquet vortex states in the middle of the hybridization gap.
The Floquet vortex states in our system also differ from the
vortex states in Refs. [30,31] where the vortex structure does
not couple with the electronic kinetic terms and has no trivial
way to be realized in experiments.

While many properties of the Floquet vortex states can be
analyzed with similar techniques used for superconducting
vortex states, our Floquet vortex states have a wider tunability
due to the freedom to control the size of the optical vortices.
For superconducting vortex states, the size of the vortices
is tied to O(k−1

δ ) since the Bogoliubov–de Gennes (BdG)
equation should be satisfied in a self-consistent way. However,
Eq. (2) does not have such constraints and we have the free-
dom to choose the size of the optical vortex. To illustrate the
consequence of this freedom, we display the numerical disper-
sion for different optical vortex sizes in Fig. 2(b). As shown in

FIG. 3. (a) The nonlinearity of the dispersion allows one to en-
code different Floquet vortex states as qubits. For example, the vortex
states with pseudo-OAM l0 and l0 + 1 from the vortex state branch
with index n (red arrow) or the branches with indices n and n + 1
can be used to encode a qubit (blue arrow). Arbitrary single-qubit
rotation can be performed by shining an extra linearly polarized light.
While the polarization n̂0 determines the rotation axis, the beam
amplitude Eext and the irradiation time determine the rotation angle.
(b) Two-qubit gates can be performed by bringing two vortices close
to each other and then separating them back.

the figure, as the optical vortex size ξ gets smaller, the linear
region of the spectrum shrinks and therefore the non-linearity
of the spectrum is enhanced. This adjustable non-linear dis-
persion of Floquet vortex states invites the possibility of using
them as a platform for quantum state engineering.

Quantum information processing with floquet vortex states.
Since we can set shapes and locations of the optical vortices
arbitrarily as well as change them dynamically, the Floquet
vortex states can be used to engineer and manipulate differ-
ent quantum states with their wide range of tunability. To
illustrate the potential utility of the Floquet vortex states as
a platform for quantum state engineering, we show how one-
and two-qubit operations can be performed in this system.
As we have seen in the previous section, we can increase the
energy level spacing and the spectral nonlinearity by reducing
the size of the optical vortex. It is this enhanced nonlinearity
that allows us to create qubits out of the Floquet vortex states
and manipulate them (Fig. 3).

Specifically, we consider two Floquet vortex states with
pseudo-angular momentum l0 and l0 + 1 of an intragap branch
with index n. That is, 〈r|0〉 ≡ ψn,l0 (r) and 〈r|1〉 ≡ ψn,l0+1(r).
(While here we choose the vortex states from the same intra-
gap branch, alternatively vortex states from different branches
can be also used.) To manipulate this qubit, we may apply an
extra linearly polarized field to create an oscillating potential,

Vext(t ) = eEextn̂0 · r cos(�extt ), (5)

where Eext is the amplitude of the applied electric field and
n̂0 = cos φ0x̂ + sin φ0ŷ is the polarization of the field. Then,
in the rotating frame with frequency �ext, the effective Hamil-
tonian for this qubit space becomes

H1-qubit

=
(

El0 + �ext

2

)
|0〉 〈0| +

(
El0+1 − �ext

2

)
|1〉 〈1|

+ [eEext 〈1|r cos(φ − φ0)|0〉 |1〉 〈0| + H.c.],

〈1|r cos(φ − φ0)|0〉
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=
∫

d2rψ†
n,l0+1(r)r cos(φ − φ0)ψn,l0 (r)

= πeiφ0
∑
s=±

∫ ∞

0
u∗

n,l0+1,s(r)un,l0,s(r)r2dr. (6)

By setting �ext = En,l0+1 − En,l0 , we can effectively tune
H1-qubit to be a superposition of σx and σy with an arbitrary
ratio between them. Then this extra field implements an ar-
bitrary single-qubit rotation where the rotation angle is tuned
by the field amplitude Eext and the irradiation time, while the
rotational axis is set by the polarization n̂0. Note that this
qubit is isolated from other vortex states because the field with
frequency matched to the energy difference En,l0+1 − En,l0
cannot couple to other modes due to the nonlinear dispersion
of the vortex states (see Supplemental Material [44]).

For two-qubit operations, we can move two vortices close
to one another. This will lead to a hybridization J between
the modes with the same quantum numbers on the two
vortices. Yet, single-electron hopping from one vortex to an-
other may be energetically unfavorable due to the on-site
interaction energy U . This will generate an effective superex-
change interaction ∼J2/U , with the corresponding two-qubit
Hamiltonian,

H2-qubit = − J2

U
[|01〉 〈01| + |10〉 〈10| + (|10〉 〈01| + H.c.)],

(7)

where |s1s2〉 = |s1〉 ⊗ |s2〉 (s1,2 = 0, 1) is the computational
basis for the two-qubit space. Since we have full control over
the location of the vortices, we can tune our time-evolution
operator to act as a

√
SWAP gate up to some single-qubit σz op-

erations (see Supplemental Material [44]). This
√

SWAP gate
and previously introduced single-qubit rotations constitute a
gate set for universal quantum computation [49,50]. We stress
again that this proximity-based scheme of a two-qubit gate
is only possible because the current system allows enhanced
freedom to change the locations of Floquet vortex states. This
is a big advantage that Floquet vortex state qubits have over
other qubits based on solid-state systems such as quantum dots
[51–53].

While the state preparation in Floquet systems is a chal-
lenging problem in general, one may be able to prepare the
desired Floquet state by using proper bosonic and fermionic
reservoirs through dissipative engineering [34,54,55]. Once
the initialization method is established, the desired qubit state
can be prepared by controlling the back-gate voltage, similar
to the initialization procedure in quantum-dot qubit systems.

Discussion and outlook. The most important challenges in
using periodic driving in condensed matter systems are the
heating effects. However, recently there have been several
theoretical proposals to restrain such destructive effects by
using bath engineering techniques [34,54–61]. In particular

for Floquet topological insulators (FTIs) [28] created by ir-
radiating light to semiconductors as in our proposal, it has
been demonstrated that in the weak-drive limit and in the
presence of a phononic heat bath, heating effects produced
by electron-electron and electron-phonon interactions can be
suppressed provided that the bath-induced relaxation rates are
sufficiently large [55]. For such baths the key features of FTIs
such as the existence of protected edge states can be preserved
in the steady state which can make our proposal also stable
in the steady state [62]. Also, recent experiments [36,37] on
an irradiated 2D material also provide more evidence that
quantum states engineered by periodic driving on condensed
matter systems can be stabilized in the laboratory.

While vortex states can also be engineered in cold atoms
[8–12], there are several advantages to engineer them in
electronic systems. One main advantage is the possibility of
creating and manipulating multiple vortex states more conve-
niently, as demonstrated in the aforementioned qubit manip-
ulation. While this is in principle possible in BEC systems
too [63], controlling the transition of numerous atoms can be
more challenging than manipulating a single electron. Also,
our Floquet vortex state is spin independent, unlike the cold
atom systems with spin-orbit-angular-momentum coupling
[11,12,64–67], and this spin degrees of freedom can provide
extra knobs for state engineering such as the Zeeman field.

To further elaborate the scheme for the quantum informa-
tion processing, it would be interesting to study the possible
measurement protocols for the OAM of Floquet vortex states.
One potential candidate for such a protocol is through the
measurement of optical Hall conductivity, which might have
different responses to states with different OAM. Also, since
our system has multiple nonlinearly dispersed Floquet vortex
states, the extension to the qudit system is a natural topic for
future study. While we briefly examined the possibility of
such a vortex state as a qubit, there are many unanswered
questions such as the heating, decoherence, and sensing in
this platform. While we treated the vortex state of a single
electron, it would be interesting to study how the presence of
Coulomb interactions can change the vortex state structure or
even help to create exotic many-body states. Another interest-
ing direction is to investigate lattices of optical vortices and
other field patterns such as electromagnetic skyrmions [68]. It
would be also interesting to investigate how our approach can
help to control the optical properties of materials such as van
der Waals layered magnetic insulators [69].
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Appendix A: Rotating wave approximation (RWA)

As stated in the main text, we consider following
model Hamiltonian H0 = (vkx,±vky,M) · σ = Dk · σ
for our semiconductor. We now consider the electro-
magnetic radiation A(r, t). Then the minimal coupling
k → k + eA(r, t) leads to the following time-dependent
Hamiltonian,

H(t) = H0 + evA(r, t) · σ
= H0 + V (t) = H0 +

[
Veiωt + c.c.

]
· σ. (A1)

Then the projection operators to conduction and valence
bands are

Pc =
∫
d2kPc,k =

∫
d2k(1 + dk)/2,

Pv =
∫
d2kPv,k =

∫
d2k(1− dk)/2, (A2)

where dk = Dk/|Dk|. Considering the rotating frame
U(t) = Pce

−iωt + Pve
iωt, the rotated Hamiltonian is

Hrot = −iU†(t)∂tU(t) + U†(t)H(t)U(t)

= ω

2 (Pv − Pc) + Dk · σ + PcV (t)Pc + PvV (t)Pv

+eiωtPcV (t)Pv + e−iωtPvV (t)Pc. (A3)

In the weak field regime evAmax = Ω0 � ω, we can ob-
tain RWA Hamiltonian by dropping fast oscillating terms
from Hrot,

HRWA =
(

Dk −
ω

2 dk

)
· σ + Vk, (A4)

where

Vk = Pc,k(V∗ · σ)Pv,k + Pv,k(V · σ)Pc,k
= {ReV · σ + i[ImV · σ,dk · σ]
−(dk · σ)(ReV · σ)(dk · σ)} /2

= 1
2 [ReV + (dk × ImV− ImV× dk)

−(dk · ReV)dk + (dk × ReV)× dk] · σ

+ i

2 [ImV · dk − dk · ImV− (dk × ReV) · dk] .(A5)

For small detuning regime δ = ω−2M � ω, δ ' v2k2
0/M

and vk0 �M . Then, for small momenta |k| = O(k0),

dk = (dx,k, dy,k, dz,k) = 1√
M2 + v2k2

(vkx, vky,M)

=
(
vkx
M

,
vky
M

, 1− v2k2

2M2

)
+O

(
v3k3

0
M3

)
, (A6)

(
Dk −

ω

2 dk

)
· σ =

(
1− ω/2√

M2 + v2k2

)
(vkx, vky,M) · σ

= v2

2M (k2 − k2
0)σz +O

(
v3k3

0
M2

)
. (A7)

Now we consider a linearly polarized light carrying OAM,
A(r, t) =

[
A0(r)eimφeiωt + c.c.

]
x̂. With this, Vy = 0,

and from Eq. (A5),

Vk = 1
2 [(ReVx + dz,kReVxdz,k

−dx,kReVxdx,k + dy,kReVxdy,k)σx
+ (dz,kImVx + ImVxdz,k
−dx,kReVxdy,k − dy,kReVxdx,k)σy

+ (−dy,kImVx − dx,kReVxdz,k
−dz,kReVxdx,k)σz]

+ i

2 (ImVxdx,k − dx,kImVx
−dz,kReVxdy,k + dy,kReVxdz,k)

= ReVxσx + ImVxσy +O

(
evAmax

vk0

M

)
. (A8)

Therefore, with further assumption of weak field Ω0 �√
δM , the RWA Hamiltonian becomes

HRWA = v2

2M
(
k2 − k2

0
)
σz +

[
evA0(r)e−imφσ+ + H.c.

]
+O

(
evAmax

vk0

M

)
= δ

2

(
k2

k2
0
− 1
)
σz +

[
Ω(r)e−imφσ+ + H.c.

]
+O

(
Ω0

√
δ

M

)
, (A9)

so we derived the RWA Hamiltonian in Eq. (2) in the
main text.
Due to the OAM of the light, the RWA Hamilto-

nian HRWA and the static semiconductor Hamiltonian
H0 have different symmetries. While H0 commutes with
electronic OAM −i∂φ, HRWA commutes with pseudo-
OAM l̂ = −i∂φ + (m/2)σz. To demonstrate this, we
use [−i∂φ, kx] = iky and [−i∂φ, ky] = −ikx. These yield
[−i∂φ, kx± iku] = ±(kx± iky) and [−i∂φ,k2] = 0, there-
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fore

[−i∂φ, HRWA] = −m
(
Ω(r)e−imφσ+ −H.c.

)
,

[σz, HRWA] = 2
(
Ω(r)e−imφσ+ −H.c.

)
, (A10)

so [−i∂φ + (m/2)σz, HRWA] = 0. Since l is a good quan-
tum number, the wave functions for each l have the form
of

ψn,l(r) =
(
ei(l−m/2)φun,+(r), ei(l+m/2)φun,−(r)

)T
,(A11)

where n is the branch index. With this, HRWA leads to
following eigenvalue problem for each l,

En,lun,l,±(r)

= ∓ δ

2k2
0

(
∂2
r + 1

r
∂r −

(l ∓m/2)2

r2 + k2
0

)
un,l,±(r)

+Ω(r)un,l,∓(r). (A12)

By observing this Hamiltonian, one can see this Hamil-
tonian preserves the particle-hole symmetry ψn,−l(r) =
iσyψ

∗
|m|+1−n,l(r) and En,−l = −E|m|+1−n,l. Here the

branch index n should alter to |m| + 1 − n as l changes
to −l.

Appendix B: Number of Floquet vortex states
branches

Since HRWA(k) in Eq. (2) in the main text is particle-
hole symmetric and gapped except the vortex core, the
intragap modes develop around the vortex core are ex-
pected to cross the zero energy, if any exists. We may
use the semiclassical approach introduced in Ref. 44
in the main text to investigate the number of such in-
tragap modes. Let us consider the Hamiltonian in the
classical regime, HRWA → H · σ, where the momentum
and the position commute each other. This semiclas-
sical treatment is justified as long as k0ξ � 1. Here,
the vector H = H(k, r, φ) resides on the 3D parame-
ter space (k, r, φ). Now such Hamiltonian yields energy
E2(k, r, φ) = |H(k, r, φ)|2 = δ2(k2/k2

0−1)2/4+Ω(r)2 and
E = 0 is achieved at k = k0 and r = 0. To consider the
surface surrounds this zero point, let us consider the sur-
face |E| = ∆E for small energy ∆E. Such surface would
be located in the vicinity of that zero point, so we can
write k = k0+∆k and r = ∆r. To the leading order, This
surface can be written as ∆E2 = (δ/k0)2∆k2 + Ω(∆r)2.
Without loss of generality, we can regard Ω(∆r) = λ∆r.
Now the surface |E| = ∆E becomes an ellipsoid and can
be parameterized by the polar angle θ and the azimuthal
angle φ: ∆k = (k0∆E/δ) cos θ, ∆r = (∆E/λ) sin θ,
∆x = ∆r cosφ, ∆y = ∆r sinφ. Then the skyrmion
number of H on this ellipsoid is equal to the number
of branches that passes the zero energy in the intragap
spectrum. Since the skyrmion number is a topological
invariant, we did not lose the generality even if the ac-
tual behavior of Ω(r) for small r is not linear. For the

current parameterization,

H||E|=∆E,φk

= Ω(r) [cos(mφ)x̂ + sin(mφ)ŷ] + δ

2

(
k2

k2
0
− 1
)

ẑ
∣∣∣∣
|E|=∆E,φk

= ∆E [sin θ (cos(mφ)x̂ + cos(mφ)ŷ) + cos θẑ]
= ∆E Ĥ(θ, φ), (B1)

and now the skyrmion number is calculated as

Nmid = 1
4π

∫ 2π

0
dφ

∫ π

0
dθ

(
∂Ĥ
∂θ
× ∂Ĥ
∂φ

)
· Ĥ

= 1
4π

∫ 2π

0
dφ

∫ π

0
dθ m sin θ = m. (B2)

Note that the number of intragap branches Nmid is solely
determined by the winding number of the applied field,
regardless of the winding number along the momentum
direction. Yet, the presence of intragap branches cross-
ing the zero energy does not guarantee the existence of
the exact zero mode, since the mini gap can develop
within each branch in the process of quantization. For
further analysis, a fully quantum mechanical approach is
required.

Appendix C: Estimation of energy separations in
large optical vortex regime

Following the formalism in Ref. 48 in the main text, we
find the energy separations between the Floquet vortex
states and the intragap state branches, respectively,

ω0 =
∫∞

0
Ω(r)
r e
−(2k0/δ)

∫ r
0

Ω(r′)dr′
dr

k0
∫∞

0 e
−(2k0/δ)

∫ r
0

Ω(r′)dr′
dr

,

ω̃0 = δ(π/2)

k0
∫∞

0 e
−(2k0/δ)

∫ r
0

Ω(r′)dr′
dr
, (C1)

for low energy, low pseudo-OAM, and large optical vortex
regime, as explained in Eq. (4) in the main text.
In this appendix, we demonstrate how these energy

separations depend on radiation parameters such as Ω0,
δ, ω as well as the radial profile of the applied light beam.
For this, we estimate ω0 and ω̃0 for variants of radial
beam profile. Specifically, we consider the radial profile

Ω(r) =
{

Ω0(r/ξ)q for r ≤ ξ
Ω0 for r > ξ

, q ≥ 1. (C2)

With this, we define F(r) ≡ exp
[
−(2k0/δ)

∫ r
0 Ω(r′)dr′

]
and it becomes

F(r) =

 exp
[
− 2kδξ
q+1

(
r
ξ

)q+1
]

for r ≤ ξ

exp
[
−2kδ

(
r − q

q+1ξ
)]

for r > ξ
. (C3)
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With kδξ � 1, this F(r) can be roughly estimated by
a step function θ(x) ≡ [sgn(x) + 1]/2,

F(r) ' θ (rcut − r) , rcut = O

(
ξ

(
q + 1
2kδξ

)1/(q+1)
)
.(C4)

With this,∫ ∞
0

Ω(r)
r
F(r)dr '

∫ rcut

0
Ω0
rq−1

ξq
dr = Ω0r

q
cut

qξq

= O
(

Ω0[kδξ]−q/(q+1)
)
,∫ ∞

0
F(r)dr ' rcut = O

(
ξ(kδξ)−1/(q+1)

)
, (C5)

then

ω0 =
∫∞

0 r−1Ω(r)F(r)dr
k0
∫∞

0 F(r)dr

' O
(

Ω0(k0ξ)−1(kδξ)−(q−1)/(q+1)
)

ω̃0 = δ(π/2)
k0
∫∞

0 F(r)dr

' O
(
δ(k0ξ)−1(kδξ)1/(q+1)

)
. (C6)

As seen in this estimation, energy separations ω0 and ω̃0
depend not only on radiation parameters like Ω0, δ, ω,
but also on parameters related to the size (ξ) and shape
(q) of the radial profile of the beam.

From these results, we can further estimate the number
of vortex modes in a branch as

2Ω0/ω0 = O
(
k0ξ(kδξ)(q−1)/(q+1)

)
. (C7)

Also, we can estimate the angular momentum difference
between branches as

ω̃0/ω0 = O

(
k0

kδ
(kδξ)q/(q+1)

)
. (C8)

With q ≥ 1, the lower bound of these estimations are
given as 2Ω0/ω0 = O (k0ξ) and ω̃0/ω0 = O

(
k0k
−1
δ

√
kδξ
)
.

Appendix D: Illumination of circularly polarized
light

The hybridization gap for the bulk part of systems with
linearly polarized light is in the order of Ω0. For the most
of systems with different beam polarization, it is still true
and therefore results in similar RWA Hamiltonian with
Eq. (2) in the main text. However, the situation is dif-
ferent for circularly polarized light. As explained in Ref.
28 in the main text, a semiconductor valley with valley
Hamiltonian H0,± = (vkx,±vky,M) becomes a Floquet
Chern insulator when illuminated by circularly polarized
light A±(r, t) = A(r)(x̂ ± iŷ)eiωt + c.c.. In such Flo-
quet Chern insulator, the size of hybridization gap is in
the order of δΩ0/M , instead of Ω0. In this appendix,

we derive the RWA Hamiltonian for the light carrying
OAM with this circular polarization. Then we calculate
the wavefunctions and dispersion of Floquet vortex states
given by that Hamiltonian. For simplicity, we only con-
sider the valley Hamiltonian H0 = H0,+ and the field
A(r, t) = A+(r, t) from now on.
The RWA Hamiltonian derived in appendix A is valid

regardless of A(r, t) up to Eq. (A7). By using A(r, t) =
A(r)(x̂ + iŷ)eiωt + c.c., we have Vy = iVx. This yields

Vk = 1
2 [ReV + (dk × ImV− ImV× dk)

−(dk · ReV)dk + (dk × ReV)× dk] · σ

+ i

2 [ImV · dk − dk · ImV− (dk × ReV) · dk]

= (1− dz,k)(ReVxσx − ImVxσy)(1− dz,k)/2

−1
2 [(dx,k − idy,k)(ReVx − iImVx)(dx,k − idy,k)σ+

+H.c.] +O

(
evAmaxv

3k3
0

M3

)
. (D1)

Then the RWA Hamiltonian becomes

HRWA = − ev3

2M2

[
(kx + iky)A0(r)eimφ(kx + iky)σ− + H.c.

]
+ v2

2M (k2 − k2
0)σz +O

(
v3k3

0
M2

)
= − δ

2M

[
(kx + iky)

k0
Ω(r)eimφ (kx + iky)

k0
σ− + H.c.

]
+δ

2

(
k2

k2
0
− 1
)
σz +O

(
δ

√
δ

M

)
. (D2)

In the bulk far from r = 0, this system becomes a Floquet
Chern insulator and therefore hosts edge states in the
middle of hybridization gap. These states are localized at
the boundary of the sample and has nothing to do with
the OAM of the beam. We aim to find fully quantum
mechanical solution for intragap states localized around
the optical vortex. For this, we use a similar method
used in Ref. 45-48 in the main text. Note that, due to
scale change, we redefine kδ = k0Ω0/M for this section.
For the simplicity of discussion, we normalize the RWA

Hamiltonian as h = (M/v2)HRWA. We first demonstrate
that h commutes with pseudo-OAM l̂ = −i∂φ + (m/2 +
1)σz. Note that the pseudo-OAM operator here differs
from the pseudo-OAM operator for the systems with non-
circularly polarized light by an extra term of σz. Similar
to the linear polarization case, we use [−i∂φ, kx] = iky,
[−i∂φ, ky] = −ikx, [−i∂φ, kx ± iku] = ±(kx ± iky), and
[−i∂φ,k2] = 0, therefore

[−i∂φ, h] (D3)

= −(m+ 2)Ω(r)
2M

[
(kx − iky)e−imφ(kx − iky)σ+ −H.c.

]
,

[σz, h] = Ω(r)
M

[
(kx − iky)e−imφ(kx − iky)σ+ −H.c.

]
,
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so we eventually have [−i∂φ + (m/2 + 1)σz, h] = 0.
Therefore, l is a conserved quantity and we can block-
diagonalize h along this l. Within the block for l, wave-
functions can be written as in Eq. (3) in the main text,

ψl(r) =
(
eil+φu+(r), eil−φu−(r)

)T
, (D4)

where l± = l ∓ (m/2 + 1). The eigenstates satisfy

εu+(r) = −1
2

(
∂2
r + 1

r
∂r −

l2+
r2 + k2

0

)
u+(r)

+Ω(r)
2M

(
∂2
r + 2l + 1

r
∂r + l+l−

r2

)
u−(r)

+Ω′(r)
2M

(
∂r + l−

r

)
u−(r),

εu−(r) = 1
2

(
∂2
r + 1

r
∂r −

l2−
r2 + k2

0

)
u−(r)

+Ω(r)
2M

(
∂2
r −

2l − 1
r

∂r + l+l−
r2

)
u+(r)

+Ω′(r)
2M

(
∂r −

l+
r

)
u+(r). (D5)

As in the system with linearly polarized light, this RWA
Hamiltonian preserves the particle-hole symmetry. By
replacing l by −l in this equation, l± → −l∓, so one can
readily show that ψ−l(r) = iσyψ

∗
l (r) with ε|−l = − ε|l.

Equivalent to Eq. (D5),(
ε+ β

2r2

)
u+(r)= −1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u+(r)

+Ω(r)
2M

(
∂2
r + 2l + 1

r
∂r + l+l−

r2

)
u−(r)

+Ω′(r)
2M

(
∂r + l−

r

)
u−(r),(

ε+ β

2r2

)
u−(r)= 1

2

(
∂2
r + 1

r
∂r −

α2

r2 + k2
0

)
u−(r)

+Ω(r)
2M

(
∂2
r −

2l − 1
r

∂r + l+l−
r2

)
u+(r)

+Ω′(r)
2M

(
∂r −

l+
r

)
u+(r), (D6)

where α =
√
l2 + (m/2 + 1)2 and β = l(m + 2). While

it is difficult to find the generic solution for this equa-
tion, we can find the low-energy solution for the regime
l2/k0 � k−1

δ � ξ. Let us consider a radius r∗ such that
l2/k0 � r∗ � k−1

δ . For r � r∗, Ω(r) → 0 and therefore
we can decouple u+(r) and u−(r) in Eq. (D5),(

∂2
r + 1

r
∂r −

l2±
r2 + k2

0 ± 2ε
)
u±(r) = 0, (D7)

which yields the solution

u±(r) = C±Jl∓(m/2+1)

(√
(k2

0 ± 2ε)r
)

(D8)

where Jν(r) is the Bessel function of the first kind. The
Bessel function of the second kind can be ruled out since
the solution should be finite at r = 0. In the low-energy
theory, ε � k2

0, we can write
√
k2

0 ± 2ε ' k0 ± p where
p = ε/k0 � k0.
For r � r∗, we take the ansatz

u±(r) = f±(r)H(1)
α (k0r) + g±(r)H(2)

α (k0r) (D9)

where H(1)
ν (x), H(2)

ν (x) are the Hankel functions of the
first kind and the second kind. Let us deal with the so-
lutions for f±(r) first. Let us denote H(1)

α (x) = H(x) for
short. Denoting that (∂2

r + r−1∂r−α2/r2 +k2
0)H(k0r) =

0, Eq. (D6) can be written as(
ε+ β

2r2

)
f+H = −1

2

(
f ′′+H + 2f ′+H ′ +

f ′+H

r

)
+ Ω

2M

(
f ′′−H + 2f ′−H ′ + f−H

′′ + 2l + 1
r

(f ′−H + f−H
′)

+ l+l−
r2 f−H

)
+ Ω′

2M

(
f ′−H + f−H

′ + l−
r

)
,(

ε+ β

2r2

)
f−H = 1

2

(
f ′′−H + 2f ′−H ′ +

f ′−H

r

)
+ Ω

2M

(
f ′′+H + 2f ′+H ′ + f+H

′′ − 2l − 1
r

(f ′+H + f+H
′)

+ l+l−
r2 f+H

)
+ Ω′

2M

(
f ′+H + f+H

′ − l+
r

)
. (D10)

To simplify these equations, we estimate and compare
the magnitude of different terms in these equations
around r = k−1

δ . For this, we take the ansatz f±(r) =
f±,(0)(r) exp[iη±(r)] where f ′±,(0)/f±,(0) = O(kδ), η± =
O(kδ/k0), and η′±/η± = O(kδ) around r = (kδ)−1. We
further restrict the eigenenergy to be ε = O

(
k2
δ

)
. Assum-

ing |f+,(0)/f−,(0)| = O(1) and noting that ∂rH(1)
α (k0r) '

ik0H
(1)
α (k0r) for k0r � l2, the lowest order equations of

Eq. (D10) become

O(k0kδ) : ∓ik0f
′
±,(0) − k

2
0Ω(2M)−1f∓,(0) = 0,

O
(
k2
δ

)
:
(
ε+ β

2r2

)
f±,(0) = k0f

′
±,(0)η± + k0f±,(0)η

′
±

∓
f ′±,(0)

2r ± ik
2
0Ω

2M f∓,(0)η∓ ± i
k0Ω
2Mr

(2l ± 1)f∓,(0). (D11)

By solving the equations of the order of O(k0kδ), we get
f+,(0) = B exp

(
− 1

2 (k0/M)
∫ r

0 Ω(r′)dr′
)

= −if−,(0). This
solution indeed satisfies the supposition f ′±,(0)/f±,(0) =
O(kδ). Then the equations of the order of O

(
k2
δ

)
become

k0η
′
± −

k2
0Ω

2M (η+ + η−) = ε+ β

2r2 + k0Ω
Mr

(
l ± 1

4

)
,(D12)

or equivalently,

k0∂r(η+ + η−)− k2
0Ω
M

(η+ + η−) = 2ε+ β

r2 + 2l k0Ω
Mr

,

k0∂r(η+ − η−) = k0Ω
2Mr

. (D13)
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The solutions of these equations can be found as

η+(r) + η−(r) = − 2
k0
e
k0
M

∫ r
0

Ω(r′)dr′

×
∫ ∞
r

dr′
(
ε+ β

2r′2 + l
k0Ω(r′)
Mr′

)
e
− k0
M

∫ r′
0

Ω(r′′)dr′′
,

η+(r)− η−(r) =
∫ r

0

Ω(r′)
2Mr′

dr′. (D14)

We have (k0/M)
∫ 1/kδ

0 Ω(r)dr = O(1), ε + β/(2r2) +
lk0Ω(r)/(Mr) ≤ O

(
k2
δ

)
for r ≥ O(k−1

δ ), and
limr→0 Ω(r)/r < ∞, so the suppositions η± = O(kδ/k0)
and η′±/η± = O(kδ) are justified around r = (kδ)−1.
One might worry that η+(r)− η−(r) diverges as r →∞,
but η+(r) − η−(r) is bounded to O(kδ/k0) as long as
r ≤ O

(
k−1
δ

)
and the wavefunction vanishes for r � k−1

δ
due to the behaviors of f±,(0)(r), so the solutions become
consistent.

We can also obtain the solutions for g±(r) by taking
the complex conjugate on Eq. (D10) since ∂rH(2)

α (k0r) '
−ik0H

(2)
α (k0r), therefore g±(r) = f∗±(r). Finally, we can

write down u±(r) for r � r∗ as

u±(r) = i(1∓1)/2Be
− 1

2 (k0/M)
∫ r

0
Ω(r′)dr′ (D15)

×
(
e±i[η±(r)±κ]H(1)

α (k0r)± e∓i[η±(r)±κ]H(2)
α (k0r)

)
for some relative phase κ. Now let us match the solutions
in Eq. (D8) and Eq. (D15) at r = r∗. For this, with
k0r
∗ � l2, we can use the asymptotic forms of Bessel

functions,

Jν(x) '
√

2
πx

cos
(
x− 2ν + 1

4 π + 4ν2 − 1
8x

)
, (D16)

H(1),(2)
ν (x) '

√
2
πx

exp
[
±i
(
x− 2ν + 1

4 π + 4ν2 − 1
8x

)]
,

for ν = O(l). Now from Eq. (D8),

u±(r∗) ' C±

√
2

π(k0 ± p)r∗
(D17)

× cos
(

(k0 ± p)r∗ −
2l ∓m∓ 2 + 1

4 π + (2l ∓m∓ 2)2 − 1
8(k0 ± p)r∗

)
.

By matching the constant factor in Eq. (D15) as B =
C+, we have

u±(r∗) ' C+

√
2

πk0r∗
e
− 1

2 (k0/M)
∫ r∗

0
Ω(r)dr

× cos
(
±η±(r∗) + κ+ k0r

∗ − 2α+ 1
4 π

+4α2 − 1
8k0r∗

+ 1∓ 1
2

(
n− 1

2

)
π

)
(D18)

where n is odd integer. Now by comparing Eq. (D17)

and Eq. (D18), we have

±η±(r∗) + κ∓ pr∗ + 2l − 2α∓m∓ 2
4 π ± β

2k0r∗

+1∓ 1
2

(
n− 1

2

)
π = O

(
p

k2
0r
∗

)
. (D19)

Here, we now let n be any integer by using the freedom
to choose the sign of C+/C−. In fact, this n serves as the
branch index, so we put this branch index for each state
from now on. That is, ψl toψn,l, u± → un,±, η± → ηn,±,
and ε→ εn. We now drop O( p

k2
0r
∗ ) terms from Eq. (D19)

since p/(k2
0r
∗) = pr∗/(k0r

∗)2 � pr∗, and p/(k2
0r
∗) =

(p/k0)/(k0r
∗) � 1/(k0r

∗) � 1. Then, from Eq. (D19),
we get κ = (α− l − n+ 1/2)(π/2)−

∫ r
0 dr

′Ω(r′)/(4Mr′)
and

ηn,+(r) + ηn,−(r)

= 2εn
k0

r∗ − β

k0r∗
+
(
n+ m+ 1

2

)
π. (D20)

Now to match Eq. (D14) and Eq. (D20), let us evaluate
the integrals in Eq. (D14). First, we argue that the
factor exp

(
k0
M

∫ r∗
0 Ω(r)dr

)
in Eq. (D14) can be dropped

out. To justify this, we suppose Ω(r) is a non-decreasing
function that saturates to Ω0 without loss of generality.
Then

∂r∗

(
log e

k0
M

∫ r∗
0

Ω(r)dr
)

= k0Ω(r∗)
M

<
k0Ω0

M

→ 1 ≤ e
k0
M

∫ r∗
0

Ω(r)dr
< ek0Ω0r

∗/M ' 1 (D21)

since r∗ � k−1
δ . This also matches the functional form of

the slowly varying envelopes in Eq. (D17) and Eq. (D17).
After getting rid of this factor from ηn,+(r) + ηn,−(r) in
Eq. (D14),

ηn,+(r∗) + ηn,−(r∗)

= − 2
k0

∫ ∞
r∗

(
εn + β

2r2 + l
k0Ω(r)
Mr

)
e
− k0
M

∫ r
0

Ω(r′)dr′
dr

= 2εnr∗

k0
− 2εn

k0

∫ ∞
0

e
− k0
M

∫ r
0

Ω(r′)dr′
dr

+
[
β

k0r
e
−i k0

M

∫ r
0

Ω(r′)dr′
]r=∞
r=r∗

+
∫ ∞
r∗

(β − 2l)Ω(r)
Mr

e
− k0
M

∫ r
0

Ω(r′)dr′

= 2εnr∗

k0
− β

k0r∗
− 2εn

(
1
k0

∫ ∞
0

e
− k0
M

∫ r
0

Ω(r′)dr′
dr

)
+2ml [R(∞)−R(r∗)] ,

where R(r) =
∫ r

0

Ω(r′)
2Mr′

e
− k0
M

∫ r′
0

Ω(r′′)dr′′
dr′. (D22)

We further argue that this R(r∗) term can be dropped
out from Eq. (D22). For the estimation, we suppose
Ω(r) = Ω0(r/ξ)q for r ≤ ξ and Ω(r) = Ω0 for r > ξ,
without loss of generality. Here, 1 ≤ q = O(1). Then
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FIG. S1. (a) Numerically calculated energy spectra as a
function of pseudo-OAM l. We use ω = 2.05M , Amax =
0.09M(ev)−1, and A0(r) = Amax

[
1− exp{−r2/(2ξ2)}

]
, ξ =

20kδ, and the disk sample of radius 25ξ. The numerical en-
ergy dispersions agree with the analytically expected spectra
in that includes the number of intragap state branches and
the slope of the linear dispersion for small |El| and l. (b)
Demonstration of dispersions’ dependence on optical vortex
size ξ for m = 1 with identical parameters with (a) except
ξ and the disk size that the latter is fixed on 500kδ. The
linear region of the dispersion shrinks and the energy separa-
tion between subsequent states increases as ξ decreases. On
the right-hand side, the electronic density profile of the vortex
state form = 1 just below the zero of the energy is illustrated.

R(r∗) = O
(
kδ
k0

(
r∗

ξ

)q)
while R

(
k−1
δ

)
= O

(
kδ
k0

(
1
kδξ

)q)
.

Since r∗ � k−1
δ , R(r∗) � R

(
k−1
δ

)
< R(∞). Finally,

by comparing Eq. (D20) and Eq. (D22), we obtain the
low-energy spectrum as

En,l = mlω0 + [n+ (m+ 1)/2]ω̃0, where

ω0 =
δ
∫∞

0
Ω(r)
r e
−(k0/M)

∫ r
0

Ω(r′)dr′
dr

2Mk0
∫∞

0 e
−(k0/M)

∫ r
0

Ω(r′)dr′
dr
,

ω̃0 = v2k0(π/2)

M
∫∞

0 e
−(k0/M)

∫ r
0

Ω(r′)dr′
dr
. (D23)

Here, we recovered the factor (v2/M) in HRWA =
(v2/M)h as we restore εn → En,l. In Fig. 1(a), energy
dispersion of circular polarized light for different vortici-
ties m is shown. The non-linearity of dispersion for the
illumination of CP light is also demonstrated in Fig. 1(b),
as can be seen by decreasing the optical vortex size, the
energy separation between subsequent vortex states in-
creases.

Appendix E: Numerical diagonalization for the
low-energy spectrum

For more efficient numerical diagonalization of HRWA,
we can diagonalize the block-diagonalized Hamiltonian
for each l, as presented in the eigenvalue problem in Eq.

(A12). As shown in Eq. (A11), wavefunctions for each l
are written as

ψn,l(r) =
(
ei(l−m/2)φun,+(r), ei(l+m/2)φun,−(r)

)T
.(E1)

Yet, it is tricky to apply a naive finite difference method
due to the boundary condition at r = 0. Rather, we
use the basis which can diagonalize the Hamiltonian onto
the space of un,+(r) and un,−(r), assuming the system
is confined on a disk of radius R. That is, we use basis
functions {u±,α(r)} such that[

∂2
r + 1

r
∂r −

l2±
r2 + k2

0 ± 2ε±,α
]
u±,α(r) = 0, (E2)

where eigenenergies ε±,α are set by the boundary con-
dition u±,α(R) = 0. α ∈ N. Here, l± = l ∓ m/2. In-
deed, Eq. (E2) are the Bessel equations and we immedi-
ately find that u±,α(r) = C±,αJl±(

√
(k2

0 ± 2ε±,α)r) since
u±,α(r) should be bounded at r = 0. The normalization
factors C±,α are determined by

∫ R
0 |u±,α(r)|2rdr = 1.

Now suppose z(ν)
α is the αth non-negative zero of the

Bessel function of order ν, Jν(z). Then we have√
(k2

0 ± 2ε±,α)R = z(l±)
α ↔ ε±,α = ±1

2

(
z

(l±)
α

R

)2

∓ k2
0
2 . (E3)

While there are infinitely many eigenfunctions u±,α(r),
we only take eigenfunctions with the N -smallest posi-
tive eigenenergies and the N -largest negative eigenener-
gies for each u±,α(r), because we would like to calculate
the low-energy spectrum around the zero energy. Since
the eigenenergies are monotonic in α, we can label such
eigenfunctions as α = i0 + 1, · · · , i0 + 2N for u+,α(r) and
α = j0+1, · · · , j0+2N for u−,α(r). Now we can calculate
the rest part of the Hamiltonian from Eq. (D5) as

Ms,s′ =
∫ ∞

0
u+,i0+s(r)Ω(r)u−,j0+s′(r)rdr.

Along with block-diagonal matrices (H+)s,s′ =
v2ε+,i0+sδs,s′/M and (H−)s,s′ = v2ε−,j0+sδs,s′/M ,
we can construct a 4N -by-4N matrix

H
(l)
eff,proj =

(
H+ M
M† H−

)
, (E4)

and we can diagonalize this matrix to obtain the low-
energy spectrum and wavefunctions.

Appendix F: Non-linearity of vortex state dispersion

To demonstrate the non-linearity for the intra- and
inter-branch transitions shown in Fig. 3 in the main text
(blue and red arrows), we calculate the energy difference
between subsequent vortex states for these mechanisms.
As illustrated in Fig. S2, one can select two vortex states
as two qubits with unique energy separation especially as
l0 is further from l = 0. As a results, the two qubits can
be selected in isolated pairs and two level qubits do not
combine with other vortex states.
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FIG. S2. Energy separation between subsequent states with
pseudo-angular momentum l0 and l0 + 1 in vortex branches.
Here, blue and red data corresponds to intra- and inter-branch
transitions as it is shown in Fig. 3 in the main text with blue
and red arrows, respectively. The non-equal ∆Evor demon-
strates that the energy difference between two selected qubits
are unique and isolated as long as l0 6= 0.

Appendix G: Two-qubit operation of Floquet vortex
state qubits

For the separation d between the two vortices, the
Hamiltonian regarding the two modes used for the qubit
can be written as

Hd.v.(d) = Hon +Hhop(d),

Hon =
∑

P=L,R

[∑
s=0,1

En,l0+sc
†
s,Pcs,P + Uc†0,Pc0,Pc

†
1,Pc1,P

]
,

Hhop(d) =
∑
s=0,1

Js(d)
(
c†s,Rcs,L + H.c.

)
, (G1)

where c†s,P creates an electron on the left (P=L) or
the right (P=R) vortex at the mode with pseudo-OAM
l0 + s. On-site interaction energy U is determined by the
Coulomb repulsion between the two modes used for the
qubit. While J0(d) and J1(d) are not strictly identical, we
may regard them equally in practice since the amplitude
of the tail part of the radial wavefunction is determined
mostly by the radial profile of the beam rather than the
pseudo-OAM. so, we set Js=0,1(d) = J(d) from now on.
Hhop(d) in Eq. (G1) can send a state to the outside of
the two-qubit space, but such leakage is energetically un-
favorable due to the on-site interaction energy U . Then
the effective Hamiltonian in the two-qubit space can be
obtained through the Schrieffer-Wolff transformation in
the regime of J(d) � U . If we denote the projection
operator onto the two-qubit space as P2, the effective

Hamiltonian can be written as

H2-qubit(d) = HonP2 + 1
2
∑
i,j,k

(
〈i|Hhop|k〉 〈k|Hhop|j〉
〈i|Hon|i〉 − 〈k|Hon|k〉

+ 〈i|Hhop|k〉 〈k|Hhop|j〉
〈j|Hon|j〉 − 〈k|Hon|k〉

)
P2 |i〉 〈j|P2

= J(d)2

U
S + (El0 + El0+1)P2,

S = |01〉 〈01|+ |10〉 〈10|+ (|01〉 〈10|+ H.c.) .(G2)

For simplicity, we can drop the diagonal term (El0 +
El0+1)P2. Now, let us consider a dynamic sequence that
approaches and then separtes two vortices, d(t). The
time-evolution of this process is given by

U = exp
[
−i
∫
H2-qubit(d(t))dt

]
= I ⊗ I +

(
exp[−iU−1 ∫ J(d(t))2dt]− 1

2

)
S

=


1 0 0 0
0 exp(−iΘ)+1

2
exp(−iΘ)−1

2 0
0 exp(−iΘ)−1

2
exp(−iΘ)+1

2 0
0 0 0 1

 , (G3)

where the matrix in the last row is written in
computational basis {|00〉 , |01〉 , |10〉 , |11〉} and Θ =
U−1 ∫ J(d(t))2dt. Here, I is an identity operation on a
single qubit. Now, by controlling the dynamic sequence
in a way that e−iΘ = i, we obtain

U =


1 0 0 0
0 1+i

2 − 1−i
2 0

0 − 1−i
2

1+i
2 0

0 0 0 1


= (I ⊗ σz)

√
SWAP(I ⊗ σz)

= (σz ⊗ I)
√
SWAP(σz ⊗ I). (G4)
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