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The dynamics of open quantum systems is generally described by a master equation, which describes the
loss of information into the environment. By using a simple model of uncoupled emitters, we illustrate how
the recovery of this information depends on the monitoring scheme applied to register the decay clicks. The
dissipative dynamics, in this case, is described by pure-state stochastic trajectories, and we examine different
unravelings of the same master equation. More precisely, we demonstrate how registering the sequence of
clicks from spontaneously emitted photons through a linear optical interferometer induces entanglement in the
trajectory states. Since this model consists of an array of single-photon emitters, we show a direct equivalence
with Fock-state boson sampling and link the hardness of sampling the outcomes of the quantum jumps with the
scaling of trajectory entanglement.
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The coupling of a quantum system to an environment
generally leads to decoherence and, under certain conditions,
can be modeled by a Markovian master equation that could
generically result in a mixed (nonpure) density matrix [1].
An alternative but equivalent approach describes the “un-
raveling” of the same density matrix in terms of pure-state
stochastic wave-function trajectories [2–5]. Interestingly, for
a given master equation, the unraveling in terms of stochastic
trajectories is not unique. For example, note that a Lindblad
master equation,

∂tρ = γ
∑

j

(
c jρc†

j − 1

2
{c†

j c j, ρ}
)
, (1)

is invariant under any transformation ci → ∑
j Ui jc j , where

U is a unitary matrix and γ is the decoherence rate. Here, c j

are the jump operators that describe dissipative coupling to the
environment (see Supplemental Material [6]). In particular,
this implies that any observable 〈O〉 = Tr(ρO) preserves its
expectation value, independent of the choice of U . In the
unraveling picture, on the other hand, the unitary U is of
direct importance for the stochastic quantum states, as can be
understood by evaluating the effect of a quantum jump ci|ψ〉.
Nevertheless, averaging expectation values over different tra-
jectory states will converge back to the U -independent result
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from the master equation, Eψ 〈ψ |O|ψ〉 = Tr(ρO), where Eψ

is the expectation over all individual trajectories |ψ〉. This is
in contrast with the case of nonlinear quantities, such as bi-
partite entanglement entropy, which may show an unraveling
dependence.

Physically, the specific choice of unraveling of a master
equation is determined by the physical observable that is mon-
itored in a dissipative process [7–12], e.g., detecting the decay
of a two-level system by observing the emitted single pho-
ton. Remarkably, such stochastic quantum trajectories were
observed in several pioneering experiments in trapped-ion
systems [13–16] and circuit quantum electrodynamics (circuit
QED) [17]. Moreover, it has been shown that monitoring such
trajectories can be used to manipulate stochastic quantum
systems [18–22], with potential applications in quantum error
correction [23,24].

Furthermore, from a theoretical perspective, monitoring
may have a profound impact on the stochastic trajectory
states when it competes with coherent processes. Specifi-
cally, it was shown in Refs. [25–28] that a scaling transition
for averaged trajectory entanglement entropy can occur. In
these works, dissipation was studied in the context of a
measurement-induced phase transition [29,30], and the master
equation associated with the dissipative dynamics was chang-
ing across the phase transition. This implies that the effect of
the monitoring protocol itself and the corresponding choice
of unraveling remain largely unexplored for the scaling of
entanglement entropy in the stochastic trajectory states.

In this Research Letter, we consider different monitoring
schemes that correspond to different unravelings of the same
master equation and analyze the associated impact on stochas-
tic quantum dynamics. We consider an array of uncoupled
single-photon emitters whose decay can be monitored by
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FIG. 1. (a) A schematic illustration of the setup, consisting of a
chain of N two-level emitters, M of which are initially in the |↑〉
state, with the remaining N − M in the |↓〉 state. The quantum jumps
from the spontaneous emissions in the chain are monitored through
the output ports of a linear optical network represented by an N × N
unitary U , giving new jump operators ci. (b) The case N = M = 22
and U sampled from the N × N Haar measure: half-chain entropy
for some stochastic trajectories (red) and the averaged value (blue).
The inset shows the volume-law scaling of the maximal averaged
entanglement entropy Smax. (c) After registering M clicks, the jump
outcome probabilities are given by Fock-state boson sampling from
Eq. (5). A comparison is given for N = 7, M = 4, giving 210 possi-
ble outcomes, and a Haar-random U , sampled with 10 000 quantum
trajectories from the associated unraveling.

detected photons. A linear optical network (LON) is posi-
tioned between the emitters and the detectors, as shown in
Fig. 1(a), so that the new jump operators correspond to a
LON-determined linear combination of the decay jump oper-
ators. As the sequence of jump clicks is recorded, a buildup
and a decay of entanglement entropy are generated in the
state of the emitters; see Fig. 1(b). When the LON unitary is
Haar random (see, e.g., Ref. [31]), the averaged entanglement
entropy reaches a maximum over time that has volume-law
scaling, as shown in the inset of Fig. 1(b). Moreover, since a
series of single-photon emissions is recorded, we analytically
verify a direct equivalence between sampling the outcomes
of the decay jumps and the Fock-state boson sampling prob-
lem [32], as we also numerically demonstrate in Fig. 1(c).
Finally, we illustrate in Fig. 2 that the depth of the LON
determines the scaling of maximal trajectory entanglement
entropy over time, ranging from area law for constant depth
to volume law when the depth is proportional to the number
of emitters. Given the connection of our system to Fock-state
boson sampling, we relate the scaling of maximal trajectory
entanglement entropy to the hardness of classically sampling
the jump-outcome probabilities: polynomial vs superpolyno-
mial time, respectively [33,34]. Utilizing the setup described
above, we therefore establish clear connections between the
invariance properties of the master equation, the scaling of the
associated trajectory entanglement entropy, and the sampling
complexity of jump outcomes.

The model. Our setup consists of a chain of N two-level
systems that emit photons via deexcitation and are monitored
through the output arms of a LON, represented by an N × N
unitary U . We start from a state with M two-level systems
in the excited state |↑〉 and N − M in the ground state |↓〉,
i.e., |ψ0(M, N )〉 ≡ | ↑1 · · · ↑M↓M+1 · · · ↓M−N 〉, and assume a

FIG. 2. The entanglement generated in the chain of emitters is
studied by monitoring the decays through a LON. (a) Schematic of
the setup, where N emitters are excited and monitored through a
D-layered LON consisting of staggered layers of 2 × 2 Haar random
unitaries from Eq. (3). (b) and (c) A network of constant depth D

shows area-law scaling: In (b), increasing N , S
(D)
max remains stable, and

in (c), entanglement profiles S
(D)
N (l, kmax(D)) for N = 100, selected

after kmax, when the maximal entropy is reached, saturate in the bulk
(we find that kmax is independent of l). (d) and (e) Taking D to
scale with system size as D = pN gives a volume law for entropy,
converging to the result of an N × N Haar-random unitary for large
p. (d) Scaling of S

(D)
max with system size shows linear growth, and (e)

the profiles S
(D)
N (l, kmax(p)) for N = 22 show a strong dependence on

subsystem size l .

uniform rate γ for the excited emitters to spontaneously emit
a photon and relax to the ground state, as depicted in Fig. 1(a).

It is assumed that τd � 1/(Mγ ), with τd comprising the
time for a photon to traverse the LON and the detector dead
time. A jump click recorded in output arm i of the LON U
now corresponds to applying the jump operator

ci ≡
N∑

j=1

Ui jσ
−
j , (2)

with σ−
j = (σ x

j − iσ y
j )/2 being the decay operator of emitter

j and σ
x,y,z
j being the Pauli (x, y, z) operator acting on site j.

As was emphasized earlier and shown in more detail in
the Supplemental Material [6], the Lindblad master equation,
given by ∂tρ = γ

∑
i (σ−

i ρσ+
i − 1

2 {σ+
i σ−

i , ρ}), is invariant
under unitary mixing of the jump operators (2). On the level
of the master equation, the dynamics of the (uncoupled)
emitters is a simple classically mixed state, for which the
single-emitter density matrix entries evolve for each emitter
independently as ρ↑↑ = 1 − ρ↓↓ = e−γ t , ρ↓↑ = ρ↑↓ = 0 with
ρi j = |i〉〈 j|.

Stochastic quantum trajectories. A crucial element in this
Research Letter is the explicit monitoring and recording of the
jumps ci (2). The stochastic dynamics resulting from register-
ing the photon clicks in the output arms of U can be simulated
with pure-state trajectories [2–4]. Given a state |ψ (t )〉, we
evaluate the probability for jump ci to occur in a short time
interval �t as pi(t ) = γ�t〈ψ (t )|c†

i ci|ψ (t )〉. The probability
pjump(t ) = ∑

i pi(t ) determines whether a jump happens at
time t or not. If a jump happens, then ci is selected with
probability ∝pi(t ), and we evaluate |ψ (t + �t )〉 = ci|ψ (t )〉.
If there is no jump, the system evolves for time �t under the
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effective non-Hermitian Hamiltonian Heff = − iγ
2

∑
j c†

j c j . In
both scenarios, the state is renormalized after each time step.
In the limit �t → 0, averaging 〈O〉 over sampled trajectory
states is equivalent to computing 〈O〉 via the master equa-
tion (1).

Note that Heff only depends on the number of excited
emitters Nexc = ∑

i σ
+
i σ−

i = ∑
j c†

j c j , and that |ψ (t )〉 is an
eigenstate of Nexc between jumps if we start from |ψ0(N, M )〉.
This means that, after renormalization, the evolution between
jumps does not change the stochastic state |ψ (t )〉.

For the rest of this work, we will therefore discard the
explicit time dimension and express the evolution in terms of
the jump sequence (m1, . . . , mM ), with mk representing the
kth click in output arm 1 � mk � N and 1 � k � M. This
sequence can be obtained reliably when τd � 1/(Mγ ), since
the photon clicks are now registered with an accuracy sig-
nificantly higher than the duration of emission (the temporal
extent of the photonic wave packet).

Connection to remote entanglement of two emitters. To
intuitively explain the idea and illustrate the underlying cor-
respondence with bosonic statistics, we start with the simple
case of two excited emitters and a 2 × 2 LON (N = M = 2)
parametrized as

U =
(

a b
−eiφb∗ eiφa∗

)
, (3)

with |a|2 + |b|2 = 1, quantifying the mixing between the
modes, and φ being the relative phase shift. Setting a = b =
1/

√
2 and φ = π , corresponding to a 50 : 50 beam splitter,

gives two new jumps cs = 1√
2
(σ−

1 + σ−
2 ) and ca = 1√

2
(σ−

1 −
σ−

2 ), the symmetric and antisymmetric jump, respectively.
In case a symmetric click is observed, the symmetric jump
cs is applied to the initial state |↑↑〉, giving the symmetric
Bell state |ψs〉 = 1√

2
(|↑↓〉 + |↓↑〉). This state can only decay

another time with the same symmetric jump cs, as seen im-
mediately by evaluating the probabilities Pi ∝ 〈ψs|c†

i ci|ψs〉,
with i = (a, s). The same story holds for the antisymmetric
jump ca, and therefore, upon monitoring the output arms of the
beam splitter, either the jump sequence (ms, ms) or (ma, ma)
is detected, each with probability 1

2 , and never the sequence
(ms, ma) or (ma, ms). This is equivalent to the celebrated
Hong-Ou-Mandel effect for two indistinguishable photons,
incident on the two input arms of a 50 : 50 beam splitter
[35]. In our case, however, the indistinguishable photonic
wave packets are detected after a time much shorter than the
duration of emission. As a result, an intermediate maximally
entangled (anti)symmetric Bell state between the two emitters
is established to convey the interference between the emit-
ted photons. A similar procedure was considered to generate
entanglement between cold atoms in a lattice configuration
[36] and experimentally implemented to entangle two distant
trapped ions [37]. The effect can also be viewed as super-
radiant emission [38].

Correspondence with boson sampling. We now general-
ize the system to N emitters, of which M are excited, and
an N × N unitary U , representing the LON with monitored
output arms; see Fig. 1(a). After having registered all M
clicks, an observer knows that all emitters have reached the
ground state |ψ〉 = |↓↓ · · ·〉. The probability of detecting the

M clicks in the Markovian sequence �m ≡ (m1, m2, . . . , mM )
can be evaluated as (see Supplemental Material [6])

P( �m) = 1

M!
〈ψ0(M, N )|c†

m1
· · · c†

mM
cmM · · · cm1 |ψ0(M, N )〉

= 1

M!

∑
�k,�l

U ∗
m1,k1

· · ·U ∗
mM ,kM

UmM ,lM · · ·Um1,l1

×〈ψ0(M, N )|σ+
k1

· · · σ+
kM

σ−
lM

· · · σ−
l1

|ψ0(M, N )〉

= |Per(UT )|2
M!

. (4)

Here, Per(A) = ∑
σ∈SM

∏M
i=1 Ai,σ (i) is the permanent of an

M × M matrix A, with SM being the symmetric group, i.e., the
summation is performed over the M! possible permutations of
the numbers 1, . . . , M. UT is the M × M matrix constructed
from U by taking the first M columns and repeating the ith row
ni times, where ni is the number of times detector i appears
in the sequence �m. |Per(UT )|2 arises from gathering all terms
that give unit (nonzero) expectation value in the second line of
Eq. (4). Expression (4) can also be obtained with multiboson
correlation sampling, i.e., by evaluating the Mth-order tempo-
ral correlation function of the photonic quantum state at the
output ports of the LON [39].

We see that P( �m) is the same for all �m that give rise to a
given �n = (n1, . . . , nN ). Therefore the probability of register-
ing clicks �n with

∑
i ni = M is obtained simply by multiplying

the expression (4) by the number of sequences �m that give rise
to this �n, so that

P(�n) = |Per(UT )|2∏
i ni!

. (5)

The jump outcome probabilities P(�n) in Eq. (5) are exactly
the ones found for Fock-state (conventional) boson sampling
when M indistinguishable photons are sampled after pass-
ing through an N × N interferometer [32,40], as verified in
Fig. 1(c). When U is drawn from the Haar measure and
N = O(M2), it has been proven that sampling from the output
distribution is classically hard (takes superpolynomial time)
unless the polynomial hierarchy collapses to the third level.
This follows from the #P hardness of classically computing
the output probabilities in Eq. (5).

Experimentally, Fock-state boson sampling has been im-
plemented for small numbers of photons, well within the
classically simulable regime [41–43]. Gaussian boson sam-
pling [44], using squeezed states instead of single photons
as input, can be scaled up further, leading to one of the
first claims of experimental quantum advantage [45]. Inter-
estingly, by engineering long-range interactions, Fock-state
boson sampling was also proven to be equivalent to sampling
spin measurement outcomes after a short Hamiltonian time
evolution [46,47].

Trajectory entanglement entropy. Our primary interest lies
in evaluating nonlinear properties of the stochastic trajectory
states of the emitters. For this, we focus on the averaged
trajectory entanglement entropy of a subsystem of size l < N ,
after having registered 0 � k � M clicks in the output arms
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of a network U , evaluated as

S
(U )
M (l, k) = 1

Ns

Ns∑
i=1

S(l )
[∣∣ψ (U )

M (k)
〉
i

]
, (6)

with Ns being the number of samples taken and |ψ (U )
M (k)〉i ∝

cmk · · · cm1 |ψ0(M, N )〉, i.e., the state after some sequence
�m of k detected jumps cmj (2). Furthermore, S(l )[|ψ〉] =
−Tr[ρA ln ρA] is the von Neumann entanglement entropy of
state |ψ〉, with ρA = TrB|ψ〉〈ψ | being the reduced density
matrix of subsystem A, containing l adjacent sites starting
from the boundary, and B, containing the remaining N − l
sites.

From a photonic perspective, an equivalent state |ψ (U )
M (k)〉i

can be obtained by subtracting k single photons from the M-
photon wave function at the output ports (m1, . . . , mk ) from
U and sending the remaining M − k photons back through U .

By sampling stochastic trajectories using matrix-product
states (MPSs) [48], we show in Fig. 1(b) that when U is drawn
from the Haar measure, a volume-law scaling for entangle-
ment entropy is observed, as seen in the inset. In this case,
each new jump ci (2) generally has a nonzero overlap with
any σ−

j and will induce long-range entanglement between all
emitters in the chain. Yet, the initial growth of entanglement is
upper bounded by S

(U )
M (N/2, k = 1) � ln 2, independent of N ,

which is obtained from the concavity of entanglement entropy
[49] (see Supplemental Material [6] for details).

LON and the sampling procedure. In what follows, we
restrict ourselves to the case N = M, i.e., all M emitters are
initialized in the excited state |ψN (k = 0)〉 = |↑↑ · · ·〉. The
N × N unitary U (N, D) that encodes the quantum jumps is
implemented through a LON that consists of D staggered
layers of Haar random 2 × 2 unitaries, each of which can be
written as Eq. (3) [see Fig. 2(a)]. For a sufficiently deep LON,
one can show that sampling instances from the LON converge
to drawing the N × N unitaries from the Haar measure [50].

Each instance in the sample set is obtained by (i) sam-
pling a U (N, D) and (ii) sampling a quantum trajectory, thus
yielding a jump sequence mk and the corresponding stochastic
series of (pure) states |ψN (k)〉, with 0 � k � N being the
number of registered jump clicks. After repeating this proce-
dure Ns times, we obtain a set of sampled trajectories, and
the averaged entanglement entropies S

(D)
N (l, k) for subsystem

size l can be evaluated, yielding the entanglement of the
trajectories averaged over unitaries U (N, D).

Previously, a number of works have investigated the entan-
glement entropy of the M-photon wave function for Fock-state
boson sampling in an N-mode LON. In the Haar regime, the
photonic wave function shows volume-law scaling of entan-
glement entropy when exiting the LON [51,52]. In this chain
of two-level emitters, on the other hand, the spontaneously
emitted photons themselves are short-lived (stemming from
the Born-Markov approximation of the quantum trajectory
approach), and we study the buildup and decay of entan-
glement entropy between the emitters induced by registering
and applying the jumps c j (2). Additionally, this also marks
a significant difference with the measurement-induced phase
transition studied in circuit models [29,30] since no projective
measurements are performed on the emitters.

Numerical results and scaling of complexity. The stochastic
simulations were run with MPSs [48,53], using the C++
package ITENSOR [54].

In Figs. 2(b) and 2(c), we first study the scaling of entan-
glement entropy by monitoring outputs of a LON with fixed
depth D. The largest achieved averaged entanglement entropy
S

(D)
N,max ≡ maxk,l [S

(D)
N (k, l )] shows an area-law behavior. In

Fig. 2(b), it is seen that S
(D)
N,max does not scale with system

size for fixed D. This is further confirmed in Fig. 2(c) for
subsystem scaling for the case N = 100, where it is seen that
S

(D)
N (k, l ) converges to a finite value in the bulk. Note that, for

any k, the maximal S
(D)
N (k, l ) is always reached for l = N/2.

Intuitively, after detecting a click from a jump c j when D =
const, an observer can pinpoint a subset of adjacent emitters
of size 2D from which the decay could have originated, inde-
pendent of N . Therefore registering a click can only generate
local entanglement in the chain. LONs of fixed depth D � N
are represented by a unitary U that is formulated as a banded
matrix of width 2D. Interestingly, there exist polynomial-time
algorithms to efficiently evaluate Per(UT ) of banded matrices,
which encode output probabilities of outcomes with few or no
collisions via Eq. (5) [33,34,55]. The efficient evaluation of
the output probabilities is in line with our result: The area law
of entanglement entropy ensures that the output configurations
P(�n) can be efficiently sampled using MPSs of fixed maximal
bond dimension to represent the quantum state of the emitters
after k clicks [48].

As shown in Figs. 2(d) and 2(e), the situation drastically
changes when the network depth D scales linearly with system
size: D = pN . In Fig. 2(d), we show the maximal averaged
entanglement entropy S

(pN )
N,max, which now has a clear linear

dependence on system size N , thus establishing a volume
law. The simulation quickly gets out of reach for efficient
simulation with MPSs of a given maximal bond dimension
χmax (set to χmax = 700). Also, the entanglement profiles of
subsystem size l , shown in Fig. 2(e), acquire a strong depen-
dence on subsystem size l when p is increased, which we
identify as volume law for the scaling for subsystem entan-
glement entropy. As p increases, the entanglement entropy
approaches the value obtained by sampling U from the N × N
Haar measure [black dashed line in Figs. 2(d) and 2(e)].

In order to secure the classical sampling hardness, the
original proof for Fock-state boson sampling requires that
N = O(M2) to ensure collision-free samples [32]. While we
are not in that regime, to our knowledge no efficient classical
algorithm is known to sample the jump outcomes if N = M
and D ∝ N . In our unraveling picture, we face a correlation in
complexity: The entanglement entropy between the emitters
in the trajectory states has volume-law scaling and quickly
surpasses the limit of efficient simulation with MPSs.

In contrast, when the trajectory-averaged entanglement en-
tropy scales as an area law, the sample complexity (the number
of trajectory states required in order to accurately sample the
density matrix) may be expected to increase exponentially.
This is captured by the scaling of the (classical) Shannon en-
tropy of the distribution over quantum trajectory states. Hence
there is a trade-off between sample complexity of trajectories
and the complexity of simulating each trajectory. It might

L032021-4



MONITORING-INDUCED ENTANGLEMENT ENTROPY AND … PHYSICAL REVIEW RESEARCH 4, L032021 (2022)

be possible to practically exploit this trade-off in a classical
algorithm; see Supplemental Material [6] for a more detailed
explanation.

Conclusions and outlook. It was illustrated that chang-
ing the unraveling of a straightforward, uncoupled master
equation of emitters may cause drastic changes in both the
entanglement of stochastic trajectory states and the sampling
hardness of jump outcomes. Moreover, changing the unravel-
ing is immediately related to an observer monitoring the decay
clicks in the output arms of a LON, resulting in the unitary
mixing of the decay jumps. Sampling the jump outcomes
in the established monitoring scheme is equivalent to the
problem of Fock-state boson sampling. Finally, a connection
was established between the scaling of entanglement entropy
between emitters and the classical hardness of sampling the
jump outcomes.

While we have reported different scaling behavior for
the trajectory entanglement entropy, we have not yet seen a
conclusive signature of a scaling transition for the trajectory
entanglement entropy across a critical point, such as pre-
sented in, e.g., Refs. [26,28]. For example, one can investigate
fermionic or Gaussian models to access larger systems for the
scaling analysis.

Note added. Recently, we became aware of a recent work,
where an entanglement scaling transition was reported in a
homodyne monitoring scheme [56].
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The supplementary information is organized as follows. In Sec. I we work out in detail the invariance of a master
equation under a unitary mixing of the jump operators and how it affects the unravelings. In Sec. II we derive how
the probability of a Markovian sequence of clicks can be obtained in the quantum jump picture. We derive a universal
bound in Sec. III on the initial growth of entanglement entropy when U is sampled from the Haar measure and finally,
in Sec. IV, we illustrate that inducing entanglement in the trajectory states may reduce the statistical fluctuations
for sampling a mixed-state density matrix.

I. THE UNITARY MIXING OF JUMP OPERATORS: MASTER EQUATION VS. QUANTUM
TRAJECTORIES

In this section, we illustrate in more detail the invariance of a master equation for linearly mixing jumps with a
unitary, Eq. (2) from main text, and how this invariance breaks down in the trajectory picture.

The master equation of a dissipative system is given by

∂tρ = −i[H, ρ] +
∑
j

(
cjρc

†
j −

1

2
{c†jcj , ρ}

)
, (S1)

and the trajectories for a given unraveling obey the stochastic equation [1, 2]

dρξ = −i[H, ρξ]dt+
∑
j

(
⟨c†jcj⟩ρξ −

1

2
{c†jcj , ρξ}

)
dt+

∑
j

(
cjρξc

†
j

⟨c†jcj⟩
− ρξ

)
dNj . (S2)

Here, ξ labels a given realization of the stochastic variables dNj , and ρξ = |ψ⟩⟨ψ| is the stochastic pure state of the

system in each realization. In the jump picture, it holds that dNj = 1 with probability ⟨c†jcj⟩dt and zero otherwise,

so that dN2
j = dNj [1, 2]. Using that ρ = ρξ and that dNj = ⟨c†jcj⟩dt, where f denotes the average of f over the

stochastic noise terms, one immediately recovers the Lindlbdlad master equation.
A direct calculation shows that all terms in the Lindblad master equation are invariant under cj → c′j =

∑
k Ujkck.

Indeed, using
∑

j U
∗
ljUkj = δlk, we find∑

j

c′jρc
′†
j =

∑
j

∑
kl

UjkckρU
∗
jlc

†
l =

∑
kl

δlkckρc
†
l =

∑
k

ckρc
†
k, (S3)

and similarly for the other term ∝
∑

j{c
†
jcj , ρ}.

Importantly, this invariance does not hold generally for Eq. (S2) due to the last term, and this is precisely what
motivates us to consider nonlinear trajectory-state quantities, such as the entanglement entropy. On the other

hand, the probability of observing a quantum jump in time interval dt, pjump(t) =
∑

i⟨c
†
i ci⟩dt, is left invariant

under the unitary transformation, which is why we discarded the explicit time dimension in the text and used the
number of registered clicks instead. Recovering the explicit time dimension from an obtained jump-click trajectory is
straightforwardly achieved by sampling the waiting times between clicks from the corresponding Poisson distributions.
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II. PROBABILITY OF OBSERVING A JUMP SEQUENCE

To verify the equivalence with boson sampling, we need to evaluate the probability of observing a Markovian
sequence of clicks (m1 . . .mM ), Eq. (4) in main text. Alternatively, the probability of such a sequence can be
obtained by evaluating the temporal correlation function of the photonic state at the output ports of the LON U—see
Ref. [3]. In this section, we derive in more detail how it naturally comes out of the quantum trajectory picture of the
emitters.

Starting from the state
∣∣ψ0(M,N)

〉
=
∣∣ ↑M↓N−M

〉
, when k ≤ M jumps have been detected in the sequence

(m1, . . . ,mk), we know that the quantum state of the emitters is given by∣∣ψ〉
m1,...,mk

= N (m1, . . . ,mk) cmk
. . . cm1

∣∣ψ0(M,N)
〉
, (S4)

with the norm ∣∣N (m1, . . . ,mk)
∣∣2 = 1/⟨ψ0(M,N)

∣∣c†m1
. . . c†mk

cmk
. . . cm1

∣∣ψ0(M,N)
〉
. (S5)

The probability of sampling ck+1 as the next jump, conditioned upon having observed the previous sequence
(m1, . . . ,mk), is then obtained as the conditional probability

P
(
mk+1|m1, . . . ,mk

)
=

〈
ψ
∣∣c†k+1ck+1

∣∣ψ〉
m1,...,mk∑

i

〈
ψ
∣∣c†i ci∣∣ψ〉m1,...,mk

=

∣∣N (m1, . . . ,mk)
∣∣2

M − k

〈
ψ(M,N)

∣∣c†m1
. . . c†mk

(
c†k+1ck+1

)
cmk

. . . cm1

∣∣ψ(M,N)
〉
, (S6)

where the last step follows from
∑

i

〈
ψ
∣∣c†i ci∣∣ψ〉m1,...,mk

=
∑

i

〈
ψ
∣∣σ+

i σ
−
i

∣∣ψ〉
m1,...,mk

with the unitary transformation

given by Eq. (2) in main text. From this, we can evaluate the probability of observing a sequence as a product of
conditional probabilities

P (m1, . . .mM ) = P (m1)× P
(
m2|m1

)
× · · · × P

(
mM |m1, . . . ,mM−1

)
. (S7)

Using Eq. (S6) for the different conditional probabilities, we arrive at Eq. (4) from the main text.

III. BOUND ON INITIAL ENTANGLEMENT GROWTH

In this section, we formulate a universal upper bound for the initial growth rate of entanglement entropy when
M = N , i.e. when all emitters start in the excited state, and UN×N is drawn from the Haar measure.
For this, we know that, after registering one jump ci =

∑
j Uijσ

−
j , the quantum state of emitters is given by

|ψ1(N)⟩ = ci|ψ0(N)⟩ = Ui1| ↓↑↑↑ . . . ⟩+ Ui2| ↑↓↑↑ . . . ⟩+ Ui3| ↑↑↓↑ . . . ⟩+ . . . . (S8)

For this state, we can compute the reduced density matrix of a subsystem A, composed of l sites, by tracing out the
environment B composed of N − l sites,

ρA = trB
[
|ψ1(N)⟩⟨ψ1(N)|

]
= p|ψA,0⟩⟨ψA,0|+ (1− p)|ψA,1⟩⟨ψA,1|. (S9)

Here, p =
∑

j∈A
∣∣Uij

∣∣2 is the probability of finding the de-excitation in subsystem A. Furthermore, |ψA,0⟩ = | ↑l∈A⟩
is the quantum state when the jump is detected in the environment, and |ψA,1⟩ = 1/

√
p
∑

j∈A Uij | ↓j↑l ̸=j⟩ the state
if the jump occurs in A. Hence, the reduced density matrix ρA is composed of a statistical mixture of two pure
and orthogonal quantum states with a classical probability p, for which the entanglement entropy equals S(p) =
−p log p− (1− p) log (1− p).
Since the Von Neumann entanglement entropy is a concave function, meaning that S

(∑
j λjρj

)
≥
∑

j λjS
(
ρj
)
for

some statistical ensemble of density matrices ρj with probabilities λj (see e.g. Ref. [4]), an upper bound can be found
by evaluating the entanglement entropy of the averaged density matrix of an ensemble. If we average instances from
the N×N Haar measure in (S9), we know that EU

[
|Uij |2

]
= 1/N and therefore that EU [p] = l/N , with EU [·] denoting

the average over the measure of N×N Haar unitaries. Using the averaged probability for the statistical mixture given
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Figure S1. A comparison between the entanglement generated when U is sampled from the N×N Haar measure; the analytical
upper bound (S10) is almost saturated. (a) Evolution of half-chain (maximal) entanglement entropy after detection of k clicks,
for various N . (b) Entanglement subsystem profile after registering one jump click, same color codes as panel (a).

in (S9) after registering one click, a bound is found on the averaged entanglement entropy of a subsystem containing
l ≤ N sites,

SN (l, k = 1) ≤ − l

N
log

l

N
− N − l

N
log

N − l

N
. (S10)

This means that we find a universal bound for x = l/N as S(x, k = 1) ≤ h(x) ≡ −x log x − (1 − x) log (1− x).
Numerically, we find that the bound also holds later, so that S(x, k) ≤ kh(x).
In Fig. S1, we illustrate how bound (S10) is approached. The initial growth for S(N/2, k) lies close to the bound, as

shown in Fig. S1(a). In Fig. S1(b), we illustrate that the bound from (S10) for the bipartite entanglement S(x, k = 1)
is approached when N is increased.
Note also that the top of the curve Smax seems to be slightly flattened for N = 24. The maximal bond dimension,

set to χmax = 700 for the MPS simulation, was not sufficient to capture all statistical fluctuations of entanglement
entropy. Therefore the data for N = 24 was left out for Smax in Fig. 1b in the main text. We checked different sample
trajectories to ensure that all data points N ≤ 22 were not suffering from this issue.

IV. SCALING OF THE AVERAGE ENTROPY AND STATISTICS OF THE UNRAVELING

We mention in the main text, just before conclusions and outlook, that inducing entanglement in the stochastic
trajectories reduces the statistical trajectory fluctuations for sampling the averaged density matrix. In this section,
we explain this in more detail for the case of N emitters from the main text.

Let ρl =
∑

j λj trN−l

[∣∣ψj
〉〈
ψj
∣∣] denote the trajectory-averaged state of a subsystem of l sites, where λj is the

probability with which state
∣∣ψj
〉
occurs in the ensemble of trajectories, with

∑
j λj = 1. The trajectory-averaged

von Neumann entropy of the subsystem, S =
∑

j λjS
(
trN−l

[∣∣ψj
〉〈
ψj
∣∣]), satisfies

S ≤ S(ρl) ≤ S +H(λ), (S11)

where H(λ) = −
∑

j λj lnλj is the (classical) Shannon entropy of the distribution {λj} that characterizes the mix-

ture [5, 6].
In the main text, we numerically studied S. The entropy of the trajectory-averaged state is easy to obtain from the

fact that, at the level of the master equation, each emitter remains in the excited state with a probability p(t) = e−γt.
The entropy of l emitters is then

S(ρl; t) = l ×
(
p(t) log p(t) + (1− p(t)) log (1− p(t))

)
. (S12)

This entropy satisfies a volume law, S(ρl) ∝ l.
Using Eq. (S11), we find that, for the classical Shannon entropy of the mixture,

H(λ) ≥ S(ρl)− S ∼ O(l)− S. (S13)

This implies that whenever we find that S follows an area law, or scales slower than S(ρl) with l, the classical entropy
H(λ) characterizing the unravelling, must compensate for this and scale with the volume of the system, H(λ) ∼ O(l).
For numerical purposes, the number of distinct area-law trajectories in an unraveling needed to sample a master
equation leading to a volume-law density matrix should scale exponentially to satisfy bound (S13). On the other
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hand, using volume-law trajectories, one might reach sufficient statistical accuracy after obtaining a set of samples
with polynomial (or even constant) size. We plan to investigate this issue further in a follow-up work, with the
goal of discovering optimal unravelings that have a balance between quantum entanglement (hardness of classically
computing a given trajectory) and the number of samples needed (hardness of classical sampling) to acquire sufficient
statistical accuracy.
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