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Demonstrations of quantum computational advantage and benchmarks of quantum processors
via quantum random circuit sampling are based on evaluating the linear cross-entropy benchmark
(XEB). A key question in the theory of XEB is whether it approximates the fidelity of the quantum
state preparation. Previous works have shown that the XEB generically approximates the fidelity
in a regime where the noise rate per qudit ε satisfies εN � 1 for a system of N qudits and that
this approximation breaks down at large noise rates. Here, we show that the breakdown of XEB
as a fidelity proxy occurs as a sharp phase transition at a critical value of εN that depends on the
circuit architecture and properties of the two-qubit gates, including in particular their entangling
power. We study the phase transition using a mapping of average two-copy quantities to statistical
mechanics models in random quantum circuit architectures with full or one-dimensional connectivity.
We explain the phase transition behavior in terms of spectral properties of the transfer matrix of the
statistical mechanics model and identify two-qubit gate sets that exhibit the largest noise robustness.

I. INTRODUCTION

Near-term quantum devices consist of dozens of imper-
fect qubits, with error rates far too large to outperform
classical computers in tasks like factoring large integers.
Instead, several recent attempts to demonstrate the com-
putational power of noisy quantum devices have focused
on quantum random circuit sampling (RCS) [1–5]. In
RCS, the task is to repeatedly produce and measure a
single, highly entangled many-body wavefunction ψ(x),
generating a sequence of outcomes {xi} that ideally occur
with probabilities p(x) = |ψ(x)|2. As generating complex
entangled wavefunctions is a core capability of quantum
computers that cannot be replicated by classical com-
puters (see e.g., [6–9]), RCS is a natural task for testing
prototype quantum devices.

Of course, error prone qubits do not allow for pre-
cisely reproducing the same wavefunction repeatedly, or
for precisely sampling from the correct distribution p(x).
To compare the performance of a particular quantum de-
vice with disparate quantum devices or classical comput-
ers at this task, benchmarks—quantitative measures of
success—are needed. A straightforward but strict bench-
mark is the fidelity between the target wavefunction and
the output wavefunction. However, measuring fidelity in
large quantum systems is intractable on current hardware
since the best available schemes require the application
of deep noise-free random Clifford circuits for shadow fi-
delity estimation [10, 11]. Moreover, when comparing
with classical algorithms, the fidelity is only meaningful
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for certain algorithms that also produce a classical rep-
resentation of the wave function.

In place of fidelity, the linear cross-entropy benchmark
(XEB) has been used as a measure of success in RCS
[1, 2, 12, 13] and beyond [14–16]. The XEB

χ = 2N
∑
x

p(x)q(x)− 1 (1)

measures the correlation between the ideal distribution
p(x) and the actual distribution q(x) of sample outcomes,
averaged over the random circuit instances. Importantly,
we expect that the XEB can be sample-efficiently esti-
mated just from the produced samples xi of a few ran-
dom quantum circuits.1 This sample efficiency is crucial
for the usefulness of the benchmark. However, the ideal
probabilities p(x) of the measured samples must still be
known to estimate the benchmark, and these must be
computed via classical algorithms with exponential run-
time.

There are two crucial theoretical questions about XEB
for understanding how well it serves its purpose as a
benchmark for RCS. First, one must understand what
scores are, in principle, achievable by noisy quantum de-
vices. Secondly, to use XEB as a benchmark of com-
putational power, one must understand what scores are
achievable by competing classical devices, running arbi-
trary algorithms.

In this work, we address the first question by phras-
ing it as a comparison between XEB and fidelity: can
high XEB scores be achieved without producing states

1 See [5, Sec. V.B.3] for the argument.
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FIG. 1: Circuit geometries considered in this paper. The
evolution consists of layers of random two-qudit gates
chosen either from a Haar random distribution or ac-
cording to Eq. (2) and single-qudit noise (shown as black
circles) specified by an arbitrary (but fixed) noise channel
N applied after each gate layer. (a) In the all-to-all ge-
ometry, the qubits are permuted randomly between gate
layers. (b) In the 1D geometry, alternating layers of gates
are applied in a brickwork fashion with open boundary
conditions.

with high fidelity to the target? This question has been
studied previously in work of Dalzell et al. [12] and Gao
et al. [17], who come to the conclusion that XEB closely
approximates fidelity in a regime of significantly weak,
spatially homogenous, and temporally independent noise.
For an N -qubit system with local noise rate ε, this regime
is characterized by εN � 1. However, they have also
shown that violations of these assumptions break the cor-
relation between XEB and fidelity. Our work addresses
the exact dependence of the match between XEB and
fidelity as the noise is increased. We show that this
match breaks suddenly as noise is increased, occurring
as a sharp phase transition in the behavior of XEB at a
critical value of εN . This remains true for variants of the
XEB [12] which, in the low-noise limit, track the fidelity
in a wider parameter regime. In addition to explaining
the mechanism behind the transition, we investigate how
the critical noise value depends on the gate set and circuit
geometry used.

In order to analyze the noise dependence of the XEB,
we make use of a mapping between average properties
of two copies of the quantum wavefunction—which in-
cludes both the fidelity and the XEB—to observables of
a statistical model [12, 17–23]. In this model, the av-
erage dynamics of the quantum system can be analyzed
in terms of a transfer matrix on a 2N -dimensional con-
figuration space, and the behavior of the XEB can be
explained via spectral properties of this transfer matrix.
We analyze the model using simulations in two extremal
circuit architectures, namely a fully connected (all-to-
all) architecture, and a one-dimensional architecture (see
Fig. 1), and find the same qualitative behavior. This
suggests that the phase transition in the XEB is in fact

a universal feature of random quantum circuits in any
architecture.

In the all-to-all model we exploit the permutation sym-
metry of the qudits to exactly solve the corresponding
statistical mechanical model with large numbers of qu-
dits in terms of an exponentially reduced state space. To
analyze one-dimensional circuits, we use matrix-product
state techniques for computing the dynamics and spectra
of the statistical model.

In the following, we will first introduce the statistical
mechanical model for the two architectures (Section II),
then show our main results on the sharp phase transition
of the XEB in Section III for the paradigmatic gate set
of Haar-random gates, and finally discuss the gate-set
dependence of the location of the transition in Section IV.

II. BACKGROUND

A. Random circuit observables

We study noisy random circuits acting on N qudits of
dimension q. The circuits consist of two-qudit gates gen-
erated in one of two ways: Haar-random gates G drawn
from U(q2), or by using a specific two-qudit gate g and
Haar-random single-qudit gates U1, U2, U3, U4 ∈ U(q):

G = (U1 ⊗ U2)g (U3 ⊗ U4). (2)

The circuits we study (illustrated in Fig. 1) consist of
d layers of N/2 gates, each of which connects either ran-
dom disjoint pairs of qudits (the ‘all-to-all architecture’,
see Section II C), or neighboring qudits of a chain, alter-
nating in a brickwork pattern (the 1D architecture, see
Section II D). After each layer of gates, each qudit experi-
ences noise as specified by an arbitrary single-qudit noise
channel N . We initialize the circuit with the product
state (|0〉 〈0|)⊗N .

Our reference quantity is the average fidelity F =
EU Tr[ρU(N )ρU(0)] between the noisy output state
ρU(N ) and the corresponding noiseless pure state ρU(0),
where the average is taken over the random circuit in-
stance U. The average fidelity F takes the value 1 in the
ideal limit of no noise, and the value q−N when ρU(N )
and ρU(0) are totally uncorrelated. A convenient refor-
mulation of the fidelity,

F = Tr
(
S⊗N EU [ρU(0)⊗ ρU(N )]

)
, (3)

considers two copies of the same circuit, one of which is
evolved with a noisy evolution and the other with the
noiseless evolution, followed by the S⊗N operator that
swaps corresponding qudits between the two copies. The
second important quantity we will consider in this paper
is the linear cross entropy benchmark (XEB)

χ = qNEU

∑
x

〈x| ρU(N ) |x〉 〈x| ρU(0) |x〉 − 1
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which has been proposed as a classical estimator of the
average fidelity for random quantum circuits. It can be
written as a two-copy expectation value in a similar way:

χ = Tr
([
qN P⊗N −1

]
EU [ρU(N )⊗ ρU(0)]

)
, (4)

where

P =

q−1∑
x=0

|x〉 〈x| ⊗ |x〉 〈x| . (5)

Since the values of χ for low-depth random circuits
can be much larger than one, the variant quantity χB =
χ/(qNZ − 1) has been proposed by Dalzell et al. [12] as
a better estimator of the fidelity2. Here,

Z = EU

∑
x

〈x| ρU(0) |x〉 〈x| ρU(0) |x〉

= Tr
(
P⊗N EU [ρU(0)⊗ ρU(0)]

)
, (6)

is the collision probability of the noiseless circuit. Like
the fidelity, χB takes values between 0 and 1, and attains
its maximal value in the noiseless case. As we will see
below, which precise variant of XEB is used will not affect
the behavior of the phase transition.

We now introduce the statistical model [12] used to
analyze the noise-dependence of these two-copy average
quantities.

B. Statistical model

For an arbitrary pair of density matrices ρA, ρB on N
qudits of dimension q, consider the Haar-averaged two-
copy density matrix

ρ(2) = EV(VρAV
†)⊗ (VρBV

†), (7)

where V is a product of single-qudit Haar random rota-
tions

V =

N∏
i=1

Vi. (8)

Such an average has the result of projecting arbitrary
two-copy density matrices ρA ⊗ ρB into the symmetric
subspace, i.e., the space invariant under arbitrary rota-
tions V ⊗ V. The symmetric subspace is spanned by
tensor products of I/q2 and S /q, where I is the two-
qubit identity operator and S is the operator that swaps
two corresponding qudits in the two copies. Thus, the
average can be expressed as

ρ(2) =
∑

σ∈{0,1}⊗N
p(σ)

N⊗
i=1

(
I

q2

)1−σi (S
q

)σi
. (9)

2 See also Refs. [14, 15, 24, 25] for similar suggestions.

We reinterpret ρ(2) as a vector |ρ〉 in a many-body state
space, using basis states |σ〉 with σ ∈ {0, 1}⊗N corre-
sponding to the terms of the above sum, so that

|ρ〉 =
∑
σ

p(σ) |σ〉 . (10)

Using this representation, the fidelity of ρB with respect
to ρA and their linear cross-entropy can be expressed

as inner products with fixed vectors: F = Tr
(
Sρ(2)

)
=

〈S|ρ〉 and X = 〈P|ρ〉, where S = S⊗N and P = P⊗N .
Similarly, the trace of ρA⊗ρB is 〈I|ρ〉 = 1. These vectors
are expressed as follows, using the dual basis 〈σ| defined
via 〈σ|σ′〉 = δσσ′ :

〈I| = (〈0|+ 〈1|)⊗N , 〈P| = (q−1 〈0|+ 〈1|)⊗N ,
and 〈S| = (q−1 〈0|+ q 〈1|)⊗N .

In this paper, we compute the circuit-averaged fidelity
F and the XEB χ = qNX−1 by computing the two-copy
density matrix

ρ(2) = EU [ρU(0)⊗ ρU(N )] . (11)

If the gates are randomly chosen from a distribution that
is invariant under single qudit rotations — such as the
Haar distribution or the distribution in Eq. (2) — the av-
eraged two-copy density matrix after each layer of gates
has the form of Eq. (9). As the gates are drawn inde-
pendently at random between layers, p(σ) after a given
layer depends only on the distribution p from the previ-
ous layer. The corresponding evolution of p under the cir-
cuit layer l is thus governed by a transfer matrix Tl(σ′, σ).
This transfer matrix can be constructed by composing a
matrix M corresponding to each random two-qudit gate
and a matrix N for each single qudit noise channel as
follows:

Tl(σ′, σ) =
∏
i

Nσ′i,σi
∏
〈ij〉

Mσ′iσ
′
j ,σiσj

, (12)

where 〈ij〉 denotes pairs of qudits i, j which are acted
upon by a random gate in a particular layer l of the
circuit. As M denotes the update corresponding to the
average over a unitary gate, its form is constrained by the
requirement that it preserves the trace and the fidelity.
We show in Appendix A that the two-qudit update ma-
trix M must take the following form3

M =


1 αq2

q2+1
αq2

q2+1 0

0 1− α− β β 0
0 β 1− α− β 0
0 α

q2+1
α

q2+1 1

 , (13)

3 Note that an equivalent but distinct parameterization of the up-
date rule was described in Ref. [17]—translations between our
conventions and those of Ref. [17] are given in Appendix A.
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where we order the two-site {I/q2,S /q} basis (corre-
sponding to σ ∈ {0, 1}) of the statistical model as
σiσj ∈ {00, 01, 10, 11} and α, β ∈ R. This form fol-
lows from the conservation of the trace and fidelity un-
der noiseless operations, as well as an additional prin-
ciple that guarantees reflection symmetry for M . For
Haar-random two-qudit gates, α = 1 and β = 0 [26];
the computation of α and β corresponding to other gate
sets is detailed in Appendix A. The parameter α can be
interpreted as controlling the rate at which S factors,
corresponding to σ = 1, are duplicated (I ⊗ S → S ⊗S)
and destroyed (I ⊗ S → I ⊗ I). The parameter β on
the other hand controls the rate at which S factors hop
between sites I ⊗ S → S ⊗I.

Similarly, the update rule N for a single-qudit noise
channel N can be expressed using the {I/q2,S /q} basis
as [12]

N =

[
1 γ
0 1− γ

]
. (14)

The parameter γ sets a rate at which S factors decay
S → I. It is shown in Appendix A that γ is equal to
the infidelity of N with respect to the identity channel,
averaged over pure state inputs, and rescaled by q/(q−1).

The corresponding rate for I factors to decay to S is
zero, as the maximally mixed two-copy density matrix
is a fixed point of N . We point out that, for this to
be true, no conditions are required on the noise chan-
nel N—in particular, we do not need to assume it to be
unital. While the action of a non-unital noise channel
N (on one or both copies) will not leave the maximally
mixed density matrix I ⊗ I fixed, when N acts on only
one copy the following average over single-qudit Haar ro-
tations projects N (I)⊗ I back onto I⊗ I. When instead
noise acts on both copies of the two-copy density ma-
trix, as occurs when computing the purity or the collision
probability of the noisy density matrix, only unital noise
channels preserve the maximally mixed density matrix
I ⊗ I. We expand upon this in Appendix B.

In summary, the statistical models we consider are de-
fined through a transition matrix T (α, β, γ), parameter-
ized by three parameters: α and β, which are derived as
a property of the gate set, and γ, which is proportional
to the infidelity of the noise channel. The case α = 1
and β = 0 corresponds to Haar-random two-qudit gates;
we will consider this case primarily (see Section III), and
then show that other values of α and β give rise to similar
behavior (see Section IV).

Let us now discuss the concrete implementation of
the transfer matrix T for the all-to-all geometry (Sec-
tion II C) and the one-dimensional geometry (Sec-
tion II D).

C. All-to-all circuit

We first consider an all-to-all geometry, which is given
by a fully connected architecture on which gates act

on random pairs of qudits—without regard to spatial
locality—in dense layers that cover all of the qudits. In
addition to averaging over the randomness of the gates,
we also average over all possible choices of the pairings
of qudits; or equivalently, as depicted in Fig. 1(a), after
each layer of gates the qudits are randomly permuted.
This geometry allows for an efficient solution of the sta-
tistical model that exploits the permutation symmetry of
the circuit architecture. A similar random circuit archi-
tecture, considered for example in Ref. [26], has the gates
acting on one pair of qudits at a time rather than in dense
layers. We expect that our results would translate to this
geometry with minimal changes.

We first note that the transfer matrix in the all-to-all
circuit does not depend on the specific gate layer since
all layers are constructed identically. It is constructed by
averaging over all permutations of the qudits as

T (σ′, σ) =
1

N !

∑
P∈SN

T (σ′, Pσ), (15)

where SN denotes the permutation group of N elements.
By construction, the transfer matrix T (σ′, σ) only de-
pends on the Hamming weights of σ and σ′, that is the
number of sites with σi = 1. We denote the Hamming
weight of the bitstring σ as |σ|. |σ| just counts the num-
ber of tensor factors that are S /q in the corresponding

term of ρ(2).

We denote the total probability of all configurations
with a fixed |σ| = S as

pS =
∑
|σ|=S

p(σ). (16)

Since we are averaging over a permutation-symmetric
family of circuits, we can restrict our evolution of p(σ)
to an evolution of pS , with a transfer matrix TS′,S . As S
ranges from 0 to N , this is an (N+1)×(N+1) sized ma-
trix, which is easy to study numerically for large system
sizes.

Furthermore, an explicit formula for TS′,S can be writ-
ten down with a bit of combinatorial logic, avoiding the
need to explicitly compute the average over permuta-
tions. We assume for simplicity that N is even, so that
each qudit encounters a gate in each layer. First, we
note that we can construct TS′,S(α, β, γ) by composing a
transfer matrixMS′,S(α, β) for the permutation-averaged
action of the two-qudit gates with the action of a layer
of noise channels NS′,S(γ):

TS′,S(α, β, γ) = NS′,S(γ)MS′,S(α, β). (17)

Secondly, we note that MS′,S(α, β) in fact does not de-
pend on β, because the only effect of β is to connect bit-
strings σ which are the same up to permutations. Finally,
we construct the permutation-averaged M by explicitly
counting the number of permutations which yield each
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possible value of M(σ′, σ): the result is

MS′,S =
1(
N
S

) ∑
n0,n1,n2

2n1

(
N/2

n0, n1, n2

)
δS,n1+2n2

[
∑
a,b,c

(
n1

a, b, c

)(
q2α

q2 + 1

)a
(1− α)b

(
α

q2 + 1

)c
δS′,b+2c+2n2

 .
(18)

In this sum, n0, n1, n2 specify the number of gates which
encounter, respectively, 0, 1, or 2 sites with σi = 1. Of
the n1 gates that encounter 1 such site, a, b, c are the
number of gates which output 0, 1, or 2 sites with σ′i = 1,
respectively.

For N(σ′, σ), we see that the matrix elements only de-
pend on σ and σ′ through their Hamming weights S, S′,
and so averaging over permutations yields

NS′,S =

(
S

S′

)
(1− γ)S

′
γS−S

′
. (19)

In words, in a layer of noise, each of the S factors of S
that appear in the input has a probability γ to decay.

The numerical implementation of TS′,S is straightfor-
ward. However, we find it necessary to use high precision
numerics to get accurate answers, particularly when N
is increased. Throughout, the all-to-all geometry results
use BigFloats with 256 bits of precision, as implemented
in Julia [27].

D. One-dimensional circuit

Next we consider a one-dimensional brickwork-circuit
architecture where all gates are nearest-neighbor, as de-
picted in Fig. 1(b). We use open boundary conditions
throughout, and only consider circuits with an even num-
ber of qudits N ; as such, in every other layer one site on
each edge experiences neither a gate nor noise.

For our statistical model simulations, we use matrix-
product states (MPS) to represent |ρ〉. We use the time-
evolving block decimation (TEBD) algorithm [28–30] to
apply the transfer matrix T as a sequence of gates, as in
Eq. (12). Truncations of small singular values are used
to keep the bond dimension of the MPS from growing
uncontrollably. All simulation results are checked point-
wise for convergence in the total truncated weight ε, with
truncation errors as small as ε = 10−50 used in some pa-
rameter regimes to reach convergence. This is achieved
by using BigFloats with 256 bits of precision for calcula-
tions requiring ε ≤ 10−30.

In addition to TEBD, we use the global MPS-Krylov
algorithm [31] to compute several leading eigenvalues of
the transfer matrix. This algorithm is identical to the
commonly used Arnoldi method [32] with MPS represen-
tations of all Krylov vectors.

E. Review of noiseless circuit results

We now review some of the important properties of
the statistical model considered in this paper that have
been derived in previous works. The statistical model
has two fixed points in the noiseless (γ = 0) limit; the
important features of the dynamics can be understood in
relation to these fixed points [12, 26]. These fixed points
are the dominant right-eigenvectors (with eigenvalue 1)
of the transfer matrix T , and they are represented in our
notation as

|I〉 ≡ |0 · · · 0〉 and |S〉 ≡ |1 · · · 1〉 . (20)

These eigenvectors represent two-copy density matrices
proportional to the maximally mixed density matrix
(proportional to I) and the global swap operator S, re-
spectively. The corresponding left eigenvectors of T are
〈I| and 〈S|, respectively; these left eigenvectors directly
manifest the fact that the noiseless evolution preserves
the trace and fidelity, recalling Section II B.

Without noise, all sufficiently deep circuits converge to
a linear combination of |I〉 and |S〉. The specific linear
combination is in fact fully determined by the two con-
served quantities, trace and fidelity. When the evolution
is initialized with a pure state the initial fidelity is given
by F = 1. This constrains the fixed-point state to be

|H〉 =
qN

qN + 1
|I〉+

1

qN + 1
|S〉 . (21)

A two-copy average density matrix with statistical model
representation |H〉 corresponds to an ensemble of quan-
tum states that are indistinguishable from globally Haar-
random states using second moment properties [26]—the
states form a so-called spherical 2-design.

It is useful to notice that swapping the two copies of the
density matrix is a symmetry of the noiseless evolution.
This symmetry interchanges the two fixed points |I〉 and
|S〉. Thus, this statistical model can be interpreted as a
classical Ising system in a ferromagnetic phase [19, 22];
this analogy will turn out to be a fruitful way to under-
stand the physics of the circuit with noise.

F. Review of noisy circuit results

Having reviewed the noiseless circuit results, we now
turn to the noisy case. When noise is added (γ > 0), fi-
delity is no longer conserved and output density matrices
always converge to the maximally mixed density matrix.
If the error rate ε = (1− q−2)γ of the single-qubit noise
channel is sufficiently small, Ref. [12] showed that the
global white noise approximation

ρ ≈ Fρideal + (1− F )
I
qN

(22)

accurately predicts second-moment quantities such as fi-
delity and linear cross-entropy [2]. As consequences, in
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FIG. 2: Fidelity and XEB in the all-to-all circuit model with N = 40 qubits and Haar-random gates, for various
values of the noise rate ε (see color code in (c)), plotted against rescaled circuit depth. (a) Fidelity F curves collapse
onto the global-white noise prediction (1− ε)Nd until saturating at q−N . (b) Normalized XEB χB as a function of
rescaled circuit depth (solid lines) and unnormalized XEB χ (dashed lines), which are essentially equivalent after an
initial equilibration time. For low noise εN . 0.92, the XEB decay rate matches that of fidelity. (c) Decay rate of
the XEB. For εN & 0.92, the decay rate saturates to a εN -independent constant, ∆{lnχ} ≈ −0.92.

the same regime of noise, XEB approximates fidelity, and
both decay exponentially with a rate proportional to the
noise rate and the total number of gates. This exponen-
tial decay takes the form

F (d) ∼ (1− ε)Nd, (23)

where ε is the error rate of the single-qudit noise channel
and d is the circuit depth. In fact, this form of the decay
is universal for systems with single-qudit noise and two-
qudit gate count Nd/2—it is independent of the circuit
architecture or gate set [12].

In the context of the statistical model, the global white
noise regime is one in which the dynamics is approxi-
mately captured by a linear combination of the two fixed
points of the noiseless transfer matrix:

|ρ(d)〉 ≈ a(d) |S〉+ (1− a(d)) |I〉 , (24)

where a(d) = (qNF − 1)/(q2N − 1). While the maximally
mixed density matrix continues to be a fixed point of T
with non-zero noise, the other fixed point |S〉 is converted
into a metastable state. To lowest order in the noise, the
decay of |S〉 in one layer of the circuit is given by

〈S|T |S〉
〈S|S〉

=
(
q−2γ + (1− γ)

)N
= (1− ε)N , (25)

where ε = γ(1 − q−2), and thus the prediction for the
fidelity F (d) at depth d matches Eq. (23).

Intuition for this regime can be gained in a ‘heralded
noise’ picture, which models the evolution with error
events that occur at fixed locations [12]. If the noise
rate is small enough, the noiseless evolution has suffi-
cient time between error events to return the state to the
fixed points |I〉 and |S〉. By expanding the full noisy evo-
lution of T into a sum of terms corresponding to different
locations and times of the errors, Ref. [12] showed that a
sufficient condition on the noise to be in this regime is

ε� 1

N lnN
, (26)

while conjecturing that ε < c
N for some constant c would

suffice. Ref. [17] also studied the statistical model with
noise quantitatively for several values of ε and several
choices of gate set, showing that the global white noise
approximation fails to describe XEB at larger noise val-
ues.

III. FIDELITY AND XEB TRANSITION

In this section, we will first look empirically at the
behavior of fidelity and XEB beyond the global white
noise approximation, and then explain the behavior with
a spectral analysis of the transfer matrix T . Our re-
sults confirm the conjecture of Ref. [12], showing that the
global white noise approximation is indeed valid when
εN < c, with a sharp phase transition at εN = c
separating the global white noise regime from a larger
noise regime in which the metastable state |S〉 decays
too quickly to dominate the contributions to XEB. By
contrast, the fidelity continues to track Eq. (23) in the
larger noise regime εN > c; thus, the phase transition
also marks the point at which XEB fails to be a proxy
for fidelity.

Figure 2 shows the behavior of average fidelity and
XEB, computed for the all-to-all circuit geometry and
Haar random two-qubit gates. The fidelity [Fig. 2(a)] is
close to the global white-noise prediction Eq. (23) un-
til saturation, when fidelity approaches a minimal value,
F = q−N , which is exactly the fidelity of any state with a
maximally mixed state. Similar behavior occurs in one-
dimensional circuits, as shown in Appendix C (??).

By contrast, the decay rate of the XEB closely matches
the global white noise value only for sufficiently small
noise rates, as shown in Fig. 2(b). At higher noise, the
decay rate of the XEB abruptly stops changing as noise
is increased. To sharply distinguish the two regimes, one
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FIG. 3: Decay rate ∆{lnχ} of XEB, when it has reached its asymptotic value (stars) and subleading eigenvalue Λ1

of T (circles) for different values of the system size N , for the all-to-all circuit (a) and the 1D circuit (c), with Haar
random gates. The decay rate of the XEB matches the subleading eigenvalue and undergoes a kink at the eigenvalue
crossing. In (a), the kink occurs at εN = log 5

2 ≈ 0.92. (b) Seven largest eigenvalues Λa of the transfer matrix T in
the all-to-all geometry with N = 40 qubits and Haar random gates. States with low Hamming weight (blue tones)
are insensitive to εN , while states with extensive Hamming weight (red tones) have decay rates ln(Λa) linear in εN .

should look at the asymptotic decay rate of the XEB,

∆{lnχ(d)} := ln
χ(d+ 1)

χ(d)
. (27)

In all cases, χ(d+1)/χ(d) reaches a plateau as a function
of depth d, as shown in Fig. 2(c). Empirically, we see
two regimes: in the low-noise regime, χ(d + 1)/χ(d) ∼
(1− ε)N , while for higher noises χ(d+ 1)/χ(d) ∼ const.,
with a constant that is roughly independent of N and ε.

Figure 3 reveals the nature of the transition in the be-
havior of XEB. The asymptotic decay rate of XEB, shown
in Fig. 3(a) for the all-to-all circuit and in Fig. 3(c) for
one-dimensional circuits, experiences a kink at a fixed
value of εN . Additionally, this rate is shown to pre-
cisely match the value of the largest eigenvalue Λ1 of the
transfer matrix, excluding the trivial largest eigenvalue
Λ0 = 1 corresponding to the maximally mixed density
matrix fixed point. The kink in the value of Λ1 occurs
precisely at the location where the leading eigenvalues of
T cross, as depicted in Fig. 3(b) for the all-to-all model.

This eigenvalue crossing is not accidental, but in fact a
generic feature of a wide class of random circuit models.
The ubiquity can be explained via an analogy to the Ising
model. At zero noise, the leading transfer matrix eigen-
values are doubly degenerate, corresponding to sponta-
neously symmetry broken states of the copy permutation
symmetry; noise plays the role of a field that explicitly
breaks the symmetry [22]. In Fig. 3(b), we see that this
analogy fits as a description for the leading eigenvectors
of T , which can be split into two classes: eigenvectors
with low Hamming weight, which are analogous to ex-
citations on top of one ferromagnetic vacuum |I〉, and
eigenvectors with extensive Hamming weight, which cor-
respond to excitations on top of the other ferromagnetic
vacuum |S〉.

Such an eigenvalue crossing would be visible not just
in the dynamics of XEB, but in nearly all observables
that can be computed by expectation values in the av-

erage two-copy density matrix. Suppose the eigenvalues
of T are Λa, with a being an index, with corresponding
left-eigenvectors 〈va| and right-eigenvectors |va〉. Then
through the eigendecomposition of T , any such observ-
able will show dynamics of the form

O(d) =
∑
a

cOa Λda, with cOa =
〈O|va〉 〈va|ρ0〉
〈va|va〉

, (28)

where |ρ0〉 is the initial product state and applying 〈O|
corresponds to multiplying with O and taking the trace.
As we observe constant scaling gaps in the spectrum, we
expect that this sum will be asymptotically dominated
by the largest eigenvalue Λa for which the corresponding
coefficient cOa is non-zero.

Having answered the question of why XEB experiences
a transition in its decay rate, why do we not observe
the same transition in the decay rate of the fidelity?
To answer this, we analyze in detail the nature of the
leading eigenvectors. Let us label the largest non-trivial
eigenvalues Λv and Λg as depicted in Fig. 3(b), so that
Λ1 = max{Λg,Λv}; additionally, we refer to the corre-
sponding eigenvectors as |vv〉 and |vg〉, respectively.

In the limit of large N with fixed εN , we find that
the eigenvectors |vv〉 and |vg〉 are approximately con-
stant, even as εN is tuned across the transition. We do
not observe significant level repulsion or mixing of the
eigenvectors at the crossing. This follows our expecta-
tions from the Ising analogy, as matrix elements between
states that are oppositely polarized should be exponen-
tially suppressed. In Fig. 4, we show the behavior of the
coefficients cOa for the observables F and χ in these eigen-
vectors. We see that while XEB couples significantly
to each eigenvector, cFg approaches 0 asymptotically as

q−N . This is a generic behavior, as |vg〉 is an eigenvector
with low Hamming weight but 〈S|, the observable vector
corresponding to fidelity, is concentrated on strings with
extensive Hamming weight.
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FIG. 4: Coupling constants cOa for fidelity and XEB with
the leading non-trivial eigenvectors of the transfer matrix
of the all-to-all model with Haar random gates and εN =
0.01.

Thus, the asymptotic behavior of fidelity can be de-
scribed by truncating the sum in Eq. (28) to the three
dominant eigenvalues, resulting in

F ≈ q−N + (1− ε)Nd + Λdg
C

qN
, (29)

for some constant C. While the third term becomes
larger than the second in the large noise phase as d→∞,
the q−N suppression factor allows the second term to
dominate the fidelity decay until the fidelity is close to
saturation at q−N at depths d & (ln q)/ε.

In summary, we generically expect a transition in the
decay rate of XEB but not fidelity at constant scaling
depths. This transition occurs when Λv = Λg.

IV. LOCATION OF THE TRANSITION FOR
DIFFERENT ENTANGLING GATES

By the arguments of the previous section, the criti-
cal value corresponds to the location of the eigenvalue
crossing Λv((εN)c) = Λg((εN)c). In our numerics, these
behave roughly as Λg(εN) = Λg(0) ≡ Λg and Λv(εN) =
(1−ε)N . We expect this behavior of the eigenvalues to be
exact in the thermodynamic limit based on the analogy
to the Ising model explained in the previous section. We
confirm this expectation in the all-to-all architecture in
Fig. 5, which shows that the finite-size corrections to the
eigenvalues scale as O(ε, 1/N), so that these corrections
vanish as N → ∞ keeping εN fixed. Altogether, this
gives us the criterion

(1− ε)N = Λg =⇒ (εN)c ≈ λg ≡ − ln Λg, (30)

for the critical value (εN)c of εN .

0.00 0.01 0.02 0.03
1/N

0.2

0.3

0.4

0.5

g

= 5/ 6
= 1
= 10/ 9

FIG. 5: Gap Λg of the all-to-all circuit for several values
of α, computed for various system sizes N as a function
of 1/N (stars) and linear fit (dashed lines). In all cases,
the extrapolation to infinite size via the linear fit
matches the prediction Λg = 1− 3/5α (circles).

Thus, to solve for the critical value, it suffices to find
the gap to the local excitation in the noiseless transfer
matrix. In this section, we exploit this to locate the tran-
sition for various gate sets and geometries.

Our discussion and results in the previous sections have
focused on the case of Haar-random two-qudit gates,
for which the statistical model update rule is given by
Eq. (13) with α = 1 and β = 0. However, in experimen-
tal settings, it is more convenient to use gate sets with
a fixed choice of two-qubit gate [2–4]. We consider in
this section gate sets with a fixed two-qubit gate dressed
with Haar-random single-qubit gates4. In Appendix A,
we derive the values of α and β for general two-qubit
gates (q = 2); it is shown that α and β are restricted
to the region shown in Fig. 6a. We also derive explicit
parameterizations for the gates that correspond to the
boundaries of this region. Three of the boundaries are
given by specific parameterizations of the so-called fSim
gate [33],

fSim(θ, ϕ) =

1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 e−iϕ

 , (31)

while the last boundary corresponds to so-called perfect
entanglers,

PE(φ) =

 sinφ 0 0 −i cosφ
0 cosφ −i sinφ 0
0 −i sinφ cosφ 0

−i cosφ 0 0 sinφ

 . (32)

4 The statistical model for such gate sets was also derived in
Ref. [17].
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FIG. 6: (a) The valid region of α, β accessible to gate sets with a fixed two qubit gate (shaded yellow), with
parameterizations of gates that realize the borders. The red square, green star, and blue circle respectively denote
fSim(π/2, π/6) used in Ref. [2], Haar random gates, and the control-Z gate. (b) Critical value of εN for various
geometries computed via Eq. (30). In the all-to-all geometry (black), we use the analytical formula Eq. (33). For 1D
circuits (green, blue, and red), we numerically compute Λg along the three correspondingly colored lines in (a).

As discussed in Section II C, the transfer matrix for
permutation-symmetric circuit architectures has no de-
pendence on β. Thus, for the all-to-all circuit, we
only need to compute Λg(α). Empirically, we find that
Λg(α) = 1 − 3α/5, using finite-size diagonalizations for
various α and N and extrapolating to N → ∞. This is
shown in Fig. 5.

We now present a heuristic argument that in the all-
to-all model the exact formula for the gap of the transfer
matrix is

Λg = (1− α) + α
2

q2 + 1
, (33)

which matches our empirical finding with q = 2. Con-
sider configurations σ on N sites with a small fraction f
of S factors in random locations, that is, configurations
σ with low Hamming weight. When the density of such
sites is small, each individual gate encounters either zero
or one such site, as the chance of a collision is O(f2). At
each gate that encounters a S, there is a chance of 1−α
that the action of the gate leaves one S, and a chance
of α/(q2 + 1) that it produces two S factors; thus in to-
tal the expected S density will be decreased from f to
((1− α) + α 2

q2+1 )f . States of the form

|ρ〉 ∝ |I〉+ a |vg〉 (34)

satisfy our hypothesis of having only a small expected
fraction f of S factors, and after an application of the
transfer matrix have a fraction Λgf of S factors. Thus it
seems reasonable to expect that Eq. (33) holds.

The situation becomes more intricate in low-
dimensional architectures in which the critical point de-
pends on both α and β. To analyze the dependence

on the values of α and β, we numerically compute—
and show in Fig. 6b—the critical value − ln Λg in the
one-dimensional brickwork architecture [Fig. 1(b)] along
the upper and lower boundaries of the allowed region
shown in Fig. 6a, as well as the line (α, β = 0). The
computations use the MPS-Krylov algorithm discussed
in Section II D, with N = 40 sites and ε = 0. We find
a monotonic dependence of the critical point on both α
and β. In particular, the dependence of the critical value
of the fSim(π/2, ϕ)-gate on α roughly matches that of
the all-to-all architecture until it saturates at Λg = 1/2,
corresponding to (εN)c = ln 2, while the smaller values
of β have a smaller critical value.5 We leave it as an in-
teresting question to precisely understand this saturation
effect at maximal values of β.

Our results show that the critical value of εN can be
tuned by varying α and β. In the all-to-all architecture,
it can be tuned all the way from 0 to a maximal value of
ln 3 ≈ 1.1 by tuning α from 0 to the maximal value 10/9.
In the one-dimensional architecture, it can be tuned from
0 to ln 2 ≈ 0.69 at the maximal value of α and β. The
corresponding gate is the iSWAP gate [17]. We expect
our results to qualitatively carry over to any architecture.

The entangling gate parameter α is related to a prop-
erty of the gate known as its entangling power [34, 35].
Heuristically, at every value of α, the gate parameter

5 Let us also note that, in agreement with Ref. [17], we find that
the noise robustness of the fSim(π/2, π/6) gate from Ref. [2] ex-
ceeds that of Haar-random gates, which in turn exceeds that of
controlled-Z gates.
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β measures the swapping power of the corresponding
gate—for the minimal value of β given by −α/5, the gate
does not swap the qubits at all, while at its maximal value
1− 4α/5 it corresponds to a full swap. Indeed, multiply-
ing the gates on the blue line (minimum swapping power)
with a SWAP gate gives rise to the red line (maximum
swapping power); in general multiplying a gate with en-
tangling and swapping power α and β with a SWAP gate,
gives rise to a gate with α′ = α, β′ = 1 − α − β. Our
results show that computational benchmarking experi-
ments should pick maximally entangling and maximally
swapping gates if they wish to maximize the noise level
at which the phase transition occurs.

V. OUTLOOK

We have given strong analytic and numerical evidence
for the existence of a phase transition in the dynamics
of noisy random circuits as a function of noise. Below
the phase transition, the white noise model of Ref. [12]
suffices to describe second moment quantities of the den-
sity matrix. In particular, in this regime, sample-efficient
proxies for the fidelity such as the linear cross-entropy
benchmark mimic the fidelity well. Above the phase
transition, this correspondence fails to hold. Indeed,
in this regime, the XEB and fidelity behave asymptot-
ically differently. Even more drastically, the decay rate
of the XEB fails to match that of the fidelity (F ) or
its shifted version (F − q−n). Our results hold for any
Haar-invariant two-qudit gate set and any single-qudit
noise channel (except leakage error). However, as the
qualitative results only rely on features that are univer-
sal to Ising-like systems with explicit symmetry breaking
fields, we expect that they generalize to systems with ar-
bitrary locally-acting and Haar-invariant gate sets and
noise channels.

Our results imply that near-term quantum experi-
ments purporting to use the linear cross-entropy bench-
mark as a proxy for fidelity must pay careful atten-
tion to the location of this phase transition. Our re-
sults are shown here for the all-to-all geometry and the
one-dimensional geometry—we expect the physics of the
phase transition to be similar in other experimentally rel-
evant geometries, such as two dimensions, as well. The
location of the phase transition depends both on the ge-
ometry and the properties of the gate set used. The
transfer matrix approach outlined here may be used in

order to estimate the location of the transition for any
gate set and geometry.

A separate question that we have not dealt with in
this work is the ability to spoof the XEB metric, i.e.,
the ability to efficiently produce samples that achieve a
high XEB score without necessarily producing samples
from a state close in fidelity. The noisy output state
above the phase transition indeed achieves an XEB score
that is higher than the fidelity, but it is unclear whether
this output distribution may be classically efficiently sim-
ulated. Recent work [36] shows that this is possible for
depths logarithmic in system size and larger. Conversely,
Gao et al. [17] show that, by adversarially selecting which
circuit locations experience strong noise, “high” values of
the XEB can be achieved classically. It remains an excit-
ing question to what extent the phase transition we have
identified in the XEB as a function of noise strength is
reflected in the computational complexity of classically
simulating the corresponding noisy circuit.

Note added.—After completing this work, we became
aware of a complementary work studying the same phase
transition [37].
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In this Appendix, we rederive the rules governing the
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single-qudit gates. Next, we derive the rule correspond-
ing to the application of single-qudit [AD: stochastic?]
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As in the main text, I is the (q2×q2) 2-copy identity and
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the state remains in the {I,S}⊗N space.

We now examine the effect of an arbitrary two-qubit
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We parameterize the two-qubit unitary as

U =

 cos(c−) 0 0 −i sin(c−)
0 cos(c+)eic3 −i sin(c+)eic3 0
0 −i sin(c+)eic3 cos(c+)eic3 0

−i sin(c−) 0 0 cos(c−)

 ,

(A2)

where c± = c1±c2
2 with c1, c2 ∈ R. Up to local single-

qubit rotations, this is the most general two-qubit unitary
[38, 39]. Since single-qubit gates are averaged over, all
gates that are equivalent up to local single-qubit gates
yield the same update rules. The invariants of such two-
qubit gates under local rotations have been characterized
by Makhlin [38]. Given a gate of the form (A2), these
are given by

G1 =
e−2ic3

4
(cos(c1 − c2) + e2ic3 cos(c1 + c2))2, (A3)

G2 = cos 2c1 + cos 2c2 + cos 2c3, (A4)

and they can be efficiently computed for any gate
[38]. The quantity |G1| = 1

4 (1 + cos 2c1 cos 2c2 +
cos 2c2 cos 2c3 + cos 2c3 cos 2c1) is related to the entan-
gling power of the two-qubit gate. The relation of the
entangling power of a gate to a specific property of the
transfer matrix was noted by Gao et al. [17].

The two-copy state ρ(2) is a combination of the opera-
tors6 II, I S,S I, and S S , where the SWAP operation is
between the two copies, i.e., between either the first and
third qubits (in the case of S I) or the second and fourth
qubits (in the case of I S) in Eq. (A1). The operators II
and S S are left invariant under the action of the gates
in Eq. (A1). It suffices to consider I S, as the evolution
of S I may be derived from that of I S by exchanging
the two copies. Denote by I S the evolution of I S un-
der the update of a single gate layer Eq. (A1). Expand-
ing I S = aII + bI S +cS I + dS S in the basis {I,S},
the coefficients a, b, c, and d are determined through the
Hilbert-Schmidt inner product with the basis operators.
Specifically, we have

Tr
[
(I S)(II)

]
= 24a+ 23b+ 23c+ 22d = 23, (A5)

Tr
[
(I S)(I S)

]
= 23a+ 24b+ 22c+ 23d = x, (A6)

Tr
[
(I S)(S I)

]
= 23a+ 22b+ 24c+ 23d = y, (A7)

Tr
[
(I S)(S S)

]
= 22a+ 23b+ 23c+ 24d = 23, (A8)

with x = 6 + 4|G1| + 2G2 and y = 6 + 4|G1| − 2G2.
The prefactors can be easily found from the fact that
tr[I] = 22, while tr[IS] = 2. Moreover, the con-
straints (A5) and (A8) are determined by the facts that
tr
[
(I S)(II)

]
= tr[(I S)(II)] since the trace is conserved

6 To ease readability, in the following, we abbreviate A⊗B = AB
for A,B ∈ {I,S}.

and tr
[
(I S)(S S)

]
= tr[(I S)(S S)] since the fidelity is

conserved. Solving these equations gives us

a = d =
20− x− y

18
, (A9)

b =
4x+ y − 32

36
, (A10)

c =
x+ 4y − 32

36
. (A11)

The transfer matrix in terms of the normalized operators
{I/q2,S /q} is then

M =

1 2a 2a 0
0 b c 0
0 c b 0
0 a/2 a/2 1

 , (A12)

implying α = 5a
2 = 10(1−|G1|)

9 and β = c = −1
18 −

G2

6 +
5
9 |G1| from the comparison with Eq. (13). Plugging in
the easily-computed values of G1 and G2 for any gate,
we obtain the transfer matrix

M =


1 8

9 (1− |G1|) 8
9 (1− |G1|) 0

0 −1
18 + G2

6 + 5
9 |G1| −1

18 −
G2

6 + 5
9 |G1| 0

0 −1
18 −

G2

6 + 5
9 |G1| − 1

18 + G2

6 + 5
9 |G1| 0

0 2
9 (1− |G1|) 2

9 (1− |G1|) 1

 .

(A13)

Notation of Gao et al.

We briefly take a detour to compare our notation with
the notation of Gao et al. [17]. The basis of their statis-
tical mechanical model {I,Ω} is related to our basis of
{I/q2,S /q} through the linear transformation effected
by the matrix O:

O =

(
1 1
0 q2 − 1

)
,with (A14)

O−1 =

(
1 −1

q2−1

0 1
q2−1

)
. (A15)

Performing a similarity transform of transfer matrix T
using O ⊗O yields a transfer matrix in the basis {I,Ω}

1 0 0 0

0 1− β − αq2

q2+1 β + α
q2+1

α
q2+1

0 β + α
q2+1 1− β − αq2

q2+1
α

q2+1

0 α(q2−1)
q2+1

α(q2−1)
q2+1 1− 2α

q2+1

 , (A16)

implying

D =
αq2

q2 + 1
+ β, (A17)

R =
α(q2 − 1)

q2 + 1
, (A18)

η = q2 − 1, (A19)

in the notation of Gao et al..
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Transfer matrix parameters for some gates

We will use the parametrization with α and β from
the main text in order to discuss the possible transfer
matrices associated with various gates. The various gates
and their parameter values are given in Table I.

We note the constraints on the possible values that G1

and G2, and hence the transfer matrix parameters, can
take. First, we use the relation between |G1| and the
entangling power of the gate [40]:

ep(U) =
2

9
(1− |G1|). (A20)

From this and from the fact that the maximum entan-
gling power is between 0 and 2/9, we have the con-
straints 0 ≤ |G1| ≤ 1, giving 0 ≤ α ≤ 10/9, or
0 ≤ R ≤ 2/3. The gates that maximize entangling power
have been characterized [39, 40]. These take the form
c1 = π/2, c2 = 2φ− π/2, c3 = 0, and we denote the gate
PE(φ), defined in the main text.

Reference [17] had also noted that 0 ≤ D ≤ 1. In
addition, they proved that D ≥ R, which has an inter-
esting interpretation in terms of the entangling power
of a gate characterized by R and the apparent entan-
gling power characterized by D. In terms of the quan-
tities cos 2c1 cos 2c2 + cos 2c2 cos 2c3 + cos 2c3 cos 2c1 and
cos 2c1+cos 2c2+cos 2c3 that characterize any gate, these
two inequalities translate to

cos 2c1 cos 2c2 + cos 2c2 cos 2c3 + cos 2c3 cos 2c1+

1

2
(cos 2c1 + cos 2c2 + cos 2c3) ≥ −3

2
, (A21)

cos 2c1 cos 2c2 + cos 2c2 cos 2c3 + cos 2c3 cos 2c1−
1

2
(cos 2c1 + cos 2c2 + cos 2c3) ≤ 3

2
. (A22)

These also imply β+α/(q2+1) ≥ 0 and β ≤ 1−αq2/(q2+
1). It may be seen that the fSim gate with θ = 0 and
arbitrary ϕ saturates the β ≥ −α/5 constraint, with D =
R = (1 − cosϕ)/3. Similarly, it can also be seen that
the inequality β ≤ 1 − 4α/5 is saturated with the fSim
gate with θ = π/2 and arbitrary ϕ, with the values α =
5(1 + cosϕ)/9 and β = (5− 4 cosϕ)/9.

We find a new constraint using the inequality (x+ y+
z)2 ≥ 3(xy + yz + zx) for any x, y, z ∈ R. Applying this
to x = cos 2c1, y = cos 2c2, z = cos 2c3, we obtain

G2
2 − 3(4|G1| − 1) ≥ 0, or (A23)

D −R ≤
(
D − R

2

)2

, or (A24)

β +
α

5
≤
(
β +

α

2

)2

. (A25)

As shown in Fig. 6a, these constraints account for the
entire boundary of the region of parameters accessible
via a single two-qubit unitary. Furthermore, the equality
is satisfied when c1 = c2 = c3. It may be checked that

the fSIM gate with parameters (θ, ϕ = 2θ) also satisfies
these conditions and has

α =
5

12
(1− cos 4θ), (A26)

β =
1

72
(21 + 15 cos 4θ − 36 cos 2θ). (A27)

As an interesting aside, we also point out that a fixed
two-qubit gate leads to the same update rules as a Haar-
random two-qubit gates. This can be found by solving
for c1, c2, and c3 in our parametrization Eq. (A4): there
are several solutions, but one of them is given by

c1 =
π

4
, c2 =

−1

2
tan−1

√
2

3
, c3 =

π

2
+ c2. (A28)

Statistical model rules for noise channels

Similarly to the update for unitary gates, the update
for the noise channel can be obtained by performing an
average over a single Haar-random single-qudit gate V
in the two copies of the system. There are two distinct
rules, depending on whether the noise acts on one or both
copies of the system. If noise acts on one copy, then the

necessary average N1(ρ(2)) takes the form

∑
a

EV

 V Ka
ρ(2)

K†a V †

V V †

 ,
(A29)

where Ka are the Kraus operators associated with the
noise channel N . If noise acts on both copies, then the

average N2(ρ(2)) instead takes the form

∑
a,b

EV

 V Ka
ρ(2)

K†a V †

V Kb K†b V †

 .
(A30)

We begin with the expression for a single-qubit Haar
average of an operator O:

EV
[
(V ⊗ V )O(V ⊗ V )†

]
=: O = aI + bS, where

a =
Tr(O)− 1

q Tr(O S)

q2 − 1
, b =

Tr(O S)− 1
q Tr(O)

q2 − 1
.

(A31)

Since the Kraus operators are trace-preserving, we have
Tr (N1(O)) = Tr (N2(O)) = Tr(O). The only parameters
that govern the noise dynamics are then Tr (N1(O) · S)
and Tr (N2(O) · S) for O ∈ {I,S}.
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Gate Gate invariants {I/q2,S /q} basis {I,Ω} basis

|G1| G2 α β R D

Controlled-U G1 2G1+1 10
9 (1− |G1|) −1

18 −
G2
6 + 5

9 |G1| 2
3 (1− |G1|) 5

6 −
G2
6 −

1
3 |G1|

CNOT 0 1 10
9

−2
9

2
3

2
3

SWAP 1 −3 0 1 0 1

iSWAP 0 −1 10
9

1
9

2
3 1

Haar-random gate – – 1 0 3
5

4
5

Single-qubit gate 1 3 0 0 0 0

fSIM(θ, ϕ)
1
4 (1+cos2 2θ+
2 cos 2θ cosϕ)

2 cos 2θ +
cosϕ

5
36 (5−cos 4θ−
4 cos 2θ cosϕ)

1
72 (11+5 cos 4θ−24 cos 2θ+
20 cos 2θ cosϕ− 12 cosϕ)

1
12 (5−cos 4θ−
4 cos 2θ cosϕ)

1
24 (17− cos 4θ − 8 cos 2θ −
4 cos 2θ cosϕ− 4 cosϕ)

fSIM(θ = π
2 , ϕ) 1

2 (1− cosϕ) −2 + cosϕ 5
9 (1 + cosϕ) 1

9 (5− 4 cosϕ) 1
3 (1 + cosϕ) 1

fSIM(θ = 0, ϕ) 1
2 (1 + cosϕ) 2 + cosϕ 5

9 (1− cosϕ) −1
9 (1− cosϕ) 1

3 (1− cosϕ) 1
3 (1− cosϕ)

Special perfect
entanglers:
c1 = π/2, c2 =
2φ− π

2 , c3 = 0

0 − cos 4φ 10
9

1
18 (−1 + 3 cos 4φ) 2

3
1
6 (5 + cos 4φ)

TABLE I: Gate invariants and transfer matrix parameters for some common gates.

Consider Tr (N1(I) · S). After noise acts on the state,
the operator becomes

N1(I/q2) = EV

 V ρ1 V †

V I/q V †

 , (A32)

where ρ1 is the state the identity I/q maps to un-
der the nonunital noise. Therefore Tr

(
N1(I/q2) · S

)
=

Tr (ρ1 · I/q) = Tr ρ1/q = 1/q. Thus, this parameter is
also independent of the noise strength and type, giving
us three remaining parameters.

Let us denote these as

Tr (N2(I) · S) =: q + µ, (A33)

Tr (N1(S) · S) =: Y1, (A34)

Tr (N2(S) · S) =: Y2. (A35)

In terms of these parameters, from Eqs. (A31) and (A33)
to (A35), we have

N2

[
I

q2

]
=

(
1− µ

q(q2 − 1)

)
I

q2
+

µ

q(q2 − 1)

S
q
, (A36)

N1

[
S
q

]
=
q2 − Y1

q2 − 1

I

q2
+
Y1 − 1

q2 − 1

S
q
, (A37)

N2

[
S
q

]
=
q2 − Y2

q2 − 1

I

q2
+
Y2 − 1

q2 − 1

S
q
. (A38)

The parameters are chosen so that in the case of uni-
tal noise, we have µ = 0. The interpretation of µ is
that Tr (N2(I) · S) = q2 Tr

[
ρ2

1

]
= q + µ. Therefore

µ = q2 Tr
[
ρ2

1

]
− q, which measures how impure the state

ρ1 is. We call µ the nonunitality.
Dalzell et al. [12] have derived the relation between Y1

and Y2 and the noise channel’s infidelity and nonunitarity
for unital noise channels. We follow their derivation and
obtain generalized expressions for nonunital noise as well.

Before coming to the evolution of the SWAP operator,
let us relate the channel’s infidelity and nonunitarity to
the quantities Y1 and Y2. From Ref. [12], the average
infidelity is given by

r = 1− EV Tr
[
V |ψ〉〈ψ|V †N1

(
V |ψ〉〈ψ|V †

)]
(A39)

= 1− Tr

(
S N1

(
I + S
q(q + 1)

))
(A40)

= 1− 1

(q2 − 1)(q + 1)

(
q(q2 − 1) + Y1

q2 − 1

q

)
(A41)

=
q − Y1/q

q + 1
, implying (A42)

Y1 = q2 − rq(q + 1). (A43)

Similarly, the unitarity is given by

u =
q

q − 1

(
EV Tr

[
(N2(V |ψ〉〈ψ|V †))2

]
− 1

q

)
(A44)

=
q

q − 1
Tr

[
S N2

(
I + S
q(q + 1)

)]
− 1

q − 1
(A45)

=
Y2 + µ− 1

q2 − 1
, implying (A46)

Y2 = (q2 − 1)u+ 1− µ. (A47)

Thus, the transfer matrices are as follows:

N (1)(N ) =

[
1 γ1

0 1− γ1

]
, (A48)

where γ1 = qr/(q − 1).

With two-copy noise, we have instead

N (2)(N ) =

[
1− δ2 γ2

δ2 1− γ2

]
, (A49)
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FIG. 7: Fidelity and XEB in 1D circuits with N = 40 qubits and Haar-random gates, for various values of the
noise rate ε (see color code in (a)), plotted against rescaled circuit depth. (a) Fidelity F curves collapse onto the
global-white noise prediction (1− ε)Nd until saturating at q−N . (b) Unnormalized XEB χ. For low noise εN . 0.22,
the XEB decay rate matches that of fidelity. (c) Decay rate of the XEB. For εN & 0.22, the decay rate saturates to
a εN -independent constant.

where

δ2 =
µ

q(q2 − 1)
, (A50)

γ2 = 1− u+
µ

q2 − 1
. (A51)

Appendix B: Purity and collision probabilities for
noisy circuits

In this Appendix, we consider second-moment proper-
ties of the density matrix in which both copies experience
noise. As such, we no longer have the liberty to only con-
sider the infidelity γ of the noise channel N .

The averaged purity of the noisy evolution has the
same form as fidelity except both copies of the circuit
are evolved with the noisy evolution:

P (N ) = EU Tr(ρU(N )ρU(N ))

= EU Tr
(
S⊗N ρU(N )⊗ ρU(N )

)
. (B1)

Similarly, the collision probability of the noisy circuit
has the same form as the linear cross entropy benchmark
except both copies are evolved with the noisy evolution:

Z(N ) = EU

∑
x

〈x| ρU(N ) |x〉 〈x| ρU(N ) |x〉

= EU Tr
(
P⊗N ρU(N )⊗ ρU(N )

)
. (B2)

When both copies of the density matrix experience
noise, the update rules for noise take the form of a
Markov matrix N (2):

N (2) =

[
1− δ2 γ2

δ2 1− γ2

]
. (B3)

Derivations of formulas for γ2 and δ2 are shown in Ap-
pendix A.

For unital noise, δ2 = 0, and thus N (2) has the same
form as N(γ) considered throughout the paper. In this

case, the update rules for computing purity and the col-
lision probability are identical to those of computing fi-
delity and the linear XEB, but with γ2 in place of γ:

P (γ2, δ2 = 0) = F (γ = γ2), (B4)

Z(γ2, δ2 = 0) = X(γ = γ2). (B5)

Thus, the phase transition described above for XEB can
be seen additionally in the collision probability of noisy
circuits with unital noise.

However, realistic digital quantum devices experience
non-unital noise. Non-zero δ2 dramatically changes
the physics of the statistical model, as the maximally
mixed density matrix is no longer the equilibrium state
reached at large depths. We leave further considerations
of non-unital noise to future work.

Appendix C: Additional numerical data

In Fig. 7, we illustrate that, like the all-to-all circuits,
one dimensional circuits show fidelity that decays like
(1 − ε)Nd for nearly all depths before saturation, while
the XEB decay rate goes through a transition. The cor-
responding decay rate of XEB is shown in Fig. 3(c) to
match the leading eigenvalue Λ1 of the transfer matrix
and to experience a kink at the eigenvalue crossing, just
as in the all-to-all circuit. Thus, we see that the same
phenomenology that describes the all-to-all circuit ap-
pears in the 1D circuit.

While the fidelity decays like (1 − ε)N until satura-
tion at q−N , we can additionally study the shifted-and-
rescaled fidelity f = qNF−1. By subtracting off the satu-
ration value, we see in Fig. 8, at sufficiently large depths,
the (1−ε)N decay is dominated by an N -independent de-
cay. This confirms that the coupling constants between
fidelity and locally-gapped eigenvectors is non-zero.
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3εd.
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