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André Eckardt3, Brice Bakkali-Hassani1, and Markus Greiner1∗
1Department of Physics, Harvard University, Cambridge, MA 02138, USA

2Joint Quantum Institute and Joint Center for Quantum Information and Computer Science,
NIST/University of Maryland, College Park, MD 20742, USA

3Institut für Theoretische Physik, Technische Universität Berlin, Berlin 10623, Germany
(Dated: June 5, 2023)

Low-dimensional quantum systems can host anyons, particles with exchange statistics that are
neither bosonic nor fermionic. Despite indications of a wealth of exotic phenomena, the physics of
anyons in one dimension (1D) remains largely unexplored. Here, we realize Abelian anyons in 1D
with arbitrary exchange statistics using ultracold atoms in an optical lattice, where we engineer the
statistical phase via a density-dependent Peierls phase. We explore the dynamical behavior of two
anyons undergoing quantum walks, and observe the anyonic Hanbury Brown-Twiss effect, as well
as the formation of bound states without on-site interactions. Once interactions are introduced,
we observe spatially asymmetric transport in contrast to the symmetric dynamics of bosons and
fermions. Our work forms the foundation for exploring the many-body behavior of 1D anyons.

I. INTRODUCTION

In three dimensions, quantum theory admits two types
of particles, bosons and fermions, depending on whether
the many-body wavefunction acquires a phase θ of 0
(bosons) or π (fermions) when two indistinguishable par-
ticles exchange positions. In practice, this means bosons
prefer to occupy the same quantum state, such as pho-
tons in a laser or atoms forming a Bose-Einstein conden-
sate, while fermions obey the Pauli exclusion principle,
such as electrons occupying different orbitals to produce
elements in the periodic table. When dimensions are re-
duced to two or lower, the exchange phase θ can interpo-
late between the bosonic and fermionic limits, leading to
fractional statistics (Fig. 1A) [1–3]. Particles with such
an exchange phase are called anyons because they can
acquire any phase [2].
Typically known in two dimensions (2D), anyons have

gained immense interest in the contexts of fractional
quantum Hall states, where they arise as quasiparticle ex-
citations [4–7], and fault-tolerant quantum computation,
where they serve as a key building block [8–12]. In one
dimension (1D), the existence of anyons was established
when theoretical and experimental work showed spinon
excitations in a Heisenberg antiferromagnetic chain obey
a fractional exclusion principle [13–15]. Models of 1D
systems with fractional statistics have been proposed in
the continuum [16–18] and on a discrete lattice [19]. In
this work, we focus on the lattice model, which indicates
a wealth of exotic phenomena, including asymmetric mo-
mentum distributions [20–22], the continuous buildup of
Friedel oscillations with increasing θ [23, 24], a Mott insu-
lator to superfluid phase transition induced by statistical
parameter θ [19], and a novel two-component superfluid
phase [25, 26]. Despite these intriguing prospects, the

∗ mgreiner@g.harvard.edu

physics of 1D anyons remains largely unexplored in ex-
periment [27–29].
Here, we realize Abelian anyons in 1D with arbitrary

statistical phase using ultracold 87Rb atoms in an op-
tical lattice. We leverage the precision and control of
a quantum gas microscope [30] to imprint the statisti-
cal phase in a deterministic way and explore dynamical
behavior via two-particle quantum walks [31, 32]. The
system is governed by the anyon-Hubbard model (AHM)
[19], which we realize by engineering an equivalent model,
the Bose-Hubbard model (BHM) with density-dependent
phase [33–35],

H = −J
∑

j

(

b†je
−injθbj−1 + h.c.

)

+
U

2

∑

j

nj(nj − 1),

(1)

where b†j (bj) is the bosonic creation (annihilation) oper-

ator, nj = b†jbj is the particle number operator, J is the
tunneling amplitude between neighboring sites, U is the
on-site, pairwise repulsive interaction energy, and−njθ is
the density-dependent Peierls phase acquired upon tun-
neling right from site j − 1 to site j. Note that the
density-dependent phase acquired upon tunneling left,
encapsulated in the Hermitian conjugate, is njθ; hence
this model breaks spatial inversion symmetry, a property
associated with fractional statistics [36]. The BHM with
density-dependent phase can be mapped to the AHM by
a generalized Jordan-Wigner transformation [19, 37].
We can gain intuition for anyons in 1D lattices by rec-

ognizing similarities with their 2D counterparts. Anyons
in 1D can be considered as bosons that create a gauge
potential in the form of the density-dependent Peierls
phase for other particles, analogous to the charge-flux
tube composites that exemplify anyons in the 2D theory
[3]. As a result, two particles can traverse through states
forming a closed loop in Fock space and acquire a phase
θ corresponding to a geometric phase (Fig. 1B). This pro-
cess offers an analogy to braiding in 2D, where tunneling
right (left) through an occupied site, which exchanges po-
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FIG. 1. Realization of anyons in 1D. (A) Abelian anyons have an exchange phase that interpolates between 0 (bosons)
and π (fermions). (B) In 1D, the wavefunction acquires phase −θ (θ) when a particle tunnels right (left) through an occupied
site, analogous to clockwise (counter-clockwise) exchange in 2D. (C) We realize the anyon-Hubbard model (AHM) in a tilted
optical lattice with energy offset E per site to suppress tunneling, then induce tunneling by modulating the lattice depth with
three frequency (3-tone) components, each with amplitude δV : E to tunnel from a singly-occupied to an empty site, E + U0

to tunnel from a singly-occupied to a singly-occupied site, and E − U0 to tunnel from a doubly-occupied to an empty site,
where U0 is on-site interaction in the initial Hamiltonian [37]. Offsetting the phase of component E + U0 by θ realizes the
density-dependent Peierls phase. Insets: 3-tone modulation in frequency (top) and time (bottom), the grey line is the sum of
the three components. (D) Experimental sequence: (1-2) initialize two columns of atoms from a Mott insulator of 87Rb; (3)
tilt the lattice, then lower its depth Vx to prepare for modulation-induced tunneling; (4) abruptly apply 3-tone modulation to
induce several independent quantum walks along x; (5) project to the number basis and perform fluorescence imaging [37].

sitions between particles and aquires phase −θ (θ), cor-
responds to clockwise (counter-clockwise) exchange.

II. EXPERIMENTAL PROTOCOL

We realize the BHM with density-dependent phase
via Floquet engineering by modulating a tilted lattice
with three frequency (3-tone) components to induce
occupation-dependent tunneling processes (Fig. 1C) [38].
Specifically, a magnetic field gradient produces an en-
ergy offset E between lattice sites to suppress tunneling,
then tunneling is reintroduced by modulating the lattice
depth with three frequencies, each with amplitude δV :
(1) E to tunnel from a singly-occupied site to an empty
site, (2) E + U0 to tunnel from a singly-occupied site to
a singly-occupied site, and (3) E − U0 to tunnel from a
doubly-occupied site to an empty site, where U0 is the

interaction energy in the initial Hamiltonian [37]. The
amplitude of modulation δV determines J , and offset-
ting the phase of frequency component E+U0 by θ from
components E and E−U0 realizes the density-dependent
phase and therefore the statistical parameter. Modulat-
ing the lattice with these frequencies, which are resonant
with parameters of the initial Hamiltonian, realizes the
BHM with density-dependent phase corresponding to the
non-interacting AHM. We can engineer an effective on-
site interaction U in the AHM by detuning the sidebands
to become E − (U0 − U) and E + (U0 − U) [38].

For the experiments that follow, we employ the single-
site control of our quantum gas microscope to study the
dynamics of two anyons undergoing quantum walks, with
and without interaction U in the AHM. Using a digi-
tal micromirror device [39], we initialize two columns of
atoms along y in a deep optical lattice with Vx = Vy =
45ER, where ER = h×1.24 kHz for our lattice constant of
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FIG. 2. Quantum walks of two anyons, U = 0. (A) Density profile of two-particle quantum walks for various θ, each
obtained by averaging over ∼ 1800 experimental runs. Good agreement with theory shows coherence up to our experiment
time t ≈ 4τ (in units of inverse tunneling time τ = 15.0(3) ms) across ∼ 20 sites. (B) Density-density correlator Γi,j at
t = 2.40(5)τ . When θ = 0, bosonic bunching appears as weights along the diagonal i = j. When θ = π, anti-bunching behavior
of pseudo-fermions appears as weights along the anti-diagonal i = −j. When θ = π/2, Γi,j reveals fractional statistics, showing
both strong diagonal weights and the onset of fermionization.

a = 680 nm and h = 2π~ is Planck’s constant, in prepa-
ration for several independent quantum walks of two par-
ticles along x (Fig. 1D). We ramp a magnetic field gradi-
ent to offset lattice sites by E, then lower Vx to 4ER and
abruptly turn on 3-tone modulation with δV = 20%×Vx
to induce quantum walks along x. The parameters for
the experiments are J/h = 10.6(2) Hz, U0/h = 210(4)
Hz, and E/h = 800(3) Hz, and we measure time in units
of inverse tunneling rate τ = h/(2πJ) = 15.0(3) ms. We
detect doubly-occupied sites by ramping the magnetic
field gradient past U0 to separate atoms before imaging
for half of each data set, circumventing pairwise loss of
atoms due to light-assisted collisions [37].

III. EXPERIMENTAL RESULTS

We first study anyonic behavior by measuring the
quantum correlations of two particles simultaneously un-
dergoing quantum walks when U = 0. The quantum
walk of two particles is sensitive to quantum statistics
due to the Hanbury Brown-Twiss effect, where all two-
particle processes add coherently to develop quantum
correlations [27, 32, 40–42]. Initializing the state as

b†0b
†
1|0〉 = |...0110...〉, we capture the trajectory by evolv-

ing the system for successively longer periods of time be-
fore imaging and average over many images to obtain the
probability distribution of the two particles (Fig. 2A). We
capture the quantum walk trajectory for various θ and
characterize quantum statistics using the density-density

correlator Γi,j = 〈b†jb
†
ibibj〉 (Fig. 2B). When θ = 0,

bosonic bunching appears as weights along or near the
diagonal i = j of the correlation matrix Γi,j [32], consis-
tent with Bose-Einstein statistics. When θ = π, weights
appear along or near the anti-diagonal i = −j, indicating
anti-bunching behavior emblematic of fermions. Weights
appear along the diagonal i = j because bosons now be-
have as pseudo-fermions, which do not obey the Pauli
principle on-site, acting as fermions off-site and bosons
on-site [19]. Therefore, their spatial correlations differ
from those of true fermions, but nonetheless show the
essential trait of anti-bunching. Finally, for fractional
phase θ = π/2, the correlation matrix Γi,j shows inter-
mediate levels of bunching and anti-bunching to reveal
fractional statistics; strong weights appear along the di-
agonal while off-diagonal weights indicate the onset of
fermionization. Good agreement with theory shows the
system maintains coherence up to our experiment time
of t ≈ 4τ across ∼ 20 sites. Unless otherwise noted, all
theoretical predictions were obtained ab initio using ex-
act diagonalization of the BHM with density-dependent
phase, with Hubbard parameters determined from the
calibrated value of effective tunneling J .
A bimodal structure emerges in the density profiles,

with an internal cone that narrows as θ increases from 0
to π amidst a background density. We can understand
this structure by appealing to an interferometric interpre-
tation of Fock state evolution (Fig. 3A). Our initial state
(|...0110...〉), the source, splits into upper (|...0020...〉)
and lower (|...0101...〉) arms to interfere at the final state
(|...0011...〉), a process that corresponds to both atoms
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tunneling one site right after short time evolution t < τ .
When θ = 0, the two arms constructively interfere to
arrive at the final state with enhanced probability, but
when θ = π, the two arms destructively interfere, reduc-
ing the path to the final state, and the system is more
likely to remain in the initial state. The same picture ap-
plies for tunneling leftward, hence as θ increases from 0 to
π, atoms are less likely to delocalize, forming the strong
density pattern in the center in the pseudo-fermion limit.
Importantly, because the states comprising the interfer-
ometer are the same as those in the loop in Fock space de-
scribing particle exchange (Fig. 1B), interference between
the two arms directly reflects anyonic exchange statis-
tics. We measure the Fock state distribution at short
time t = 0.70(2)τ and observe that the proportion Pright

of experimental runs in state |...0011...〉 decreases as θ
changes from 0 to ±π, as explained by the development of
destructive interference in the interferometric picture of
Fock state evolution (Fig. 3B). Since the same interfero-
metric picture applies for tunneling leftward, the propor-
tion Pleft of experimental runs in |...1100...〉 at t < τ is ap-
proximately equal to Pright, also decreasing as θ changes
from 0 to ±π due to destructive interference.

The narrowing internal cone in the density profiles
indicates the formation of bound states as θ increases
from 0 to π even in the absence of on-site interac-
tion U [43–45]. This phenomenon occurs because the
density-dependent gauge field mediates interactions be-
tween bosons [26, 38, 46]. Theoretically, the two-particle
spectrum of the AHM with U = 0 consists of a continuum
of scattering states surrounded by two branches of bound
states for θ 6= 0, an upper branch with energy Eq > 0
and lower branch with Eq < 0, where q is the center-
of-mass quasimomentum (Fig. 4A). Each branch shows a
preferred direction of propagation, given by the sign of
the group velocity dEq/dq. Our initial state |...0110...〉
projects onto both branches of bound states with equal
weight and onto scattering states; therefore, the internal
cone in the density profiles appears symmetric about the
center [37].

We distinguish the formation of bound pairs from scat-
tering states by analyzing the spreading velocities of the
two wavefunction components. First, we characterize the
two distinct dynamics by conditioning the density pro-
files in Fig. 2 on the relative distance d between the par-
ticles, analyzing separately the spatial distributions of
near (d ≤ 2 sites) and distant (d > 2 sites) particles
(Fig. 4B); for analyses conditioned on different relative
distances, which show similar behavior, see [37]. Then,
we determine the root mean square (RMS) size of each
component as a function of time (Fig. 4C) and perform
a linear fit to extract the spreading velocities vd≤2 and
vd>2 (Fig. 4D, inset). We see vd>2 is approximately in-
dependent of θ as expected for scattering states, whereas
vd≤2 strongly decreases as θ increases from 0 to π. This
behavior is consistent with the narrowing internal cone
in the density profiles and the decreasing group velocity
dEq/dq in the two-particle spectrum as θ increases from
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FIG. 3. Interferometric picture of Fock state evolu-

tion. (A) We can understand the effect of the statistical
phase θ on tunneling processes by appealing to an interfero-
metric interpretation of Fock state evolution. The initial state
(|...0110...〉) splits into two arms, acquiring phase −θ in the
upper arm (|...0020...〉) before interfering with the lower arm
(|...0101...〉) to arrive at the final state (|...0011...〉). (B) Prob-
ability Pright of occupation of |...0011...〉, corresponding to
both atoms having tunneled one site right, after t = 0.70(2)τ
as a function of θ. The same relation holds for Pleft, the proba-
bility for both atoms to tunnel one site left after t = 0.70(2)τ .
Decrease in probability as θ approaches ±π can be understood
as development of destructive interference between paths in
Fock space, maximally cancelling when θ = ±π to localize
atoms on their initial sites. Solid line shows prediction from
theory. Errorbars denote the s.e.m.

0 to π. Note that we systematically extract a slightly
reduced velocity compared to theory due to error in cal-
ibrating site offset E, which results in a residual tilt in
the effective model [37]. Therefore, we characterize the
formation of bound pairs with the ratio vd≤2/vd>2, a
quantity more robust to a residual tilt (Fig. 4D). Data
points at θ = π/4, 3π/4 correspond to the analysis of
density profiles of two-particle quantum walks subject to
these phases [37]. Good agreement with theory further
demonstrates our measurements show the existence of
bound pairs in the absence of on-site interactions.
A defining characteristic of 1D anyons is spatially

asymmetric transport when interactions are present be-
cause the AHM is not inversion symmetric [47]. Inver-
sion symmetry is broken because phase−θ (θ) is acquired
when a particle tunnels right (left) through an occupied
site, a property that becomes apparent in the density
profile of anyonic quantum walks when U 6= 0 [47]. This
can be understood by referring to the interferometric pic-
ture of Fock states at short time t < τ (Fig. 5B). Phases
acquired in the upper arms |...0200...〉 and |...0020...〉 are
now respectively θ−Ut′/~ and −θ−Ut′/~, where t′ = t/3
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prediction, with shaded region corresponding to uncertainty in tilt calibration [37]. Inset: Spreading velocities vd≤2, vd>2 as a
function of θ. Errorbars denote the s.e.m.

[37], which for θ = 0 or π, result in equal probability to
arrive at final states |...1100...〉 and |...0011...〉. When
θ is fractional, the probabilities to arrive at final states
|...1100...〉 and |...0011...〉 are not equal, with preference
to tunnel in a particular direction. This picture also ex-
plains when the sign of θ or U changes, so does the di-
rection of transport.

Introducing an effective on-site interaction in our
scheme amounts to detuning the sidebands E − U0 and
E + U0 by U (Fig. 5A), which, when present, leads to
asymmetric transport in the density profile of two anyons
undergoing quantum walks (Fig. 5C). The density profile
shows transport toward the right when θ = −π/2 and
U = 1.9(4)J , with Γi,j at t = 2.40(5)τ showing corre-
lations with the right half of the quantum walk. For
opposite phase θ = π/2, the direction of transport is now
toward the left, corresponding to a reversal of phases ac-
cumulated in the left and right upper arms of the inter-
ferometer. We quantify the asymmetry of transport by
the difference in atom number between the right and left
halves of the quantum walk, ∆n =

∑

i>0〈ni〉−
∑

i≤0〈ni〉,
after some time evolution. At constant U , we see trans-
port is asymmetric for fractional θ and changes direc-
tion as θ reverses sign (Fig. 5D). When θ = 0 or π, we
measure ∆n ≈ 0, consistent with the symmetric density
profiles of bosons and pseudo-fermions. At constant frac-
tional θ, the direction of transport changes with the sign
of U (Fig. 5E), behavior inherent only to anyons, as ex-
pansion dynamics of bosons and fermions are identical
for ±U [48–50]. General agreement with theory shows

interactions can be engineered across a broad range,
−6J < U < 6J , with deviations appearing when U < 0
due to Floquet heating [37].

IV. DISCUSSION

In summary, we engineer a density-dependent Peierls
phase to realize 1D anyons with tunable exchange phase
and reveal fractional statistics in the Hanbury Brown-
Twiss effect of two-anyon quantum walks. We show this
density-dependent phase, a form of interaction, is the
mechanism behind the formation of bound states even
in the absence of on-site interactions. Then, once we
introduce on-site interactions, the breaking of inversion
symmetry, a property associated with fractional statis-
tics, becomes apparent in the density profiles due to the
interplay between the density-dependent phase and on-
site interactions.
The 3-tone Floquet scheme that realizes the AHM ex-

pands existing capabilities of Hamiltonian engineering,
enabling control of U without Feshbach resonances and
the simulation of a broad class of Hubbard models due to
the ability to independently control J , U , and θ. Floquet
engineering with ultracold atoms is generally a challenge,
requiring cancellation of coupling to dissipative modes
[51] or an optimal balance between driving parameters
and coherence time of the system [52]. Yet our post-
selection rate remains relatively high at ∼ 60% at the
end of a typical experiment lasting t ≈ 4τ despite the
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number of modulation components [37]. It would there-
fore be viable to expand the scheme, such as by increasing
the number of modulation components or by dynamically
changing effective Hubbard parameters.

The many-body behavior of an ensemble of 1D anyons
is a promising direction for future study. For example,
the bound states we observe play a crucial role in the
emergence of a novel superfluid in the AHM, known as
the partially paired phase, that consists of both paired
and unpaired components [25, 26]. This phase, as well

as other exotic phenomena [19, 23], may be reached by
adiabatically ramping Floquet parameters to connect to
a target state. Our quantum gas microscope is also well-
suited for the microscopic study of entanglement proper-
ties of 1D anyons [53]. Finally, ultracold atoms may offer
a route to engineering non-Abelian anyons such as those
in the 1D wire construction for topological quantum com-
putation [54], as suggested by similarities between the
AHM and quasi-1D systems hosting non-Abelian anyons
[47], while other approaches include introducing three-
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body hard-core interactions [17] and controlling anyonic
excitations in the Pfaffian state [55–57].
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[23] C. Sträter, S. C. L. Srivastava, and A. Eckardt, Phys.
Rev. Lett. 117, 205303 (2016).

[24] L. Yuan, M. Xiao, S. Xu, and S. Fan, Phys. Rev. A 96,
043864 (2017).

[25] S. Greschner and L. Santos, Phys. Rev. Lett. 115, 053002
(2015).

[26] W. Zhang, S. Greschner, E. Fan, T. C. Scott, and
Y. Zhang, Phys. Rev. A 95, 053614 (2017).

[27] L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni,
A. Crespi, R. Ramponi, and R. Osellame, Phys. Rev.
Lett. 108, 010502 (2012).

[28] J. C. F. Matthews, K. Poulios, J. D. A. Meinecke,
A. Politi, A. Peruzzo, N. Ismail, K. Wörhoff, M. G.
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SUPPLEMENTARY MATERIALS

Materials and Methods

Generalized Jordan-Wigner transformation

There is an exact correspondence [19] between the
Bose-Hubbard model (BHM) with density-dependent
phase H and the anyon-Hubbard model (AHM)

HA = −J
∑

j

(

a†jaj−1 + h.c.
)

+
U

2

∑

j

nj (nj − 1) , (2)

describing lattice anyons characterized by creation (an-

nihilation) operators a†j (aj) that satisfy the algebra

aja
†
k − e−iθσ(j−k)a†kaj = δjk (3)

ajak − eiθσ(j−k)akaj = 0 (4)

a†ja
†
k − eiθσ(j−k)a†ka

†
j = 0. (5)

In these expressions, θ is the exchange phase of two parti-
cles, and σ is the sign function σ(j−k) = +1, −1, 0 when
j > k, j < k, j = k, respectively. Following Ref. [19], we
introduce the generalized Jordan-Wigner transformation

bj = aje
−iθ

∑
k>j

nk , (6)

which generates operators bj that satisfy bosonic commu-

tation relations: bjb
†
k − b†kbj = δjk, bjbk − bkbj = 0. Note

that the number operators nj = a†jaj = b†jbj are left

unchanged under this transformation. In terms of the
bosonic operators bj , the AHM HA immediately rewrites
as Eq. (1) of the main text, the BHM with density-
dependent phase.

Engineering the effective Hamiltonian We real-
ize the BHM with density-dependent phase by modulat-
ing the lattice depth, a technique based on Floquet engi-
neering [52, 58, 59]. Following the derivation for fermions
in Ref. [60], we derive the time-dependent Hamiltonian
that effectively realizes Eq. (1) of the main text, the BHM
with density-dependent phase. In this section, we set the
reduced Planck constant ~ = 1. Starting from the BHM
with site offset E, we have

Hinit = −J0
∑

j

(

b†jbj−1 + h.c.
)

+
U0

2

∑

j

nj(nj − 1) + E
∑

j

jnj , (7)

where b†j (bj) is the bosonic creation (annihilation) op-
erator, J0 is the tunneling amplitude between nearest
neighbors, U0 is the on-site, pairwise repulsive interaction

energy, and nj = b†jbj is the particle number operator.

Defining Hint = 1/2
∑

j nj(nj − 1) and Htilt =
∑

j jnj ,
we perform the unitary transformation to a rotating
frame of reference via U = eit[(U0−U)Hint+EHtilt], where U
is the detuning that corresponds to the effective on-site
interaction energy. In this rotating frame, the the system
is described by the Hamiltonian H̃ = UHinitU† + iU̇U†,

H̃ = −J0 eit[(U0−U)Hint+EHtilt]





∑

j

b†jbj−1 + h.c.



 e−it[(U0−U)Hint+EHtilt] + UHint (8)

= −J0
∑

j

∏

k=j−1,j

eit[Eknk+
U0−U

2
nk(nk−1)]

(

b†jbj−1 + h.c.
)

∏

k′=j−1,j

e−it[Ek′nk′+
U0−U

2
nk′ (nk′−1)] + UHint (9)

= −J0
∑

j

(

b†je
it[E+(U0−U)(nj−nj−1)]bj−1 + h.c.

)

+ UHint. (10)

Modulating the lattice depth V0 with amplitude δV ≪
V0, V (t) = V0 + δV (t) has a proportional effect on the
tunneling energy, such that J(t) = J0 + δJ(t) [38]. In
a tilted lattice with site offset E and interaction U0, the
energy gaps are E, E+U0, and E−U0 for maximum par-
ticle number nj,max = 2 on site j [61]. These gaps can
be overcome by modulating the lattice depth at these
frequencies with amplitude δV ≪ V0, such that the tun-

neling energy becomes

J(t) = J0 +

3
∑

s=1

δJs cos(ωst+ θs) (11)

= J0 +

3
∑

s=1

δJs
2

(

ei(ωst+θs) + e−i(ωst+θs)
)

, (12)

where ωs is the frequency and θs is the phase of compo-
nent s. We substitute J(t) into H̃ to obtain
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H̃ = −J0
∑

j

(

b†je
it[E+(U0−U)(nj−nj−1)]bj−1 + h.c.

)

−
3

∑

s=1

δJs
2

∑

j

(

b†je
it[E+(U0−U)(nj−nj−1)−ωs]−iθsbj−1 + h.c.

)

+
U

2

∑

j

nj(nj − 1). (13)

If we choose the three driving frequencies to be ω1 = E,
ω2 = E − (U0 − U), ω3 = E + (U0 − U), the phases
associated with the tunneling processes proportional to
δJs become time-independent for the targeted density-
dependent processes depicted in Fig. 1C of the main
text. For all other tunneling processes, and in partic-
ular those proportional to J0, the tunneling matrix el-
ements average out over time and can therefore be ne-
glected. This rotating-wave approximation is valid as
long as J0 ≪ E, |E ± (U0 − U)|. For the targeted pro-
cesses, the tunneling energy J in the effective Hamilto-
nian is given by δJs/2, which we choose to be equal, while
the Peierls phases of the effective tunneling matrix ele-
ments directly correspond to driving phases θs, which are
chosen as depicted in Fig. 1C. In this way, the system is
described by the time-independent Hamiltonian Eq. (1)
of the main text.

The effective on-site interaction energy U is a variable
determined by the detuning of ω2 and ω3 with respect to
E ± U0. For example, ω2 = E −U0 and ω3 = E +U0 re-
alizes the non-interacting BHM with density-dependent
phase; ω2 = E − (U0 − U) and ω3 = E + (U0 − U)
introduces a repulsive on-site U in the effective Hamil-
tonian. Note that although the modulation frequencies
correspond to the energy gaps for nj,max = 2, they can in-
duce further processes involving three or more particles.
These processes, however, do not apply to our system of
two particles and are generally negligible at low filling
[23].

State initialization The experiments begin with a
two-dimensional Mott insulator at unity-filling of 87Rb
in a deep optical lattice (a = 680 nm) with Vx = Vy =
45ER, where ER = h×1.24 kHz is the recoil energy. The
initial state is prepared by holographically shaping a laser
beam at 760 nm with a digital micromirror device (DMD)
in the Fourier plane with respect to the atoms. This
DMD allows us to project arbitrary potentials with sin-
gle lattice site resolution through our diffraction-limited
microscope objective [30], and correct for optical wave-
front aberrations in the imaging system [39]. To prepare
the initial state, we use the DMD to optically confine
two adjacent columns of atoms along y in the unity-filling
shell of the Mott insulator, then reduce Vx before eject-
ing atoms outside the confinement by projecting a Gaus-
sian repulsive potential. After atoms outside the con-
finement have been removed, we increase the lattice back
to Vx = 45ER and turn off the confining potential pro-
jected by the DMD. We therefore prepare two columns

of atoms along y ready to undergo independent quantum
walks along x, induced by decreasing Vx while keeping
Vy = 45ER. We realize ∼ 8–12 independent quantum
walks in decoupled tubes in each experimental run.
Bose-Hubbard parameters The magnetic field

gradient E per lattice site and interaction energy U0 can
be simultaneously calibrated using a spectroscopic tech-
nique of modulating the lattice depth across a frequency
range [61]. Starting with a Mott insulator, we apply a
magnetic field gradient E per lattice site, lower the lat-
tice depth along x to Vx = 4ER, the lattice depth used
for the quantum walks, and modulate the lattice depth
across a frequency range that includes E−U0 and E+U0.
Resonances occur at E−U0 and E+U0, when atoms can
tunnel to occupied sites, and manifest as decreased prob-
ability of singly-occupied sites in fluorescence images due
to parity projection.
We calibrate tunneling energy J by performing single-

particle quantum walks in the effective Hamiltonian.
Similar to state initialization for two-particle quantum
walks, we prepare a single column of atoms along y in
a deep optical lattice and apply site offset E. Then we
lower Vx to 4ER and modulate the lattice depth at fre-
quency E′ by 20% to induce quantum walks along x for
various times, averaging over many experimental runs to
obtain a density profile to which we fit the distribution
from theory [62],

ρ|i|(t) =

∣

∣

∣

∣

Ji

(

4J

∆
sin(π∆t)

)∣

∣

∣

∣

2

, (14)

where Ji is a Bessel function of the first kind on lattice
site i and ∆ = E′ −E is the local gradient. This fit also
allows us to determine any mismatch between E and E′,
which leads to Bloch oscillations.
Optimal Floquet parameters Realizing the effec-

tive Hamiltonian via Floquet engineering, which in our
case is lattice depth modulation, requires fulfillment of a
few conditions: frequency of modulation fmod should be
low enough not to excite the system to higher bands, but
high enough to be well separated from the low energy
scale of the effective and initial Hamiltonians [63, 64].
For our system, the regime that meets these conditions
is U0/h < fmod < fmax, where fmax ≈ 1 kHz, determined
from bandgap calculations and consistent with results in
Ref. [63].
Given these conditions, we attribute deviations from

theory in Fig. 5 when U < 0 to Floquet heat-
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ing and imperfect realization of the effective Hamil-
tonian. Introducing U < 0 corresponds to detuning
the sidebands such that [E − (U0 − U)] /h → U0/h and
[E + (U0 − U)] /h → fmax. We see the upper sideband
approaches the high frequency limit, leading to exci-
tations to higher bands, while the lower sideband ap-
proaches the low frequency limit, reducing viability of
the rotating-wave approximation. In addition, heating
rates can increase with driving strength [63]. For us, the
optimal driving strength is modulating the lattice depth
by 20% of Vx = 4ER, which allows for dynamics to occur
within the coherence time of the system while minimizing
heating.

Post-selection When operating within these
regimes, the post-selection rate, defined as the propor-
tion of experimental runs with two particles, decreases
as time evolves. For a typical two-particle quantum
walk with U = 0, the post-selection rate is ∼ 95% at
t = 0, decreasing to ∼ 60% at t ≈ 4τ , where τ = 15.0(3)
ms (Fig. S1). As U is detuned from ∼ 6J to ∼ −6J ,
corresponding to the sidebands approaching the limits of
the optimal Floquet regime, [E − (U0 − U)] /h → U0/h
and [E + (U0 − U)] /h → fmax, post-selection decreases
from ∼ 80% when U ≈ 6J to ∼ 50% when U ≈ −6J at
t = 2.40(5)τ .

Coherence time We determine the coherence time
of the system subject to lattice-depth modulation by per-
forming modulation-induced Bloch oscillations of a sin-
gle atom (Fig. S2). In a tilted lattice with energy off-
set E/h = 800(2) Hz, we modulate the lattice depth
Vx = 4ER by 20% with frequency ω1 = 2π · 780 Hz
to restore tunneling, leaving a residual energy offset
E′/h = 20(2) Hz that induces Bloch oscillations. Fit-
ting the density of the initial site, where revivals occur,
to a damped oscillator function, we obtain a 1/e-lifetime
of τ3-tone = 0.44(5) s.

Data analysis Light-assisted collisions prevent us
from directly detecting doubly-occupied sites (“parity
projection”) to obtain diagonal elements Γi,i of the two-
particle correlator [30]. We circumvent this limitation
using a technique described in Ref. [32] that splits pairs
of atoms before imaging. At the end of time evolution
for the quantum walks, we raise the lattice depth from
Vx = 4ER to Vx = 15ER and adiabatically decrease the
magnetic field gradient from E ≈ 4U0 to E ≈ 0.5U0

in 250 ms, passing the U0 resonance at which doubly-
occupied sites are converted to atoms on neighboring
sites and vice versa (|...20...〉 ⇔ |...11...〉) with ∼ 90%
fidelity. This procedure amounts to mapping Γi,i+1 to
Γi,i. We perform this detection scheme for half the data
set to obtain Γi,i and obtain Γi,i+1 directly from the im-
ages in the other half. The full correlator Γi,j is obtained
by combining the two halves weighted by the number of
post-selected realizations.

Fock state populations at short times We follow
Ref. [47] to determine the populations of states |...1100...〉
and |...0011...〉 after a short time evolution t, when start-
ing from the initial state |...0110...〉. For convenience,

we denote |+〉 = |...1100...〉, |−〉 = |...0011...〉 and |0〉 =
|...0110...〉 only in this section. Using a Taylor expan-
sion of the unitary time evolution operator Ut = e−iHt/~

about t = 0, we derive the transition amplitudes toward
the Fock states |±〉 up to third order in t,

a±(t) = 〈±|Ut|0〉 ≃
1

2

(

Jt

~

)2 [

1 + 2e±iθ

(

1− i
Ut

3~

)]

.

(15)
In the case U = 0, we obtain the analytical prediction

|a+(t)|2 = |a−(t)|2 = 1
4

(

Jt
~

)4
(5 + 4 cos θ), which is qual-

itatively consistent with Fig. 3B of the main text. When
U 6= 0, |a+(t)|2 6= |a−(t)|2, and we can rewrite Eq. (15)
as

a±(t) ≃
1

2

(

Jt

~

)2
(

1 + 2e±iθ−iUt
3~

)

, (16)

which is also correct up to third order in t. Importantly,
Eq. (16) allows us to interpret the introduction of on-site
interaction U as providing an additional phase −Ut′/~
with dwell time t′ = t/3 over the intermediate doubly-
occupied site in Fig. 5 of the main text.



4

A B

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

P
o

s
t-

s
e

le
c
ti
o

n
 r

a
te

U (J)

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

P
o

s
t-

s
e

le
c
ti
o

n
 r

a
te

Time t (�)

FIG. S1. Post-selection rate. (A) Post-selection rate for data in Fig. 2 of the main text, θ = π. It decreases with time,
signaling slow loss of coherence of the system, but remains reasonably high at ∼ 60% at the end of the experiment time t ≈ 4τ .
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the rotating-wave approximation. Error bars denote the s.e.m.
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time τ3-tone = 0.44(5) s. Error bars denote the s.e.m.
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Supplementary Text

Bound states In this section, we derive the solu-
tions for the two-body problem of the BHM with density-
dependent phase in an infinite 1D chain, and recall the
properties of bound states discussed in Refs. [26, 38, 46].
The eigenstates of the Hamiltonian can be expanded over
the Fock state basis |{nj}〉 with site label j ∈ Z, re-
stricted to

∑

j nj = 2 for the two-particle problem con-
sidered here. We use the translational invariance of the
BHM to express the eigenstates in terms of the center-
of-mass and relative positions. More specifically, we de-
note the two-particle Fock state |n,m〉, where n ∈ Z

is the position of the leftmost particle and n + m ∈ Z

is the position of the rightmost particle (we restrict
m ∈ N = {0, 1, 2, ...} to be non-negative to account for in-
distinguishability). Hence, we can expand any eigenstate
|Ψ〉 over this basis,

|Ψ〉 =
∑

n∈Z,m∈N

c̃nm |n,m〉, (17)

and impose |Ψ〉 to be an eigenstate of the translation
operator by one site, which amounts to expressing c̃nm
as

c̃nm = eiq(n+
m
2 )cm, (18)

where n+m
2 is the center-of-mass of the two particles and

q ∈ [0, 2π] is the corresponding quasimomentum (in units
of the inverse lattice constant). The unknown quantity
cm thus only depends on the relative position m. After

evaluating H|Ψ〉, where H is Eq. (1), we look for eigen-
states with energy Eq and derive the following linear sys-
tem for the coefficients cm:

(ǫ − u) c0 = −
√
2ρ c1, (19)

ǫ c1 = −
√
2ρ∗ c0 − c2, (20)

ǫ cm = − (cm−1 + cm+1) , m ≥ 2, (21)

where we introduced γ = 2J cos (q/2), ǫ = Eq/γ, u =

U/γ, ρ = 2J
[

ei(
q

2
−θ) + e−i q

2

]

/γ and ρ∗ its complex con-

jugate. Note that for generic θ, ρ is a complex number.
For θ = 0, ρ = 1 is real, while for θ = π, ρ = −i tan (q/2)
is imaginary. Our goal is to determine the solutions cm
that are physical. Note that Eq. (21) is a recurrence re-
lation whose characteristic polynomial is x2+ ǫx+1 = 0,
and is characterized by the quantity χ = ǫ2 − 4. A solu-
tion cm is found as a superposition of the two roots x±
of this polynomial. Hence, the system (19)-(21) has two
types of solutions:

– Scattering states made of two counter-propagating
plane waves (c0, {cm = λxm+ +µxm−}m≥1), that cor-
respond to χ ≤ 0 and that can be obtained for any
energy Eq within the continuum:

|Eq| ≤ 4J cos
(q

2

)

. (22)

– Bound states of the form (c0, {cm = xm±}m≥1) that
decay exponentially with distance and that corre-
spond to χ > 0. These bound states can be grouped
into two branches (±) lying above (resp. below)
the continuum. Their dispersion relation can be
obtained for arbitrary θ and U :

Eq,±/J = −
U
[

cos2 q
2 − cos2

(

q−θ
2

)]

∓ cos2
(

q−θ
2

)

√

U2 + 16
[

2 cos2
(

q−θ
2

)

− cos2 q
2

]

2 cos2
(

q−θ
2

)

− cos2 q
2

. (23)

In the case U = 0, this expression simplifies to

Eq,±/J = ±
4 cos2

(

q−θ
2

)

√

2 cos2
(

q−θ
2

)

− cos2 q
2

. (24)

Other related expressions for the bound pair dis-
persion relation can be found in Refs. [26, 46]. Note
that for certain values of (θ, U), these states do not
exist for arbitrary q but only in a restricted interval
of quasimomenta. The two branches are symmetric
(not symmetric) about Eq = 0 for U = 0 (U 6= 0).
The two branches are symmetric (not symmetric)
under q ↔ −q for θ = 0, π (0 < θ < π). The latter
effect comes from the lack of inversion symmetry

of the BHM with density-dependent phase for frac-
tional phase, see Fig. 4A of the main text.

Bound states in the expansion dynamics In our
experiments, we observe the expansion dynamics of the
initial state |Ψ0〉 = |...0110...〉. Such a spatially-localized
state projects onto all possible quasimomentum com-
ponents. Remarkably, the dispersion relation of bound
states found for U = 0 becomes flatter as θ grows from 0
to π so that the group velocity decreases, explaining the
slowing down of the expansion of nearby particles shown
in Fig. 4 of the main text. We perform numerical sim-
ulations to complement our analysis of the bound-state
dynamics in Fig. 4 of the main text, using a 1D chain of 80
sites with periodic boundary conditions, without on-site
interaction U and without residual tilt in the BHM with
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FIG. S3. Analysis of bound states in the AHM. Overlap
O between the initial state |...0110...〉 and bound states as a
function of θ, U = 0.

density-dependent phase. First, we compute the overlap
of the initial state |Ψ0〉 with the family of bound states
determined above via exact diagonalization. We define
the overlap between the initial state |Ψ0〉 and the bound
states as

O =
∑

ℓ∈Λ

|〈Φℓ|Ψ0〉|2 , (25)

where Λ is the set of indices labelling the bound eigen-
states |Φℓ〉. As shown in Fig. S3, overlap with bound
states is zero when θ = 0 (as there are no bound states
in this case) and rises to > 40% as θ grows to π.
Then, we show that conditioning the density profiles on

the relative distance dcut-off between the two particles ap-
proximately distinguishes the scattering and bound com-
ponents for our initial state |Ψ0〉. While these two com-
ponents cannot be prepared or detected separately in
our experiment, we show in Fig. S4A the expected dy-
namics of the bound (top row) and scattering (bottom
row) components for various statistical phases θ. These
are obtained by projecting the evolved quantum state
|ψ(t)〉 = e−iHt|Ψ0〉, where H is Eq. (1), onto the two cor-
responding Hilbert subspaces.
By fitting the evolution of the root-mean-square size

for both components, we extract the spreading veloc-
ities vB and vS for the bound and scattering compo-
nents, respectively. We show the ratio of these two veloc-
ities vB/vS in Fig. S4B (solid line), for statistical phases
θ > 0.1 π. When θ ≃ 0, we find that the bound com-
ponent vanishes almost completely, since our initial state
mostly projects onto scattering states at this value of θ
(Fig. S3). This component also gradually becomes more
spatially extended, which makes the analysis more sen-
sitive to finite-size effects. Fluctuations of the ratio of
spreading velocities vB/vS for θ > 0.1 π also indicate
finite-size effects. In a finite-size system, the available
quasimomenta q are discretized so that the number of
bound states entering the decomposition of |Ψ0〉 changes
by discrete steps as θ varies over [0, π]. We show in Fig. S4

the results of the analysis made in Fig. 4 of the main
text, for various cut-off distances dcut-off = 1, 2, 3 sites
(dashed lines). We find that the different curves show a
similar trend, which confirms the validity of the method
described in the main text and based on dcut-off = 2.

Next, we discuss the influence of each bound-state
branch on the evolution of the density profile. As shown
in Fig. 4A, for 0 < θ < π, the lower and upper branches
individually show a preferred direction of propagation,
given by the sign of the group velocity dEq/dq. Our ini-
tial state |Ψ0〉 projects onto scattering states and both
branches of bound states. Numerically, we find that for
each value of q, the bound states of the lower and the
upper branches contribute with equal weight and show
exactly opposite group velocities. Therefore, the inter-
nal cones in the density profiles of Fig. 4B of the main
text appear symmetric about the center. In Fig. S5B and
S5C, we show that each bound-state branch indeed shows
chiral propagation, as it corresponds to one edge of the
internal cone. Interestingly, the fact that the density pro-
file from our initial Fock state shows symmetric propaga-
tion can be related to a dynamical symmetry discussed
in Ref. [47].

Finally, we discuss how introducing on-site interaction
U affects the two-particle spectrum of the BHM with
density-dependent phase. In particular, the modified
spectrum is sufficient to explain qualitatively the emer-
gence of asymmetric transport in Fig. 5 of the main text,
and thus complements the interferometric picture devel-
oped in the main text. Numerically, we focus on the value
U = 3 J > 0, which describes well the data of Fig. 5, yet
our results remain qualitatively unchanged for other val-
ues of U . In Fig. S6A, we show the two-particle spectrum
Eq derived for an infinite chain. Compared to the spec-
trum plotted in Fig. 4A for the case U = 0, the lower
and upper bound-state branches are no longer symmet-
ric abount Eq = 0: the lower branch has a positive group
velocity dEq/dq, which is on average larger than for the
upper branch (in absolute value), and thus suggests right-
ward transport. Note that, contrary to the case U = 0
shown in Fig. 4A, there exist bound states – albeit only
in the upper branch (dark blue curve in Fig. S6A) – even
for θ = 0. In the case of large |U |, this branch is clearly
separated from the continuum and describes the disper-
sion relation of attractively- (repulsively-) bound pairs
when U < 0 (U > 0).

We further confirm the asymmetry in the group veloci-
ties by decomposing the two-particle quantum walks into
its various components for different values of θ, shown in
Fig. S6B. Next to the total density profile (first column),
we show the density profiles obtained after projecting the
wavefunction respectively onto the lower branch, the up-
per branch, and the scattering states that contain the rest
of the spectrum. Note that the total density profile is not
obtained by merely summing these three components, as
these components can interfere with one another. We
deduce from Fig. S6B that the lower branch shows more
asymmetric transport than the upper branch. This asym-
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metry is maximal for small θ, as can be anticipated
from the two-particle spectrum shown in Fig. S6A. We
quantify this asymmetry by measuring the center-of-mass
velocity for each component (see caption of Fig. S6B).
While the lower branch explains a significant part of the
left-right asymmetry of the walk, we also note significant
asymmetry from the scattering-state component. Fur-
thermore, we observe from Fig. S6B that the weight of
the lower branch in the dynamics strongly depends on
θ and is smallest at small θ. Quantitatively, we extract
the overlap between our initial state |Ψ0〉 and the lower
and upper branches separately as a function of θ, shown
in Fig. S6C. The θ-dependence of the group velocity to-
gether with the overlap with the lower branch explain
why we observe maximally asymmetric transport for a
statistical phase θ = π/2 out the three values of θ shown
here, in agreement with Fig. 5D of the main text.

Bosons with tunable interactions U As a com-
plement to the experimental data reported in the main
text, we demonstrate in Fig. S7 our ability to tune the ef-

fective on-site interaction U without relying on Feshbach
resonance. In Fig. S7A, we focus on the case of bosons
(θ = 0) and observe fermionization for strongly attrac-
tive and strongly repulsive interactions. Fermionization
is manifested in the density correlator Γi,j by weights in
the anti-diagonal and indicative of anti-bunching [32], as
opposed to the bunching behavior visible for U = 0. We
further confirm this effect in Fig. S7B by plotting the dif-
ference Pd≤2−Pd>2, where Pd≤2 (Pd>2) is the probability
to find the particles at relative distance d ≤ 2 (d > 2).
The residual asymmetry in Fig. S7B is likely due to Flo-
quet heating for our largest shaking frequencies.
Quantum walks of two anyons, U = 0 We show

the complete data set for quantum walks of two anyons in
Fig. S8, where the density profiles and two-particle cor-
relations are also shown for θ = π/4, 3π/4 in addition to
data in Fig. 2 of the main text.
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