
ABSTRACT

Title of Dissertation: QUANTUM SIMULATION AND DYNAMICS
WITH SYNTHETIC QUANTUM MATTER

Ron Belyansky
Doctor of Philosophy, 2023

Dissertation Directed by: Professor Alexey Gorshkov
Department of Physics

Significant advancements in controlling and manipulating individual quantum degrees of free-

dom have paved the way for the development of programmable strongly-interacting quantum

many-body systems. Quantum simulation emerges as one of the most promising applications of

these systems, offering insights into complex natural phenomena that would otherwise be difficult

to explore. Motivated by these advancements, this dissertation delves into several analog quan-

tum simulation proposals spanning different fields, including high-energy and condensed matter

physics, employing various synthetic quantum systems. A primary objective is the investigation of

the dynamical phenomena that can be effectively studied using these simulation approaches.

The first part of the dissertation focuses on quantum simulation utilizing superconducting cir-

cuits. We demonstrate that this platform can natively realize several intriguing models including

the massive Schwinger model (quantum electrodynamics (QED) in 1+1 dimensions) and various

strongly interacting quantum impurity models. By studying high-energy scattering of quark and

meson states within the Schwinger model, we reveal a wealth of rich phenomenology encompass-



ing inelastic particle production, hadron disintegration, as well as dynamical string formation and

breaking. Furthermore, we demonstrate how the presence of a single impurity (artificial atom) can

profoundly modify the properties of light-matter interactions in a waveguide, leading to anomalous

transport of a single photon, strong photon decay, and the emergence of atom-photon bound states.

The second part of the dissertation focuses on quantum simulation with atomic, molecular,

and optical (AMO) systems. Leveraging the tunable and long-range interactions available in plat-

forms such as cavity-QED and trapped ions, we explore exotic regimes of quantum information

dynamics. On the one hand, we demonstrate that the combination of simple and uniform all-to-all

interactions together with chaotic short-range interactions can induce fast scrambling, a central fea-

ture associated with quantum black holes. On the other hand, we investigate how short-range yet

non-local Rydberg interactions can strongly suppress atom tunneling in an optical lattice, resulting

in frozen dynamics and Hilbert-space fragmentation. Finally, we propose a method of sympathetic

cooling of neutral atoms using state-insensitive Rydberg interactions, potentially enabling longer

quantum simulations and computations with this platform.
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Chapter 1: Introduction

1.1 Overview

The advent of quantum mechanics in the early 20th century ushered in a profound revolution in

our understanding of fundamental physics. This first quantum revolution achieved tremendous

success in explaining the intricate interactions at the microscopic level and also shed light on

emergent effects that arise from collective quantum behavior. Moreover, quantum mechanics laid

the foundation for a plethora of transformative technologies that have shaped the modern world.

Semiconductors and transistors, for instance, emerged as cornerstones of modern electronics, rev-

olutionizing computing, communication, and countless other technological domains.

The end of the 20th century marked the beginning of the ongoing second quantum revolu-

tion [1]. While the first quantum revolution provided the foundational principles and tools to

describe the physical quantum world, the second quantum revolution ushers in the era of actively

modifying and controlling quantum systems. This significant progress has been made possible

through remarkable technological advancements that enabled precise control over individual quan-

tum degrees of freedom. These include the control of individual atoms [2, 3] and ions [4], the

manipulation of individual photons [5–9], as well as the control of individual quanta in solid-state

systems such as quantum dots [10], Nitrogen-Vacancy centers in diamond [11], and superconduct-

ing circuits [12, 13], among others.
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These remarkable advancements have sparked a quest for novel technological applications that

harness the full power of quantum mechanics. Examples of such applications include unbreakable

and secure quantum communication [14, 15], precise quantum sensing [16], efficient quantum

simulation of natural phenomena [17, 18], as well as powerful quantum algorithms for classically

hard problems [19, 20]. Achieving these applications, particularly quantum computing and simula-

tion, requires the assembly of large-scale and strongly interacting quantum systems. Considerable

efforts and resources are currently being directed towards this vision across many different plat-

forms, such as ultra-cold atoms in optical lattices [21], Rydberg atoms arrays [22, 23], trapped ions

[24, 25], superconducting circuits [26–28] and others.

The realization of a useful quantum computer or simulator poses a significant and enduring

challenge due to the seemingly contradictory requirements of having a large-scale quantum many-

body system that is adequately isolated from the environment, while simultaneously enabling in-

dividual control over each of its degrees of freedom. Although current systems are far removed

from these goals, they nevertheless offer an exceptional playground for exploring quantum many-

body physics, effectively realizing synthetic quantum matter. These systems, comprising tens to

thousands of degrees of freedom, offer unprecedented programmability and measurement capabil-

ities, providing novel perspectives and insights into the behavior of strongly interacting quantum

matter. These remarkable developments have already instigated paradigm shifts across various

areas of physics, leading to an increased emphasis on understanding highly excited [29], far-from-

equilibrium [30, 31], time-dependent behavior [32], incorporating long-range and non-local in-

teractions [33], as well as non-unitary dynamics [34–37], that are naturally available in many of

these engineered quantum systems. The integration of novel measurement capabilities, in con-

junction with quantum information-theoretic tools, further provides fresh perspectives and novel
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approaches for understanding and exploring these intriguing phenomena [38].

Motivated by these developments, this dissertation aims to maximize the potential of current

and near-term synthetic quantum matter systems, with a specific focus on quantum simulation

of exotic phenomena on analog devices and the development of tools to enhance their capabili-

ties. We employ a combination of numerical and analytical techniques, incorporating tools from

quantum information, to investigate non-equilibrium dynamical phenomena that can be effectively

studied on these platforms. In the remaining part of this chapter, we introduce the concept of

quantum simulation and provide an overview of the main platforms employed in this dissertation,

namely superconducting circuits, and atomic, molecular, and optical systems. Finally, we provide

an outline of the rest of the dissertation.

1.2 Quantum Simulation

Quantum simulation can be seen as a specialized form of quantum computation aimed at repli-

cating complex quantum phenomena on a controllable quantum system [17, 18, 39, 40]. First

envisioned by R. Feynman [41] and others [42, 43] and subsequently put on more solid theoretic

footing by S. Lloyd [44], quantum simulation represents perhaps the most native and promising

application of quantum computers, allowing to probe complex quantum phenomena that are most

likely beyond the reach of classical methods. The range of phenomena that can be addressed

with quantum simulators spans various fields such as condensed matter physics, material science,

high-energy and nuclear physics, as well as chemistry and biology.

Two main approaches currently exist for quantum simulation. The first uses universal digital

quantum computers which work analogously to classical computers, by manipulating the infor-
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mation using discrete gate operations. This approach can incorporate quantum error correction,

thus realizing fault-tolerant computation and providing guarantees on the accuracy of the simula-

tion. Current digital quantum computers are far from that goal, falling instead into the category of

“Noisy Intermediate Scale Quantum” (NISQ) [45] devices.

The second approach is analog quantum simulation, reminiscent of early classical analog com-

puters that employed electrical circuits to solve differential equations or wind tunnels to study fluid

dynamics [46]. Analog quantum simulation is designed to address a single, specific problem by

tailoring the interactions among the system’s degrees of freedom to emulate the behavior (e.g.,

the Hamiltonian) of the desired model. Analog simulators are not compatible with traditional ap-

proaches to fault-tolerant quantum error correction, making them less powerful and suggesting that

they will eventually be phased out in favor of digital quantum computers. However, the current

advantage of analog simulation lies in its ability to access larger system sizes and longer evolution

times, thanks to being designed for a specific problem, and not requiring the full controllability

of digital quantum computers. This feature makes analog simulators particularly well-suited for

achieving practical quantum advantage on near-term devices, especially for problems where even a

qualitative answer is lacking [39]. Furthermore, unlike universal digital quantum computers, where

the underlying platform is largely irrelevant, the choice of a specific platform in analog quantum

simulation determines the models that can be effectively studied, as different platforms possess

distinct capabilities and native interactions.
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1.3 Quantum platforms

In this section, we provide a brief introduction to the main platforms employed in this dissertation,

namely superconducting circuits, and atomic, molecular, and optical systems.

1.3.1 Superconducting quantum circuits

Superconducting circuits (“circuit-QED”) are electrical circuits that are made out of supercon-

ducting materials and are operated at very low temperatures and powers. Several ingredients are

crucial for a circuit to operate in the quantum regime [26, 47, 48]. First, although these circuits

are macroscopic in size, operating them at extremely low powers ensures that only a small number

of electrons or Cooper pairs are relevant to their behavior. Second, superconducting circuits are

typically operated at temperatures as low as a few millikelvins (T ∼ mK), which significantly sup-

presses thermal fluctuations (characterized by kBT ) relative to the characteristic excitation energies

(characterized by h̄ω with frequency ω in the microwave range) of the circuits. Last, superconduct-

ing materials exhibit zero electrical resistance, eliminating a major source of decoherence found in

ordinary metals, even at low temperatures.

Essentially all circuits are made using a combination of three basic components, shown in

Fig. 1.1: capacitors and inductors which are linear elements, as well as Josephson junctions, which

provide nonlinearity. The dynamics of a circuit are described by the canonically conjugate vari-

ables, current I and voltage V . Alternatively, it is often more useful to work with the charge

π(t) =
∫ t
I(t′)dt′ and flux ϕ(t) =

∫ t
V (t′)dt′. This is particularly true when considering Joseph-

son junctions, as the current through these junctions is most naturally expressed in terms of the

superconducting phase difference across the junction, which is proportional to the flux. Upon
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(a) Capacitor with capacitance
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(b) Inductor with inductance
L and current-voltage-flux rela-
tion: İ = V/L → I = ϕ/L.
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ϕ
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(c) Josephson junction with crit-
ical current Ic and current-flux
relation: I = Ic sin

(
4e2

h̄ ϕ
)

.

Figure 1.1: Building blocks of circuit QED.

quantization, these classical variables are promoted to quantum operators that satisfy the canonical

commutation relation [ϕ̂, π̂] = ih̄, playing the role of position and momentum operators.

Circuit-QED systems offer a range of distinct advantages that make them highly attractive

for quantum information processing and simulation. One notable advantage is their ability to re-

alize artificial atoms with customizable properties that can be precisely designed and controlled

[47, 49–51]. Moreover, the fundamental degrees of freedom in circuit-QED architectures, namely

the charge π and flux ϕ, realize a local infinite bosonic Hilbert space. This property makes circuit-

QED well-suited for simulating theories with bosonic content, avoiding the overhead from encod-

ing quantum oscillators into qubits. Another compelling feature is the potential for achieving very

strong coupling between different subsystems [52–54]. Circuit-QED systems can exhibit signifi-

cantly stronger interactions, scaling with up to a factor of α−2 stronger compared to the couplings

between real atoms and photons, where α ≈ 1/137 is the fine-structure constant [52]. These advan-

tageous characteristics of circuit-QED are leveraged in Chapters 2 to 4 to explore exotic regimes

of light-matter interactions and simulate relativistic bosonic field theories.
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1.3.2 Atomic, molecular, and optical systems

The field of atomic, molecular, and optical (AMO) physics focuses on the study of matter, such as

atoms, ions, or molecules, and their interactions with light. Within this broad field, the investigation

of arrays of atoms and ions holds particular significance for quantum computing and simulation

applications. These arrays, which can vary in geometries and dimensions, can be assembled using

optical lattices [21, 55, 56] or optical tweezers [57–59] in the case of neutral atoms, and using

electrical fields in the case of ions [24, 25]. Quantum information can be stored in their internal

states and manipulated using external electromagnetic fields.

These platforms offer several advantages for quantum computing and simulation. One notable

advantage is that atoms or ions of the same species are exactly identical, unlike circuit-QED where

fabrication disorder may pose challenges. Furthermore, their ground-state manifolds provide a

means to store quantum information with extremely long coherence times [60, 61]. Additionally,

these systems can exhibit long-range interactions, enabling the exploration of phenomena beyond

traditional locality constraints. These interactions are also highly programmable and can be tuned

using additional external fields. These advantageous features will be further explored in Chapters 5

to 7, where the programmability and long-range interactions of these platforms are leveraged for

various applications. We proceed with a short description of the possible interactions in these

systems, focusing on Coulomb (phonon) mediated interactions for trapped ions as well as Rydberg

and cavity (photon) mediated interactions for neutral atoms.

We begin by discussing how interactions between qubits stored in the internal levels of ions

can be generated via the Coulomb force, arising due to the electric charges of the ions. When

confined in a trap, the ions form a crystal-like structure, with each ion occupying a well-defined
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position, with the Coulomb repulsion balanced by external confinement force. The motion of the

ions away from their equilibrium position can be described by harmonic normal modes (phonons).

These collective vibration modes can be coupled to the internal levels of the ions via microwave or

optical fields. For example, using two Raman transitions with virtual absorption and emission of

phonons can lead to generic interactions of the form [62]

Hint =
∑
i,j

JijZiZj, (1.1)

whereZi is the Pauli-z matrix acting on the internal qubit degree of freedom of ion i. The couplings

Jij may take different forms. For instance, when coupling only to the center-of-mass mode, the

couplings are approximately constant, i.e., Jij ∼ J0 [63–66]. In more general cases, the couplings

exhibit power-law decay, such as Jij ∼ J0/|i− j|α with 0 ≤ α < 3. It is also possible to generate

completely arbitrary Jij by employing N2 lasers for N ions [67].

We now turn our attention to interactions among neutral atoms. In their electronic ground

state and when far apart from each other, neutral atoms do not exhibit significant interactions.

Strong interactions can nonetheless be induced by exciting one or more of their valence electrons

to Rydberg states, corresponding to states with large principal quantum numbers n [23]. Due

to the large spatial extent of the electronic wavefunction, these states exhibit highly exaggerated

properties including long lifetimes and large dipole moments. These dipole moments give rise to

strong dipole-dipole interactions between pairs of atoms. For two atoms with dipole moments µ1

and µ2 separated by a distance R, the dipole-dipole interaction potential is given by [23]:

Vdd =
µ1 · µ2

R3
− 3(µ1 ·R)(µ2 ·R)

R5
. (1.2)

When the atoms are excited to states with angular momenta that differ by ±1, Eq. (1.2) provides the

leading contribution to the interactions, scaling as C3/R
3. However, when the atoms are excited
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to the same Rydberg state, these dipole-dipole interactions in Eq. (1.2) vanish. Instead, the leading

order interactions are van der Waals (vdW), scaling as C6/R
6, which are obtained from Eq. (1.2)

via second-order perturbation theory. Both the dipole-dipole and the vdW interactions can be

used to engineer more complex interactions by careful choices of the Rydberg states together with

additional microwave and optical dressing [68–70].

Finally, neutral atoms can also interact when placed in an optical cavity. In this configuration,

atoms interact with the quantized light modes of the cavity by absorbing and emitting photons.

The specific nature of these light-atom interactions depends on various factors, including the cav-

ity geometry, the number of participating cavity modes, and the internal level structure of the

atoms [71–73]. When the cavity modes are far detuned from the atomic transitions, the cavity

can be effectively eliminated, and the system can be described solely in terms of the atoms with

effective interactions among them [74–79]. For instance, in the case of a single-mode cavity,

cavity-assisted Raman transitions can lead to interactions of the form described in Eq. (1.1), with

a uniform coupling strength Jij ∼ J0 [74, 78].

1.4 Outline of dissertation

In Chapters 2 to 4 we study quantum simulation with the circuit-QED platform.

In Chapter 2, we investigate the scattering dynamics of lattice quantum electrodynamics in 1+1

dimensions, with the aim of studying nonperturbative, out-of-equilibrium dynamics of high-energy

particle collisions on quantum simulators. Working in the bosonized formulation of the model,

an analog circuit-QED implementation is proposed that is native to the platform, hence requires

minimal ingredients and approximations, and enables practical schemes for particle wavepacket
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preparation and evolution. Furthermore, working in the thermodynamic limit, uniform-matrix-

product-state tensor networks are used to construct multi-particle wavepacket states, evolve them

in time, and detect outgoing particles post-collision. This facilitates the numerical simulation of

scattering experiments in both confined and deconfined regimes of the model at different energies,

giving rise to rich phenomenology, including inelastic production of quark and meson states, meson

disintegration, and dynamical string formation and breaking.

In Chapter 3, we study the propagation of photons in a one-dimensional environment consisting

of two noninteracting species of photons frustratingly coupled to a single spin 1/2. The ultrastrong

frustrated coupling leads to an extreme mixing of the light and matter degrees of freedom, result-

ing in the disintegration of the spin and a breakdown of the “dressed-spin,” or polaron, description.

Using a combination of numerical and analytical methods, we show that the elastic response be-

comes increasingly weak at the effective spin frequency, showing instead an increasingly strong

and broadband response at higher energies. We also show that the photons can decay into multiple

photons of smaller energies with a nearly maximal allowed probability and that the spin induces

strong anisotropic photon-photon interactions.

In Chapter 4, we explore many-body phenomena with a single artificial atom coupled to the

many discrete modes of a photonic crystal. This work is a collaboration with the experimental

group of A. A. Houck from Princeton University. The experiment reaches the ultrastrong light-

matter coupling regime using the circuit-QED paradigm, by galvanically coupling a highly nonlin-

ear fluxonium qubit to a tight-binding lattice of microwave resonators. Using matrix-product-state

simulations, we show that in this regime, the transport of a single photon is strongly modified by

the presence of multi-photon bound states, owing to interactions that break particle number con-

servation, in good agreement with the experimental observations. The experiment was performed
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by A. Vrajitoarea in the group of A. A. Houck from Princeton University. The contribution of the

author of this dissertation consisted of the initial planning as well as the theoretical and numerical

modeling of the experiment.

Next, Chapters 5 to 7 describe quantum simulation and tools for atomic, molecular, and optical

systems.

In Chapter 5, we study quantum information scrambling in spin models with both long-range

all-to-all and short-range interactions. We argue that a simple global, spatially homogeneous in-

teraction together with local chaotic dynamics is sufficient to give rise to fast scrambling, which

describes the spread of quantum information over the entire system in a time that is logarithmic in

the system size. This is illustrated in two tractable models: (1) a random circuit with Haar random

local unitaries and a global interaction and (2) a classical model of globally coupled nonlinear

oscillators. We use exact numerics to provide further evidence by studying the time evolution

of an out-of-time-order correlator and entanglement entropy in spin chains of intermediate sizes.

These results pave the way towards experimental investigations of fast scrambling and aspects of

quantum gravity with quantum simulators.

In Chapter 6, we report on the experimental realization of strong nonlocal interactions in a

2D Fermi gas in an optical lattice using Rydberg dressing. This work is a collaboration with the

experimental group of W. Bakr at Princeton University. The system is approximately described by

a t-V model on a square lattice where the fermions experience isotropic nearest-neighbor interac-

tions and are free to hop only along one direction. To probe the interplay of nonlocal interactions

with tunneling, we investigate the short-time-relaxation dynamics of charge-density waves in the

gas. We find that strong nearest-neighbor interactions slow down the relaxation. Our work opens

the door for quantum simulation of systems with strong nonlocal interactions such as extended
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Fermi-Hubbard models. The experiment was performed by E. Guardado-Sanchez, B. M. Spar and

P. Schauss in the group of W. S. Bakr. The contribution of the author of this dissertation consisted

of the initial planning as well as the theoretical and numerical modeling of the experiment.

In Chapter 7, we propose a protocol for sympathetically cooling neutral atoms without de-

stroying the quantum information stored in their internal states. This is achieved by designing

state-insensitive Rydberg interactions between the data-carrying atoms and cold auxiliary atoms.

The resulting interactions give rise to an effective phonon coupling, which leads to the transfer of

heat from the data atoms to the auxiliary atoms, where the latter can be cooled by conventional

methods. This can be used to extend the lifetime of quantum storage based on neutral atoms and

can have applications for long quantum computations. The protocol can also be modified to realize

state-insensitive interactions between the data and the auxiliary atoms but tunable and nontrivial

interactions among the data atoms, allowing one to simultaneously cool and simulate a quantum

spin model.

Finally, Appendices A to F provide technical details that were omitted from Chapters 2 to 7.

12



Chapter 2: High-Energy Collision of Quarks and Hadrons in the Schwinger

Model: From Tensor Networks to Circuit QED

2.1 Introduction

Scattering processes in nuclear and high-energy physics play an essential role in studies of hadronic

and nuclear structure and of exotic phases of matter, and in searches for new particles and inter-

actions. Current and future frontiers are the Large Hadron Collider, the Relativistic Heavy-Ion

Collider [80, 81], the Electron-Ion Collider [82, 83], and neutrino-nucleus scattering at the Deep

Underground Neutrino Experiment [84–87]. Collisions in these experiments involve hadronic ini-

tial states and complex many-particle final states. In addition, scattering proceeds in a multi-

stage process and may encompass a wide range of phenomena, including the formation of exotic

matter [81, 88], such as quark-gluon plasma [89, 90], thermalization [91, 92], quark and hadron

fragmentation [93, 94], and quark-gluon-plasma hadronization [95, 96]. Ideally, such rich phe-

nomenology should be grounded in first-principles quantum-chromodynamics (QCD) descriptions.

While perturbation theory and QCD factorization [97–100], as well as the nonperturbative method

of lattice QCD [101–109], have brought about impressive advances, a full understanding of scat-

tering processes in QCD at all stages and energies is still lacking.

First-principles simulations of high-energy particle scattering are considered a prime appli-
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cation for quantum computers and simulators [110–121]. A central challenge is that realistic

scattering experiments involve a vast range of spatial and temporal scales, placing their simula-

tion beyond the capabilities of current digital quantum computers. Analog quantum simulators

may enable simulating larger Hilbert spaces and longer times, but concrete proposals are lack-

ing for analog simulation of scattering processes in quantum field theories. At the same time,

classical tensor-network methods have been shown to successfully capture ground-state [122],

and to some degree dynamical [123], phenomena in gapped theories, including scattering pro-

cesses [124–127], particularly in 1 + 1 dimensions, but their reach remains limited in simulating

general scattering problems in quantum field theories. This Chapter advances both analog quan-

tum simulation and tensor-network-based classical simulation for a prototypical model of QCD,

the lattice Schwinger model, i.e., lattice quantum electrodynamics (QED) in 1+1 dimensions. Pre-

vious tensor-network [124, 125, 128–139] and quantum-simulation [140–164] studies of the model

focused on formulations involving fermion (or qubit) degrees of freedom (with or without gauge

fields). Motivated to address, more generally, theories with bosonic content, here we instead con-

sider the bosonic dual of the theory, a particular type of a massive Sine-Gordon model.

Our first objective is to propose an analog circuit-QED implementation of the bosonized lattice

Schwinger model. Recently, the bosonic dual was shown to be approximately realizable by circu-

lar Rydberg states [165]. In contrast, we will show that circuit QED’s basic components, its native

bosonic degrees of freedom, and the available ultrastrong coupling [53, 54] allow the model to be

implemented in a simple circuit with minimal ingredients and approximations, making it particu-

larly suitable for near-term quantum simulation. Our second objective is a numerical exploration

of high-energy real-time scattering phenomenology in the model. We work in the nonperturbative

regime, near the confinement-deconfinement critical point and in the thermodynamic limit, using
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uniform matrix product states (uMPS) [166], which in turn allows for the construction [126, 127]

and collision of numerically-exact quasiparticle wave packets in the interacting theory at various

energies, resulting in nontrivial inelastic effects. In contrast, earlier works were limited to elastic

scattering at either weak (nearly free fermions) [125] or strong (nearly free bosons) [124] coupling

regimes. We focus on a detailed spatial, temporal, and momentum-resolved diagnostic of elastic

and inelastic processes of quark and meson states, involving phenomena such as meson disinte-

gration, dynamical string formation and breaking, and the creation of quark and (excited) meson

states. We also investigate the role of entanglement in high-energy scattering [124, 167–174].

2.2 Model and circuit-QED implementation

The massive Schwinger model has the Lagrangian density

L = ψ̄(iγµ∂µ − eγuAµ −m)ψ − 1

4
FµνF

µν , (2.1)

where ψ(x, t) is a 2-component Dirac spinor, γ0 = σz, γ1 = iσy with σz, σy being the Pauli

matrices, m is the mass, e is the electric charge, and Aµ(x, t) and Fµν(x, t) are the gauge field and

the field-strength tensor, respectively. Equation (2.1) is dual to a bosonic scalar field theory with

the Hamiltonian [175, 176]

H =

∫
dx

[
Π2

2
+

(∂xϕ)
2

2
+
M2ϕ2

2
− u cos(βϕ− θ)

]
, (2.2)

where ϕ(x) and Π(x) are the scalar field and conjugate momentum, respectively, M = e/
√
π,

β =
√
4π, and u = eγ

2π
Λm, where γ is Euler’s constant and Λ is a UV scale (we assume h̄ = c = 1

throughout, where c is the speed of light). Finally, θ ∈ (−π, π], with its origin explained in

Ref. [176] and Appendix A.1.1. We work with a lattice discretization of Eq. (2.2) given by
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Figure 2.1: Lumped-element circuit diagram that realizes Eq. (2.3).

H = χ
∑
x

[
π2
x

2
+

(ϕx − ϕx−1)
2

2
+
µ2ϕ2

x

2
− λ cos(βϕx − θ)

]
, (2.3)

where x labels lattice sites, [ϕx, πy] = iδxy, χ = 1/a, µ2 = M2a2, λ = ua2, and a is the lattice

spacing. We set a = 1, with the continuum limit corresponding to µ, λ → 0. Quantities are

assumed in lattice units throughout.

Remarkably, Eq. (2.3) can be exactly realized in a simple superconducting circuit, shown in

Fig. 2.1. The circuit can be regarded as a chain of inductively coupled fluxoniums [177]. It consists

of nodes i, each corresponding to a lattice site with a local bosonic degree of freedom described

by flux ϕi and charge πi, composed of a parallel arrangement of a capacitor, an inductor, and a

Josephson junction with respective energies EC , EL, and EJ [26]. Further, nodes are coupled by

inductors with energy EL′ . The circuit parameters are related to those of Eq. (2.3) via χ = 8EC

β2 ,

EL′β4

8EC
= 1, µ2 = ELβ

4

8EC
, λ = EJβ

2

8EC
, and θ = Φext−π, where Φext is a tunable external flux threading

each loop, and β ̸= 0 can be chosen arbitrarily (see Appendix A.2.1 for the full derivation). In

fact, when β ̸=
√
4π, the circuit describes a more general model known as the massive Thirring-

Schwinger model [178]. In Appendix A.2.2, we present a method for preparing initial wave packets

of bosonic particles using two ancillary qubits, hence providing a complete protocol for preparation

and evolution of mesonic wave packets for a scattering experiment. Measurements of the local field

ϕx [179] or the output field at the edges [180, 181] can be performed using standard techniques.
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To gain insight into the anticipated phenomenology, we proceed with a numerical study of the

collision dynamics in the lattice Schwinger model. While quantitative predictions for the contin-

uum theory require an extrapolation procedure [135, 182], here only fixed, but sufficiently small,

values of µ and λ are considered. The model has two dimensionless parameters, the ratio e/m,

corresponding to µ/λ in Eq. (2.3), and the angle θ representing a constant background electric field

Eθ = e
2π
θ. Gauss’s law, ∂xE = eψ†ψ, ties the total electric field ET = Eθ + E to the dynamical

charges, and equals ET = e√
π
ϕ in the bosonic dual [183].

Two regimes will be studied near the Z2 critical point, shown in Fig. 2.2 as (b) and (c). Point (b)

is in the deconfined phase [red line at θ = π in Fig. 2.2(a) terminating at the Ising critical point],

where the ground state is two-fold degenerate [Fig. 2.2(b,i)]. Here, fundamental excitations are

“half-asymptotic” [176] fermions (“quarks”), appearing as topological kinks in the bosonic dual

[see Fig. 2.2(b,ii)]. Point (c) in Fig. 2.2(a) is in the confined phase, with a unique ground state

[Fig. 2.2(c,i)] and quark-antiquark bound-state (“meson”) excitations.
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Figure 2.2: (a) Sketch of the phase diagram of the massive Schwinger model as a function of e/m
(corresponding to µ/λ) and θ. The red dot is the Ising critical point, where the deconfined phase
(red line) terminates. Points (b) and (c) correspond to the two regimes considered in the Chapter.
Panels (b,i) and (c,i) show the corresponding scalar potential V (ϕ) = 1

2
µ2ϕ2 − λ cos

(√
4πϕ− θ

)
[Eq. (2.3)]. Panels (b,ii) and (c,ii) show both the effective potential between the quarks [Eq. (2.4)]
(green) and the electric/scalar-field distributions (blue) due to the quarks and mesons.

2.3 Quark-antiquark scattering

We first consider quark-antiquark scattering in the deconfined phase [Fig. 2.2(b)]. Construct-

ing a uMPS representation of the two ground states [184], we use the uMPS quasiparticle

ansatz [185, 186] to obtain single-particle energy-momentum eigenstates with dispersion E(p) and

momenta p ∈ [−π, π) (see Appendix A.3.1). From this, we construct two Gaussian wave packets,

localized in momentum and position space, centered at opposite momenta ±p0. The initial state

consists of a finite nonuniform region of 150–300 sites containing the two wave packets, and is

surrounded (on the left and the right) by the uniform vacuum [we choose the vacuum with positive

ET , i.e., the right minimum of Fig. 2.2(b,i)]. We then time-evolve this state under the Hamilto-

nian in Eq. (2.3), while dynamically expanding the nonuniform region [187–189] up to 600–1300
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Figure 2.3: Quark-antiquark scattering in the deconfined phase. (a) Time evolution of the electric
field for different center-of-mass energies. (b) Time evolution of the von Neumann entanglement
entropy for a cut at x = 0, for the same three collisions as in (a). (c) Elastic scattering probability
(right, blue) and asymptotic von Neumann entanglement entropy for the x = 0 cut (left, green) as
a function of the center-of-mass energy. The parameters are µ2 = 0.1 and λ = 0.5 [see Eq. (2.3)].

sites (see Appendix A.3.2 for a more detailed description). By working near the critical point,

where the quark mass mq ≡ E(p = 0) (i.e., the gap) is small, one can consider momenta up to

|p0| ≲ 0.8. These are sufficiently small to keep the physics in the long-wavelength regime of the

lattice model, where the dispersion is approximately relativistic E(p) ≈ (p2 +m2
q)

1
2 , but highly

relativistic center-of-mass (CM) energies ECM ≡ 2E(p0) ≲ 30mq are achieved.

Figure 2.3(a) shows the space-time distribution of the electric field for collisions at three rep-

resentative energies, ECM/mq = 11.4, 23.0, and 28.8. Initially, the quark and antiquark are sep-
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arated, resembling Fig. 2.2(b,ii), with electric field between the charges equal in magnitude but

opposite in sign to the field outside [the two regions correspond to the two degenerate ground

states in Fig. 2.2(b,i)]. Under time evolution, the two charges propagate ballistically, shrinking the

negative-field region until they collide. During the collision, the particles bounce off each other and

reverse their propagation direction elastically, the sole process at lower energies. Specifically, as

can be seen in Fig. 2.3(a), at the lowest energy, ECM/mq = 11.4, the post-collision value of ET be-

tween the charges is practically equal to the pre-collision value. For the higher-energy collisions,

ECM/mq = 23.0 and 28.8, an increase of the post-collision electric field is observed, signalling

additional charge production.

While our numerical approach does not rely on strong- or weak-coupling expansion, the rel-

evant scattering channels can be understood from weak-coupling arguments as follows. In Ap-

pendix A.1.2, we derive, in the nonrelativistic limit, an effective potential between opposite charges

at the lowest order in e/m starting from Eq. (2.1), which reads (in the center-of-mass frame)

Veff(x) =
e2

2

(
|x| − θ

π
x

)
+

e2

4m2
δ(x) . (2.4)

Here, x is the distance between charges. For θ ̸= π, one recovers linear confinement

[Fig. 2.2(c,ii)] [129, 176, 183, 190], while at θ = π, charges experience short-range repulsion

due to the delta function in Eq. (2.4) [Fig. 2.2(b,ii)]. This implies the absence of stable bound

states (mesons) in the deconfined phase, which is confirmed numerically in Appendix A.1.2. All

possible scattering channels are, therefore, (even-numbered) multi-quark states. The lowest-order

channel after the elastic one (qq̄ → qq̄) is the four-quark production (qq̄ → qq̄qq̄), exhibiting quark

fragmentation. In the latter case, the two inner particles screen the electric field produced by the

outer two, consistent with the two rightmost panels in Fig. 2.3(a).
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Elastic and inelastic processes are also distinguished by the production of von Neumann entan-

glement entropy [SvN(x, t) = − tr(ρ>x(t) ln ρ>x(t)) with ρ>x(t) being the reduced density matrix

for sites y > x] across the collision point (x = 0), shown in Fig. 2.3(b) as a function of time.

Figure 2.3(c) also shows the asymptotic (t→ ∞) entanglement generated as a function of the col-

lision energy. The entanglement entropy is maximal during the collision but quickly approaches

a constant afterwards. At lower energies, it nearly returns to its pre-collision (vacuum) value. A

small increase is observed because different momentum components of the wave packets acquire

slightly different elastic scattering phase shifts, making the two scattered wave packets slightly

entangled [127]. At higher energies, however, significant net entanglement is generated, indicating

inelastic particle production [111].

Finally, we compute elements of the momentum-resolved scattering S-matrix by projecting

the post-collision state onto a basis of asymptotic two-particle states (see Appendix A.3.3 for de-

tails). This basis is constructed from the single-particle wavefunctions, requiring the particles to

be widely separated to ensure orthogonality and avoid interaction effects. For 2 → 2 scattering,

this is guaranteed sufficiently far from the collision point, but not for higher-order scattering. From

this, we obtain the elastic scattering probability P (qq̄), displayed in Fig. 2.3(c), as a function of

the collision energy.

The elastic scattering probability is near unity at lower energies, decreasing monotonically,

falling below 0.5 around ECM/mq ≳ 28. Interestingly, the energy required for significant inelastic

scattering is many times the threshold energy (ECM = 4mq). While we did not obtain the precise

contribution of the four-quark (or higher-quark-number) states 1, the decrease of P (qq̄) confirms

1Projecting the state on four widely-separated quarks basis states resulted in a negligible contribution. This does
not mean that four particle states are absent from Fig. 2.3, but suggests that they are not spatially separated to be
recorded as single-particle states.
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the presence of significant inelastic scattering, consistent with the increase in entanglement entropy

in Fig. 2.3(b) and the screening of ET in Fig. 2.3(a).

2.4 Meson-meson scattering

We next consider scattering in the confined phase [Fig. 2.2(c)] at θ = π − ε. We choose ε ≪ 1,

which gives rise to weak confinement of quarks, but keeps us close to the critical point (all other

parameters are unchanged). In contrast to the deconfined regime, the interplay of high-energy and

weak confinement yields rich behavior following the collision. There are multiple stable meson

excitations, which are labeled by πj (j = 1, 2, ...), with increasing masses mπj
. Here, we consider

π1π1 collisions, with meson wave packets prepared similarly as before, centered at p0 = ±0.6 with

ECM/mπ1 = 6.84 (5.95) for ε = 0.04 (0.07).

The electric-field evolution for the two collisions is displayed in Fig. 2.4(a,i). Before the

collision, the background electric field is only locally disturbed by the charge-neutral mesons

[Fig. 2.2(c,ii)], unlike in the deconfined case where the presence of free quarks can lead to electric-

field screening at arbitrary long distances. After the collision, the mesons partially fragment into

a quark-antiquark pair. The quarks are joined by an electric-field string which screens the back-

ground electric field (light-blue regions) inside the collision cone. As the quarks travel outward,

their kinetic energy gets converted into the potential energy of the string. Eventually, they turn and

propagate back in the opposite direction [see also Fig. 2.4(c)] causing a second collision. Weaker

confinement ε = 0.04 allows the quarks to propagate farther.

Next, we project the time-evolved state onto two-particle components, focusing on the lightest

two mesons π1, π2, and the quark-antiquark pair qq̄. While the latter are not true (i.e., asymptotic)
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Figure 2.4: Meson-meson scattering in the confined phase. (a) Time evolution of the electric field
for different θ = π − ε at all positions x [panels (i)] and at x = 0 [panels (ii)] with µ2 = 0.1
and λ = 0.5 as in Fig. 2.3. The wave packets are centered at p0 = ±0.6, corresponding to
ECM/mπ1 = 6.84, 5.95 for ε = 0.04, 0.07. (b) Time evolution of the von Neumann entanglement
entropy at all positions x [panels (i)] and at x = 0 [panels (ii)]. (c) Momenta and positions (mean
± std. extracted from a Gaussian fit of the projected distributions) of the quarks for ε = 0.04 (top)
and the mean positions of the right-moving mesons for ε = 0.07 (bottom). (d) Probabilities of two-
particle states µν (µ, ν ∈ [π1, π2, q, q̄]) where µ/ν is the particle on the left/right. The curves for
π1π2 and π2π1 overlap due to the reflection symmetry of the initial state. Near the initial collision
(shaded region), as well as near the secondary collision at t ∼ 550 for ε = 0.07, the state cannot
be captured by a basis of asymptotic particles.

quasiparticles, at weak confinement ε ≪ 1, (anti)quarks can be approximately described by the

modified quasiparticle ansatz of Ref. [127]. This requires a uMPS representation of the electric-

flux string, which we approximate by its lowest energy state, a so-called “false-vacuum” state

[191, 192], corresponding to the second (local) minimum in Fig. 2.2(c,i).

Figure 2.4(d) shows the probabilities of the π1π1 (blue), π2π2 (orange), π1π2 (green), and

π2π1 (pink) combinations (where in state µν, the particle µ/ν is on the left/right), and of the

quark-antiquark state (red). One can observe significant flavor-conserving elastic scattering,

π1π1 → π1π1, a smaller probability of exciting one of the outgoing mesons, π2π1 and π1π2 (this

smaller probability increases with stronger confinement ε = 0.07), and a substantial qq̄ compo-

nent. Interestingly, for ε = 0.07, the qq̄ component is decreasing in time, indicating string break-

ing [129, 193], which is also visible in the gradual increase of the bipartite entanglement entropy
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in Fig. 2.4(b,i) [see also Fig. 2.4(b,ii)], and in the gradual reduction of the electric-field screening

[Fig. 2.4(a,ii)]. At a late time t = 700, asymptotic two-particle states account for about 90% (76%)

of the state at ε = 0.04 (0.07) 2.

The projection onto the asymptotic two-particle basis also provides the full momentum, and

consequently position, distributions of the particles. Figure 2.4(c) shows the mean and standard

deviation of the positions and momenta of the quarks, and the mean positions of the mesons, com-

puted from fits of these distributions to a Gaussian form. The mean momenta of the quarks are ap-

proximately ⟨p(t)⟩ ∝ ±t, in agreement with the expectation from the linear potential of Eq. (2.4).

Their extracted positions in Fig. 2.4(c) are consistent with the boundaries of the screened-field

region in Fig. 2.4(a,i) and with the localized increase in the entanglement entropy in Fig. 2.4(b,i).

From the mean position of the mesons, Fig. 2.4(c), one can see that the heavier meson π2 has a

slightly lower average velocity compared to π1, as expected.

2.5 Discussion and outlook

First-principles numerical explorations and quantum simulations of dynamics in strongly interact-

ing quantum field theories are starting to shed light on the rich phenomenology of particle collisions

in real time. As a step toward this goal, using ab initio numerical uMPS computations and work-

ing with a bosonized formulation of the Schwinger model, we analyzed the real-time dynamics of

high-energy particle scattering in the nonperturbative regime of QED in 1+1 dimensions. We also

proposed an analog circuit-QED implementation of the bosonized Schwinger model. This imple-

mentation requires minimal ingredients and no approximations (besides a lattice discretization), in

2We verified that the missing wavefunction weight is not accounted for by three or four widely-separated particle
basis states.
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contrast to previous circuit-QED proposals based on a quantum-link model [162]. We studied both

the confined and deconfined regimes of the model, exhibiting a multitude of phenomena, including

inelastic particle production, meson disintegration, and dynamical string formation and breaking.

In addition to the local electric-field and entanglement observables, the single-particle exci-

tations allowed us to obtain complete time-resolved momentum and position distributions of the

outgoing 2 → 2 scattered particles. To account for higher-order scattering beyond this two-particle

characterization, it appears necessary to include states where two particles can be close, which

could potentially be accomplished using the two-particle uMPS ansatz from Ref. [194]. This might

also shed light on the nontrivial transient dynamics in Fig. 2.4(d). It would also be interesting to

explore the energy dependence of string-breaking dynamics [195] as well as the possibility of for-

mation of excited string states and their characterization beyond the false-vacuum approximation.

Ultimately, tensor-network methods are limited by entanglement growth, motivating quantum

simulations using the proposed circuit-QED implementation for high-energy collisions. The pro-

posed implementation can also be used to study quench dynamics. For example, the Schwinger

mechanism or dynamical topological phase transitions can be studied in quenches of the θ param-

eter [143, 196], which can be accomplished using time-dependent flux control [26].

Finally, our circuit-QED implementation applies to other bosonic theories [197–200], including

the ϕ4 theory (achieved in the β → 0 limit) in 1+1 or 2+1 dimensions and generalizations of

the bosonized Schwinger model, including to multi-flavor fermions [176, 201] and to Thirring

interactions [178]. In the latter case, sufficiently strong Thirring interactions give rise to attractive

short-range interactions between quarks in the deconfined phase, as shown in Appendix A.1.2,

leading to stable meson particles and hence qualitatively different scattering dynamics.
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Chapter 3: Frustration-Induced Anomalous Transport and Strong Photon Decay

in Waveguide QED

3.1 Introduction

Photons propagating in one-dimensional environments are a fundamental building block for quan-

tum optics and waveguide quantum electrodynamics (QED). While interaction among photons is

inherently negligible, strong effective interactions can be induced by coupling the light to atoms,

or “impurities”. Such photon-photon interactions are a crucial ingredient in many technologies

ranging from quantum communication to quantum computation and metrology [26, 53, 54, 202].

Even a single two-level-atom (or a spin-1/2) can induce non-trivial behavior, perfectly reflecting

photons whose energy matches the two-level gap ∆, while being transparent for other photons

[203–206].

This picture can be greatly modified when the light-matter coupling is increased to the so-called

ultrastrong coupling (USC) regime of waveguide QED [207–212]. This regime has been recently

of great experimental and theoretical interest [26, 53, 54, 213, 214], and has been experimentally

realized in superconducting quantum circuits [180, 215–218], allowing the exploration of quantum

many-body physics with a single artificial atom [219]. The hallmark feature of USC regime is the

breakdown of the rotating-wave approximation and the description of light and matter as separate
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entities, which must instead be described by hybridized excitations.

Nevertheless, most light-matter systems do admit an intuitive interpretation in terms of quasi-

particles whose behavior closely resembles the bare constituents of the system. For a two-level

atom coupled to a 1D continuum, such a hybridized description is given in terms of a “dressed

spin” or a polaron [220–222]. The strong dressing of the spin by photons leads to a dramatic

Lamb shift of the bare spin frequency ∆ to a renormalized value ∆R ≪ ∆ [223], the energy of

the polaron excitation. The propagation of photons in the system can be understood in terms of

scattering of free photons off the polaron, with the scattering resonance being shifted from ∆ to

∆R [208, 212]. This renormalized frequency emerges as the natural intrinsic energy scale of the

system, with all non-trivial physics, such as photon-photon interactions, occurring in the vicinity

of ∆R. This intuition can be formalized with the well-known variational polaron transformation,

which has been widely successful in describing both static and dynamical observables in various

spin-boson systems [212, 224–231].

In this Chapter, we introduce a regime of light-matter interaction where the dressed-spin quasi-

particle description of the combined light-matter system qualitatively breaks down. This is induced

by ultrastrong frustrated interactions between a single two-level atom and two different species

of photons in one dimension [232, 233]. We use matrix-product-state (MPS) numerics together

with field-theoretical calculations to study the propagation of a single photon in the system. At

weaker couplings, the elastic scattering shows a peaked response at a renormalized value ∆R < ∆,

consistent with the polaron interpretation. However, at larger couplings, this resonance becomes

increasingly weak, and instead there is an emergent increasingly large and broadband response at

large frequencies ω > ∆R. We also find that inelastic processes, where the photon decays into

several smaller-energies photons, can be as important or even dominate the elastic scattering. This
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Figure 3.1: Schematic of the model, where a single spin-1/2 is coupled locally to two independent
electromagnetic fields, represented here as two separate waveguides.

decay rate does not peak in the vicinity of ∆R, in contrast to the polaron scenario, but saturates

close to its allowed maximum and persists at very high energies, exceeding even the bare gap

∆. Both the elastic and inelastic results show that the induced photon-photon interactions can be

highly anisotropic, being dominated by interactions between photons of different species.

The model we study is closely related to the problem of a spin coupled to two competing

Ohmic baths. The ground-state phase diagram and the spin properties in such a system were

originally studied in the context of quantum impurities in magnetically ordered backgrounds [232–

237], where it was observed that the two competing baths result in the preservation of coherence

in the spin dynamics, which was named “quantum frustration of decoherence” [232, 233]. Here

we are instead interested in the dynamics of the photons.

3.2 Model

We consider a single spin-1/2 that is coupled, via two non-commuting operators, to two species of

propagating photons in one-dimension, as shown in Fig. 3.1, and as described by the Hamiltonian

[232, 233] (h̄ = 1)

(3.1)Ĥ =
∑
i=x,y

[∫
dz

(
qi(z)

2

2
+

(∂zϕi(z))
2

2

)]
− ∆

2
σ̂z + π

√
αxqx(0)σ̂x + π

√
αy∂zϕy(0)σ̂y.
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The two photon species have a linear dispersion ωk = |k| and are described by the scalar fields

ϕi(z) satisfying [qi(z), ϕj(z
′)] = −iδijδ(z − z′). Here, qi(z) and ϕi(z) could represent the charge

and flux degrees of freedom of two superconducting transmission lines [208], and the spin degree

of freedom can be a qubit that is coupled capacitively to one transmission line and inductively to

the other [238]. We note that our results would apply equally well to other geometries, such as

a spin coupled to two semi-infinite leads [209], or a spin coupled to two polarizations of a single

waveguide as in Ref. [239]. In Eq. (3.1), αi (i = x, y) are the dimensionless coupling constants,

which, for the rest of the Chapter, we assume to be equal (αx = αy ≡ α).

The Hamiltonian in Eq. (3.1) needs to be supplemented with an ultraviolet cutoff ωc. The latter

can be used to define, via a renormalization group (RG) procedure [233], a renormalized spin

frequency ∆R, implicitly given by

∆R =
∆

1 + 2α log(ωc/∆R)
. (3.2)

This quantity, first derived in Refs. [232, 233], is close to the bare spin frequency ∆ for small

α → 0, and it decreases as α is increased, approaching 0 as α → ∞. As we show in the next

section, for intermediate coupling strengths α ≲ 0.4, ∆R plays an important role in the photon

dynamics, where it can be interpreted as the splitting of the dressed spin, whereas this picture

breaks down for larger α.
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Figure 3.2: Numerical (a,b,c) and analytical (d,e,f) elastic scattering coefficients corresponding
to Fig. 3.1, as a function of the incoming frequency ω and coupling constant α. The red dashed
line corresponds to ∆R from Eq. (3.2). The cutoff is ωc = 10∆. The oscillating behavior in the
numerical plots at large α is a finite-size effect due to the scattering being very broad in space-time.

3.3 Anomalous transport

We begin by considering the elastic scattering of a single photon. Without loss of generality,

we assume an incoming x photon that can scatter elastically in four different ways, as shown

in Fig. 3.1. We computed the scattering coefficients both numerically, using an MPS-based ap-

proach, and analytically, with diagrammatic perturbation theory. In order to simulate the system

numerically, we use an orthogonal polynomials mapping [240, 241] that transforms Eq. (3.1) into

a one-dimensional tight-binding model with only local interactions (see Appendix B.2). We first

use the density matrix renormalization group method to find the ground state of the system and

then create a broad-in-frequency single-photon wavepacket on top of it. This state is then evolved

for sufficiently long times so that the scattering process has ended. From the resulting state, we ex-

tract the elastic probabilities [242], shown in the top row of Fig. 3.2, as a function of the incoming

frequency ω and coupling constant α.
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In order to gain analytical insight into the problem, we use the fact that the elastic S-matrix can

be written in terms of spin susceptibilities [209, 210, 215, 243–246]. For the setup in Fig. 3.1, we

find (Appendix B.3)

rαβ(ω) = −i2παωχαβ(ω), tαβ(ω) = δαβ + rαβ(ω), (3.3)

where the spin susceptibilities χαβ(ω) are given by the Fourier-transformed retarded Green’s func-

tion

χαβ(ω) = − i

4

∫ ∞

0

dteiωt ⟨[σ̂α(t), σ̂β(0)]⟩ , (3.4)

evaluated in the ground state. Equations (3.3) and (3.4) are exact for a single incoming photon, but

they can be understood intuitively within linear response formalism. The scattering of a β photon

acts as a perturbation σ̂β(0) on the spin, and the response σ̂α(t) of the spin describes the emission

of an α photon.

The advantage of writing the elastic S-matrix in the form of Eqs. (3.3) and (3.4) is that it allows

the use of powerful field-theoretical methods. In particular, we use an Abrikosov psuedo-fermion

representation of the spin to perturbatively compute Eq. (3.4) to leading order in α, and employ

the Dyson equation to sum an infinite subset of diagrams, as in the random-phase-approximation

of the Coulomb gas [247]. We then use the Callan-Symanzik equation together with the RG flow

equations from Refs. [232, 233] to improve upon the perturbative results, taking into account the

non-perturbative Lamb shift in Eq. (3.2). The end result is (see Appendix B.4 for derivation)

χxx(ω) =
(−∆+ iπαω)/2

∆2 − ω2
[
π2α2 +

(
1 + 2α log

(
ωc

ω

))2]− i2πα∆ω
, (3.5)

χxy(ω) =
−iω(1 + 2α log(ωc/ω))/2

∆2 − ω2
[
π2α2 +

(
1 + 2α log

(
ωc

ω

))2]− i2πα∆ω
. (3.6)

These forms for the susceptibility have a peak near ∆R with a width of order τ−1 ∼ α∆R, where
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τ is the lifetime of a spin excitation. At small α, both expressions reduce to narrows peaks at ∆,

since ∆R → ∆ and τ−1 → 0 for α → 0. The resulting transmission and reflection probabilities

are shown in the bottom row of Fig. 3.2.

We find excellent qualitative agreement between the numerical and analytical results, particu-

larly for α ≲ 0.5. At very small α, we have the standard situation in waveguide QED [203–206],

where only photons at ω ≈ ∆ are coupled to the spin and experience scattering, being equally split

among the four channels in Fig. 3.1, and the rest are simply transmitted. As α is increased, the

location of the resonance drastically decreases, in excellent agreement with the RG predicted ∆R

in Eq. (3.2) (red dashed lines in Fig. 3.2).

For ω ≪ ∆R, Fig. 3.2 shows perfect transmission for all α, indicating that modes with fre-

quencies smaller than ∆R are effectively uncoupled from the impurity. This regime is qualitatively

similar to that of the usual unfrustrated spin-boson model [223] and the Kondo problem [248]. In

the latter, for energies smaller than the Kondo temperature (the equivalent of ∆R), the impurity is

screened and essentially disappears from the problem [246, 248, 249].

The ω > ∆R regime, on the other hand, is drastically different than in these paradigmatic mod-

els and the standard ultrastrong waveguide QED systems (see Appendix B.6 for a more detailed

comparison to the case when the coupling operator to both waveguides is the same). Surprisingly,

we find that, at large α, there is very little transmission, even for ω ≫ ∆R. For α ≲ 0.4, the

system still admits the effective polaron description, since the strongest elastic response for all

scattering channels in Fig. 3.2 is still concentrated near ∆R. This picture changes dramatically for

α ≳ 0.4, where the reflection |rxx(ω)|2, for example, instead of monotonically decreasing away

from the resonance at ∆R, first decreases but then starts increasing for ω > ∆R. This behavior

is more easily seen in the numerical plots but is nonetheless qualitatively consistent with the ana-
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lytical solution. In particular, from Eq. (3.5) we see that, at large α and ω ≫ ∆R, χxx(ω) decays

sublinearly ∼ ω−1 log−2(ωc/ω), as was also pointed out in Refs. [232, 233]. Hence, the reflection

coefficient [∼ ωχxx(ω) from Eq. (3.3)] increases, while the transmission decreases, in that regime.

At even higher couplings α ≳ 0.5, the numerical results show that the ∆R resonance in |rxx(ω)|2

becomes increasingly weaker, becoming less intense than the extremely broadband response at

higher frequencies. All this implies that the spectral weight of the spin [∼ Im(χxx(ω))] becomes

increasingly spread out over larger energies instead of having a sharp peak at ∆R. This anomalous

behavior of the elastic reflection and transmission at large α, bearing no resemblance to a two-level

system, constitutes the first of the two main results of this work.

Another interesting aspect in Fig. 3.2 is the behavior of the inter-species scattering, |tyx(ω)|2,

where the ∆R resonance becomes extremely broad on the ω > ∆R side (note that χxy(ω)

[Eq. (3.6)] approaches a constant for large α and ω ≫ ∆R). This implies that the incoming x

photon can be efficiently converted into a y photon in a wide range of energies. The inter-species

scattering at large α shows significant disagreement between the numerical and analytical results,

with the analytics suggesting that |tyx(ω)|2 increases as ω is increased away from the ∆R reso-

nance. The numerics do not show such an increase, but rather show that |tyx(ω)|2 approaches zero

for very large ω and α. As we discuss in the next section, the discrepancy in |tyx(ω)|2 (as well as

in |rxx(ω)|2 and |txx(ω)|2) at large α is due to the lack of certain kind of O(α2) diagrams in the

susceptibility calculation and is related to the presence of substantial inelastic scattering.
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3.4 Photon decay

As is well-known, ultrastrong coupling can give rise to number-non-conserving inelastic processes.

The probability of such processes is, however, typically much weaker than the elastic rate and

is usually peaked at the vicinity of the polaron energy ∆R [209, 244, 246]. As we now show,

these two expectations are strongly invalidated due to the strong frustration in our model, which

constitutes the second main unexpected result of this work.

Conservation of probability implies that |txx(ω)|2 + |rxx(ω)|2 + 2|tyx(ω)|2 = 1− γ(ω), where

nonzero γ(ω) signifies that the initial x photon of energy ω can decay into multiple photons of

smaller energies. Direct computation using Eqs. (3.3), (3.5) and (3.6) yields γ(ω) = 0, which is

certainly incorrect. In fact, the numerical plots in Fig. 3.2 show that the total inelastic scattering

rate approaches ≈ 0.5 (for ω ≳ 0.5∆ and α ≳ 0.6). In those regimes, a photon is therefore as likely

to decay as to be scattered elastically. Note that the continuity equation in Eq. (3.3) constrains that

max[γ] = 0.5, implying that the scattering is nearly maximally inelastic in that regime.

To get a deeper understanding of the inelastic scattering, we perform additional numerical

simulations and analytical computations. Numerically, we use narrower wavepackets in order to

probe the dependence of the outgoing particles on the energy of the incoming photon. After the

scattering event, we record the total number of elastically and inelastically scattered photons in

each waveguide (Appendix B.2), shown in Fig. 3.3 for six wavepackets with different mean energy.

The first observation from Fig. 3.3 is that the inelastic emission is highly anisotropic, giving rise

to significantly more y photons than x photons, for an initial x wavepacket. Since the scattering

process cannot change the state of the spin, the leading-order inelastic process involves four (one

incoming and three outgoing) photons and is therefore of order α2 [209]. It is precisely those
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Figure 3.3: Numerically computed total number of elastic (a) and inelastic (b) particles produced
in each waveguide as a function of α for six different incoming wavepackets. The wavepackets are
single-particle Gaussians centered at ω̄in with a standard deviation of 0.2∆. ωc = 10∆.

diagrams which are missing in the susceptibilities in Eqs. (3.5) and (3.6), explaining also why the

analytics become inaccurate for α ≳ 0.5 where nearly half of the scattering is inelastic. The four

leading-order inelastic processes are x → {xxx, yyy, xxy, xyy}. We denote the probability of

these processes by γµ1µ2µ3(ω1, ω2, ω3;ω) where µi specifies the flavor of the outgoing photon (x or

y) and ωi its frequency. Energy conservation constrains ω1 + ω2 + ω3 = ω. We have computed

the leading order diagrams contributing to these processes, and the expressions are provided in

Appendix B.5.
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We find that the leading-order expression for γxxx exactly matches that [209] of the standard

unfrustrated spin-boson model. Moreover, three of the four processes are elegantly related to each

other to leading order, as follows:

γyyy = γxxx
ω2

∆2
R

, γxxy = γxxx
ω2
3

∆2
R

. (3.7)

The first of these demonstrates that an incoming x photon with energy ω > ∆R is more likely

to decay into three y photons, as opposed to three x photons. The second relation shows that the

γxxy process is more likely to occur than γxxx provided that the energy of the y photon satisfies

ω3 > ∆R. However, it is far less likely compared to γyyy because if ω3 ≈ ω, energy conservation

would require ω1 ≈ ω2 ≈ 0 and this would highly suppress its probability. The remaining process,

γxyy, does not have a simple relation to the other three, but we have verified by direct numerical

integration that its total cross-section is of the same order as the one for γxxy, and both of these are

significantly less important than γyyy. In short, all this demonstrates that, in the regime ω ≫ ∆R,

photons of one flavor decay dominantly to the other. This agrees qualitatively with Fig. 3.3, since

even the smallest energy wavepacket (ω̄in/∆ = 0.5) is in the regime of ω > ∆R for α ≳ 0.2 (see

Fig. 3.2). In fact, for almost all the wavepackets and the range of α in Fig. 3.3, we have ω ≫ ∆R.

Figure 3.3 also shows that the number of elastic y photons goes to zero at large α and ω,

consistent with tyx(ω) → 0 in that regime, as we discussed in the previous section. Interestingly,

this says that the inter-species scattering can be completely inelastic, while also dominating over

the intra-species scattering, as we have just shown. Remarkably, we also see that the number of

inelastically produced photons continues to rise as a function of ω̄in, suggesting that γ(ω) remains

close to 0.5 even for ω > ∆ ≫ ∆R. This behavior is consistent with the anomalous elastic

scattering we identified in the previous section, but we nonetheless expect that γ(ω), as well as the
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nontrivial elastic scattering [rxx(ω), tyx(ω)], would eventually decay to zero as ω → ∞. While

all the presented analytical and numerical results are qualitatively independent of the high-energy

cutoff, we conjecture that the exact location of this decay may be nonuniversal and may depend on

the precise cutoff function for a given physical system. In Appendix B.6, we compare these results

to the situation where the two waveguides in Fig. 3.1 couple to the spin via the same operator, σ̂x,

showing that, without the frustrated coupling, the inelastic processes are comparatively negligible

and the anomalous elastic transport is absent.

3.5 Summary and outlook

In this Chapter we have shown that ultrastrong frustrated coupling between a two-level system

and free photons in 1D leads to novel behavior such as anomalous photon transport and maximal

photon decay. This behavior bears no resemblance to scattering off a two-level system and hence

indicates the breakdown of the polaron quasi-particle description. Instead, this is reminiscent of

non-Fermi liquid behavior of quantum impurity models in strongly correlated electron systems

[244, 246].

While in this Chapter we have focused solely on the equal couplings case αx = αy, we expect

our main results, namely the anomalous transport and strong photon decay, to remain qualitatively

valid even in the presence of anisotropic couplings, provided they are both large and similar in

magnitude. On the other hand, if the couplings are strongly asymmetric, say αx ≫ αy, the behavior

of the system would resemble more the unfrustrated model. The weaker coupling in such a case

can be thought of as an unwanted source of dissipation acting on the spin, which would necessarily

be present experimentally. Such unwanted dissipation can be similarly included in our model
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by adding a third waveguide with coupling α3 ≪ αx ≈ αy. In superconducting circuits, such

additional dissipation channels can be made negligible compared to the desired couplings [180,

215], and thus should not qualitatively affect our results.

Future theoretical work can investigate what kind of effective spin-spin interactions as well

as novel phases of hybrid light-matter systems can be engineered by adding multiple impurities.

The numerical and analytical methods developed in this Chapter can also be immediately applied

in a variety of other situations, such as photons with more exotic dispersions. It would also be

interesting to develop protocols that make use of the unusual properties of the light-matter system

in this Chapter for entanglement generation, single-photon switches and routers, and frequency

conversion, among other applications. Finally, our work may also shed light and inspire future

studies on the problems of heat and energy transport, relevant for quantum thermodynamics and

quantum chemistry, where similar models to the one studied here appear [250, 251].

38



Chapter 4: Ultrastrong Light-Matter Interaction in a Photonic Crystal

4.1 Introduction

Manipulating and studying the behavior of quantum systems composed of interacting particles,

such as cold atoms [22, 252] or trapped ions [25], can help gain insight into fascinating many-

body phenomena. Efforts have begun to develop synthetic materials in quantum optical platforms,

harnessing the atom-light interface to extend interactions between atoms beyond the free-space

limit using photonic structures [253], or to mediate interactions between photons through a non-

linear atomic medium [254].

The strong hybridization of an atom with the band structure of a photonic crystal creates unique

atom-photon dressed states, where the photonic excitation is exponentially localized at the atom

position [255]. The first detection of a single-photon bound state has been achieved in the mi-

crowave domain, by coupling a superconducting qubit to a stepped impedance waveguide [256].

It is even possible for multiple photons to be simultaneously localized by a single emitter [257–

260], the formation of multi-excitation bound states lying at the heart of many interacting quantum

systems [261–263].

Assembling a chain of atoms coupled through their localized photonic modes offers a promis-

ing platform for simulating a wide range of quantum spin models with tunable long-range interac-

tions [264, 265]. Realizations of these quantum simulators have been explored with atomic systems
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embedded in nanophotonic waveguides [253, 266] and with superconducting circuits [179, 267–

269]. Implementing such a large-scale system while maintaining a high level of control over the

atomic elements is a challenging task on par with current efforts in building quantum information

processors. An alternative direction to building a quantum optical simulator is to couple only a sin-

gle atom to the many harmonic degrees of freedom in the crystal, which are energetically resolved

and bestowed with strong photon-photon interactions inherited from the atom nonlinearity. This

requires engineering the interaction to be large enough to observe significant many-body effects,

in which the single-particle description becomes insufficient.

Circuit quantum electrodynamics (cQED) is an ideal platform for pushing the light-matter cou-

pling [52] to novel frontiers in quantum optics [53, 54]. When the coupling strength becomes a

sizable fraction of the excitation energies of the noninteracting system, the rotating wave approx-

imation (RWA) is no longer valid and the resurgence of counterrotating terms gives rise to fasci-

nating phenomena, such as the formation of an entangled atom-photon ground state [270]. This

regime, termed the ultrastrong coupling regime, has been demonstrated with a superconducting

flux qubit coupled to a single-mode microwave resonator [271, 272], displaying spectroscopic de-

viations from the standard Jaynes-Cummings model. Recent experiments have also reached the

nonperturbative deep-strong coupling regime [273], where the physics is fully captured by the

quantum Rabi model.

Extending the ultrastrong coupling regime to a discrete or continuous spectrum of harmonic

modes provides an exciting avenue for exploring quantum impurity models in condensed matter

physics [207–209, 211]. Connecting qubits to high-impedance transmission lines [216–218], the

coupling strength can exceed the free spectral range and allow many discrete modes to hybridize

with the qubit, offering insights into the enhanced down-conversion of a single photon [274] and
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many-body localization [275]. Ultrastrong coupling to the electromagnetic continuum of a trans-

mission line was also achieved [180, 215] where the qubit emission rate into the waveguide be-

comes a significant fraction of its frequency. Realization of the ultrastrong light-matter interaction

in a structured multimode vacuum, with band edges, would provide a platform to explore unique

phenomena beyond spin-boson models with linear waveguides [228, 231, 242].

In this Chapter we achieve the ultrastrong light-matter coupling regime in a photonic crystal

waveguide where many-body effects arise from interactions that break particle number conserva-

tion and allow the direct observation of multi-particle bound states with a single-excitation probe.

Our platform employs a highly nonlinear artificial atom with engineered control over its internal

energy levels and over its coupling to the photonic crystal. We implement this model with su-

perconducting circuits and reach the ultrastrong coupling regime using a galvanic connection. As

predicted [242], the breakdown of the RWA converts the transport of a single photon into a many-

body problem, where multi-photon bound states participate in the dynamics. This platform also

harnesses the discrete multimode structure of the metamaterial to microscopically probe the pho-

tonic modes and their underlying correlations using well-established quantum optics techniques.

We probe the photon-photon interactions mediated by the artificial atom through a multimode flu-

orescence measurement and observe the broadband emission of entangled pairs of photons.

4.2 Waveguide QED model

Our quantum optical model depicted in Fig. 4.1a consists of a multi-level artificial atom coupled

to a photonic crystal waveguide with a finite-bandwidth dispersion. The discrete waveguide is

represented as an array of coupled cavities, where the impurity is directly dipole-coupled to one
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Figure 4.1: Photonic crystal platform. Atom-photon dressed bound states are explored in the
waveguide quantum electrodynamics model illustrated in a. The physical system, shown in b,
consists of a fluxonium artificial atom galvanically coupled to a tight-binding lattice of photons
implemented as a lumped-element metamaterial. The fluxonium energy levels and its coupling in-
ductance to the metamaterial are tuned in-situ with the externally applied magnetic flux ΦB and ΦC,
respectively. The photonic crystal device is patterned on a large-area superconducting circuit. As
shown in the optical microscope image in c, each of M = 26 unit cells is defined by a microwave
resonator (blue), and the fluxonium circuit is coupled to the edge resonator (red). d. The dressed
eigenmodes of the metamaterial are spectroscopically probed in transmission as the qubit reso-
nance and its coupling are tuned with the magnetic flux bias. e. The eigenmode frequencies, mea-
sured when the qubit is far detuned, match the theoretical energy dispersion ωk = ωc − 2J cos(k)
(solid line) for a 1D tight-binding chain of cavities, with a resonance frequency ωc, coupled with a
tunneling rate J . Here k = nπ/(M + 1), with n = 1, . . . ,M , labels the eigenmodes in the order
of increasing energy.

cavity site. The Hamiltonian is given by

(4.1)H/h̄ =
M−1∑
j=0

ωja
†
jaj −

∑
⟨i,j⟩

Jij

(
a†iaj + a†jai

)
+
∑
l

εl|l⟩⟨l|+
∑
l,l′

gll′σll′
(
a†0 + a0

)
.

The first two terms represent the tight-binding model for the photonic metamaterial, where a†j is

the bosonic creation operator for a photon in the cavity site j. Each cavity has a bare resonance

frequency ωj and is coupled to its nearest neighbours with a tunneling rate Jij . The third term

describes the energy spectrum εl of the uncoupled atom in its eigenbasis |l⟩. The last term in the

Hamiltonian describes the coupling between the atomic dipole transitions σll′ = |l⟩⟨l′|+|l′⟩⟨l| and
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the local cavity field in the site j = 0. For the range of coupling strengths g01 investigated in this

Chapter, the counterrotating contributions to the dipolar coupling are purposefully retained.

Adopting the cQED platform, we have implemented the device show in Fig. 4.1b, with a circuit

diagram (Fig. 4.1c) that directly maps to our physical model (see Appendix C.2). The photonic

metamaterial consists of a linear chain ofM = 26 lumped-element microwave resonators with bare

frequencies ωj/2π ≃ 6.9GHz and nearest-neighbor capacitive couplings Jij/2π ≃ 814.4MHz.

We employ the fluxonium circuit [276] as our highly nonlinear quantum impurity. The qubit

consists of a Josephson junction with energy EJ/h = 8.1GHz, shunted by a capacitor and an

inductor, defined by a charging and inductive energy EC/h = 3.3GHz and EL/h = 5.5GHz,

respectively. Given its large anharmonicity and non-trivial selection rules, this circuit becomes an

ideal choice for realizing a multi-level artificial atom whose energy spectrum and dipole matrix

elements can be controlled in-situ using an external magnetic flux ΦB threading the fluxonium

loop.

This choice of superconducting qubit and coupling topology is favorable for reaching the ul-

trastrong coupling regime [52, 53, 277]. The fluxonium circuit is galvanically coupled to a lattice

site by sharing a portion of its shunt-inductor, thereby coupling the resonator current to the phase

drop |φ⟩⟨φ|q across the Josephson junction. This becomes analogous to a magnetic dipole inter-

action of the atom with the resonator magnetic field dB, with the dipole moment defined in the

fluxonium eigenbasis dij = ⟨i|φ⟩q ⟨φ|q |j⟩. The normalized inductive coupling strength takes the

general form gij/ω0 ∝ βL
√
Zvac/Zrα

−1/2dij , where βL is the relative inductive participation ratio,

Zvac =
√
µ0/ε0 ≃ 377Ω is the vacuum impedance, Zr is the resonator impedance, and α ≃ 1/137

is the fine structure constant (see Appendix C.2). To achieve large coupling strengths, we operate

the fluxonium near the sweet spot ΦB = Φ0/2, where Φ0 = h/2e is the magnetic flux quantum.
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Figure 4.2: Spectroscopy near the impurity resonance. a. The coupled impurity-metamaterial sys-
tem is characterized by measuring the magnitude of microwave transmission as a function of probe
frequency. The fluxonium transition (solid curve) is tuned in resonance with the lattice passband
by varying the external flux (ΦB) through the qubit loop. b. The elastic scattering mediated by
the qubit leads to a decrease in transmission, as highlighted by the trace at the flux sweet spot
ΦB = Φ0/2 (dashed line cut in a.). The extracted amplitudes for each resonance peak (gray cir-
cles) are fitted to the transmission coefficient |T |2 (solid red curve) for a single photon propagating
in a 1D waveguide, scattered by a two-level emitter.

At this bias point, the dipole moment for the ground to first excited state transition reaches its

maximum value. Remarkably, the inductive coupling scales inversely with the fine structure con-

stant [52], allowing us to effortlessly reach the ultrastrong coupling regime. This is in contrast

with capacitive coupling of a superconducting qubit or coupling a Rydberg atom to a cavity, where

the small fine structure constant fundamentally limits the interaction strength. Furthermore, we

control the qubit-metamaterial coupling by implementing the shared inductor as a chain of five

superconducting quantum interference device (SQuID) loops threaded by a magnetic flux ΦC. The

SQuIDs are operated in the linear regime and jointly act as a flux-tunable inductor.

44



5.4 5.5 5.6
Flux ΦB/Φ0

5

6

7

8

9

Pr
ob

e 
fre

qu
en

cy
 (G

Hz
)

6.4 6.5 6.6
Flux ΦB/Φ0

7.4 7.5 7.6
Flux ΦB/Φ0

a b

c

g/ω0≃0.4 g/ω0≃0.5 g/ω0≃0.7

0.4 0.5 0.6

5

10

15

20

25

30

M
an

y-
bo

dy
 sp

ec
tru

m
 (G

Hz
)

0.4 0.5 0.6
ΦB/Φ0

0.4 0.5 0.6

(iii)(ii)(i)

1 particle 2 particles 3 particles

g02 6= 0
<latexit sha1_base64="x3e95GEaleqrO2lOrGtZ2n9kk7E=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4GtJSUHdFNy4rOLbQDiWT3mlDM5lpkimUod/hxoWKW3/GnX9jpq3g88DlHs65l9ycIBFcG0LencLK6tr6RnGztLW9s7tX3j+403GqGHgsFrFqB1SD4BI8w42AdqKARoGAVjC6yv3WBJTmsbw10wT8iA4kDzmjxkr+oJeR2gx3JYwx6ZUrxK2THPg3qbrzTipoiWav/NbtxyyNQBomqNadKkmMn1FlOBMwK3VTDQllIzqAjqWSRqD9bH70DJ9YpY/DWNmSBs/VrxsZjbSeRoGdjKgZ6p9eLv7ldVITnvsZl0lqQLLFQ2EqsIlxngDucwXMiKkllClub8VsSBVlxuZUsiF8/hT/T7yae+FWb+qVxuUyjSI6QsfoFFXRGWqga9REHmJojO7RI3pyJs6D8+y8LEYLznLnEH2D8/oB25+RDA==</latexit><latexit sha1_base64="x3e95GEaleqrO2lOrGtZ2n9kk7E=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4GtJSUHdFNy4rOLbQDiWT3mlDM5lpkimUod/hxoWKW3/GnX9jpq3g88DlHs65l9ycIBFcG0LencLK6tr6RnGztLW9s7tX3j+403GqGHgsFrFqB1SD4BI8w42AdqKARoGAVjC6yv3WBJTmsbw10wT8iA4kDzmjxkr+oJeR2gx3JYwx6ZUrxK2THPg3qbrzTipoiWav/NbtxyyNQBomqNadKkmMn1FlOBMwK3VTDQllIzqAjqWSRqD9bH70DJ9YpY/DWNmSBs/VrxsZjbSeRoGdjKgZ6p9eLv7ldVITnvsZl0lqQLLFQ2EqsIlxngDucwXMiKkllClub8VsSBVlxuZUsiF8/hT/T7yae+FWb+qVxuUyjSI6QsfoFFXRGWqga9REHmJojO7RI3pyJs6D8+y8LEYLznLnEH2D8/oB25+RDA==</latexit><latexit sha1_base64="x3e95GEaleqrO2lOrGtZ2n9kk7E=">AAAB83icdVDLSgMxFM3UV62vqks3wSK4GtJSUHdFNy4rOLbQDiWT3mlDM5lpkimUod/hxoWKW3/GnX9jpq3g88DlHs65l9ycIBFcG0LencLK6tr6RnGztLW9s7tX3j+403GqGHgsFrFqB1SD4BI8w42AdqKARoGAVjC6yv3WBJTmsbw10wT8iA4kDzmjxkr+oJeR2gx3JYwx6ZUrxK2THPg3qbrzTipoiWav/NbtxyyNQBomqNadKkmMn1FlOBMwK3VTDQllIzqAjqWSRqD9bH70DJ9YpY/DWNmSBs/VrxsZjbSeRoGdjKgZ6p9eLv7ldVITnvsZl0lqQLLFQ2EqsIlxngDucwXMiKkllClub8VsSBVlxuZUsiF8/hT/T7yae+FWb+qVxuUyjSI6QsfoFFXRGWqga9REHmJojO7RI3pyJs6D8+y8LEYLznLnEH2D8/oB25+RDA==</latexit>

gk(a
†
k�

+ + ak�
�)

<latexit sha1_base64="nlvSUavSf4u7eC0gvDEWV1yfyNI=">AAACFHicdVDLSgMxFM3UV62vqks3wSJUqmUqBXVXdOOygrWFTjvcyWTG0MyDJCOUoT/hxl9x40LFrQt3/o2ZtkJ9Hbjcwzn3ktzjxJxJZZofRm5ufmFxKb9cWFldW98obm5dyygRhLZIxCPRcUBSzkLaUkxx2okFhcDhtO0MzjO/fUuFZFF4pYYx7QXgh8xjBJSW7OKBbw/K0Ldc8H0q7AG2JPMD6KeVEa5gmBEOR/t2sWRW62YG/JvUquNultAUTbv4brkRSQIaKsJBym7NjFUvBaEY4XRUsBJJYyAD8GlX0xACKnvp+KoR3tOKi71I6AoVHquzGykEUg4DR08GoG7kTy8T//K6ifJOeikL40TRkEwe8hKOVYSziLDLBCWKDzUBIpj+KyY3IIAoHWRBh/B1Kf6ftI6qp9XaZb3UOJumkUc7aBeVUQ0dowa6QE3UQgTdoQf0hJ6Ne+PReDFeJ6M5Y7qzjb7BePsEMHCdyA==</latexit><latexit sha1_base64="nlvSUavSf4u7eC0gvDEWV1yfyNI=">AAACFHicdVDLSgMxFM3UV62vqks3wSJUqmUqBXVXdOOygrWFTjvcyWTG0MyDJCOUoT/hxl9x40LFrQt3/o2ZtkJ9Hbjcwzn3ktzjxJxJZZofRm5ufmFxKb9cWFldW98obm5dyygRhLZIxCPRcUBSzkLaUkxx2okFhcDhtO0MzjO/fUuFZFF4pYYx7QXgh8xjBJSW7OKBbw/K0Ldc8H0q7AG2JPMD6KeVEa5gmBEOR/t2sWRW62YG/JvUquNultAUTbv4brkRSQIaKsJBym7NjFUvBaEY4XRUsBJJYyAD8GlX0xACKnvp+KoR3tOKi71I6AoVHquzGykEUg4DR08GoG7kTy8T//K6ifJOeikL40TRkEwe8hKOVYSziLDLBCWKDzUBIpj+KyY3IIAoHWRBh/B1Kf6ftI6qp9XaZb3UOJumkUc7aBeVUQ0dowa6QE3UQgTdoQf0hJ6Ne+PReDFeJ6M5Y7qzjb7BePsEMHCdyA==</latexit><latexit sha1_base64="nlvSUavSf4u7eC0gvDEWV1yfyNI=">AAACFHicdVDLSgMxFM3UV62vqks3wSJUqmUqBXVXdOOygrWFTjvcyWTG0MyDJCOUoT/hxl9x40LFrQt3/o2ZtkJ9Hbjcwzn3ktzjxJxJZZofRm5ufmFxKb9cWFldW98obm5dyygRhLZIxCPRcUBSzkLaUkxx2okFhcDhtO0MzjO/fUuFZFF4pYYx7QXgh8xjBJSW7OKBbw/K0Ldc8H0q7AG2JPMD6KeVEa5gmBEOR/t2sWRW62YG/JvUquNultAUTbv4brkRSQIaKsJBym7NjFUvBaEY4XRUsBJJYyAD8GlX0xACKnvp+KoR3tOKi71I6AoVHquzGykEUg4DR08GoG7kTy8T//K6ifJOeikL40TRkEwe8hKOVYSziLDLBCWKDzUBIpj+KyY3IIAoHWRBh/B1Kf6ftI6qp9XaZb3UOJumkUc7aBeVUQ0dowa6QE3UQgTdoQf0hJ6Ne+PReDFeJ6M5Y7qzjb7BePsEMHCdyA==</latexit>

5.4 5.5 5.6
Flux ΦB/Φ0

6

7

8

Pr
ob

e 
fre

qu
en

cy
 (G

Hz
)

6.4 6.5 6.6
Flux ΦB/Φ0

7.4 7.5 7.6
Flux ΦB/Φ0

(i) (ii) (iii)

Figure 4.3: Many-body scattering dynamics of a single propagating photon. a. If the artificial
atom is restricted to a two-level system and the RWA approximation is valid, the multi-particle
eigenstates of the joint system form isolated bands of fixed-excitation manifolds. In the full model,
these particle sectors are coupled through counter-rotating terms and parity-breaking transitions to
higher fluxonium states, as highlighted by arrows. The multiphoton bound states scatter a single
propagating photon as they enter the single-particle band, see upper diagram where the photons
are represented as red dots. b. This nonperturbative effect is captured in the measured transmis-
sion amplitude of a weak probe tone for increasing values of the SQuID coupler inductance which
leads to an increased light-matter coupling (normalized coupling strength at the flux sweet spot is
listed at the top of each plot). In addition to the main fluxonium transition resonance (solid black
curve), we observe the two-photon and three-photon bound states entering the passband. The yel-
low theory curves are the calculated energy levels from diagonalizing the full model Hamiltonian.
The dashed yellow curve corresponds to the calculated two-photon state, while the solid yellow
curve (above the measured three-photon resonance) corresponds to the calculated three-photon
state. c. The appearance of these additional multiparticle resonances are validated with MPS scat-
tering simulations of the transmission amplitude tk. The faint resonance that gets shifted down
in frequency as we increase the coupling strength qualitatively follows the calculated energy for
the two-photon bound state, while the strong Fano-like resonance in (iii) matches the calculated
energy for the three-photon bound state.

4.3 Nonperturbative transport of a single photon

The single-photon transport measurements are performed by applying a weak probe field and

recording the amplitude of the transmitted field through the photonic crystal. The probe frequency
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is varied over a broad range that covers the full dispersive band of the lattice. The transmission

spectrum, shown in Fig. 4.1d, reveals a set of frequency-resolved resonances which correspond

to the lattice modes hybridized with the fluxonium internal states. As the external magnetic bias

is varied, we observe periodic disturbances in the resonance spectrum with two distinct modula-

tion periods. The short and long periods coincide with the insertion of an additional flux quantum

through the large fluxonium loop and the smaller SQuID loops, respectively. This large asym-

metry (ΦB/ΦC ≈ 16) allows independent control over the fluxonium spectrum and its coupling

strength with the metamaterial. The transmission measurements are focused at flux bias values

ΦB ≈ (2n + 1)Φ0/2 where the fluxonium resonance, corresponding to the transition from the

ground state to the first excited state, enters the lattice band. Going to larger bias values, by in-

creasing n, we are accessing increasing values of the coupling strength g01/ω0. In Fig. 4.2a we

show the transmission spectrum centered around ΦB ≈ Φ0/2, where the coupler SQuID is biased

around its lowest inductance value. Tuning the qubit frequency ε01 = ε1 − ε0 across the photonic

crystal spectrum leads to a clear extinction in the transmission amplitude for modes in the vicinity

of the fluxonium resonance. This is explained by the destructive interference between the incoming

probe field and the forward propagating field radiated by the qubit [206]. Additionally, we observe

that the dressed lattice modes are displaced in frequency upon tuning the qubit into the band, in

agreement with previous multimode experiments [216, 217]. The fluxonium circuit parameters are

inferred from matching the flux dependence of the ε01 transition to the data.

The coupling between the impurity and its environment is characterized by the spontaneous

emission rate Γ1 of the artificial atom into the photonic crystal waveguide. To quantify this rate of

energy exchange, we fit the transmission spectrum at the flux sweet spot (Fig. 4.2b) to the model of

a two-level system coupled to a one-dimensional waveguide. In the weak-driving limit, the trans-

46



mission coefficient is given by T (ω) = 1− 1
2
Γ1/(Γ2+i∆) [206, 278], where Γ1 is the total emission

rate, Γ2 is the decoherence rate, and ∆ = ωp−ε01 is the detuning of the probe tone. From this sim-

ple model, we estimate a spontaneous emission rate Γ1/2π ≃ 6.18GHz. This places our platform

in the many-body regime, a combination of multi-mode and ultrastrong regimes. The multimode

aspect is supported by the coupling rate exceeding the lattice mode spacing Γ1 > δωk [217, 279],

while the ultrastrong signature is justified by the coupling being a significant fraction of the qubit

frequency Γ1/ω01 ≃ 0.85 [180]. We quantify this coupling regime in terms of Γ1 since it is read-

ily available from the transmission spectrum, but similar conditions can be written in terms of the

Rabi coupling strength g01 [208]. This presents a picture of an impurity simultaneously exchanging

excitations with many environmental modes, involving interaction processes that do not conserve

the total number of particles. While this regime of light-matter interaction is still under active

investigation and has thus far been discussed in linear waveguide models [209, 211, 279], we put

forward a different picture that highlights the ultrastrong coupling physics and correlated nature in

our structured multimode system.

In the presence of band-edges in the photonic crystal dispersion, the ultrastrong coupling

regime introduces nonperturbative modifications to the propagation of a single photon. To under-

stand the transmission of a single photon in our setting, we begin the discussion from the simple

limit, not relevant for our experiment, where only the two lowest energy levels (|0⟩ , |1⟩) of the

fluxonium are accounted and we neglect the counter rotating terms in Eq. (4.1). In that case, the

Hamiltonian conserves the total excitation number N =
∑

j a
†
jaj + |1⟩ ⟨1|, and the full eigen-

state spectrum (see Fig. 4.3a) consists of bands of scattering and bound states, for each integer

N . The scattering of a single incoming photon is therefore confined to the single-excitation sector.

The higher excitation eigenstates do not participate in the dynamics, even if they are energetically
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accessible and lie within the single particle band. The situation changes when the light-matter

interaction is increased so that the counter-rotating terms in Eq. (4.1) cannot be neglected. The

Hamiltonian no longer conserves the total excitation number, but it conserves the parity eiπN ,

meaning that the counter-rotating terms only couple sectors of the same parity (see Fig. 4.3a). This

remaining parity symmetry is broken due to the multi-level structure of the fluxonium, and the

small coupling between states |0⟩ and |2⟩ from nontrivial selection rules.

The counter-rotating terms and the parity breaking couplings have a striking effect on the scat-

tering dynamics, particularly when the higher excitation bound states appear inside the single-

particle band. These localized bound states hybridize with the single-particle scattering states,

leading to Fano-like resonances in the scattering spectra [242]. We directly observe this effect by

probing the transmission through the lattice at larger coupling strengths achieved by increasing

the inductance of the shared SQuID coupler. The flux dependent values for the coupling induc-

tor, used for estimating the normalized coupling strength g01/ω0, are inferred from the redshift in

the lowest lattice eigenmode (see Appendix C.2). In Fig. 4.3b(i),(ii), we observe these additional

resonances coming from the two-particle bound state, while for even stronger coupling the three-

particle bound state also appears in the band, seen in Fig. 4.3b(iii). While the counter-rotating

terms are also present in Fig. 4.2a, we only start to observe the multi-particle bound states in

Fig. 4.3b owing to the stronger inductive coupling that pushes these states to lower energy mani-

folds until they overlap with the single-particle band. The observed resonances are in qualitative

agreement with the calculated spectrum (solid and dashed curves in Fig. 4.3b) for the full model

using the Hamiltonian parameters of the circuit. The diminished transmission amplitude around

the bound state frequencies reveals how these multi-particle states strongly scatter a single pho-

ton. Note that the resonance in Fig. 4.3b(iii) coming from the three-particle bound state is much
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more pronounced than the two-particle equivalent. This arises from the fact that the coupling be-

tween the three-particle bound state and the single-particle scattering states comes from the strong

counter-rotating terms, whereas the two-particle bound state resonances are the result of the weak

parity breaking terms.

We consolidate these transmission measurements with simulations of the scattering dynamics

using the matrix product state (MPS) representation of the many-body wavefunction. The sim-

ulations capture the observed reflections at the bound state frequencies, as shown in Fig. 4.3c.

Additionally, we compare these numerical results with simulations of the simplified RWA model

(see Appendix C.3) and confirm that the bound state resonances are visible in the transmission

spectrum only when counter-rotating terms are included in the Hamiltonian. It becomes clear

from our experimental observations and numerical results that the RWA waveguide QED model,

where single photons are only reflected when resonant with the atom [203], fails to explain the

pronounced bound-state scattering, providing the signature feature of ultrastrong coupling physics

in our platform.

4.4 Stimulated emission of entangled photons

To further explore the multimode dynamics in our strongly interacting system, we shift our focus

to the inelastic response to a coherent drive, probing the system beyond the single-photon level.

Early work reaching the strong coupling regime in a multimode cavity has observed the phenomena

of multimode fluorescence [280], where strongly driving the dressed qubit leads to emission over

many modes close in frequency to the Rabi sidebands. In our platform, owing to the enhanced

light-matter coupling, we observe complex multimode emission over the entire lattice passband,
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Figure 4.4: Fluorescence of multimode correlated states. The coupling with the highly nonlinear
impurity leads to effective interactions between the modes of the photonic crystal. These inter-
actions are reflected in the multimode fluorescence shown in a. Driving the lowest lattice mode
(vertical line) leads to inelastic emission over the entire passband, inferred from the measured
power spectrum. Two emission regimes are present over the range of applied drive amplitudes: 1⃝
in the weak drive limit, the fluorescence spectrum displays broad peaks that closely overlap with
the dressed lattice modes, 2⃝ in the strong drive limit, the emission profile decreases in amplitude
and has sharp peaks at the unperturbed mode frequencies. b. A two-tone transmission measure-
ment reveals that the transition to the second emission regime (horizontal dashed line) coincides
with the qubit resonance being Stark shifted out of the passband (solid theory line) from populat-
ing the driven lattice mode with an average of n̄ photons. The marker (diamond) highlights the
lowest drive amplitude used in the experiment to observe fluorescence signal above the noise floor
of the amplifier chain. c. The quantum correlations between the emitted microwave photons are
quantified using the extracted second order moments in a dual-heterodyne measurement. d. We
determine if any pair of modes are entangled by measuring their squeezing correlations Cij (for
i ̸= j) as a function of drive amplitude. e. Averaging these correlations across the multimode
spectrum reveals that pairs of entangled photons are being emitted in the weak drive regime 1⃝, as
justified by the Hillery-Zubairy criterion ⟨Cij⟩ > 1. Error bars represent one standard deviation;
where absent, they are smaller than the data points.

at much lower drive powers. In Fig. 4.4a, as we drive the lowest lattice mode, the measured

power spectrum reveals two distinct emission regimes for varying drive amplitudes. For low drive

strengths there is a broad emission profile with a subset of the fluorescence peaks close in frequency
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to the dressed lattice modes. At higher drive strengths there is a dramatic decrease in the emission

signal, and the fluorescence spectrum reveals sharp peaks that match the unperturbed lattice modes

shown in Fig. 4.1d. The transition between these two emission regimes is investigated with a two-

tone spectroscopic measurement, where we monitor the transmission over the lattice band with a

weak probe and vary the power of the additional fixed-frequency drive used in the fluorescence

experiment. In Fig. 4.4b, we observe that above the threshold drive strength, which separates

the two emission regimes, the qubit experiences a large frequency shift that pushes its resonance

outside the passband of the photonic crystal. This corresponds to an ac-Stark shift induced by

populating the driven mode with a coherent state having an average number of n̄ photons (see

Appendix C.2.3), and we use this measurement to provide an estimate for n̄. We find that in the

weak drive regime, to observe fluorescence above the noise threshold we need to insert n̄ ≥ 3

photons, and we transition into the strong drive regime with n̄ > 40 photons. Given the large

system size and the number of inserted photons, numerically reproducing the steady state nonlinear

response in Fig. 4.4a is a fascinating but challenging task which we leave for future work. These

stimulated multiphoton processes, in which photons injected in the lowest lattice mode are being

converted to photons in other modes, arise from the qubit-induced interactions between the modes.

Detuning the qubit transition away from the band leads to a diminished photon nonlinearity and

thus a dramatic decrease in the fluorescence signal. The simultaneous fluorescence of all modes for

a fixed drive power is intriguing in itself, as it suggests the emergence of multimode correlations.

Quantifying the entanglement in such a large system is challenging, measuring the full density-

matrix becomes experimentally impractical, and we need to adopt methods accessible with realistic

resources. We characterize the quantum state of the multimode output and the underlying correla-

tions by analyzing the moments of the propagating microwave fields [281], where the observables
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are quadratic in the mode creation and annihilation operators. The amplified output signal is split

into two separate heterodyne detection setups, with separate local oscillators selectively tuned in

frequency to simultaneously measure the conjugate quadrature components for every pair of prop-

agating modes emitted from the lattice. This allows us to extract the second order moments of

the complex field amplitudes and evaluate the field correlations by subtracting the amplifier noise

moments (see Appendix C.4). We examine the entanglement structure by employing the Hillery-

Zubairy criterion [282], which states that any (pure or mixed) two-mode separable state, defined

by the bosonic annihilation operators a and b, satisfies the condition |⟨ab⟩|2≤ ⟨a†a⟩⟨b†b⟩. When

the quantum correlations on the left hand side become larger than the product of intensities, the

state is identified as entangled, favoring a superposition of states that differ by a photon in each

mode similar to a two-mode squeezed state. This is a sufficient but not necessary condition for

entanglement, as there are other classes of two-mode entangled states that satisfy the above sep-

arability inequality. This entanglement criterion is tested on our multimode state by measuring

the squeezing correlations Cij = |⟨aiaj⟩|2/⟨a†iai⟩⟨a
†
jaj⟩ for the fields emitted at every lattice mode

frequency. In Fig. 4.4d, we highlight the evolution of the full correlation matrix as a function of the

pump tone amplitude (see Appendix C.4). Our global measure of entanglement ⟨Cij⟩ is extracted

from averaging all i ̸= j mode-pair correlations for each matrix. The dependence of this metric on

the pump amplitude is displayed in Fig. 4.4e for three distinct values of the coupling strength. We

find that, in the low drive strength regime, the two-mode correlations are on-average above one,

which violates the separability criterion. This reveals how the nonlinear wave-mixing processes

stimulated by the pump tone lead to inelastic emission of entangled pairs of photons.
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4.5 Outlook

In this Chapter we have demonstrated the ultrastrong coupling of a highly nonlinear emitter to a

photonic crystal waveguide, where multi-photon bound states modify the transmission of photons

in the lattice and provide a new avenue for exploring nonlinear quantum optics at the single-photon

level [242, 283]. Similar to the single-mode picture, the ground state contains a multimode cloud

of virtual photons centered around the emitter [208]. Harnessing the full control over the emit-

ter’s coupling to its environment, these vacuum fluctuations can be converted into single-photon

radiation by modulating the coupling strength [228], a process which is again mediated by the

photon bound states. This platform can also be extended to the frustrated ultrastrong coupling of

an impurity to two competing baths [284], where the dressed-spin quasiparticle description breaks

down and the induced photon-photon interactions can be highly anisotropic. Exploiting the intrin-

sic three-wave mixing nonlinearity of the fluxonium circuit, this multimode platform can also be

employed as a quantum simulator in synthetic dimensions, where frequency-selective drives can

induce inter-mode particle hopping and blockade-induced interactions [285].

Finally, the multimode correlation measurements presented in this Chapter can become a use-

ful technique for probing entanglement in large-scale quantum systems, further expanding the

quantum optics toolbox for characterizing strongly-correlated photonic materials [254]. The sharp

change in the squeezing correlations observed in Fig. 4.4 could in fact be indicative of a driven-

dissipative phase transition between the two inelastic emission regimes [286]. Furthermore, this

pumped nonlinear system can be used as a broadband correlated reservoir for quantum communi-

cation applications, where the correlated photon fields can drive distant qubit nodes and distribute

entanglement in a quantum network [287, 288]. This stimulated reservoir can also be potentially
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used as a source of multimode squeezed light in boson sampling experiments for demonstrating

quantum computational advantage [289]. A particularly intriguing prospect would be to provide

strong evidence that an experiment of the type shown in Fig. 4.4, which we were unable to repro-

duce theoretically due to the large Hilbert space involved, is itself a demonstration of a quantum

advantage.
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Chapter 5: Minimal Model for Fast Scrambling

5.1 Introduction

The study of quantum information scrambling has recently attracted significant attention due to its

relation to quantum chaos and thermalization of isolated many-body systems [290–292] as well

as the dynamics of black holes [293–296]. Scrambling refers to the spread of an initially local

quantum information over the many-body degrees of freedom of the entire system, rendering it

inaccessible to local measurements. Scrambling is also related to the Heisenberg dynamics of local

operators, and can be probed via the squared commutator of two local and Hermitian operators

W1, Vr, at positions 1 and r respectively,

C(r, t) = −1

2
⟨[W1(t), Vr]

2⟩ , (5.1)

where W1(t) is the Heisenberg evolved operator. The growth of the squared commutator corre-

sponds to W1(t) increasing in size and complexity, leading it to fail to commute with Vr. In a local

quantum chaotic system, C(r, t) typically spreads ballistically, exhibiting rapid growth ahead of

the wavefront and saturation behind, at late times [297–299].

Of particular interest are the so-called fast scramblers, systems where C(r, t) reaches O(1)

for all r in a time ts ∝ log(N), with N being the number of degrees of freedom. Among the best

known examples are black holes, which are conjectured to be the fastest scramblers in nature [294–
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296, 300], as well as the Sachdev-Ye-Kitaev (SYK) [301, 302] model and other related holographic

models [303–306].

Recent advances in the development of coherent quantum simulators have enabled the study of

out-of-equilibrium dynamics of spin models with controllable interactions [17], making them ideal

platforms to experimentally study information scrambling. Several experiments have already been

performed [307–312], probing scrambling in either local or non-chaotic systems. The experimen-

tal observation of fast scrambling remains challenging however, particularly because few systems

are known to be fast scramblers, and those that are, like the SYK model, are highly non-trivial, in-

volving random couplings and many-body interactions. Some recent proposals suggested that spin

models with non-local interactions can exhibit fast scrambling [313–315], albeit with complicated

and inhomogeneous interactions.

In this Chapter, we argue that the simplest possible global interaction, together with chaotic

dynamics, are sufficient to make a spin model fast scrambling. We consider spin-1/2 chains with

Hamiltonians of the form

H = Hlocal −
g√
N

∑
i<j

ZiZj, (5.2)

where Zi is the Pauli z operator acting on site i and Hlocal is a Hamiltonian with only local interac-

tions that ensures that the full H is chaotic. We note that such global interactions are ubiquitous in

ultracold atoms in optical cavities [74–76, 316, 317], and also in ion traps [63–66].

We first show that this effect is generic, by studying two models, a random quantum circuit and

a classical model, both designed to mimic the universal dynamics of Eq. (5.2). We then provide

numerical evidence for fast scrambling for a particular time-independent quantum Hamiltonian.

Finally, we discuss possible experimental realizations.
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Figure 5.1: Diagram of the random circuit. As given in Eq. (5.3), each blue square is an indepen-
dent Haar-random unitary UH,i acting on site i, and the green rectangle is the global interaction
UII.

5.2 Random circuit model

As a proof-of-principle, we consider a system of N spin-1/2 sites, with dynamics generated by a

random quantum circuit (see Fig. 5.1) inspired by the Hamiltonian in Eq. (5.2). While less phys-

ical than the Hamiltonian model, it has the advantage of being exactly solvable while providing

intuition about generic many-body chaotic systems with similar features.

The time-evolution operator is U(t) = (UIIUI)
t where a single-time-step update consists of the

two layers

UI =
N∏
i=1

UH,i, UII = e
−i g

2
√
N

∑
i<j ZiZj , (5.3)

where each UH,i is an independent Haar-random single-site unitary. The two layers in Eq. (5.3) are

motivated by the two terms in Eq. (5.2), with the Haar-random unitaries replacing Hlocal.

We are interested in the operator growth of an initially simple operator O. At any point in time,

the Heisenberg operator O(t) = U †(t)OU(t) can be decomposed as O(t) =
∑

S aS(t)S, where

S is a string composed of the Pauli matrices and the identity, forming a basis for SU(2N). As

in random brickwork models [318, 319] and random Brownian models [298], the Haar-averaged

probabilities ⟨a2S(t)⟩, encoding the time evolution of O(t), themselves obey a linear equation
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〈
a2S(t+ 1)

〉
=
∑
S′

WS,S′
〈
a2S′(t)

〉
. (5.4)

Here, WS,S′ is a 4N × 4N stochastic matrix describing a fictitious Markov process [320, 321]. The

average probabilities ⟨a2S(t)⟩ fully determine the growth of the average of C(t) in Eq. (5.1) (see

Appendix D). Because of the Haar unitaries and the simple uniform interaction in Eq. (5.3), WS,S′

is highly degenerate and only depends on the total weights of the strings S,S ′, counting the number

of non-identity operators, i.e w(S) =
∑

i(1− δSi,1), and on the number of sites where both S and

S ′ are non-identity, i.e v(S,S ′) =
∑

i(1− δSi,1)(1− δS′
i,1
), and is given by (see Appendix D.1 for

derivation)1

W (w,w′, v) =

(
1

3

)w+w′ v∑
k=0

(
v
k

) k∑
l=0

(
k
l

)
×

[
cos2

(
2l − k√
N

g

)]N−k−(w+w′−2v)[
sin2

(
2l − k√
N

g

)]w+w′−2v

. (5.5)

If we further assume that O starts out as a single site operator on site 1, then throughout the

evolution, ⟨a2S(t)⟩ only depend on the total operator weight w, and the weight on site 1, which we

denote by w1 ∈ {0, 1}. We thus introduce the operator weight probability ht at time t,

ht(w,w1) =
〈
a2S(t)

〉
3w
(
N − 1
w − w1

)
, (5.6)

which gives the probability of O(t) having total weight w and weight w1 on site 1.

The time evolution of ht(w,w1) is given by the master equation

ht+1(w,w1) =
∑

w′
1=0,1

N−1+w′
1∑

w′=w′
1

R(w,w1, w
′, w′

1)ht(w
′, w′

1), (5.7)

where the 2N × 2N matrix R is (see Appendix D.2)

1The term with 2l = k,w + w′ − 2v = 0 is assumed to be 00 = 1. See Appendix D.1.
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R(w,w1, w
′, w′

1) = 3w
min{w−w1,w′−w′

1}∑
m=0

(
w′ − w′

1
m

)
×
(
N − 1− w′ + w′

1
w − w1 −m

)
W (w,w′,m+ w1w

′
1). (5.8)

The transition matrix R, scaling only linearly with N , allows us to efficiently simulate the dynam-

ics for large system sizes (see Fig. 5.2).

To proceed analytically, we Taylor-expand Eq. (5.5) to leading order in g, which gives rise to a

closed master equation for the total operator weight probability ht(w) ≡ ht(w, 0) + ht(w, 1),

59



ht+1(w)− ht(w)

g2
=

2w

9N
(1− 3N + 2w)ht(w) (5.9)

+
2w(w + 1)

9N
ht(w + 1) +

N − w + 1

3N
2(w − 1)ht(w − 1),

which is similar to random Brownian models [298, 322] and shows that, at O(g2), w can change

by at most ±1 in a single step. Assuming that h(w, t) varies slowly with respect to g2t and w, we

can approximate the above equation by a Fokker-Planck equation (rescaling time τ = g2t)

∂τh(w, τ) = −∂w(D1(w)h(w, τ)) + ∂2w(D2(w)h(w, τ)), (5.10)

where the drift and diffusion coefficients are (dropping higher order terms O(1/N,w/N))

D1(w) =
2

3

(
w − 4w2

3N

)
, D2(w) =

w

3
− 2w2

9N
. (5.11)

This equation describes the rapid growth of an initially localized distribution, followed by a

broadening and finally saturation (see Fig. 5.2 and Appendix D.5 for more details). At early time,

the 2
3
w term in the drift coefficient dominates, giving rise to exponential growth of the mean opera-

tor weight ⟨w(t)⟩ ∼ e2g
2t/3, which agrees with the full numerical solution of the master equation, as

can be seen in Fig. 5.2. The mean weight is related to the infinite-temperature squared-commutator

in Eq. (5.1) (averaged over different circuits) via ⟨C(t)⟩ = 4
3
⟨w(t)⟩ /N (Appendix D.4). Since

⟨w(t)⟩ grows exponentially with time, ⟨w(t)⟩ reaches O(N) and ⟨C(t)⟩ reaches O(1) when

t = 3
2g2

log(N), thus establishing that this model is fast scrambling. Note that the 1/
√
N normal-

ization in Eqs. (5.2) and (5.3) is crucial. Had we chosen instead 1/N (g → g/
√
N), the Lyapunov

exponent would have been 2g2

3N
and the scrambling time would have been t ∼ N log(N).
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5.3 Classical Model

Let us now consider a different setting that also allows to probe the basic timescales involved,

and shows that randomness is not required. A convenient tractable choice is a classical model

consisting of globally coupled non-linear oscillators. Note that the analogs of out-of-time-order

correlators (OTOCs) have been studied in a variety of classical models [314, 323–327] and have

been shown to capture the scrambling dynamics of quantum models like the SYK model [328–

330].

Consider a 2N -dimensional phase space with coordinates qr (positions) and pr (momenta) for

r = 1, · · · , N with canonical structure specified by the Poisson brackets {qr, ps}PB = δrs. The

Hamiltonian is Hc = K + V2 + V4 where

K =
N∑
r=1

p2r
2
, V4 =

Ω2
3

4

N∑
r=1

q4r , (5.12)

V2 =
Ω2

1

2

N−1∑
r=1

(qr+1 − qr)
2 +

Ω2
2

2
√
N

(
N∑
r=1

qr

)2

. (5.13)

The timescales for the growth of perturbations under Hc dynamics may be understood in two

stages. First, K + V2 can be solved exactly; this combination of terms provides the non-locality.

The remaining V4 term renders the dynamics chaotic, provided Ω3 is large enough. The dynamics

of K + V2 causes a localized perturbation to spread to every oscillator with non-local amplitude

1/N in a time of order 1/N1/4Ω2. Then conventional local chaos can amplify this 1/N -sized

perturbation to order-one size in a time of order λ−1 lnN , where λ is some typical Lyapunov

exponent.

At the quadratic level, the uniform mode, Q = 1
N

∑
r qr, is decoupled from the remaining
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Figure 5.3: log10∆qr(t) for N = 20, ϵ = 10−5, Ω1 = Ω2 = 1, and Ω3 = 2. The labeled black lines
are contours of constant log10∆q. Early time ballistic growth is visible in the upper left corner
while at later times the system exhibits spatially uniform exponential growth in time.

modes of the chain. Hence, the propagation of any perturbation is a superposition of the motion

due to the local Ω1 terms and the special dynamics of the uniform mode. Since the local terms

cannot induce non-local perturbations, we may focus on the dynamics of the uniform mode. The

uniform mode’s equation of motion is d2Q
dt2

= −
√
NΩ2

2Q with solution

Q(t) = Q(0) cos
(
N

1
4Ω2t

)
+

dQ
dt
(0)

N
1
4Ω2

sin
(
N

1
4Ω2t

)
. (5.14)

A localized perturbation on site 1 with zero initial time derivative can be written as δq⃗(0) =

ϵ ([ê1 − û0] + û0), where û0 = [1, · · · , 1]T/N represents the uniform mode, ê1 = [1, 0, · · · , 0]T ,

and ê1 − û0 is orthogonal to the uniform mode. The orthogonal mode evolves in a local fash-

ion, hence δq⃗(t) = ϵ
(

local piece + û0 cos
(
N

1
4Ω2t

))
. For oscillators far from the initial local
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perturbation, the dynamics is given by

δqr≫1(t) =
ϵ

N

[
cos
(
N

1
4Ω2t

)
− 1
]
. (5.15)

Thus, after a time π/N
1
4Ω2, any localized perturbation has spread to distant sites with amplitude

ϵ/N .

The inclusion of V4 renders the equations of motion non-linear and the system chaotic in at

least part of the phase space. We leave a detailed study of the classical chaotic dynamics of this

model to the future, but as can be seen in Fig. 5.3, a numerical solution of the equations of motion

displays sensitivity to initial conditions.

The precise protocol is as follows. We compare the dynamics of two configurations, q⃗(1) and

q⃗(2), averaged over many initial conditions. The initial condition of configuration one has each

oscillator start at rest from a random amplitude drawn uniformly and independently from [−1, 1].

Configuration two is identical to configuration one except that q(2)1 (0) = q
(1)
1 (0) + ϵ for ϵ = 10−5.

Both configurations are evolved in time and the difference ∆qr(t) = |q(2)r (t)− q
(1)
r (t)| is computed

and averaged over 4000 different initial conditions. Figure 5.3 shows this average of ∆qr for

N = 20 with Ω1 = 1, Ω2 = 1, and Ω3 = 2. Because the system can generate an ϵ/N -sized

perturbation on all sites in a short time, the subsequent uniform exponential growth implies that

any local perturbation will become order one on all sites after a time ∼ λ−1 log N
ϵ

.

The above analysis corresponds to the classical limit of coupled quantum oscillators where

some effective dimensionless Planck’s constant vanishes, h̄eff → 0. In the opposite limit of large

N at fixed h̄eff, the dynamics of quantum OTOCs can be obtained from the corresponding classical

Lyapunov growth up to a timescale of order log 1
h̄eff

≪ logN . At later times, one needs to consider

fully quantum local dynamics. If one imagines breaking the system up into local clusters and if
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each cluster can be viewed as a quantum chaotic system with random-matrix-like energy levels, a

dynamical system not unlike the random circuit model above is obtained.

5.4 Chaos and level statistics

Having established fast scrambling in both the random circuit and the classical model, we now

return to the quantum spin model of Eq. (5.2). We first examine whether such a model is chaotic,

which is a necessary condition for it being fast scrambling. For the local Hamiltonian part, we

consider the mixed-field Ising chain

Hlocal = −J
∑
i

ZiZi+1 − hx
∑
i

Xi − hz
∑
i

Zi. (5.16)

A standard approach to identify a transition from integrability to quantum chaos is based on

a comparison of energy-level-spacing statistics with Poisson and Wigner-Dyson distributions.

Another convenient metric is the average ratio of consecutive level spacings [331] ⟨r⟩, where

r = min (rn, 1/rn), rn = δn/δn−1, δn = En − En−1, and En are the eigenvalues ordered such that

En ≥ En−1.

As was already suggested in Ref. [332] for a similar model, we find that the longitudinal field

is unnecessary, and the full system can have Wigner-Dyson statistics even for hz = 0, in which

case Hlocal is integrable. The resulting Hamiltonian reads

H = −J
∑
i

ZiZi+1 − hx
∑
i

Xi −
g√
N

∑
i<j

ZiZj. (5.17)

Average adjacent-level-spacing ratio changes from ⟨r⟩Pois ≈ 0.38 for Poisson level statistics

to ⟨r⟩GOE ≈ 0.53 for Wigner-Dyson level statistics in the Gaussian Orthogonal Ensemble (GOE)

[331]. In the vicinity of g → 0, ⟨r⟩ (see Fig. 5.4) shows proximity to Poisson statistics, while, for

|g|≳ 0.25, the level statistics agree with those of the GOE.
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Figure 5.4: Average adjacent-level-spacing ratio ⟨r⟩ for the model in Eq. (5.17) with J = 1. Data
corresponds to a system of N = 15 spins with periodic boundary conditions for fixed momentum
and Z-reflection symmetry blocks of the Hamiltonian.

5.5 Out-of-time-order correlator and entanglement growth

We now study the dynamics of an OTOC and entanglement entropy in the spin chain. We consider

the following OTOC

F (r, t) = Re[⟨Z1(t)ZrZ1(t)Zr⟩], (5.18)

which is related to Eq. (5.1) by C(r, t) = 1−F (r, t). The expectation value is evaluated in a Haar-

random pure state, which approximates the infinite-temperature OTOC, but enables us to reach

larger systems sizes [333].

In Fig. 5.5(a), we show the OTOC for an open chain of N = 20 spins for both the local

model, governed by Hlocal only, and the non-local model in Eq. (5.17), which includes the global

interaction. In the local case, the OTOC spreads ballistically, forming a linear light cone. In
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contrast, in the non-local case, the spreading is super-ballistic and F (r ≫ 1, t) is approximately

independent of r, as expected for a fast scrambler. As we discussed in the context of the classical

model, a necessary condition for fast scrambling is that, before the onset of exponential growth,

the decay of correlations with N should be at most algebraic (C ∝ N−α) and not exponential. In

Fig. 5.5(b), we verify that this is the case for the non-local model, showing that C ∝ N−1 between

the two ends of the chain after a fixed time.

Figure 5.5: (a) Time evolution of the OTOC for the (left) local and (right) non-local models. (b)
1 − F (N, t) after a fixed evolution time for the non-local model (for different system sizes N ),
showing a linear dependence on 1/N . The orange line is a linear fit. (c) Half-cut entanglement-
entropy growth starting from the +ŷ state for local (dashed) and non-local (solid) models. The
color indicates the system size, starting from N = 10 (light green) until N = 22 (dark blue). For
all plots, J = 1, hx = 1.05 and hz = 0.5, g = 0 (hz = 0, g = −1) for the local (non-local) models.
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Figure 5.5(c) shows the half-cut entanglement entropy following a quench starting from the

+ŷ state for both models. For the local model, the entanglement grows linearly in time before

saturating, whereas the non-local model shows a significant speed up. Moreover, in the non-local

model, the growth rate clearly increases with the system size, further supporting our claim.

5.6 Experimental realization

The Hamiltonian in Eq. (5.17), and many variations of it, can be experimentally realized in a

variety of platforms. A natural realization is with Rydberg dressing of neutral atoms [334–337].

The spin can be encoded in two ground states with one of them dressed to two Rydberg states such

that one of the Rydberg states leads to all-to-all interactions and the second to nearest-neighbor

interactions. Other similar spin models can be realized with cavity-QED setups, using photon-

mediated all-to-all interactions [74, 75, 338, 339] of the XX or XXZ-Heisenberg form [313,

315] together with nearest-neighbor interactions achieved by Rydberg-dressing one of the grounds

states [79, 340]. Other possibilities include a chain of coupled superconducting qubits, with all-to-

all flip-flop interactions mediated via a common bus [341–343] or trapped ions [63–66, 344].

5.7 Conclusion and outlook

In this Chapter, we argued that a single global interaction together with local chaotic dynamics is

sufficient to give rise to fast scrambling. While fast scrambling is intrinsically difficult to study

numerically, our numerical evidence, together with the semi-classical analysis and the exactly

solvable random circuit, provide a compelling argument in favor of our claim. Our models do

not require disordered or inhomogeneous couplings and are within reach of current state-of-the-
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art quantum simulators. Thus, an experimental implementation of the spin model could test our

claims on much larger systems sizes, something that may very well be impossible to do on a clas-

sical computer. This can pave the way towards experimental investigations of aspects of quantum

gravity.

Future theoretical work may include a more systematic analysis of the N -dependence of var-

ious timescales, e.g. for entanglement growth, and of the behaviour of the OTOC at low tem-

peratures. It is also interesting to investigate whether similar conclusions can be reached without

perfectly uniform global interactions, for example with power-law decaying interactions.
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Chapter 6: Quench Dynamics of a Fermi Gas with Strong Non-Local Interac-

tions

6.1 Introduction

Ultracold gases are a versatile platform for studying quantum many-body physics [345]. The abil-

ity to engineer and control the interactions in these systems has played an important role in observ-

ing novel phases of matter including crossover fermionic superfluids [346] and dipolar supersolids

[347–349] and in studying out-of-equilibrium dynamical processes such as thermalization [350].

Recent efforts have focused on degenerate quantum gases with long-range interactions including

those of magnetic atoms [347, 350–352] and polar molecules [353, 354]. These systems may be

distinguished from other quantum platforms with long-range interactions including ions [25, 355],

Rydberg atoms [23], polar molecules in optical tweezers [356, 357] and atoms in optical cavities

[72], in that the particles are itinerant. This can lead to an interesting interplay between interac-

tions, kinetic energy and quantum statistics. Rydberg dressing has been proposed as an alternative

route to realize quantum gases with tunable long-range interactions [336, 358, 359]. Experimen-

tal demonstrations of Rydberg dressing [360–369] have been performed with localized atoms or

quantum gases of heavy atoms where observation of motional effects has been elusive.

However, the combination of motion and Rydberg dressing can lead to novel phenomena and
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shed new light on the many-body physics of spinless and spinful fermionic systems with power-

law interactions. In 1D, Rydberg dressing leads to quantum liquids with qualitatively new features

relative to the Tomonaga-Luttinger liquid paradigm [370]. In 2D, topological Mott insulators can

be emulated by placing atoms on a Lieb lattice [371]. Compared to contact or on-site interactions,

the long-range interactions between Rydberg-dressed atoms makes it easier to achieve the low

filling factors required for quantum Hall states [335, 372]. The interplay between hole motion and

antiferromagnetism—believed to be at the heart of high-temperature superconductivity—can be

studied in Rydberg-dressed atomic lattices emulating the t−Jz model [373]. In 3D, one can achieve

exotic topological density waves [374], topological superfluids [375], and metallic quantum solid

phases [376].

Here we investigate Rydberg dressing of lithium-6, a light fermionic atom. Its fast tunneling in

an optical lattice allows us to study the quench dynamics of itinerant fermions with strong, purely

off-site interactions.

Atoms in a quantum gas resonantly coupled to a Rydberg state experience strong van der Waals

interactions many orders of magnitude larger than their kinetic energy for typical interatomic spac-

ings, hindering access to the interesting regime where the two energy scales compete. At the

same time, the population of atoms in the Rydberg state decays on a timescale of tens of mi-

croseconds, short compared to millisecond motional timescales. Rydberg dressing addresses both

of these issues. Using an off-resonant coupling, the atoms are prepared in a laser-dressed eigen-

state |gdr⟩ ≈ |g⟩ + β |r⟩ of predominant ground state (|g⟩) character and a small Rydberg (|r⟩)

admixture, where β = Ω
2∆

≪ 1, Ω is the coupling strength, and ∆ is the laser detuning from the

transition frequency. This enhances the lifetime of the dressed atom by a factor of 1/β2 relative to

the bare Rydberg state lifetime. On the other hand, the interaction between two atoms a distance
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r apart is reduced in strength and can be approximately described by a tunable softcore potential

V (r) = Vmax/(r
6 + r6c ) with strength Vmax ∼ β3Ω and range rc ∼ (|C6/2∆|)1/6, where C6 is the

van der Waals coefficient for the Rydberg-Rydberg interaction. Early experiments with 3D quan-

tum gases were limited by rapid collective atom loss attributed to a blackbody-induced avalanche

dephasing effect [360–362, 366]. Nevertheless, Rydberg dressing has been successfully used to

entangle atoms in optical tweezers [363], perform electrometry in bulk gases [368], and study spin

dynamics [364, 367, 369].

In this Chapter, we report on the single-photon Rydberg dressing of a 2D 6Li Fermi gas in an

optical lattice in the presence of tunneling. This results in a lattice gas of fermions with strong,

non-local interactions. We characterize the interaction potential using many-body Ramsey inter-

ferometry [364]. A careful study of the lifetime of spin-polarized gases shows different behavior

compared to previous Rydberg dressing realizations, with the lifetime depending strongly on the

density but not on the atom number at fixed density. We also observe that the presence of tunneling

in the system has no effect on the lifetime. Finally, we use this platform to realize a 2D coupled-

chain t−V model consisting of interaction-coupled chains and study the short-time quench dynam-

ics of charge-density wave states, finding that the strong attractive interactions inhibit the motion

of the atoms.

Theoretical studies of the 1D t − V model [377, 378] have shown that it can exhibit Hilbert-

space fragmentation (HSF) [379, 380], in which dynamical constraints “shatter” the Hilbert space

into exponentially many disconnected subspaces. Like many-body localization (MBL) [381, 382]

and quantum many-body scars [383, 384], HSF is a mechanism whereby isolated quantum systems

can fail to reach thermal equilibrium after a quantum quench [385]. In the t−V model, HSF arises

in the limit of strong interactions, where the number of “bond” excitations, i.e., nearest-neighbor

71



pairs of fermions, joins the total fermion number as a conserved quantity. Our mixed-dimensional

t − V model inherits properties of the 1D version, including the HSF in the limit t/V → 0. Our

quench results demonstrate experimentally how HSF impacts the short-time relaxation dynamics

for nonzero t/V .
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Figure 6.1: Realization of a t − V model with Rydberg dressing. (a) The Rydberg dress-
ing beam propagates along the x-direction of the lattice, effectively decoupling 1D chains in
the y-direction due to a differential light shift. Hopping of fermions (red dots) along the x-
direction is unaffected. Interactions are isotropic. (b) 6Li pair potentials for dressing to the state
|28P,ml = 0,ms = −1/2⟩ calculated using [386]. The color of the lines represents the overlap
with the target pair-state (|28P, 0,−1/2⟩⊗|28P, 0,−1/2⟩) coupled via the laser with Rabi coupling
Ω and detuning ∆ from the target state. Inset: Calculated dressed potential for Ω = 2π×7.66MHz
and ∆ = 2π × 35MHz taking into account the overlaps to all pair potentials (orange solid line).
The dashed green line represents the expected dressed potential for a simple van der Waals poten-
tial with C6 = h × 90.19MHz a6latt. Pink points are the interaction at each lattice distance taking
into account the wavefunction spread of the atoms.
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6.2 Experimental system and theoretical model

Our system consists of a degenerate Fermi gas of 6Li atoms in a square optical lattice of spacing

alatt = 752 nm (Fig. 6.1a) [387]. We apply a 591.8(3)G 1 magnetic field perpendicular to the

2D system. We load spin-polarized gases prepared in a state that may be labeled at high fields

as |nl,ml,ms,mI⟩ = |2S, 0,−1/2, 1⟩ = |1⟩, or alternatively |2S, 0,−1/2,−1⟩ = |3⟩ depending

on the measurement. We have control over the initial density profile by employing a spatial light

modulator. Using a 231 nm laser beam with linear polarization parallel to the magnetic field and

propagating along the lattice x-direction, we couple the ground state atoms to the |28P, 0,−1/2⟩

Rydberg state (Appendix E.1). By tuning the intensity and the detuning of the dressing light 2, we

have real-time control over the isotropic soft-core interaction potential between the atoms in the

gas (Fig. 6.1b).

The lattice system is described by a single-band spinless fermion Hamiltonian

Ĥ = −t
∑
⟨i,j⟩

(ĉ†i ĉj + h.c.) +
∑
i ̸=j

Vij
2
n̂in̂j +

∑
i

δin̂i, (6.1)

where t is a tunneling matrix element, Vij is the off-site interaction [Eq. (E.3)) and Fig. 6.1b(inset)]

and δi is the potential due to single-particle light shifts contributed by the lattice and Rydberg

dressing beams. Since our dressing beam is tightly focused with a waist of 16.1(4) ¯m, the change

in δ between rows in the y-direction, which is orthogonal to the beam propagation axis, is much

larger than t (for typical experiments presented in Section 6.4, the minimum change in δ between

rows is > 3t near the intensity maximum of the Rydberg dressing beam). On the other hand,

11Gauss = 1× 10−4 Tesla
2The laser is locked to an ultralow expansion glass cavity and we can set the detuning with an uncertainty of

∼ 2π × 200 kHz by referencing to resonant blowing of a sparse system at very low intensity which is limited by the
linewidth of the laser.
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because of the large Rayleigh range of the beam (∼ 3.5mm), the variation of δ along the beam

propagation direction (x-direction) is negligible. To first approximation, we drop the light shift

term and the hopping along the y-direction. Thus, we can rewrite our Hamiltonian as a coupled-

chain t− V model of the form

Ĥ = −t
∑
⟨i,j⟩x

(ĉ†i ĉj + h.c.) +
∑
i ̸=j

Vij
2
n̂in̂j. (6.2)

6.3 Characterization of the system

6.3.1 Rydberg-dressed interaction potentials

In order to characterize the Rydberg dressing interaction potentials, we perform many-body Ram-

sey interferometry between states |1⟩ and |2⟩ = |2S, 0,−1/2, 0⟩ following the procedure intro-

duced in Ref. [364]. Starting from a spin-polarized band insulator of atoms prepared in state |1⟩

in a deep lattice that suppresses tunneling, a π/2 radiofrequency pulse prepares a superposition of

state |1⟩ and |2⟩, which acquire a differential phase during a subsequent evolution for time T in

the presence of the dressing light. Unlike Ref. [364], the splitting between the hyperfine ground-

states of 6Li is comparable to the detuning ∆ of the dressing laser (Fig. 6.2a), and both states are

significantly dressed by the light (App. E.2). First, we obtain the spatial profile of the Rabi cou-

pling strength Ω(i, j) by measuring the population of |2⟩ after a π/2 − T − π/2 pulse sequence

using a detuning ∆ = 2π× 100MHz. The large detuning is chosen so that the interactions, whose

strength scales as 1/∆3, are negligible, while the single-particle light shifts that scale as 1/∆ lead

to a large differential phase during the evolution. From these measurements, we extract the waist of

the beam (16.1(4) ¯m) and measure Rabi couplings up to Ω = 2π × 9.48(8)MHz (Fig. 6.2b). The
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measured spatial profile of the Ramsey fringe frequency confirms the rapid variation of δi along

the y-direction, while no variation of δi is observed along the x-direction within the statistical

uncertainty of the measurement (∼ 1 kHz).

To probe interactions in the system, we switch to a smaller detuning ∆ = 2π × 35MHz. We

measure density correlations of state |1⟩ (C(r) = ⟨n1(r)n1(0)⟩ − ⟨n1(r)⟩ ⟨n1(0)⟩) after a spin-

echo pulse sequence (π/2 − T − π − T − π/2) which eliminates differential phases due to the

light shift. Fig. 6.2c shows the measured correlations after different evolution times T compared to

the theoretical expectation (Appendix E.3). Fig. 6.2d depicts the evolution of the nearest-neighbor

and next-nearest-neighbor correlations with the correlation offset C(∞) subtracted. This offset is

attributed to correlated atom number fluctuations in the images [364]. We find good agreement

with the theoretical model, which predicts a nearest-neighbor (next-nearest-neighbor) attractive

interaction |V10|= h×4.2(2) kHz (|V11|= h×1.37(6) kHz) (Fig. 6.1b)

6.3.2 Lifetime

To probe coherent many-body physics in our system, the lifetime τ of the sample has to be larger

than the interaction and tunneling times. Atoms resonantly excited to a Rydberg state are lost from

our system on a timescale of tens of microseconds for several reasons: photon recoils due to spon-

taneous emission and large forces due to anti-trapping optical potentials and due to interactions

with other Rydberg atoms. Due to its Rydberg admixture, an isolated dressed atom decays with

a lifetime τeff = τ0/β
2, where τ0 is the lifetime of the Rydberg state determined by radiative and

blackbody-driven transitions to other states. Previous experiments with frozen 2D and 3D systems

have observed much shorter lifetimes than τeff [360–362, 364, 366]. A simplified model used to
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explain these experiments considers a blackbody-driven decay of the dressed state to a pure Ry-

dberg state of opposite parity. The first such contaminant appears in the system on a timescale

τc = τBB/(Nβ
2) where τBB is the blackbody lifetime of the Rydberg state and N is the number of

atoms in the system. This atom interacts with other dressed atoms through resonant state-exchange

characterized by a C3 coefficient, broadening the Rydberg line. In particular, other atoms at a cer-

tain facilitation radius (|C3/∆|)1/3 will be resonantly excited, leading to avalanche loss of all the

atoms from the trap. Experiments in 2D have indeed observed a collective lifetime close to τc and

a bimodal atom number distribution in lifetime measurements [364]. We have not observed such

bimodality in our 2D systems, and the lifetime does not depend strongly on N at fixed density

(Appendix E.4). In this regard, our 2D 6Li experiments are closer to 87Rb experiments with 1D

chains where the avalanche mechanism is suppressed to some extent [367].

The atom number decay in a frozen system of 7 by 7 sites is shown in Fig. 6.3a. The decay

is not exponential, indicating a density-dependent lifetime which we extract by fitting different

sections of the decay curve. For dressing to |28P ⟩, τ0 = 30.5 µs [388]. We measured the density-

dependent lifetime for Ω = 2π × 9.25(8) MHz at three different detunings, ∆ = 2π × (30, 40, 60)

MHz (Fig. 6.3b). Around half-filling, the collective lifetime is ∼ 0.3τeff for ∆ = 2π×30 MHz and

approaches τeff for the smallest densities (n ∼ 0.1). For comparison, perfect avalanche loss would

predict τc = 0.08τeff.

Next, we measure the lifetime of the dressed gas in the presence of tunneling, which has been

a topic of theoretical debate [389, 390]. We measure the density-dependent lifetime for different

lattice depths, spanning the frozen gas regime to a tunneling of 1.7 kHz (Fig. 6.3c). We do not

observe any change of the lifetime with tunneling. A potential concern in this measurement is that

the tunneling along the x-direction may be suppressed by uncontrolled disorder in δi. We rule this
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out by preparing a sparse strip of atoms and observing its tunneling dynamics. As expected for a

clean dressed system, the tunneling dynamics along the x-direction is almost identical to the case

without the dressing light, while the dynamics is frozen along the y-direction (Fig. 6.3c inset).

Combining the results of our interferometry and lifetime measurements, we achieve a lifetime of

several interaction times measured by the figure of merit V10τ/h̄ ∼ 20 [367] for a mobile system

with n = 0.5.
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C(∞). Lines correspond to the expected correlations. Experimental error bars correspond to
standard error of the mean.
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Figure 6.3: Lifetime of itinerant Rydberg dressed fermions. (a) Atom number vs. dressing
time for a frozen gas. The red circles correspond to measurements on a system of 7 by 7
sites. Dashed-dotted line corresponds to an exponential fit to the first 5 data points and dashed
line corresponds to the expected single-particle dressed lifetime τeff. (b) Measured lifetime in
a frozen gas in units of τeff vs. the initial density for Ω = 2π × 9.25(8)MHz and ∆ =
2π × (30 (green), 40 (purple), 60 (orange))MHz. Inset: Same measurements in units of ms. (c)
Lifetime vs. initial density for different tunnelings: 0.01 kHz (green), 0.25 kHz (purple), 1.0 kHz
(orange), and 1.7 kHz (pink). The data is taken with Ω = 2π × 6.04(8)MHz,∆ = 2π × 30MHz.
Insets: (i) Tunneling dynamics of atoms sparsely initialized on a strip along the y-direction with no
dressing light. From this data, we extract a tunneling rate t = h× 1.7 kHz. (ii) Same measurement
in the presence of the dressing light. (iii) Same measurement in the presence of the dressing light
but with the strip along the x-direction. Experimental error bars correspond to standard error of
the mean.
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6.4 Quench Dynamics

To probe the interplay of interactions and tunneling in our system, we use light patterned with

a spatial light modulator to initialize the system in a charge density wave state of atoms in state

|3⟩. The initial density pattern approximates a square wave with period λ = 4alatt and width

w = 7alatt, with the average density oscillating between n ∼ 0 and n ∼ 0.7. (see Figs. 6.4a-b).

Dynamics in a lattice with t = h × 1.7 kHz is initiated by suddenly turning off the patterning

potential while keeping walls in the y-direction as in [391]. We average the density profiles over

the non-hopping direction and observe a qualitative change in the dynamics as we increase V/t

(here V ≡ |V10|) from 0 to 2.9(2) (Fig. 6.4c). To emphasize the evolution of the pattern, we

scale the data to account for atom loss during the evolution (Appendix E.5). In the non-interacting

quench, we observe that the phase of the charge density wave inverts at a time ∼ h̄/t as is expected

for a coherent evolution [392]. For strong interactions, the decay of the charge density wave slows

down and the system retains a memory of its initial state for longer times.

This can be understood as an interplay between two conservation laws: the intrinsic U(1)

particle number (N̂ =
∑

x n̂x) conservation as well as an emergent conservation of the number

of bonds N̂b =
∑

x n̂xn̂x+1. The latter becomes a conserved quantity when the longer range

interactions are ignored, and in the limit of infinite V/t. States of the form |...0011001100...⟩

along the hopping direction, which the imprinted density pattern attempts to approximate, would

be completely frozen in the limit of infinite V/t [377]. For a large but finite V , moving a single

atom (and hence breaking a bond) costs an energy of up to 3V , which is energetically unfavorable,

and hence leads to reduced relaxation dynamics.

To quantify the difference in the dynamics of the different quenches, we employ two different
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methods. The first is to fit a sinusoid of the form n(x, t) = A sin (2πx/λ+ ϕ) + B to determine

the amplitude of the wave relative to its mean, A/B (Fig. 6.4d). The fit is restricted to |x| ≤ 6 alatt,

and ϕ is fixed by the initial pattern. The second method is to calculate the autocorrelation function

ρ(t) =
covx(n(x, 0), n(x, t))

œx(n(x, 0))œx(n(x, t))
, (6.3)

where covx and σx are the covariance and the standard deviation respectively (Fig. 6.4e).

Further confirmation that the slower decay of the charge density waves is an interaction effect

is obtained by varying the average density in the initial state. Fig. 6.5 shows these initial states and

their time evolution for V/t = 2.9(2). As the average density of the initial state is decreased, it

approaches a “sparse” limit where the probability of having two neighboring atoms is negligible.

In this regime, the system is effectively non-interacting and we recover the phase inversion during

the evolution. Since these measurements are done at fixed power of the dressing light, they rule

out disorder-induced localization as a mechanism for arresting the dynamics.
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6.5 Numerical simulations

We use exact diagonalization to simulate the quench dynamics of our experiment. As the simula-

tion for the full experimental 2D system (∼ 7 × 21) is computationally intractable, we compare

instead to numerics on a 2 × 11 t − V model with only nearest-neighbor interactions and no tun-

neling along the y-direction and find qualitative agreement with the measurements.

We account for atom loss during the experiment via a Lindblad master equation ∂tρ̂ =

−i(Ĥeffρ̂ − ρ̂Ĥ†
eff) + Γ

∑
i âiρ̂â

†
i . Here, Ĥeff = Ĥ − iΓ

2
N̂ is the effective non-Hermitian Hamilto-

nian [Ĥ is the t − V Hamiltonian from Eq. (6.2)] and the second term describes quantum jumps

corresponding to atom loss with rate Γ. We solve the master equation using the quantum trajectory

approach [36]. Note that the anti-Hermitian term in Ĥeff is a constant due to the particle number

conservation, and hence it can be neglected since Ĥeff and Ĥ generate the same dynamics (up to

the normalization, which only serves to determine the timings of the quantum jumps).

The initial state for each trajectory is sampled directly from the experimental data taken at

t = 0. We pick a 2 × 9 region centered on 2 of the 4 density peaks from the experimental images

(Fig. 6.4a). In order to reduce boundary effects, we add empty sites on each end of the chain. We

average the resulting dynamics over the different trajectories, whose number is comparable to the

number of experimental snapshots. Next, we analyze the averaged simulated dynamics using the

same methods we use for the experimental data. Fig. 6.4 shows the comparison of the experiments

with these numerical simulations. We find good qualitative agreement with this small 2D coupled-

chain numerical model.

The 2D nature of the system is important for fully understanding the relaxation time-scales

in our system. In particular, in a one-dimensional system, moving a single atom from the initial
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“...00110011...” pattern (and hence breaking a bond) costs an energy V . However, in the coupled-

chain t−V model with isotropic interaction, breaking a bond now costs up to 3V for the idealized

initial charge density wave state. We thus expect the 2D system to have slower relaxation rate

compared to a 1D system with the same interaction strength.

To verify this, we perform additional numerical simulations on a single chain of 21 atoms.

Similarly to our 2D simulation, we sample 1× 19 arrays from the experimental snapshots at t = 0

and add empty sites at the ends. We find that the atoms spread quicker than they do in the ladder

geometry and have worse agreement with the experimental results. Fig. 6.6 shows a comparison

between the 1D and 2D coupled-chain numerical simulations on the one hand and the experimental

data on the other. This comparison highlights the importance of the interchain interactions in order

to fully understand our system.

The remaining discrepancy between some of the numerical and experimental results could be

attributed to several factors. First, we are only able to simulate a smaller system than in the exper-

iment. We expect that adding additional chains could further slow down the relaxation dynamics.

Second, our modeling of the atom loss via a Lindblad master equation assumes that the decay rate

is exponential. However, as we showed in Sec. 6.3.2, the decay rate is actually non-uniform in

space and time, and depends on the density.
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explored in the experiment. (b) Same comparison as in (a) but for calculations done on 2 × 11
systems. This is Fig. 4d. Experimental error bars correspond to standard error of the mean.

6.6 Conclusions

Our results present a new frontier in quantum simulations of itinerant lattice models with strong

off-site interactions. By working with larger rc/a, spinless fermion models may be used to explore

equilibrium phases such as topological Mott states [393] or cluster Luttinger liquid phases [370].

Moreover, the system considered in this Chapter provides a platform for the experimental realiza-

tion of models prevalent in theoretical studies of non-equilibrium dynamics. For example, the 1D

t − V model can be mapped to the XXZ spin chain, which has long been studied in the context

of many-body localization [394–396]. This model and variants thereof have also been proposed

to harbor dynamical phases intermediate between full MBL and thermalization [397–399]. Our
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work lays the foundation for future studies of such phenomena, as well as other non-equilibrium

dynamical regimes including prethermalization [400]. Furthermore, the close spacing between the

hyperfine ground states of 6Li also opens the door for the simultaneous dressing of two spin states

and the exploration of extended Fermi-Hubbard models.

The present experiment has allowed us to start probing coherent dynamics in t − V models,

which we plan to continue to explore especially upon improving the interaction-lifetime figure

of merit. For example, for small but finite t/|V |, it is possible to access a complex hierarchy of

timescales for quench dynamics that depends crucially on the initial state [378].

Our work motivates further theoretical and experimental exploration of the mixed-dimensional

models in the context of both the non-equilibrium dynamics and ground-state physics [401] such

as meson formation. Another promising direction based on the interplay of Rydberg-dressing and

atomic motion is vibrational dressing [402, 403], non-destructive cooling [404], an exploration of

multi-band physics, as well as the use of microwave-dressed Rydberg states, allowing for both

attractive and repulsive dressed 1/r3 dipole-dipole interactions [70].

There are several possible approaches to improve the interaction-lifetime figure of merit. En-

hancement of the Rabi coupling by over an order of magnitude may be achieved using a build-up

cavity [405]. For a single-particle system, the figure of merit scales with Ω at fixed β, while further

enhancement of the collective lifetime is expected in this regime due to shrinking facilitation radii

for increasing ∆. Increasing Ω by a factor of 10 at fixed β leads to facilitation radii that are a factor

of 101/3 smaller. For almost all states coupled to by blackbody radiation, the facilitation radii be-

come less than one site. If collective loss is completely inhibited, the combined effect is to enhance

the figure of merit by a factor of ∼ 30. The principal quantum number used in this experiment was

chosen to keep the range of the interaction on the order of one site. Relaxing this constraint or
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alternatively using a larger lattice spacing would allow using longer-lived Rydberg states at higher

principal quantum number. Using electric fields to tune close to a Förster resonance results in deep

potential wells that may be exploited to enhance the figure of merit by a factor of |∆|/Ω [69] and

potentially allow us to achieve repulsive interactions. Finally, the single particle lifetime can be

improved and the collective black-body induced atom loss may be completely eliminated by oper-

ating at cryogenic temperatures improving the figure of merit by a factor of ∼ 6 for fixed dressing

laser parameters.
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Chapter 7: Nondestructive Cooling of an Atomic Quantum Register via State-

Insensitive Rydberg Interactions

7.1 Introduction

In recent years, neutral atoms stored in individual traps [57–59, 406–408] have emerged as a pow-

erful resource for quantum information and quantum technologies [367, 383, 409–412]. Consid-

erable effort is currently being invested in developing neutral atom traps that are insensitive to the

internal state of the atom [407, 413–415]. These so-called magic traps attempt to achieve what is

naturally available with trapped ions, since the trapping of the latter relies on the net charge of the

ion, and hence is independent of its internal electronic state. The magic trapping of neutral atoms

reduces heating and dephasing associated with the fact that different electronic states may have

different trapping potentials. Nevertheless, even with such magic trapping conditions, heating of

the motional degrees of freedom of the atoms can occur because of, for example, the shaking of

the atomic array due to laser intensity noise [416], mechanical forces from Rydberg interactions

[23, 417, 418], or incoherent light scattering [419].

Such heating of the atomic motion, when combined with state-dependent Rydberg mediated

gates, generally leads to reduced fidelities and loss of coherence, which is particularly problem-

atic for long quantum simulations or computations [420–422]. It is therefore desirable to develop
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Figure 7.1: Schematic of the phonon-swap protocol. (a) For each data atom (red, bottom) we place
another auxiliary atom (blue, top) at an equal distance y0. We assume a 1D chain of data and
auxiliary atoms, with a lattice spacing of x0. (b) The Rydberg interactions give rise to effective
coupling G between the vibrational modes of the data and auxiliary atoms. (c,d) Two schemes that
lead to spin-insensitive interactions between the data and the auxiliary atoms: in (c), the ground
states of all atoms are weakly coupled to Rydberg S1/2 states. In (d), the data atoms are coupled to
n′P1/2 states and the auxiliary to nS1/2, where |n− n′| ≫ 1.

schemes to cool the atomic motion without destroying the quantum information stored in the inter-

nal states. The conventional laser cooling techniques [423–425] are not suitable for this task since

they involve optical pumping which, in general, destroys the quantum information.

Several approaches for this problem have already been proposed in the past, from immersing

the atomic lattice in a superfluid [426] to using cavity-assisted cooling [427]. It has also been

shown that alkaline-earth atoms can be laser-cooled without destroying the quantum information

provided it is stored in the nuclear spin [428].

In this Chapter, we introduce two schemes for achieving state-insensitive interactions between
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neutral atoms, another natural and useful tool of trapped ions. We further show how to use these

interactions to realize a state-preserving cooling procedure, inspired by sympathetic cooling of

trapped ions [429, 430]. In contrast to the protocols in Refs. [426, 427], ours requires only ingre-

dients and capabilities that are already present in many neutral atoms experiments: auxiliary atoms

and Rydberg interactions.

The scenario we have in mind is the following: we assume one starts with a quantum data reg-

ister composed of an array of N atoms, each in an individual trap, cooled to the vibrational ground

state and optically pumped to a particular ground state. Each atom encodes a two-level system

in its ground states. One then uses Rydberg interactions to perform a quantum computation or

simulation, during which the atoms are heated. To cool the data register we introduce N auxiliary

atoms, one for each data atom [see Fig. 7.1(a)], that have been precooled using any of the standard

methods. The data and auxiliary atoms can then be coupled via Rydberg interactions, implement-

ing a phonon-swap gate – a coherent exchange of vibrational quanta. A key requirement of this

protocol is for the interactions between the auxiliary and data atoms to be insensitive to the inter-

nal state of the data atoms. Unlike the Coulomb interaction between ions which naturally satisfies

this requirement, the Rydberg interactions between neutral atoms are inherently state-dependent.

As we show in this Chapter, a careful choice of the Rydberg states can nevertheless satisfy this

requirement.

Another requirement is that the phonon-swap interactions should not induce unwanted state-

dependent couplings between the data atoms. In the first of our two schemes [see Fig. 7.1(c,d)],

the interactions between any pair of atoms (data-data and data-auxiliary) are independent of the

internal state. This scheme consists of pausing the quantum computation or simulation, performing

the phonon-swap, and then resuming the computation or simulation. In the second scheme, the data
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and auxiliary atoms are addressed separately, which allows one to design state-insensitive data-

auxiliary interactions but tunable data-data interactions. As an example, we show how this can

be used to implement the phonon-swap while simultaneously performing a quantum simulation

of a spin model on the data atoms. Finally, for both of the above schemes, one can laser cool

the auxiliary atoms during the phonon-swap. Due to the quantum Zeno effect [431], this has the

additional advantage of preventing certain coherent heating mechanisms, such as those due to the

Rydberg interactions, from taking place at all. We leave the detailed study of such a scheme for

future work.

7.2 Phonon-swap for two atoms

Let us first consider the case of two atoms: a two-level data atom “d” and a single-level auxiliary

atom “a”. The two atoms are each trapped in a three-dimensional harmonic potential separated by

a distance r. In recent experiments [57, 423–425, 432, 433], the confinement along two directions

(x, y) is often much stronger than along the third (z), i.e. the trap frequencies satisfy ωx, ωy ≫

ωz. For simplicity, we focus on cooling the weakest direction (z). Cooling the two components

perpendicular to the inter-atomic axis is a trivial generalization of this section. The third component

[y direction in Fig. 7.1(a)] requires more care but can be cooled via an adiabatic protocol (see

Appendix F.3).

The Hamiltonian consisting of both the vibrational and the internal degrees-of-freedom is (h̄ =

1) Ĥ = ωz(d̂
†d̂ + â†â) + Ĥs + Ĥint(r), where d̂ (â) is the phonon annihilation operator of the

data (auxiliary) atom along the z direction; Ĥs acts on the internal (spin) degree-of-freedom of the

data atom, and Ĥint(r) describes the interaction between the two atoms that, in principle, couples
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motion and spin. Since we want to preserve the spin state of the data atom, the phonon dynamics

should be decoupled from the spin, i.e. we want Ĥint = 1internal ⊗ V (r) to be an identity operator

on the internal states. As we later show, by weakly laser-dressing the ground states with Rydberg

states, it is possible to obtain effective interactions of such form, where V (r) = A
r6+R6

c
for coupling

A and blockade radius Rc.

For now, let us assume these interactions and Taylor-expand them to second order in the small

quantum fluctuations on top of the macroscopic separation r0, which we assume to be along one

of the strongly confined directions [Fig. 7.1(a)]. This gives rise to a quadratic Hamiltonian (Ap-

pendix F.2),

(7.1)Ĥph,2 = ωz(d̂
†d̂+ â†â)− G

2

[
(d̂+ d̂†)2 + (â+ â†)2

]
+G(d̂+ d̂†)(â+ â†),

where G = 3A
Mωzr80

1
[1+(Rc/r0)6]2

is the phonon coupling strength and M is the atomic mass. In the

regime where ωz ≫ G, only the number-conserving terms are relevant, giving a “beam splitter”

interaction (in the rotating frame) Ĥph,2 = G(â†d̂ + d̂†â). This Hamiltonian effectuates a state-

transfer between the two vibrational modes in a time of ts = π
2G

, swapping the phonons of the

data atom with those of the auxiliary atom. This cools the data atom down to the initial phonon

occupancy of the auxiliary atom.

7.3 Phonon-swap for 1D chain

The discussed protocol can be easily generalized for an ensemble of atoms. We simply associate

each data atom with a cold auxiliary atom. For concreteness, we consider a chain of data atoms

with a lattice constant x0, separated by a distance of y0 from a chain of cold auxiliary atoms

[Fig. 7.1(a)]. The many-body Hamiltonian is quadratic with approximate power-law decaying
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hopping between the sites (Appendix F.4)

(7.2)Ĥph,1D =
∑
i ̸=j

G

η8|i− j|8
(â†i âj + d̂†i d̂j) +

∑
ij

G

[η2(i− j)2 + 1]4
(âid̂

†
j + â†i d̂j)

where η ≡ x0

y0
. Here we defined G in terms of the smallest distance between a data atom and its

auxiliary, i.e. y0 (see Fig. 7.1). Clearly, as η → ∞, it is sufficient to consider only the nearest-

neighbor data-auxiliary interactions. In such a case, we recover the situation in the previous sec-

tion: each data-auxiliary pair perfectly swaps their phonons after a time of ts = π
2G

. If we also take

into account next-nearest-neighbor data-auxiliary interactions, we find (see Appendix F.4) that the

average phonon occupancy of the data atoms is

(7.3)n̄d(t) =
n̄a(0) + n̄d(0)

2
− n̄a(0)− n̄d(0)

2
J0

[
4Gt

(1 + η2)4

]
cos(2Gt),

where n̄d(t) (n̄a(t)) is the average occupancy of data (auxiliary) atoms at time t and J0(z) is a

Bessel function of the first kind. Equation (7.3) is quantitatively accurate (see Fig. 7.2) at short

time-scales, when the effects of the long-range interactions are less important. As η → ∞ we have

J0 → 1 which reproduces the case of independent pair-wise phonon-swaps. Moreover, ts = π
2G

is

still the nearly optimal swap time (see Fig. 7.2) and even with η = 1 we can still achieve a high-

efficiency swap. Assuming for simplicity that the auxiliary atoms are initially in the vibrational

ground state, we obtain a swap efficiency of 1 − n̄d(ts)
n̄d(0)

= 1
2
+ 1

2
J0(

π
8
) ≈ 98%. Furthermore,

Eq. (7.3) remains qualitatively accurate even at longer time-scales. As t → ∞ we have J0 → 0

and we see that the mean phonon occupancy of all atoms is the average of the total initial number

of phonons, as expected.

The above discussion concludes that to cool an atomic register consisting of many atoms in ar-

bitrary geometries and dimensions, we simply perform the phonon-swap as if all the data-auxiliary

pairs are independent. The many-body interactions only lead to a small degradation in the swap
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7.4 State-insensitive Rydberg interactions

We now turn to discuss how to obtain the spin-independent interactions by utilizing the van-der-

Waals (vdW) couplings between Rydberg states. Specifically, we concentrate on alkali atoms

and consider weakly laser-admixing two hyperfine ground states (see Appendix F.5 for an ex-

plicit example) representing the spin-1/2, |g+⟩ , |g−⟩, to Rydberg states |r+⟩ , |r−⟩, depicting the

magnetic sublevels of either S1/2 or P1/2 manifolds, as shown in Fig. 7.1(c,d). The vdW cou-

plings ĤvdW between the Rydberg states then give rise to effective interactions between the

dressed ground states. The relevant Hamiltonian is Ĥ =
∑

i=1,2(Ĥ
(i)
A + Ĥ(i)

L ) + ĤvdW where

Ĥ(i)
A = −∆

(i)
+ |r(i)+ ⟩ ⟨r(i)+ | − ∆

(i)
− |r(i)− ⟩ ⟨r(i)− | and Ĥ(i)

L =
Ω

(i)
+

2
|g(i)+ ⟩ ⟨r(i)+ | + Ω

(i)
−
2

|g(i)− ⟩ ⟨r(i)− | + H.c.

are the atomic and laser Hamiltonians, respectively, in the rotating frame within the rotating wave

approximation. Here, Ω(i)
± are Rabi frequencies and ∆

(i)
± ≫ Ω

(i)
± the laser detunings. Note that for

the auxiliary atoms, it is sufficient to consider a single ground state and hence a single laser. How-

ever, we must take into account all the states in the Rydberg manifold because, in general, ĤvdW

may contain both diagonal and off-diagonal matrix elements. This fact has been used previously to

construct tunable spin-spin interactions [68, 69]. A sufficient condition to obtain spin-independent

interactions is for ĤvdW to be proportional to an identity, together with a suitable choice of the laser

parameters. We show below two simple schemes using S1/2 and P1/2 states that satisfy well this

requirement.

The vdW Hamiltonian between two atoms in either S1/2 + S1/2, S1/2 + P1/2 or P1/2 + P1/2 in

the Zeeman basis has the following form (see Appendix F.1) 1

1For nS1/2 + n′S1/2 with n ̸= n′, there are additional terms corresponding flip-flop interactions where the atoms
swap their principle quantum numbers. The magnitude of these unwanted interactions is smaller than the unwanted
n-preserving spin-dependent interactions of Eq. (7.4).
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ĤvdW =
C6

r6
14 −

C
(a)
6 + C

(b)
6 − C

(c)
6 − C

(d)
6

r6
D0(θ, ϕ), (7.4)

C6 ≡
2

27

[
C

(a)
6 + 4C

(b)
6 + 2(C

(c)
6 + C

(d)
6 )
]
, (7.5)

where the C(p)
6 coefficients correspond to the four different channels describing the possible (L, J)

quantum numbers of the intermediate states and D0(θ, ϕ) is a traceless matrix that depends on the

angles between the interatomic and quantization axes. The channels for S1/2+S1/2 and S1/2+P1/2

are shown in Table 7.1.

S1/2 + S1/2 S1/2 + P1/2

(a)

(b)

(c)

(d)

S1/2 + S1/2 → P1/2 + P1/2

S1/2 + S1/2 → P3/2 + P3/2

S1/2 + S1/2 → P3/2 + P1/2

S1/2 + S1/2 → P1/2 + P3/2

S1/2 + P1/2 → P1/2 + S1/2

S1/2 + P1/2 → P3/2 +D3/2

S1/2 + P1/2 → P3/2 + S1/2

S1/2 + P1/2 → P1/2 +D3/2

Table 7.1: The four channels describing the dipole-allowed virtual processes (L1, J1)+(L2, J2) →
(L′

1, J
′
1) + (L′

2, J
′
2) that lead to vdW interactions.

7.5 Phonon-swap with S + S states

The first scheme uses the fact that for a pair of atoms in nS1/2 states, the second term in Eq. (7.4)

approximately vanishes [68, 434]. This can be seen from Table 7.1, which shows that the dif-

ference between the four channels is only in the fine structure of the intermediate states. In the

limit of vanishing fine structure, we have C(a)
6 = C

(b)
6 = C

(c)
6 = C

(d)
6 . This can also be under-

stood intuitively: the vdW interactions arise from second-order perturbation theory, where the two

electrons undergo virtual transitions to intermediate states allowed by the selection rules. If we

neglect the fine structure, we are free to use the uncoupled basis (|L,mL⟩ ⊗ |S,mS⟩) for the in-

termediate levels. Since S1/2-states are proportional to electronic spin states with definite mS , i.e.
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∣∣S1/2,mJ = ±1
2

〉
= |L = 0,mL = 0⟩ ⊗

∣∣S = 1
2
,mS = ±1

2

〉
and because the dipole-dipole inter-

actions do not act on the electronic spin, the vdW couplings cannot mix states with different mJ .

The correction to this scales as ∆FS/δ, where ∆FS is the fine structure splitting and δ the energy

difference to the intermediate states.

Neglecting these small corrections, and to fourth order in the small parameter ϵ = Ω/2∆, the

effective spin-spin interactions between any two data atoms are given by

Ĥint(r) = diag
(
Ṽ++ Ṽ+− Ṽ−+ Ṽ−−

)
. (7.6)

In the case of data-auxiliary interactions, we have a 2 × 2 version of Eq. (7.6). In both cases, the

matrix elements are

Ṽµν =

(
Ω

(1)
µ Ω

(2)
ν

4∆
(1)
µ ∆

(2)
ν

)2
C6

r6 − C6

∆
(1)
µ +∆

(1)
ν

, (7.7)

which are spin-independent (i.e. Ṽ++ = Ṽ+− = Ṽ−+ = Ṽ−−) for a suitable choice of the laser

parameters. A trivial example consists of the two laser fields being identical.

The cooling protocol with this scheme would thus consist of stopping the quantum simulation

or computation, weakly coupling the ground states of both the data and auxiliary atoms to nS1/2

states, and waiting for a time of ts. As an example, Rb atoms separated by 2.36 µm, and weakly

coupled to 60S1/2 (C6/2π ≈ 138.5GHz µm6) with Ω/2π = 100MHz2 and ∆/2π = 200MHz

would experience a phonon coupling of G/2π ≈ 1.48 kHz assuming a trap frequency of ωz/2π =

15 kHz. G is about an order of magnitude smaller than the trap frequency and about two orders of

magnitude larger than the effective decay rate ϵ2Γ60S/2π ≈ 0.043 kHz, where Γ60S is the decay

rate of 60S1/2 states. The deviation of ĤvdW from identity, which we define by the ratio of the

2This can be achieved by a two-photon transition with one of the lasers tightly focused through an objective, or by
using a build-up cavity. One can also use stronger interactions together with optimal control techniques to reduce the
Rabi frequency.
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operator norms of the two terms in Eq. (7.4), is, in this case, ≈ 0.027. This error can be reduced

by driving the two atoms to different principal quantum numbers, [Fig. 7.3(b)]. This generally

reduces the C6 coefficient [Fig. 7.3(a)], but it can nevertheless be sufficiently strong. For instance,

74S1/2 + 64S1/2 yields C6/2π ≈ 29GHz µm6 (a factor of five smaller than for 60S1/2 + 60S1/2)

with an error of ≈ 0.003 (an order of magnitude smaller).
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Figure 7.3: (a,c) The spin-insensitive interaction strength C6 and (b,d) deviation from identity for
(top) nS1/2+n

′S1/2 and (bottom) nS1/2+n
′P1/2 as a function of n and ∆n = n′−n for Rb atoms.

In the case of nS1/2 + n′P1/2, we take min |∆n| = 10.
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7.6 Phonon-swap with S + P states

This brings us to the second scheme, in which the auxiliary atoms are coupled to nS1/2 states,

while the data atoms to n′P1/2 states, where |∆n| = |n′ − n| ≫ 1 in order to ensure that the

dipolar interactions between them can be ignored [335]. Such a configuration not only gives spin-

independent data-auxiliary interactions, as we will explain below, but also gives rise to tunable

spin-spin interactions between the data atoms [68]. To see why S1/2+P1/2 gives rise to ĤvdW ∝ 1,

note that channels (a, c), as well as (b, d), in Table 7.1 only differ by the fine structure in one of

the terms. In the limit of vanishing fine structure, the four channels cancel each other pair-wise,

eliminating D0(θ, ϕ) in Eq. (7.4).

Intuitively, the same argument as in the S1/2+S1/2 case shows that there cannot be any mixing

between states involving different mJ of the S1/2 atom. Hence, in the absence of fine structure

in the intermediate manifold, the S1/2 atom is effectively decoupled and ĤvdW must at least be

block-diagonal. Within this approximation, we can understand why the remaining off-diagonal

matrix elements also vanish by focusing solely on the P1/2 atom. For each possible sub-channel of

the P1/2 atom [Fig. 7.4], there are exactly two processes that can couple its mJ = +1
2

and mJ =

−1
2

states. These two processes, however, precisely destructively interfere. The resulting spin

(b)(a) n′D3/2n′S1/2

nP1/2 nP1/2

Figure 7.4: The four virtual transitions that can couple the mJ = 1/2 magnetic state to mJ =
−1/2, in the P1/2 manifold.
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interactions between the data and auxiliary atoms have the same form as in Eqs. (7.6) and (7.7). The

corresponding C6, and the error due to the spin-dependent couplings, are shown in Fig. 7.3(c,d),

respectively.

The data atoms, on the other hand, experience non-trivial spin-spin interactions due to the

P1/2 + P1/2 vdW couplings. For the configuration in Fig. 7.1 (quantization axis parallel to inter-

atomic axis), the D0(θ, ϕ) matrix reads

D0(0, ϕ) =
2

81

 1 0 0 0
0 −1 −4 0
0 −4 −1 0
0 0 0 1

 , (7.8)

which gives rise to the following spin-1/2 Hamiltonian for the data atoms:

Ĥ =
∑
ij

J ij
z Ŝ

(i)
z + J ij

zzŜzŜz +
(
J ij
+−Ŝ

(i)
+ Ŝ

(j)
− + H.c.

)
, (7.9)

where Ŝ(i)
α are the spin-1/2 operators of atom i and J ij

µν are coefficients that depend on the geometry,

laser parameters, and Rydberg interactions [68]. This approach can be extended to generate other

spin-1/2 models, for instance in two dimensions [68], with simultaneous cooling.

7.7 Summary and outlook

We have presented a protocol for sympathetically cooling Rydberg atoms without destroying the

quantum information stored in their internal states. This can have applications for future Rydberg-

based quantum computers and simulators as well as other quantum technologies. Note that while

we focused here on the weak coupling regime (G≪ ωz), which inevitably limits the phonon-swap

time to ∼ 1/G ≫ 1/ωz, it is possible to speed it up by working in the strong coupling regime

G ∼ ωz and employing optimal control techniques [435–437]. Furthermore, while we used vdW

interactions, state-insensitive interactions can also be realized with dipole-dipole interactions and
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microwave dressing of Rydberg states [438]. Finally, our state-insensitive interactions schemes

could potentially be used in other contexts, such as generating non-classical states [439] and novel

phases of matter [440] combining motional and electronic degrees-of-freedom.
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Appendix A: Supplemental Material for Chapter 2

A.1 The Massive Thirring-Schwinger model

In this section, we discuss the massive Thirring-Schwinger model, realized in our circuit-QED

proposal, including its bosonization, Hamiltonian formulation, and the presence of quark-antiquark

bound states for different parameters.

A.1.1 Hamiltonian and bosonic dual

Consider the Lagrangian density for the so-called massive Thirring-Schwinger model

L = ψ̄(i/∂ − e /A−m)ψ − 1

4
FµνF

µν − 1

2
g(ψ̄γµψ)(ψ̄γµψ) , (A.1)

which for g = 0 reduces to the massive Schwinger model investigated in this study [Eq. (2.1) in

Section 2.2], while e = 0 yields the massive Thirring model [178, 441]. The gauge fields can be

eliminated using Gauss’s law [176], which, after fixing the gauge to A1(x) = 0, reads

∂xE = −∂2xA0 = eρ, (A.2)

where ρ(x) = ψ†(x)ψ(x) is the charge-density operator. The solution to this equation is

A0(x) = a0 −
eθ

2π
x− e

2

∫
dx′ ρ(x′)|x− x′|, (A.3)

where a0 and θ are integration constants. As argued in Ref. [176], physics depends on θ only

modulo 2π, and so a suitable range for this variable is θ ∈ (−π, π]. The Hamiltonian can be
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derived in the standard fashion, noting the expression for the electric field from Eq. (A.2) with A0

given in Eq. (A.3). In the charge-zero subspace
∫
dx ρ(x) = 0, the (normal-ordered) Hamiltonian

of the Thirring-Schwinger model becomes

H =

∫
dx : ψ†γ0

(
−iγ1∂x +m

)
ψ : −e

2θ

2π

∫
dx x : ρ(x) :

− e2

4

∫
dx

∫
dx′ |x− x′|: ρ(x)ρ(x′) : +g

2

∫
dx :

[
ρ(x)2 −

(
ψ†(x)γ0γ1ψ(x)

)2]
. (A.4)

Our conventions are such that {γµ, γν} = 2ηµν , with metric signature η00 = −η11 = +1. The two-

component spinor operators, ψ(x, t) ≡ (ψ1(x, t), ψ2(x, t))
T , satisfy the canonical anticommutation

relations {ψa(x, t), ψ
†
b(x

′, t)} = δabδ(x − x′), where a, b = 1, 2. The model described above can

be shown to be dual to a bosonic theory with the Hamiltonian [175, 176, 178, 441]

H =

∫
dx

[
Π2

2
+

(∂xϕ)
2

2
+
M2(ϕ+ θ/β)2

2
− u cos(βϕ)

]
, (A.5)

where [ϕ(x),Π(y)] = iδ(x − y) and [Π(x),Π(y)] = [ϕ(x), ϕ(y)] = 0. The model parameters are

related to those in the fermionic model as follows:

M =
e√
π

1√
1 + g/π

, u =
eγ

2π
Λm, β =

√
4π

1 + g/π
, (A.6)

with γ being the Euler’s constant and Λ ≫ e,m being a UV hard momentum cutoff, see Ref. [441]

for details. Furthermore, the following relation holds between the fermionic current ψγµψ and the

bosonic field ϕ [441]:

ψγµψ = − β

2π
ϵµν∂νϕ. (A.7)

Here, ϵµν is the Levi-Civita tensor. Now, using ∂xE = eψγ0ψ [see Eq. (A.2)], one arrives at

eβ
2π
ϕ = E, which relates the scalar field ϕ to the electric field E. It is more convenient to work with

a shifted ϕ: ϕ→ ϕ− θ/β, such that the Hamiltonian is
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H =

∫
dx

[
Π2

2
+

(∂xϕ)
2

2
+
M2ϕ2

2
− u cos(βϕ− θ)

]
, (A.8)

and the relation to the electric field is now eβ
2π
ϕ = E+ eθ

2π
≡ ET , which in the limit g = 0 reproduces

the relation presented in Chapter 2 between the total electric field ET and the bosonic field of the

massive Schwinger model. When g = 0, Eq. (A.8) reduces to Eq. (2.2) in Section 2.2. Finally,

note that the dimensionless coupling e/m in the fermionic theory corresponds to the combination

ΛM/u in the bosonic theory [442].

A.1.2 Quark-antiquark interactions and bound states

In this section, we derive an effective quark-antiquark Hamiltonian in the nonrelativistic limit in

perturbation theory and use this Hamiltonian to confirm the existence of quark-antiquark bound

states (mesons). We also study the meson bound states using nonperturbative tensor-network com-

putation of the low-lying spectrum.

A.1.2.1 Derivation of effective Hamiltonian

The goal is to derive an effective interaction Hamiltonian between a quark and an antiquark to

leading order in the interactions e and g. For g = 0, an analogous computation was discussed

by Coleman in Ref. [176]. The idea is that, in the weak-coupling limit in which e/m, g ≪ 1,

one can restrict the physics to subspaces with fixed particle number, e.g., vacuum, quark-antiquark

state, etc. 1, since transitions between states with different particle numbers are higher order in the

coupling strength [176]. This means that, in this limit, the full Hamiltonian can be assumed to be

almost block-diagonal in the Fock basis. This mimics a nonrelativistic limit in which one can de-

1Recall that we have restricted the model to the net zero electric-charge sector.
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fine an ‘effective’ potential describing interactions in each fixed-particle sector, with well-defined

quantum-mechanical operators x̂ and p̂ which would have been meaningless otherwise. Relativis-

tic corrections in the dynamics can be included using standard quantum-mechanical perturbation

theory, while corrections in the kinematics can be included by incorporating higher-order terms in

p/m, where p is the typical momentum in the system. Such a notion of an effective Hamiltonian

is useful to get a qualitative understanding of the nature of quark-antiparticle interactions in such

a limit, and to make analytic predictions for the expected spectrum that can be compared against

exact numerics.

To start with, we keep the kinematics relativistic but constrain our analysis to the two-particle

sector only. A nonrelativistic expansion in p/m will be performed at the end. First, note that the

quadratic piece of the Hamiltonian in Eq. (A.4), H0 ≡
∫
dx : ψ†γ0 (−iγ1∂x +m)ψ :, can be

diagonalized by a standard mode expansion:

ψa(x) =

∫
dk√
4πEk

eikx
[
ua(k)b(k) + va(−k)c†(−k)

]
, (A.9)

where Ek ≡
√
k2 +m2 with k ≡ k1 = −k1, and u(k) and v(k) are two-component spinor wave

functions that satisfy the classical Dirac equation for positive and negative frequencies, respec-

tively: (/k−m)u(k) = (/k+m)v(k) = 0 (here, /k = Ekγ
0−kγ1). The creation operators for quarks

and antiquarks satisfy the canonical anticommutation relations {b(k), b†(k′)} = {c(k), c†(k′)} =

δ(k−k′). Further, the following representation of Dirac matrices is used for explicit computations,

γ0 = σz and γ1 = iσy, so that the spinor wavefunctions are given by u(k) =

√
m+ Ek

k√
m+Ek

 and

v(k) =

 k√
m+Ek√
m+ Ek

, leading to the free-fermion Hamiltonian

H0 =

∫
dk Ek

[
b†(k)b(k) + c†(k)c(k)

]
. (A.10)
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A quark-antiquark state in the noninteracting limit can be written as

|p, q⟩ = b†(p)c†(q)|0⟩, (A.11)

where |0⟩ is the Fock vaccum ofH0 and where the quark (antiquark) has momentum p (q). Follow-

ing Coleman [176], one can now define the reduced center-of-mass Hamiltonian as the operator

Heff , whose matrix elements in the two-particle sector are given by

⟨p′, q′|H|p,−p⟩ = δ(p′ + q′)⟨p′|Heff |p⟩. (A.12)

The effective Hamiltonian Heff is a function of a conjugate pair of operators [x̂, p̂] = i, where x̂

is the displacement between the quark and the antiquark and |p⟩ is a single-particle momentum

eigenstate, p̂|p⟩ = p|p⟩, with normalization ⟨p′|p⟩ = δ(p− p′). In the absence of interactions, one

has

⟨p′, q′|H0|p,−p⟩ = 2
√
m2 + p2 δ(p− p′)δ(p′ + q′) ⇒ Heff = 2

√
m2 + p̂2 . (A.13)

To compute ⟨p′, q′|H|p,−p⟩ in the interacting case, one can insert Eq. (A.9) into Eq. (A.4) to obtain

⟨p′|Heff |p⟩ = 2
√
m2 + p2 δ(p− p′)− e2θ

4π2

∫
dx x ei(p−p′)x

+
e2

8πEp′Ep

(
m2 + p′p+ Ep′Ep

) ∫
dx |x| ei(p−p′)x

+
e2

8π

m2

E2
p′E

2
p

− g

2πEp′Ep

(
m2 + p′p+ Ep′Ep

)
. (A.14)

Note that all interaction terms are of the form

⟨p′|Ô|p⟩ = f1(p
′)f2(p)

∫
dx

2π
g(x) ei(p−p′)x (A.15)

for some functions f1, f2, and g [for the last line of Eq. (A.14), g(x) = δ(x)]. This allows any

interaction term Ô to be written as follows:
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Ô =

(∫
dp′ |p′⟩⟨p′|

)
Ô

(∫
dp |p⟩⟨p|

)
=

∫
dp′
∫
dp |p′⟩f1(p′)f2(p)

∫
dx

2π
g(x) ei(p−p′)x⟨p|

= f1(p̂)

∫
dp′
∫
dp |p′⟩

(∫
dx g(x)⟨p′|x⟩⟨x|p⟩

)
⟨p|f2(p̂)

= f1(p̂)

(∫
dp′ |p′⟩⟨p′|

)
g(x̂)

(∫
dx |x⟩⟨x|

)(∫
dp |p⟩⟨p|

)
f2(p̂)

= f1(p̂)g(x̂)f2(p̂) . (A.16)

Equation (A.15) is used in the second equality, and the identity ei(p−p′)x = 2π⟨p′|x⟩⟨x|p⟩ is used

in the third equality. Finally, the effective Hamiltonian can be written as

Heff = 2
(
m2 + p̂2

)1/2 − e2θ

2π
x̂+

e2

4

m

m2 + p̂2
δ(x̂)

m

m2 + p̂2

+
e2

4

[
|x̂|+ p̂

(m2 + p̂2)1/2
|x̂| p̂

(m2 + p̂2)1/2
+

m

(m2 + p̂2)1/2
|x̂| m

(m2 + p̂2)1/2

]

− g

[
δ(x̂) +

p̂

(m2 + p̂2)1/2
δ(x̂)

p̂

(m2 + p̂2)1/2
+

m

(m2 + p̂2)1/2
δ(x̂)

m

(m2 + p̂2)1/2

]
. (A.17)

The lengthy expression in Eq. (A.17) can be simplified by considering the nonrelativistic limit.

Note that, when momentum and energy are large enough for particle creation, ⟨p̂2⟩ ≳ m2, non-

particle-conserving, i.e., inelastic, transitions can occur, and, in such a regime, it is not particularly

useful to consider an effective potential between a quark and an antiquark. However, since our

interest is in an effective interaction between static or slow-moving quark and antiquark—in par-

ticular, for investigating the presence of bound states—the matrix elements between states with

different particle numbers will be reduced by kinematic constraints. Note that this limit is only

applicable when the dimensionless coupling constants e/m and g are small enough, since large
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couplings result in binding- or scattering-energy scales large enough to violate these assumptions.

Based on this discussion, Heff can be expanded in p/m≪ 1 to obtain a simpler effective Hamilto-

nian at leading order in p/m, e/m, and g:

Heff = 2m+
p̂2

m
+
e2

2

(
|x̂|− θ

π
x̂

)
+

e2

4m2
δ(x̂)− 2gδ(x̂). (A.18)

In taking the large-m limit, the dimensionless combination e/m is kept fixed. For the Schwinger

model, g = 0, this gives Eq. (2.4) in Chapter 2. Note that the electric (e ̸= 0) and the Thirring (g ̸=

0) interactions contribute short-range terms which compete with each other. In the confined phase

(θ ̸= π), the linear potential guarantees quark-antiquark bound states, which are the fundamental

excitations, regardless of the short-range interactions. However, in the deconfined phase (θ = π),

quarks are free particles (as long as x > 0, i.e., the quark is to the left of the antiquark). Here, the

presence of bound states depends on the delta-function term in Eq. (A.18). When g > gc ≡ e2

8m2 ,

the delta-function term is negative, giving rise to attractive short-range interactions, implying the

existence of at least one bound state. For g < gc (including the g = 0 case considered in Chapter 2),

on the other hand, the delta function is repulsive, prohibiting any bound states from forming.

As a nontrivial check on this expression, consider the Thirring model, e = 0, which is an inte-

grable quantum field theory whose spectrum is known exactly [443, 444]. The effective Hamilto-

nian in this case is simply

Heff = 2m+
p̂2

m
− 2gδ(x̂) . (A.19)

This is a standard problem in introductory quantum mechanics (see e.g., Ref. [445]). For g > 0,

there is a single bound state with energy

Ebound = 2m(1− g2

2
). (A.20)
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The exact Thirring model with g > 0 has N bound states, where N is the largest integer smaller

than 1 + 2g/π, and the energy of the nth bound state is given by [443]

En = 2m sin

(
nπ/2

1 + 2g/π

)
, n = 1, 2, .., N . (A.21)

For small g, there is a single bound state (n = 1) with energy given, at leading order in g, by

Eq. (A.20).

A.1.2.2 Numerical verification

To go beyond the perturbative results, we make use of the variational uMPS quasiparticle ansatz

[see Appendix A.3.1 and Eq. (A.35)] to verify the existence of the bound states. In the deconfined

phase, quarks are topological “kinks” [176], and are numerically described by the topological

uMPS ansatz, whereas the mesons, if they exist, would be described by the topologically triv-

ial uMPS ansatz (see Appendix A.3). The energy minimization of the topological uMPS ansatz

yields the quark mass mq, and the minimization of the topologically trivial uMPS ansatz returns

an energy which we denote mπ. To determine if this corresponds to a meson eigenstate, we plot

the ratio mπ/mq in Fig. A.1 as a function of g. If the meson exists, that ratio needs to satisfy

mπ/mq < 2, since the bound-state energy must be below the two-particle continuum beginning at

2mq. Furthermore, plotting this ratio for different values of the bond dimension D of the uMPS

ansatz can signify the existence or absence of the meson. This is because, if the meson exists, its

wavefunction will be localized, and so the ansatz energy mπ should be rather insensitive to D and

will quickly converge to the true meson mass as D is increased [186].

Figure A.1 reveals a critical gc ≈ 1 (for the parameters used in Chapter 2) above which

mπ/mq < 2. This region clearly shows insensitivity to D, signaling that the ansatz properly
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Figure A.1: Ratio of the meson mass mπ to the quark mass mq in the deconfined phase (θ = π)
as a function of the Thirring interaction strength g, for different bond dimensions D. The energies
are calculated using the variational principle with the uMPS quasiparticle ansatz [see Eq. (A.35)]
using the same parameters as in Chapter 2 (χ = 1, µ2 = 0.5, and λ = 0.1).

captures the nature of the bound-state wave function even for smaller bond dimensions. Below

gc, on the other hand, mπ/mq > 2, and a qualitatively different behavior is observed as a func-

tion of D, signaling sensitivity to the choice of bond dimension. All this indicates that the bound

state in the deconfined phase only exists for sufficiently large g, in agreement with the analytical

prediction in the previous section. For small g < gc, the minimization of the topologically trivial

uMPS ansatz results in a two-particle state that is not an eigenstate, but is rather a superposition

of many eigenstates from the continuum. The two particles in that state are forced together into a

small region of size ∼ log(D), and hence as D is increased, the particles are allowed to spread,

which decreases their interaction energy and makes the energy of the variational ansatz approach

the bottom of the two-particle band at 2mq.
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A.2 Circuit-QED implementation

In this section, we derive the circuit-QED Hamiltonian from a lumped-element model and present

a scheme for preparing meson excitations.

A.2.1 Hamiltonian derivation

Consider the circuit diagram in Fig. A.2, which is a more detailed version of Fig. 2.1. Here,

each unit cell consists of a capacitor with capacitance C, an inductor with inductance L, and a

Josephson junction with critical current Ic, in parallel, representing a general rf-SQUID circuit,

which includes the fluxonium as a special case [446]. Each L-J loop is threaded by an external flux

Φext, and different unit cells are coupled together via inductors with inductance L′. Node fluxes

are labeled by ϕi, branch fluxes by ϕi
C , ϕi

J , and ϕi
L, for the corresponding elements within node

i, and the inter-node branch fluxes coupling nodes i and i + 1 by ϕi,i+i
L′ . The branch currents are

related to the branch fluxes by I iC = Cϕ̈i, I iL = ϕi
L/L, I i,i+1

L′ = ϕi,i+1
L′ /L′, and I iJ = Ic sin(ϕ

i
J), for

the capacitor, inductors, and the Josephson junction, respectively 2.

LC Ic
L′

ϕi−1,i
L′

ϕi
Jϕi

C ϕi
L

ϕi−1 ϕi ϕi+1

L′

ϕi,i+1
L′

Φext

Figure A.2: Circuit diagram implementing the massive Thirring-Schwinger model. An external
flux Φext threads each L-J loop.

The Hamiltonian of the circuit can be derived by standard means. The capacitor branch fluxes

2We work in units where h̄ = 1 and the reduced flux quantum Φ0/2π = h̄/(4e2) = 1. This e is not to be confused
with the e of the Schwinger model.
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are chosen to be equal to the node fluxes ϕi
C = ϕi ∀ i. Flux quantization yields the remaining

branch fluxes: ϕi
J + ϕi

C = Φext, ϕi
C + ϕi

L = 0, ϕi−1
J + ϕi

C + ϕi−1,i
L′ = 0. Current conservation gives

I i−1,i
L′ − I iC + I iL + I iJ − I i,i+1

L′ = 0, which, together with the above, yields the equation of motion

−Cϕ̈i −
1

L
ϕi + Ic sin(Φext − ϕi) +

1

L′ (ϕi−1 − 2ϕi + ϕi+1) = 0. (A.22)

The corresponding Lagrangian is

L =
∑
i

[
Cϕ̇2

i

2
− (ϕi − ϕi−1)

2

2L′ − ϕ2
i

2L
− Ic cos(ϕi − Φext)

]
. (A.23)

Defining the conjugate momentum πi = ∂L
∂ϕ̇i

= Cϕ̇i and imposing the canonical commutation

relations [ϕi, πj] = iδij , we obtain the Hamiltonian

H =
∑
i

[
4ECπ

2
i +

EL′(ϕi − ϕi−1)
2

2
+
ELϕ

2
i

2
+ EJ cos(ϕi − Φext)

]
, (A.24)

where we defined the energies

EC =
1

8C
, EL′ =

1

L′ , EL =
1

L
, IJ = EJ . (A.25)

Redefining ϕi → βϕi and πi → πi/β, we obtain

H = χ
∑
i

[
π2
i

2
+

(ϕi − ϕi−1)
2

2
+
µ2ϕ2

i

2
− λ cos(βϕi − θ)

]
, (A.26)

which is Eq. (2.3) of Section 2.2 with

χ =
8EC

β2
,

EL′β4

8EC

= 1, µ2 =
ELβ

4

8EC

, λ =
EJβ

2

8EC

, θ = Φext − π. (A.27)

Recall that the parameters of the bosonized lattice Hamiltonian are

χ =
1

a
, µ2 =M2a2, λ = ua2. (A.28)

Equations (A.27) and (A.28) together constitute a dictionary between the parameters of the

bosonized massive Thirring-Schwinger model and those of the circuit-QED Hamiltonian.
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A.2.2 Experimental meson–wave-packet preparation

In this section, we describe a scheme for preparing initial wave packets, focusing on meson excita-

tions. The quarks, being topological excitations, do not couple to local operators, hence their prepa-

ration is left to future work. Our proposal goes as follows. We assume the system [i.e., Eq. (A.26)]

is cooled down to its ground state in the confined phase. We add two ancillary qubits [111] far

away from each other. Initializing the qubits in the excited state and coupling them to the system

will result in the decay of the two qubit excitations into the system, producing two wave packets of

quasiparticles. Choosing a weak coupling will ensure that multi-particle states are not be excited.

To see this, first note that, in terms of the quasiparticle degrees of freedom, Eq. (A.26) can be

re-expressed as follows:

H =
∑
j

∑
k

ωk,jΨ
†
k,jΨk,j + interactions, (A.29)

where k is a label for the eigenstates assuming open boundary conditions. Ψ†
k,j and Ψk,j are the

creation and annihilation operators for the jth meson with energy ωk,j , i.e.,

Ψ†
k,j |vac⟩ = |πk,j⟩ , (A.30)

Ψk,j |vac⟩ = 0, (A.31)

where |πk,j⟩ are the meson quasiparticles.

Next, consider, for simplicity, a single qubit (e.g., a transmon or a fluxonium [447]) with fre-

quency ∆, coupled at position i = L. The addition to Eq. (A.26) is

Hqubit =
∆

2
σz + g(t)σx(aL + a†L), (A.32)

where ai, a
†
i =

ϕi±iπi√
2

are the creation and annihilation operators satisfying [ai, a
†
j] = δij , and g(t)

is the coupling (which can be controlled in time using a tunable coupler [49]). In terms of mesonic
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quasiparticles, the entire Hamiltonian [Eq. (A.26) plus Eq. (A.32)] can be written as

H =
∑
j

∑
k

ωk,jΨ
†
k,jΨk,j +

∑
j

∑
k

[
g(t)λk,jΨ

†
k,jσ− +H.c.

]
+

∆

2
σz, (A.33)

under a rotating-wave approximation (RWA) that assumes only a single excitation in the combined

qubit-system and hence ignores interactions from Eq. (A.29). λk,j ≡ ⟨πk,j| aL + a†L |vac⟩ is a

matrix element that depends on the overlaps of aL and a†L between the vacuum |vac⟩ and the

meson eigenstates |πk,j⟩. Turning on g(t), the (initially) excited qubit will decay into the system,

producing a mesonic wave packet. The central momentum and the shape of the resulting wave

packet can be controlled by choosing the qubit frequency ∆ and the time dependence of the qubit-

system coupling g(t), as described in the Supplementary Methods of Ref. [448]. Placing the qubit

at the (left) right edge can ensure that only (right-)left-moving excitations are created. The matrix

element λk,j can either be calculated numerically or accounted for (prior to performing the actual

scattering experiment) using measurements of the resulting wave-packet shape and a feedback

loop. The wave-packet shape can be determined from, for example, local measurements of the

fields ϕx [179] or from spectroscopic measurements of the transmitted amplitude at the other edge

of the system [180, 181].

An important subtlety is that the qubit generically couples to all mesons in the theory. If there

is more than a single meson flavor, this will result in an undesired superposition of wave packets

of different mesons. To mitigate this issue, this scheme can be combined with adiabatic state

preparation. One can first tune the system to a parameter regime where there is only a single

meson particle. A simple example is the free-boson limit with λ = 0. More generally, the “phase

diagram” in Fig. A.3, obtained using the uMPS methods of Appendix A.3.1, shows the region in

the {λ, θ} parameter space with only a single meson particle for µ2 = 0.1. This phase diagram is

116



𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6

𝜃

− 𝜋

− 𝜋/2

0

𝜋/2

𝜋

one meson

two or more mesons

Figure A.3: Number of mesons in the confined phase. Purple (yellow) region corresponds to
one (two or more) mesons. The two regions are determined by obtaining the two lowest eigen-
values above the ground state using the topologically trivial MPS quasiparticle ansatz (see Ap-
pendix A.3.1). The single (two or more) meson region correspond to the second eigenvalue being
bigger (smaller) than twice the lowest eigenvalue (mass of the fundamental meson). The remaining
parameters are χ = 1 and µ2 = 0.1 as in Chapter 2. The star and circle indicate the parameters
used in Chapter 2 [λ = 0.5 and θ = π − 0.04 (star) or θ = π − 0.07 (circle)]. The vertical axis
range is [−π + 0.001, π − 0.001] so as to avoid the deconfined phase at θ = −π, π.

consistent with the perturbative result of Coleman [176], predicting the existence of one meson for

|θ| ≳ π/2 in the limit λ/µ → 0 (i.e., the strong-coupling limit of the original Schwinger model).

After preparing the meson wave packets in the single-meson regime, one can adiabatically tune

λ and θ to their desired regime, preparing in this way the fundamental mesons of the interacting

theory. Tuning both θ and λ can be accomplished using external time-dependant flux control. In

order to be able to tune λ, each Josephson junction in Fig. A.2 can be replaced by a SQUID, a loop

composed of two junctions, realizing an effective single flux-tunable junction [26]. Designing the

two loops (the L-J loop from Fig. A.2 and the SQUID loop) to be asymmetric in size allows one to

control both λ(Φext) and θ(Φext) with a single external flux [180, 181, 215].

117



A.3 Numerical Methods

In this section, we provide more details on the uniform-matrix-product-state methods, describing

the wave-packet preparation and particle detection.

A.3.1 Uniform Matrix Product States

We begin with a general review of uniform matrix product states (see Ref. [166] for more details).

A uniform matrix product state (uMPS), describing a translationally invariant state, is graphically

represented as

|Ψ(A)⟩ = A A A A A

sn−1 sn sn+1

, (A.34)

where As is a D × D matrix for each basis index s. When dealing with a bosonic theory, even

the local Hilbert space is infinite dimensional and needs to be truncated. For the parameters used

in Chapter 2, we found the local energy basis to be an efficient choice, i.e., the local (single-site)

part of the Hamiltonian in Eq. (A.26) was diagonalized using a very large Fock-state basis (of

∼ 2000 levels), keeping only the lowest d eigenstates (we found d = 12 to be sufficient for the

scattering considered in Chapter 2). The full Hamiltonian was then projected on this truncated

local eigenbasis, and the ground state was subsequently found using variational methods [184].

The quasiparticle excitations on top of the ground state can be described with the MPS quasi-

particle ansatz [184–186]

|Φp(B)⟩ =
∑
n

eipn AL AL B ÃR ÃR

. . . sn−1 sn sn+1 . . .

. (A.35)

This state is written in the so-called mixed canonical form, with the ground-state tensors AL and

ÃR in the left- and right-orthonormal forms, respectively. AL and ÃR can either represent the same
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ground state for a topologically trivial excitation, in which case they are related by a gauge trans-

formation (i.e AL = C−1ARC for a D ×D matrix C), or different degenerate ground states for a

topological excitation in case of a spontaneously broken symmetry. The variational optimization of

the B tensor reduces to an eigenvalue problem for each p ∈ [−π, π), providing both the dispersion

relation E(p) and the p-dependent eigenvectors B(p).

The dispersion relation is shown in Fig. A.4 for the three parameter regimes studied in Chap-

ter 2: the deconfined phase where θ = π, and the confined phase where θ = π − ε with

ε = 0.04, 0.07. At low energies (insets), the dispersion is well approximated by the relativistic

relation E(p) ≈
√
m2 + p2, where m is the mass of the particle [obtained from m ≡ E(p = 0)].
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Figure A.4: Dispersion relation as a function of (positive) momentum for the three param-
eter regimes considered in Chapter 2 [with E(−p) = E(p)]. Solid lines are the numerical
uMPS results [obtained using Eq. (A.35)], and dashed lines are the relativistic approximations
E(p) ≈

√
m2 + p2, where m is E(p = 0) for the corresponding particle: quarks q in the decon-

fined phase (ε = 0) and mesons πj in the confined phase with ε = 0.04, 0.07 (only the lightest two
mesons corresponding to j = 1, 2 are shown). Insets show a zoom in the low-energy regime.

A.3.2 MPS wave-packet preparation

In this section, we describe the numerical procedure for preparing initial wave-packet states using

the uMPS quasiparticles. We follow a procedure similar to the one in Refs. [126, 127] albeit

with some differences that are explained below. Using the momentum quasiparticle eigenstates in
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Eq. (A.35), a localized wave packets can be built as

|Ψwp⟩ =
∫ π

−π

dp cp |Φp(B(p))⟩ =
∑
n

· · · AL AL Bn ÃR ÃR

. . . sn−1 sn sn+1 . . .

· · · , (A.36)

where

Bn ≡
∫ π

−π

dp cp e
ipnB(p). (A.37)

Here, cp ∼ e−(p−p0)2/(2σ2), which is a Gaussian function centered at p0 with width σ. We use

σ = 0.12 for the quark-antiquark wave packets (Fig. 2.3) and σ = 0.06 for the meson wave

packets (Fig. 2.4).

As first discussed in Ref. [126], there are several caveats with this approach. First, because

the B(p) tensors are determined from an eigenvalue problem for each momentum p, they come

with random phases, preventing the phase coherence needed for building localized wave packets.

To deal with this issue, we fix the global phase of each B(p) such that one specifically chosen

tensor element in each is real and positive. Second, one needs to fix the gauge redundancy of

the B(p) tensors (i.e., invariance of |Φp(B(p))⟩ under Bs(p) → Bs(p) + Y Ãs
R − eipAs

LY for

any D ×D matrix Y ). The choices used when solving the variational minimization problem, the

so-called left or right gauge fixing conditions, are inherently very asymmetric. To deal with this

issue, we employ the “reflection symmetric” gauge choice of Ref. [127] as it is applicable for

both topologically trivial and nontrival excitations. Together, this approach is simpler and does

not require any approximations or conditions on the wave-packets’ width, unlike the methods of

Refs. [126, 127]. The final wave packet ends up slightly shifted from its intended location [which

is n = 0 for the choice of cp in Eq. (A.37)], which can be corrected by centering it based on

argmax∥Bn∥, as discussed in the following.

Finally, we note that, to evaluate Eq. (A.37), one has to sample a finite grid of momenta p with
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resolution ∆p, and the Bn are, therefore, periodic with period Np = 2π
∆p

, i.e., Bn+Np = Bn. We

choose Np large enough so that the wave packet comfortably fits inside a single period (we used

Np = 400), which we take to be centered around n∗ = argmax∥Bn∥. Of this Np-sized interval of

Bn tensors, we only keep N < Np tensors that satisfy ∥Bn∥/∥Bn∗∥ ≥ ϵ for some chosen threshold

ϵ (we used ϵ = 10−3), which we label by n ∈ [i + 1, i +N ] for a chosen i along the uMPS chain.

The integral in Eq. (A.36) becomes a finite sum and can be analytically expressed as

|Ψwp⟩ = · · · AL Mi+1 Mi+2 Mi+N ÃR
. . . · · · ,

Mi+1 =(AL Bi+1), Mn∈[i+2,i+N−1] =

(
AL Bn

0 ÃR

)
, Mi+N =

(
Bi+N

ÃR

)
.

(A.38)

To create the initial two-particle state, this procedure can be carried out twice to create two wave

packets with opposite momenta. Given that AL is related to AR by a gauge transformation, i.e.,

ALC = CAR, the states are then glued together using the matrix C−1. The result is a nonuniform

window of tensors surrounded by the uniform ground state. Note that the bond dimension of the

tensors in Eq. (A.38) is not uniform, as some have the value D and others 2D. Finally, the one-

site time-dependent variational principle (TDVP) [449] is used to evolve the state in time, which

does not change the bond dimensions. Hence, prior to the time-evolution, we expand the bond

dimensions of all the tensors to a uniform value D′ ≥ 2D. For the quark-antiquark scattering

(Fig. 2.3), we found that D = 20 and D′ = 50 were sufficient for convergence at late times, while

the meson-meson scattering in the confined phase required a larger bond dimension (D = 40

and D′ = 100). During the time evolution, we only update the tensors inside the nonuniform

window [187–189]. To decide whether to extend the window, at each time step, we compute the

entanglement entropy across the bonds at the edges of the window and compare that to the entropy

of the vacuum, extending the window by a site if the relative difference is greater than a specified
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threshold (which we chose to be 0.02).

A.3.3 Particle detection

In this section, we describe how the scattering matrix can be computed by projecting on multi-

particle basis states. As long as the particles are well separated, one can use Eq. (A.35) to build

multi-particle states, akin to the asymptotic “out” states in the definition of the S-matrix. For

example, a two-particles state, with a particle on the left with momentum p1 and a particle on the

right with momentum p2, is expressed as

|Φp1,p2⟩ =
∑

n1∈WL

∑
n2∈WR

eik1n1eik2n2 · · · AL B(p1) ÃR C−1 ÃL B(p2) AR
. . .

sn1 sn2

· · · . (A.39)

The sums are restricted such that the two excitation tensors B appear in disjoint regions WL

and WR and are separated by some minimum number r of vacuum tensors, ensuring that there are

no interactions between the particles (we found r = 40 to be sufficient for both meson and quark

scattering in Chapter 2). Moreover, since we are projecting on a time-evolved state where the

particles are constrained to a finite window of the uMPS, we further restrict the sums to the sites

within this nonuniform window. Using the left gauge-fixing condition for the left-most B tensor,

and the right gauge-fixing condition for the right-most B tensor [166], ensures that overlaps where

either of the B tensors is outside of the window are exactly zero. The finite sums in Eq. (A.39) can

then be summed exactly and expressed as a single MPS, similarly to Eq. (A.38).

To compute the full n-particle momentum distribution (for n = 2, Sp1,p2 ≡ ⟨Φp1,p2|ψ(t)⟩,

where |ψ(t)⟩ is the time-evolved state), Mn
p contractions need to be performed, where Mp is the

desired number of p samples (i.e., the equivalent of Np in the incoming wave-packet construction).

This can be sped up by precomputing partial contractions. For example, for the two-particle case,
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Figure A.5: (a) Momentum and (b) position probability distributions of observing a π1π1 meson
pair at t = 345 following the π1π1 collision at ε = 0.07 in Fig. 2.4.

we compute the partial left and right contractions for each value of p, which scale as ∼ Mp|WL|

and ∼ Mp|WR|, respectively. Then, the ∼ M2
p contractions are very efficient since the remaining

tensor network is of length ∼ 1. As an example, Fig. A.5 depicts the result of projecting the state

following the meson-meson collision (this process is depicted in Fig. 2.4 of Section 2.4) on the

lightest meson-meson (π1π1) two-particle basis. From the momentum distribution, the position

distribution (Sx1,x2) is computed by a Fourier transform. For this to work, it is crucial that the

phases of the B(p) tensors are fixed prior to the projection, as described in Appendix A.3.2. To

avoid multiple unphysical copies due to the periodicity of the discrete Fourier transform, we choose

the number of p samples, Mp, to be larger than the window size (we used Mp = 400 for the quark-

antiquark scattering and Mp = 1300 for the meson-meson scattering). Finally, fitting Gaussians to

the marginals of these distributions produces the information plotted in Fig. 2.4(c) of Section 2.4.
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Appendix B: Supplemental Material for Chapter 3

B.1 Renormalized spin frequency

In this section, we reproduce the derivation [233] of the crossover energy scale between weak and

strong coupling, the equivalent of the Kondo temperature, which we associate with the renormal-

ized spin frequency ∆R in Eq. (3.2).

We employ the renormalization group (RG) procedure as used in Ref. [233]. Let us denote the

cutoff at some energy scale l by Λ(l) (such that Λ(0) ≡ ωc is the original cutoff of the problem).

The RG procedure consists of integrating out the high-energy modes, and thus redefining the cutoff

from Λ to Λ− dΛ. This leads to the RG flow equations for the coupling constants α and h ≡ ∆/Λ

[233] (that can also be derived from perturbation theory in α)

dα

dl
= −2α2, (B.1)

dh

dl
= (1− 2α)h, (B.2)

where dl = −dΛ/Λ, which implies that l = log
(
ωc

Λ

)
.

The equation for α can be readily solved,

(B.3)α(l) =
α(0)

1 + 2lα(0)
.

Plugging Eq. (B.3) into the differential equation for h we find
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h(l) =
el∆/ωc

1 + 2α(0)l
. (B.4)

Note that both the cutoff Λ and ∆ are decreasing as function of l. Equivalently, h increases

from its initial value of h(0) = ∆/ωc. Eventually, we have h(l∗) ≈ 1, which occurs when ∆(l∗) ≡

∆R = Λ(l∗), and hence the RG breaks down. The energy scale corresponding to this is l∗ =

logωc/∆R. Plugging this into Eq. (B.4) gives Eq. (3.2),

∆R =
∆

1 + 2α log(ωc/∆R)
. (B.5)

This differs from the result presented in Refs. [232, 233] in that we kept the ∆R on the right-

hand-side (whereas these references approximated it by ∆) as it agrees better with the numerical

results.

As we show later in Appendix B.4, we also reproduce exactly this equation by applying the

Callan-Symanzik equation to the bare Green’s function of the spin.

B.2 Numerical methods

In this section, we describe the numerical methods we use to compute the single photon transport

properties.

We first write the Hamiltonian (Eq. (3.1)) in terms of bosonic creation and annihilation opera-

tors, as follows,

(B.6)Ĥ = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

−kmax

ω(k)â†i,kâ
†
i,kdk +

σ̂i
2

∫ kmax

−kmax

g(k)(â†i,k + â†i,k)dk

]

with
[
â†i,k, â

†
j,k′

]
= δijδ(k − k′). We make the transformation
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âi,k =
Âi,k + B̂i,k√

2
, k > 0,

âi,−k =
Âi,k − B̂i,k√

2
, k > 0,

(B.7)

which transforms the Hamiltonian into two commuting parts

Ĥ = ĤXY SB + Ĥfree,

ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

0

ω(k)Â†
i,kÂ

†
i,k +

σ̂i
2

∫ kmax

0

g̃i(k)(Â
†
i,k + Â†

i,k)

]
,

Ĥfree =
∑
i=x,y

[∫ kmax

0

ω(k)B̂†
i,kB̂

†
i,k

]
,

(B.8)

where g̃(k) =
√
2g(k). It is enough therefore to only simulate the dynamics of the ĤXY SB Hamil-

tonian.

Explicitly, to determine the single-particle scattering properties, we perform the following pro-

cedure. We create a single-particle Gaussian wavepacket on top of the ground state, with amplitude

ck = N e−
(k−k0)

2

2σ2 +ikx0 , where N is a normalization so that
∫ kmax

0
dk|ck|2 = 1. Without loss of gen-

erality, we choose this excitation to be of the x type (since for αx = αy the Hamiltonian is invariant

under x ↔ y exchange.). We then evolve this state in time, which leads to the scattering of the

wavepacket off the spin. At long times after the scattering, we can extract several observables such

as the elastic scattering amplitudes and number of elastic and inelastic photons in the final state.

Denoting the ground state of the full Hamiltonian Ĥ by |GS⟩ =
∣∣GSXY SB

〉
⊗
∣∣0free〉, the

initial state is

|ψ(0)⟩ =
∫ kmax

0

dkckâ
†
x,k |GS⟩

=
1√
2

∫ kmax

0

dkckÂ
†
x,k

∣∣GSXY SB
〉
⊗
∣∣0free〉+ ∣∣GSXY SB

〉
⊗ 1√

2

∫ kmax

0

dkckB̂
†
x,k

∣∣0free〉 .
(B.9)
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The time-evolved state is

|ψ(t)⟩ = 1√
2
|ψXY SB(t)⟩ ⊗

∣∣0free〉+ e−iEGSt
∣∣GSXY SB

〉
⊗ 1√

2

∫ kmax

0

dkcke
−iωktB̂†

x,k

∣∣0free〉 ,
(B.10)

where |ψXY SB(t)⟩ ≡ e−iĤXY SBt
∫ kmax

0
ckÂ

†
x,k

∣∣GSXY SB
〉

and EGS is the ground state energy.

From this state, we can extract the elastic scattering amplitudes as follows [242] (with t = t∞

sufficiently long so that the scattering event has finished):

txx =
⟨GS| âx,k |ψ(t∞)⟩

ck
=

1

2

〈
GSXY SB

∣∣ Âx,k |ψXY SB(t∞)⟩+ 1

2
cke

−i(EGS+ωk)t∞ , (B.11)

rxx =
⟨GS| âi,−k |ψ(t∞)⟩

ck
=

1

2

〈
GSXY SB

∣∣ Âx,k |ψXY SB(t∞)⟩ − 1

2
cke

−i(EGS+ωk)t∞ , (B.12)

txy =
⟨GS| ây,k |ψ(t∞)⟩

ck
=

1

2

〈
GSXY SB

∣∣ Ây,k |ψXY SB(t∞)⟩ . (B.13)

The number of elastic photons generated by a given wavepacket can be found from the above

amplitudes by squaring and integrating over all k. This gives (for i = x, y)

(B.14)
n̄i,elastic =

∫ kmax

0

dk
(
|⟨GS| âi,k |ψ(t∞)⟩|2 + |⟨GS| âi,−k |ψ(t∞)⟩|2

)
=

∫ kmax

0

dk

[
1

2

∣∣∣〈GSXY SB
∣∣ Âi,k |ψXY SB(t∞)⟩

∣∣∣2 + 1

2
|ck|2δx,i

]
.

The number of inelastic photons is

(B.15)

n̄i,inelastic =

∫ kmax

0

dk
1

2
⟨ψXY SB(t∞)| Â†

i,kÂi,k |ψXY SB(t∞)⟩

−
∫ kmax

0

dk
1

2

〈
GSXY SB

∣∣ Â†
i,kÂi,k

∣∣GSXY SB
〉

−
∫ kmax

0

dk
1

2

∣∣∣〈GSXY SB
∣∣ Âi,k |ψXY SB(t∞)⟩

∣∣∣2.
Thus we see that all quantities of interest can be obtained from correlation functions and matrix

elements of the states
∣∣GSXY SB

〉
and |ψXY SB(t∞)⟩.
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B.2.1 Orthogonal polynomial mapping

The Hamiltonian ĤXY SB from Eq. (B.8) describes a system with very nonlocal interactions. In

order to efficiently simulate it with matrix-product-states, we use the orthogonal polynomial map-

ping introduced in [240, 241], which maps the Hamiltonian into a tight-binding model with only

nearest-neighbor interactions.

Here we summarize the main steps of the mapping. For more details, see Refs. [240, 241]. We

work with the Hamiltonian from Eq. (B.8), reproduced here

(B.16)ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

[∫ kmax

0

ω(k)Â†
i,kÂi,k +

σ̂i
2

∫ kmax

0

g̃i(k)(Âi,k + Â†
i,k)

]
,

where ω(k) = ωck, kmax = 1, and g̃i(k) =
√
2αiωck. The resulting spectral functions are

Ji(ω) = π
∑
k

ḡi(k)
2δ(ω − ω(k)) = 2παiωθ(ωc − ω). (B.17)

We introduce the unitary transformation

Ui,n(k) = g̃i(k)pi,n(k), n = 0, 1, · · · , (B.18)

where pi,n(k) are orthonormal polynomials with respect to the measure dµi(k) = g̃2i (k)dk [i.e.

⟨pi,n, pj,m⟩ ≡
∫ kmax

0
dµi(k)pi,n(k)pj,m(k) = δnmδij], and a set of new discrete bosonic modes

(B.19)b̂†i,n =

∫ kmax

0

dkUi,n(k)A
†
i,k,

that satisfy
[
b̂i,n, b̂

†
j,m

]
= δijδn,m.

Using the recurrence relations of orthogonal polynomials, one can show that the Hamiltonian

in Eq. (B.16) can be written as

(B.20)

ĤXY SB = −∆
σ̂z
2

+
∑
i=x,y

σ̂i
2

√
αiωc(b̂

†
i,0 + b̂i,0) + ωc

∑
i=x,y

∞∑
n=0

νnb̂
†
i,nb̂i,n

+ ωc

∑
i=x,y

∞∑
n=0

[
βn+1b̂

†
i,nb̂i,n+1 +H.c

]
,
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which describes two semi-infinite tight-binding bosonic chains that are both coupled to the spin via

their first site. For the Ohmic spectral function, the pi,n polynomials are the Jacobi polynomials,

and the on-site energies and hopping coefficients are given by

νn =
1

2

(
1 +

1

(1 + 2n)(3 + 2n)

)
,

βn+1 =
1 + n

1 + n+ 2n

√
1 + n

2 + n
.

(B.21)

Using the inverse transformation

Â†
i,k =

∑
n

Ui,n(k)b̂
†
i,n, (B.22)

we can convert measurements in the b̂ basis to observables in frequency space. For example, the

frequency-mode occupation is (for k = k′)

(B.23)
〈
Â†

i,kÂi,k′

〉
=

∞∑
n,m=0

Ui,n(k)Ui,m(k
′)
〈
b̂†i,nb̂i,m

〉
.

Note that this is an exact mapping, provided the length of the chains is infinite. In practice, the

length of the chains is truncated to a finite value L, and the dimension of each bosonic Hilbert

space is truncated to a finite value d. We varied these parameters and found that L = 250, d = 5,

and bond dimension of χ = 30 are adequate to obtain converging results for the scattering for most

values of α.

B.3 Elastic S-matrix in terms of spin susceptibilities

In this section, we derive the relation between the elastic scattering coefficients and the spin sus-

ceptibilities, given in Eqs. (3.3) and (3.4).

Let us write the Hamiltonian as
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Ĥ =Ĥ0 + V̂ , (B.24)

Ĥ0 =
∑
k

ωkâ
†
x,kâx,k +

∑
k

ωkâ
†
y,kây,k, (B.25)

V̂ =− ∆

2
σ̂z +

σ̂x
2

∑
k

gx,k(â
†
x,k + âx,k) +

σ̂y
2

∑
k

gx,k(â
†
y,k + ây,k). (B.26)

We are interested in the S-matrix between a particle with momentum k in bath i and a particle

with momentum k′ in bath j:

Sjk′,ik = ⟨ψ−
jk′ |ψ

+
ik⟩ , (B.27)

where
∣∣ψ±

ik

〉
are the exact incoming and outgoing scattering eigenstates. Following Ref. [450], we

can write these eigenstates as follows:∣∣ψ±
ik

〉
= â†i,k |ψ0⟩+

∣∣χ±
i

〉
, (B.28)

where |ψ0⟩ is the ground state of the full Ĥ with energy E0, and
∣∣χ±

i

〉
are the states of the scattered

particles. Since
∣∣ψ±

ik

〉
are eigenstates of Ĥ with energy E0 + ωk, Schrodinger’s equation implies

(Ĥ − ωk − E0)
(
â†i,k |ψ0⟩+ |χi⟩

)
= 0. (B.29)

Furthermore,

Ĥâ†i,k |ψ0⟩ =
(
â†i,kĤ −

[
â†i,k, Ĥ

])
|ψ0⟩ = (E0 + ωk)â

†
i,k |ψ0⟩+

σ̂i
2
gi,k |ψ0⟩ . (B.30)

Substituting this into Eq. (B.29) gives

(E0 + ωk − Ĥ) |χi⟩ =
σ̂i
2
gi,k |ψ0⟩ →

∣∣χ±
i

〉
=

1

E0 + ωk − Ĥ ± iϵ

σ̂i
2
gi,k |ψ0⟩ , (B.31)

with ϵ > 0 taken to zero at the very end. From this we find∣∣ψ+
ik

〉
−
∣∣ψ−

ik

〉
= −2πiδ(E0 − ωk − Ĥ)

σ̂i
2
gi,k |ψ0⟩ . (B.32)

130



Plugging this back into the S-matrix Eq. (B.27) gives

Sjk′,ik = δkk′δij − 2πiδ(ωk′ − ωk)gik ⟨ψ−
jk′|

σ̂i
2
|ψ0⟩ ≡ δkk′δij − 2πiδ(ωk′ − ωk)Tjk′,ik, (B.33)

where we defined the T -matrix

(B.34)
Tjk′,ik = gik ⟨ψ−

jk′|
σ̂i
2
|ψ0⟩

= gik ⟨ψ0| âjk′
σ̂i
2
|ψ0⟩+ gikgjk′ ⟨ψ0|

σ̂j
2

1

E0 + ωk − Ĥ + iϵ

σ̂i
2
|ψ0⟩ .

To evaluate the first term, we perform a similar manipulation as in Eq. (B.30):

Ĥâj,k′ |ψ0⟩ =
(
âj,k′Ĥ −

[
âj,k′ , Ĥ

])
|ψ0⟩ = (E0 − ωk′)âj,k′ |ψ0⟩ −

σ̂j
2
gj,k′ |ψ0⟩ (B.35)

→ âj,k′ |ψ0⟩ =
1

E0 − ωk′ − Ĥ − iϵ

σ̂j
2
gj,k′ |ψ0⟩ . (B.36)

Inserting this into Eq. (B.34) yields

Tjk′,ik = gikgjk′

[
⟨ψ0|

σ̂j
2

1

E0 + ωk − Ĥ + iϵ

σ̂i
2
|ψ0⟩+ ⟨ψ0|

σ̂i
2

1

E0 − ωk′ − Ĥ − iϵ

σ̂j
2
|ψ0⟩

]
,

(B.37)

which, when ωk = ωk′ , we recognize as the Fourier transform of the retarded Green’s function

Tjk′,ik = gikgjk′G
R
ji(ω + iϵ) (B.38)

with

GR
ji(ω + iϵ) = − i

4

∫ ∞

0

dt ei(ω+iϵ)t ⟨[σ̂j(t), σ̂i]⟩ , (B.39)

which we equivalently refer to as the spin susceptibility in Chapter 3.

B.4 Derivation of the spin susceptibilities

In this section, we explicitly compute the spin susceptibility, Eq. (B.39). We will do so by first

computing the imaginary-time Matsubara Green’s function,
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Gji(iΩ) =

∫ β

0

dτ eiΩnτ ⟨Tτ σ̂j(τ)σ̂i(0)⟩ . (B.40)

Here, the imaginary-time dependence of operators is σ̂j(τ) = eHτ σ̂je
−Hτ , and Tτ is the imaginary-

time ordering operator. This function may be computed using the usual diagrammatic perturbation

theory if we can use Wick’s theorem, after which we may obtain the spin susceptibility by analytic

continuation [451]:

GR
ji(ω + iϵ) = −1

4
Gji(iΩ → ω + iϵ). (B.41)

However, the Pauli matrices do not satisfy Wick’s theorem. We can get around this by using

an Abrikosov pseudo-fermion representation of the spins. We introduce a two-component set of

fermions, {χa, χ
†
b} = δab, a, b = 1, 2, related to the spin operators by

σ̂x = χ†
1χ2 + χ†

2χ1,

σ̂y = −i
(
χ†
1χ2 − χ†

2χ1

)
,

σ̂z = χ†
1χ1 − χ†

2χ2. (B.42)

This is only a faithful representation of the spin operators in the subspace χ†
1χ1 + χ†

2χ2 = 1.

However, we can project to this subspace using the Popov-Fedotov trick of using an imaginary

chemical potential µ = −iπ/2β, which results in a cancellation between the unphysical subspaces

[451]. This method requires us to work at finite temperature during intermediate calculations, but

below we will always take the β → ∞ limit as early as possible.

We may now express the system as a coherent-state path integral. We introduce the bosonic
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Figure B.1: The Feynman rules, which follow from Eq. (B.43). (a) The fermionic (top) and bosonic
(bottom) propagators, which are given in Eqs. (B.44)-(B.47). (b) The interaction vertices for our
theory. Each vertex contributes a factor of

∑
k gk/

√
2. The dependence of diagrams on the spectral

function comes from internal bosonic propagators connecting two such vertices. (c) Diagrammatic
representation of the insertion of external spin operators, which are composite when written in
terms of the fermionic χa fields.

fields ϕ±,k = (ax,k ± iay,k)/
√
2, after which our model may be described by the Lagrangian

L =
∑
i=±

∑
k

ϕ†
i,k (∂τ + ωk)ϕi,k +

2∑
a,b=1

χ†
a

[
(∂τ − µ) δab −

∆

2
σz
ab

]
χb

+
1√
2
χ†
1χ2

∑
k

gk

(
ϕ−,k + ϕ†

+,k

)
+

1√
2
χ†
2χ1

∑
k

gk

(
ϕ+,k + ϕ†

−,k

)
. (B.43)

In this form, it is straightforward to treat the interactions gk perturbatively using a Feynman-

diagram expansion and the Matsubara formalism. We have the bare fermionic Green’s functions

δabΠa(τ) = ⟨Tτχa(τ)χ
†
b(0)⟩, Πa(iαn) =

∫ β

0

dτ eiαnτΠa(τ), (B.44)

with

Π1(iαn) = − 1

iαn + µ+∆/2
, Π2(iαn) = − 1

iαn + µ−∆/2
, (B.45)

where αn = π(2n+ 1)/β, n ∈ Z. Similarly, the bosonic propagators are

δijδkk′Dk(τ) = ⟨Tτϕi,k(τ)ϕ
†
j,k′(0)⟩, Dk(iΩn) =

∫ β

0

dτ eiΩnτDk(τ), (B.46)
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with

Dk(iΩn) =
1

−iΩn + ωk

(B.47)

and Ωn = 2πn/β, n ∈ Z. The interaction terms in Eq. (B.43) result in four interaction vertices,

which contribute dependence on gk. Since we are interested in correlation functions of the spin

operators, we also introduce a diagrammatic notation representing the composite operators σ̂+ =

χ†
1χ2 and σ̂− = χ†

2χ1. The Feynman rules for this theory are displayed in Fig. B.1.

As a demonstration of this formalism, we obtain the spin susceptibility in the non-interacting

(α = 0) limit by computing the diagrams with a single fermion loop and no bosonic propagators,

G+− (iΩn) =

∫ β

0

dτeiΩnτ ⟨T χ†
1(τ)χ2(τ)χ

†
2(0)χ1(0)⟩

= − 1

β

∑
iαn

1

(iαn + µ+∆/2)(iαn + iΩn + µ−∆/2)

=
tanh (β∆/2)

∆− iΩn

. (B.48)

We also have G−+(iΩn) = G+−(−iΩn) and G++ = G−− = 0. Going back to the xy basis, taking

β = ∞, and analytically continuing, we obtain the expected form for the spin susceptibilities for

α = 0:

GR
xx(ω + iϵ) = GR

yy(ω + iϵ) =
∆/2

(ω + iϵ)2 −∆2
,

GR
xy(ω + iϵ) = −GR

yx(ω + iϵ) =
iω/2

(ω + iϵ)2 −∆2
. (B.49)

These expressions could be simply obtained through a direct computation at zero temperature with

the spin operators, but the diagrammatic approach is useful for including interactions.

We note that the susceptibilities in Eq. (B.49) have a simple pole located at the bare spin
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frequency, and such a pole can never be shifted or broadened by computing a finite number of

diagrams. Therefore, we will use both the Callan-Symanzik equations and a Dyson equation to

sum an infinite number of diagrams, which will result in a change in the analytic structures of the

susceptibilities.

As discussed in Sec. B.1, if we perform an RG transformation on our system, redefining the

cutoff from ωc ≡ Λ(0) to some lower cutoff Λ(l), we obtain the flow equations

Λ
dα

dΛ
= 2α2, (B.50)

Λ
dh

dΛ
= −(1− 2α)h, (B.51)

where h ≡ ∆/Λ. In addition to coupling renormalization, it turns out that one also needs to

renormalize the spin operators under an RG transformation, and one may show that, perturbatively,

σi(l) ≈ (1− α logωc/Λ)σi(0), (i = x, y), (B.52)

implying a flow for the operators,

Λ
dσi
dΛ

= ασi, (i = x, y). (B.53)

These flow equations, first obtained in Ref. [233] using a Wilsonian momentum-shell RG scheme,

may also be obtained by treating Eq. (B.43) using the conventional methods of quantum field the-

ory. We now use the fact that the susceptibilities should be independent of an RG transformation,

dGR
ji/dΛ = 0. Taking into account any explicit and implicit dependence on the cutoff, this implies

the Callan-Symanzik equation,[
Λ
∂

∂Λ
− h(1− 2α)

∂

∂h
+ 4α2 ∂

∂α
+ 2α

]
GR

ji = 0. (B.54)

The general solution to this partial differential equation is
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GR
ji =

fji(h̄(Λ), ᾱ(Λ))

ω + 2αω log Λ/ω
, (B.55)

where the fji are arbitrary functions of the “running couplings,” defined as

h̄(Λ) =
hΛ

ω + 2αω log Λ/ω
, ᾱ(Λ) =

α

1 + 2α log Λ/ω
. (B.56)

Comparing this general solution to the leading-order expressions of Eq. (B.49), we may read off

the α = 0 limit of the functions fji, and then use the α-dependence implied by the solution of the

differential equation to find

GR
xx =

∆/2

ω2(1 + 2α logωc/ω)2 −∆2
,

GR
xy =

iω(1 + 2α logωc/ω)/2

ω2(1 + 2α logωc/ω)2 −∆2
, (B.57)

where we have plugged in Λ(l = 0) = ωc to give expressions in terms of the initial cutoff and the

bare quantities, and ω has a small positive imaginary part. We see that both expressions no longer

diverge at ω = ∆, but instead they have poles at ω = ∆R, where ∆R satisfies

∆R =
∆

1 + 2α log(ωc/∆R)
. (B.58)

From Eq. (B.57), we see that the effect of solving the Callan-Symanzik equation was to sum the

“leading logarithms,” which are terms of the form αn logn ωc/ω at nth order in perturbation theory.

Figure B.2: Diagrammatic representation of the Dyson equation, Eq. (B.59).

Although we have succeeded in capturing the renormalization of the spin frequency using the

Callan-Symanzik equations, they still predict a sharp behavior at ω = ∆R, whereas we expect in-
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teractions to broaden the peak near the renormalized spin frequency. We rectify this by computing

an additional infinite set of diagrams using Dyson’s equation. We first consider the one-particle ir-

reducible Green’s functions, G1PI
ji , which are defined to be the complete set of diagrams that cannot

be split in two by cutting a single propagator. By the structure of the interactions, the only possible

propagators which can be cut to disconnect a susceptibility diagram is a bosonic propagator. As a

result, we have the exact relation (in matrix notation)

G = G1PI + G1PIDG. (B.59)

See Fig. B.2 for a diagrammatic representation of this Dyson equation. Here, D is the result from

computing the diagrams. We find the simple structure, D++ = D−− = 0 and D+− = D−+. An

explicit calculation gives

D+− = −πα|Ωn|. (B.60)

Then the full Matsubara Green’s function satisfies

G =
[
I− G1PID

]−1 G1PI. (B.61)

We now approximate the full Green’s function by just using the leading-order result, Eq. (B.48),

for G1PI. This corresponds to summing all possible “bubble diagrams” which contribute to the

susceptibility, which is reminiscent of the RPA approximation in the dense electron gas. In this

approximation, we obtain the susceptibilities as

GR
xx(ω) =

(∆− iπαω) /2

(1 + π2α2)ω2 + i2πα∆ω −∆2
,

GR
xy(ω) =

iω/2

(1 + π2α2)ω2 + i2πα∆ω −∆2
. (B.62)

We see that the inclusion of these diagrams has resulted in a finite imaginary part in the denomina-

tor, which removes the pole on the real-ω axis. We may now furthermore use the Callan-Symanzik
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equation to sum the leading logarithms. After matching Eq. (B.55) to Eq. (B.62), we obtain the

spin susceptibilities given in Eqs. (3.5) and (3.6).

As noted in Chapter 3, to this order, we have found that the above expressions do not lead to any

contribution to inelastic scattering (γ(ω) in Chapter 3). We have checked that including all O(α)

contributions to G1PI still does not lead to inelastic scattering. We believe that including O(α2)

contributions to G1PI will lead to inelastic contributions, which is consistent with Appendix B.5,

where we show that inelastic contributions to the S-matrix appear at O(α2).

B.5 Inelastic scattering

In this section, we will consider the leading contributions to inelastic scattering in perturbation the-

ory using the diagrammatic approach developed in Appendix B.4. To proceed, we need a relation

between time-ordered expectation values and S matrix elements. Such a relation is called the LSZ

reduction formula in relativistic quantum field theory [452], but we can follow the derivation for

our present system and derive a non-relativistic analogue of the reduction formula. If we consider

the scattering of n photons with momenta k1, k2, ..., kn into a state with n′ photons with momenta

k1′ , k2′ , ..., kn′ , the S matrix element is given by

S = in+n′
∫
dt1′ e

iωk1′ t1′
(
−i∂t1′ + ωk1′

)
· · ·

dt1 e
−iωk1

t1 (i∂t1 + ωk1) · · ·

×
〈
Tt

{
ϕk1′ (t1′) · · ·ϕ

†
k1
(t1) · · ·

}〉
. (B.63)

Here, ωk = |k| is the energy of the photon. Note that the real time-ordered correlation function

appears in this expression, which is related to the Matsubara correlation functions in Appendix B.4

138



by a Wick rotation. This expression greatly simplifies after Fourier transforming to frequency

space. When we evaluate diagrams using Wick’s theorem, we will come across the following

bosonic contractions from the external legs of Feynman diagrams,〈
Tt

{
ϕk(t1)ϕ

†
k(t)
}〉

= −i
∫
dω

2π

e−iω(t1−t)

ωk − (ω + iϵ)
. (B.64)

These will set the external legs of the Feynman diagrams to their on-shell values, ω = ωk, and

additionally cancel out the contribution of the external propagators. Then the S matrix elements

simply become

S =
〈
Tt

{
ϕk1′ (ωk1′ ) · · ·ϕ

†
k1
(ωk1) · · ·

}〉
amp.

. (B.65)

That is, we evaluate the diagram in momentum space with on-shell external legs and omit the

external propagators (i.e. we “amputate” the legs).

Figure B.3: The nonzero diagrams contributing to the scattering of one photon into three photons.

The symmetry of the model greatly reduces the number of diagrams we need to consider. In

particular, the Hamiltonian has a U(1) symmetry [453], and the conserved charge [which is more

easily apparent in terms of the ± photons â± = 1
2
(âx ± iây)] is

Q =
σ̂z + 1

2
+
∑
k

(â†−,kâ−,k − â†+,kâ+,k). (B.66)
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Since the scattering cannot change the spin (as this would require the existence of bound spin-

photon eigenstates), it follows that the quantity
∑

k(â
†
−,kâ−,k− â†+,kâ+,k) must be conserved in any

scattering process.

We now consider the simplest case, where one photon scatters into three photons. The dis-

cussion above means that there are only two nonzero diagrams, pictured in Fig. B.3. An explicit

calculation finds that to lowest order we have

⟨0| â+,k1 â−,k2 â+,k3Sâ
†
+,k |0⟩ =

α2ω2
c

4

√
ωω1ω2ω3

2∆− ω1 − ω3

(ω −∆)(ω1 −∆)(ω3 −∆)(ω2 +∆)
, (B.67)

⟨0| â−,k1 â+,k2 â−,k3Sâ
†
−,k |0⟩ =

α2ω2
c

4

√
ωω1ω2ω3

2∆ + ω1 + ω3

(ω +∆)(ω1 +∆)(ω3 +∆)(ω2 −∆)
, (B.68)

together with the energy conservation condition ω = ω1 + ω2 + ω3 (enforced by a delta function,

which has been omitted in these expressions). Denoting Eq. (B.67) by a function f(ω1, ω2, ω3;ω),

we see that Eq. (B.68) is simply f(−ω1,−ω2,−ω3;−ω). Alternatively, each amplitude can be

found from the other by substituting ∆ → −∆ (up to an overall minus sign). This is because the

two diagrams in Fig. B.3 are related to each other by replacing + photons with − photons and −

photons by + photons. From Appendix B.4 we see that this requires flipping the sign of ∆.

Converting Eqs. (B.67) and (B.68) to the xy basis, we find the four amplitudes

(B.69)
4 ⟨0| âx,k1 âx,k2 âx,k3Sâ

†
x,k |0⟩ = f(ω1, ω3, ω2;ω) + f(ω1, ω2, ω3;ω)

+ f(ω2, ω1, ω3;ω) + f(−ω2,−ω1,−ω3;−ω)
+ f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω),

(B.70)
i34 ⟨0| ây,k1 ây,k2 ây,k3Sâ

†
x,k |0⟩ = −f(ω1, ω3, ω2;ω)− f(ω1, ω2, ω3;ω)

− f(ω2, ω1, ω3;ω) + f(−ω2,−ω1,−ω3;−ω)
+ f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω),

(B.71)
i24 ⟨0| âx,k1 ây,k2 ây,k3Sâ

†
x,k |0⟩ = −f(ω1, ω3, ω2;ω)− f(ω1, ω2, ω3;ω)

+ f(ω2, ω1, ω3;ω) + f(−ω2,−ω1,−ω3;−ω)
− f(−ω1,−ω2,−ω3;−ω)− f(−ω1,−ω3,−ω2;−ω),
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(B.72)
i4 ⟨0| âx,k1 âx,k2 ây,k3Sâ

†
x,k |0⟩ = −f(ω1, ω3, ω2;ω) + f(ω1, ω2, ω3;ω)

+ f(ω2, ω1, ω3;ω)− f(−ω2,−ω1,−ω3;−ω)
− f(−ω1,−ω2,−ω3;−ω) + f(−ω1,−ω3,−ω2;−ω).

The resulting probabilities are: for x→ xxx

γxxx(ω1, ω2, ω3;ω) =
α4ω4

c

16
ω1ω2ω3ω|∆|2

×
∣∣∣∣ 3∆4 −∆2 (ω2 − ω1ω2 − ω2ω3 − ω1ω2)− ωω1ω2ω3

(ω −∆)(∆ + ω)(∆− ω1)(∆ + ω1)(∆− ω3)(∆ + ω3)(∆ + ω2)(∆− ω2)

∣∣∣∣2. (B.73)

This expression is equivalent to the leading-order result given in Ref. [209] for the spin-boson

model. This can be understood from the fact that, at leading order, the x → xxx process does

not involve any y photons. Computing the other scattering probabilities, we find that the processes

x→ {yyy, xxy} have a simple relation to the above process, given by

(B.74)γyyy(ω1, ω2, ω3;ω) = γxxx(ω1, ω2, ω3;ω)
ω2

|∆|2
,

(B.75)γxxy(ω1, ω2, ω3;ω) = γxxx(ω1, ω2, ω3;ω)
ω2
3

|∆|2
.

The remaining process, x → xyy, does not have a simple relation to the above expressions. It is

explicitly given by

γxyy(ω1, ω2, ω3;ω) =
α4ω4

c

16
ω1ω2ω3ω|∆|2

×
∣∣∣∣∆4 +∆2 (ω2 − ω(ω2 + ω3)− ω2

2 − 3ω2ω3 − ω2
3) + ω2ω3(ω2 + ω3)

2 − ωω1(ω
2
2 − ω2ω3 + ω2

3)

(ω −∆)(∆ + ω)(∆− ω1)(∆ + ω1)(∆− ω3)(∆ + ω3)(∆ + ω2)(∆− ω2)

∣∣∣∣2.
(B.76)

As with the elastic probabilities, the leading-order calculation leads to poles in the scattering

probabilities at the bare spin frequency ∆. We may apply procedures like those in Appendix B.4

to obtain an analytic dependence, which better resembles that of the fully-interacting problem. For
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example, by applying the Callan-Symanzik equation to the amplitudes in Eq. (B.67)-(B.68), we

will find that the instances of ∆ will be corrected to the renormalized value ∆R. Similarly, if we

developed a Dyson equation for this amplitude, we expect that the poles will be softened to broad

peaks with a similar width to the peaks seen in the elastic probabilities given in Chapter 3.

From Eq. (B.74), we see that scattering processes involving a photon from one waveguide

into three photons in the other waveguide will dominate over scattering entirely within the same

waveguide if ω ≫ ∆R. In this same limit, we do not expect a large region of phase space with very

large final ω3, so γxxy is expected to be much smaller than γyyy. We have verified by numerically

integrating the above expressions over the possible final frequencies that, when ω ≫ ∆R, the total

cross section for the processes x → {xyy, xxy} are of the same order of magnitude, and they are

both much smaller than x → yyy. We also found that the cross section for x → xxx is much

smaller than the three other processes in the same limit. This is consistent with our numerical

results, where we found that the inelastic scattering for ω ≫ ∆R is dominated by scattering from

one photon flavor to the other.

B.6 Comparison with a model without frustration

In this section, we compare the results of Chapter 3 to the more common situation in waveguide

QED, without frustration. We assume the same geometry as in Chapter 3 [shown in Fig. B.4], with

the spin coupling to two waveguides, but the coupling is via the same operator σ̂x. The coupling

constant to each waveguide is given by α1 = α2 = αT/2.

We obtain the elastic scattering probabilities shown in Fig. B.5 by the same method as described

in the Chapter 3 and in Appendices B.2 and B.4 above. For the analytical calculation, the only
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1

2

Figure B.4: Schematic of the same model as in Chapter 3 but without frustration. Here the spin-1/2
is coupled locally to two independent waveguides with the same operator σ̂x.

major difference is that the ϕ+ and ϕ− bosons are now equivalent, so the bottom two vertices in

Fig. B.1(b) are equivalent to the top two. The elastic scattering coefficients shown in Fig. B.4 take

the form

r11(ω) = r21(ω) = t21(ω) = −iπαTωχxx(ω), (B.77)
t11(ω) = 1 + r11(ω), (B.78)

and the susceptibility computed using the methods of Sec. B.4 is given by

χxx(ω) =
−(ω/ωc)

αT∆/2

∆2(ω/ωc)2αT − ω2 − iπαT∆ω(ω/ωc)αT
. (B.79)

Figure B.5 shows that the elastic response has a resonance that is in excellent agreement with

the well-known result from the spin-boson [223] or Kondo literature:

∆R = ∆

(
∆

ωc

)αT /(1−αT )

. (B.80)

However, we see that, in contrast to the frustrated case, the transmission away from the res-

onance is very high, whereas the reflection is only nonzero around the ∆R resonance. Note that

Im(χxx(ω)) in Eq. (B.79), describing the spectral weight of the spin, shows a sharp peak at ∆R.

Moreover, the large ω limit of Eq. (B.79) is Re(χxx(ω)) ∼ ωαT−2 and Im(χxx(ω)) ∼ ω2αT−3, both

of which decay to zero much faster than in the frustrated case. These results are consistent with

previous studies [207–210, 212], in other one-dimensional realizations of the spin-boson model. In

all of these cases, the system is well described in terms of the polaron or dressed-spin picture. Even
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Figure B.5: Numerical (top row) and analytical (bottom row) elastic scattering coefficients for
Fig. B.5, as a function of the incoming frequency ω and coupling constant αT . The red dashed line
corresponds to ∆R from Eq. (B.80). The cutoff is given by ωc = 10∆. The large oscillations at
the top of the numerical |t(ω)|2 are finite time/size effects due to the fact that the scattering takes a
very long time at those large couplings.

at very large couplings, where ∆R → 0 and the resonance is disappearing, the photons show al-

most no trace of the coupling to the spin, being almost fully transmitted. This should be contrasted

to the frustrated case discussed in Chapter 3, where we have the complete opposite scenario, where

the spin becomes extremely widespread over the entire energy spectrum, leading to strong elastic

response in the whole range ω > ∆R.

Next, we look at the inelastic scattering, employing the same numerical procedure as we used in

Chapter 3. We scatter narrow wavepackets and record the resulting number of elastic and inelastic

particles, shown in Fig. B.6. Note that because the coupling to both waveguides is the same, the

number of inelastic photon emitted in each of the two waveguides is also the same. Hence, we

present only the total number of elastic and inelastic photons. We see that the number of elastic

photons is always near 1, never going below ∼ 0.9 for the wavepackets considered. In fact, since
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∆R/∆ ≈ 0.5 for αT = 0.25 (see Fig. B.5), most of Fig. B.6 is in the regime ω ≫ ∆R. The number

of inelastic particles does not exceed ∼ 0.36, which occurs for the lowest-energy wavepacket

ω̄in = 0.5∆. In fact, as shown also in Ref. [209], for a given αT , the inelastic scattering rate peaks

at an energy close to ∆R. For example, for αT = 0.5 (the Toulouse point), the peak occurs at 2∆R

[209]. This should be contrasted again to the situation with frustration, described in Chapter 3,

where we found that the inelastic rate remained saturated close to its maximum allowed value 0.5

even for energies above the bar spin gap ∆.
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Figure B.6: Numerically computed total number of elastic (left) and inelastic (right) particles
as a function of αT for six different incoming wavepackets, for Fig. B.5. The incoming single-
particle wavepackets are Gaussians centered at ω̄in with a standard deviation of 0.2∆. The cutoff
is ωc = 10∆.

Finally, from Fig. B.5 we also observe that the analytics are in much greater agreement with

the numerics, even at very large α. This is consistent with our assertion in Chapter 3, that the

disagreement in the frustrated case is due to the fact that inelastic processes are missing from

the susceptibility calculation. In the frustrated case, these inelastic processes can be extremely

important, accounting for half of the scattering, whereas in the present case with no frustration

they are insignificant.
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Appendix C: Supplemental Material for Chapter 4

C.1 Experimental setup

C.1.1 Device Design and Fabrication

The photonic crystal is experimentally implemented using 26 lumped-element microwave res-

onators, capacitively connected in a chain as shown in Fig. 4.1c in Chapter 4. The lumped element

resonator geometry was optimized using commercial software. The capacitive elements are imple-

mented as interdigitated structures where the values for both the ground and coupling capacitances

are calibrated using ANSYS Maxwell (electrostatic solver). The resonator inductors are imple-

mented as meandered microstrip wires with a 4µm width.The inductance values are inferred from

calibrating the resonance frequency of the resonator site using ANSYS HFSS (eigenmode solver)

and AWR Microwave Office (AXIEM solver). The inductance of the resonator site coupled to the

fluxonium is intentionally made smaller to accommodate the inductive contribution from the flux-

onium coupling inductor. The photonic crystal circuit is fabricated using a 200 nm-thick Nb film

sputtered on a 525 µm-thick high-purity C-plane sapphire substrate. The components are defined

using optical lithography and reactive ion etching, with an attainable minimum feature size of 1µm.

The wafer was diced into individual 7x7 mm2 chips.

The fluxonium artificial atom is composed of a small Josephson junction (100 nm × 220 nm)
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inductively shunted by an array of 38 larger Josephson junctions (190 nm × 1500 nm) and a tun-

able inductor, implemented as a chain of four asymmetric SQuIDs. The junctions and super-

conducting loop were defined via electron-beam lithography using a bi-layer resist MMA(methyl

methacrylate)-PMMA(poly methyl methacrylate). The junctions were fabricated via double-angle

electron-beam evaporation using a Dolan bridge technique. Aluminum films, with a thickness of

30 nm and 60 nm respectively, were deposited at different angles. The junction electrodes were

separated by an AlOx oxide grown at ambient temperature for 10 minutes in 200 mbar static pres-

sure of a Ar:O2 (85 %:15 %) gas mixture. After the evaporation of the second aluminum layer,

a final oxide was grown using the same gas mixture for 20 minutes at 40 mbar, in order to pas-

sivate the surface. After evaporation, the remaining resist was lifted off by leaving the sample

in N-Methyl-2-Pyrrolidone (NMP) at 80 °C for 3 hours. The fluxonium is inductively coupled to

the edge resonator on the input port of the device. The contact pads for the galvanic connection

between the resonator inductor and the fluxonium loop is intentionally made larger (20× 50 µm2)

than the inductor width to ensure a small contact resistance.

The fluxonium loop and tunable inductor are magnetically biased using an on-chip flux line

where we apply a DC current. The magnetic field induced by the DC current is modelled using the

Biot-Savart law, and integrating the field integrated over the area of the loops gives an estimate for

the applied magnetic flux. The area of the fluxonium and SQuID loops, as well as their distance

with respect to the flux bias line, are designed to achieve a desired ratio of applied flux. Specif-

ically, for a given applied current bias, we want the magnetic flux enclosing the fluxonium loop

to be at least an order of magnitude larger than the magnetic flux in each SQuID loop. This large

asymmetry allows the flexibility of biasing the qubit to have the same energy spectrum, while sam-

pling various coupling regimes. Taking into consideration screening currents due to the Meissner
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effect is not critical for this analysis since we are interested in the ratio of applied flux instead of

the absolute values.

The parameters of the circuit are summarized in Table C.1 using the circuit notation outlined

in Chapter 4 and in Appendix C.2. The parameter values are inferred from fitting the experimental

data.

C.1.2 Cryogenic Setup and Control Instrumentation

The device was mounted to the base stage of a dilution refrigerator, as shown in Fig. C.1. Device

shielding consists of a can with two µ-metal layers and an inner aluminum can covered with Sty-

cast. The cryogenic setup, including attenuation and filtering, is shown schematically in Fig. C.1.

The resonator chain is connected to two coax cables, an input line used for voltage driving, and

an output line used for measuring the transmitted field through the waveguide. The flux bias cur-

rent is sent through a separate control line with a bandwidth of 12 kHz. The transmitted signal

passes through two cryogenic isolators, thermalized at the base stage, and is amplified using a

high-electron-mobility transistor (HEMT) amplifier, anchored at the 4 K stage.

The elastic transmission experiments were performed using a Network Analyzer (Keysight

N5241A PNA-X) and the inelastic emission experiments were performed using the pulsed setup

Fluxonium
EJ/h̄ 8.17 GHz
EL/h̄ 5.55 GHz
EC/h̄ 3.30 GHz
Resonator chain
Lr 2.80 nH
L′
r (edge) ∼ 0.1nH

Lc (4 to 14) nH
Cg 249.15 fF
Cc 202.70 fF

Table C.1: Parameters for the joint qubit and photonic crystal circuit.
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Figure C.1: Experimental setup. Schematic diagram of the cryogenic and instrumentation setup.

shown in Fig. C.1. The microwave pulses used for driving the photonic crystal waveguide are

generated using a vector signal generators (Keysight E8267D), with internal wide-band IQ mixing

functionality. The base-band and marker pulses are generated with an arbitrary waveform gener-

ator (AWG Keysight M8195A). The flux bias current is provided by a low-noise current source

(YOKOGAWA GS200). The signal coming out of the fridge is amplified by low-noise room tem-

perature amplifiers. The quadrature components of the output inelastic signal are measured with a
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standard two-channel homodyne setup, using an IQ mixer (Marki IQ4509LXP) and local oscillator

set in the frequency range of the eigenmode band. After filtering and amplifying the homodyne

signal, we digitize it using a fast analog-to-digital converter (ADC) card (Keysight M9703A). For

the multi-mode correlations, we split the output signal into two homodyne measurement branches,

with separate local oscillators set to the desired eigenmode frequencies. The homodyne voltages

in the two branches, {Ia(t), Qa(t)} and {Ib(t), Qb(t)}, are extracted simultaneously using the four

channels of the ADC card. The complex field amplitudes Sa,b(t) = Ia,b(t) + iQa,b(t) are used for

evaluating the second order moments ⟨S∗
aSa⟩, ⟨S∗

bSb⟩, ⟨SaSb⟩.

C.2 Physical model of the circuit

C.2.1 Photonic metamaterial

In this section we describe the lumped-element circuit model for the photonic crystal using various

methods that involve characterizing the waveguide eigenmodes and mapping the circuit to a tight-

binding lattice model.

C.2.1.1 Chain of coupled cavities

In this section we describe the eigenmodes of the cavity array in terms of its Lagrangian, using

the well established circuit quantization formalism [454]. The circuit diagram of the bare (qubit-

less) resonator chain is shown in Fig. C.2. The chain consists of N lumped-element resonators,

composed of inductors of inductance L and capacitors of capacitance Cg, and their voltages are

coupled through a series capacitor of capacitance Cc. This circuit has 2N degrees of freedom,

equal to the number of nodes, and as it will be made clear later in this section, half of these
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degrees of freedom are relevant for this experimental study. In the realistic experimental scenario,

the resonator array is capacitively coupled to waveguides at the input and output ports, which we

model as impedance terminations Zin and Zout, respectfully. The useful variables to describe the

Lagrangian are the flux Φn and electric voltages Φ̇n at each node n ∈ [1, 2N ]. The drawback of

this formalism is not being able to take into account the impedance at the input and output ports,

except for the limits when they tend to zero or infinity. The Lagrangian of the cavity chain for the

boundary conditions Zin, Zout → 0 is given by

Lcca =
N∑

n=1

[
CΣ

2

(
Φ̇2

2n−1 + Φ̇2
2n

)
− CcΦ̇2nΦ̇2n+1 −

1

2L
(Φ2n − Φ2n−1)

2

]
, (C.1)

where the summation is performed over every resonator unit cell, and we define CΣ ≜ Cg +

Cc. Since the chain contains only linear elements, the Lagrangian is quadratic in the coordinate

variables. This allows the Lagrangian to be written in a compact matrix form

Lcca =
1

2

˙⃗|Φ⟩⟨Φ|
t

ˆ|C⟩⟨C| ˙⃗|Φ⟩⟨Φ| − 1

2
⃗|Φ⟩⟨Φ|

t ˆ|L⟩⟨L|
−1 ⃗|Φ⟩⟨Φ| (C.2)

where we define the flux and voltage coordinate vectors as

⃗|Φ⟩⟨Φ| =

 Φ1
Φ2
...

Φ2N

 ˙⃗|Φ⟩⟨Φ| =


Φ̇1

Φ̇2
...

Φ̇2N

 (C.3)

and we used the following capacitance ˆ|C⟩⟨C| and inductance ˆ|L⟩⟨L| matrices
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L

Figure C.2: Circuit diagram for a discretized photonic crystal. Schematic diagram of a one-
dimensional chain of capacitively coupled microwave resonators.

ˆ|C⟩⟨C| =


CΣ

CΣ −Cc
−Cc CΣ

. . . . . . . . .
CΣ −Cc
−Cc CΣ

CΣ

 ˆ|L⟩⟨L|
−1

=
1

L


1 −1
−1 1

1 −1
−1 1

. . . . . . . . .
1 −1
−1 1

 .

(C.4)

If we focus on a single unit cell, we can characterize the resonator in terms of the voltage Φ̇2n−

Φ̇2n−1 across the series ground capacitor and current Φ2n − Φ2n−1 flowing through the inductor.

This argument will also become clear when visiting the treatment for galvanically coupling the

fluxonium to a unit cell. It becomes more intuitive to describe the resonator chain in a different

coordinate basis Φ±
n ≜ Φ2n ± Φ2n−1, defined by differential Φ−

n and center of mass (COM) Φ+
n

degrees of freedom for n ∈ [0, N ]. The corresponding Lagrangian in this basis becomes

L±
cca =

N∑
n=1

[
CΣ

4

(
Φ̇−2

n + Φ̇+2
n

)
− Cc

4

(
Φ̇+

n + Φ̇−
n

)(
Φ̇+

n+1 + Φ̇−
n+1

)
− 1

2L
Φ−2

n

]
. (C.5)

We can also write it in a similar compact matrix form

L±
cca =

1

2

˙⃗|Φ⟩⟨Φ|
t

±
ˆ|C⟩⟨C|±

˙⃗|Φ⟩⟨Φ|± − 1

2
⃗|Φ⟩⟨Φ|

t

±
ˆ|L⟩⟨L|

−1

±
⃗|Φ⟩⟨Φ|± (C.6)

with basis vectors in the differential/COM coordinates
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⃗|Φ⟩⟨Φ|± =

 Φ±
1

Φ±
2...

Φ±
2N

 ˙⃗|Φ⟩⟨Φ|± =


Φ̇±

1

Φ̇±
2...

Φ̇±
N

 , (C.7)

and with different capacitance and inductance matrices

ˆ|C⟩⟨C|± =



Cα Cβ −Cβ
Cα Cβ −Cβ

Cβ Cβ Cα Cβ Cβ
−Cβ −Cβ Cα −Cβ −Cβ

Cβ −Cβ Cα
Cβ −Cβ Cα

. . . Cβ −Cβ
Cβ −Cβ

Cβ Cβ Cα
−Cβ −Cβ Cα


(C.8)

ˆ|L⟩⟨L|
−1

± =
1

L


1
0
1
0

. . .
1
0

 , (C.9)

where for abbreviation purposes we defined Cα = CΣ/2 and Cβ = Cc/4.

The Euler-Lagrange equation of motion takes the form of a wave equation

¨⃗|Φ⟩⟨Φ|± + ˆ|C⟩⟨C|
−1

±
ˆ|L⟩⟨L|

−1

±
⃗|Φ⟩⟨Φ|± = 0, (C.10)

where the normal mode resonance frequencies of the chain ωk are the positive square roots of the

eigenvalues of the matrix ˆ|C⟩⟨C|
−1

±
ˆ|L⟩⟨L|

−1

± . The matrices ˆ|C⟩⟨C|
−1 ˆ|L⟩⟨L|

−1
and ˆ|C⟩⟨C|

−1

±
ˆ|L⟩⟨L|

−1

±

are connected through a basis transformation ⃗|Φ⟩⟨Φ|± = U± ⃗|Φ⟩⟨Φ| and therefore have the same

eigenfrequencies. Inspecting the eigenvalue spectrum,N of these eigenvalues have zero-frequency

while the other N modes have the desired cosine dispersion expected for a tight-binding chain.

These zero-frequency eigenvalues correspond to the static COM variables Φ+
n , while the disper-

sive band centered around the bare resonator frequency corresponds to the dynamics of the coupled
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Figure C.3: Calculated transmission in a resonator chain using ABCD matrices. Solid line (blue)
corresponds to the magnitude of the transmission coefficient using the ABCD matrix approach.
Data points (red) correspond to the eigenmode frequencies of the circuit Lagrangian. .

differential variables Φ−
n . This transformation U± becomes convenient for rewriting the eigenvec-

tors in a different basis that allows us to differentiate static degrees of freedom from the oscillator

degrees of freedom. Although, from Eq. C.6, the differential and COM variables are coupled to

each other through their voltages, the effect on the tight-binding model for the differential degrees

of freedom is a minimal, small renormalization of the hopping parameters. For the remainder of

this theoretical treatment, we will not consider these zero frequency eigenvalues and focus only on

the differential normal modes of the chain.

C.2.1.2 ABCD matrix calculation

Here we apply the ABCD matrix formalism, used extensively for calculating the scattering pa-

rameters of a circuit with an arbitrary configuration, probed at any given frequency. Circuits with

multiple ports can be conveniently analyzed by decomposing them into two-port modules con-

nected in series. Any two-port circuit can be described in terms of a 2× 2 matrix which relates the

voltage Vj and current Ij between each port as
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(
V1
I1

)
=
(
A B
C D

)(
V2
I2

)
. (C.11)

The convenience lies in the fact that the ABCD matrix of several two-port networks connected in

series is given by the product of the ABCD matrices of each network.

For the case of our photonic crystal circuit, the ABCD matrix of a single lumped-element

resonator can be extracted from the individual matrices for the series inductor and parallel capacitor

to ground

Muc(ω) = MCgMLMCg

=
(

1 0
jωCg 1

)
·
(
1 jωL
0 1

)
·
(

1 0
jωCg 1

)
. (C.12)

The unit cells are connected in series through a coupling capacitor, and the edge unit cells

are capacitvely coupled to a section L of a coplanar waveguide with a characteristic impedance

Z0 = 50Ω and phase velocity υp. The matrix terms for these additional components are given by

MCc =

(
1 j/ωCc
0 1

)
Mcpw =

(
cos (ωL/υp) jZ0 sin (ωL/υp)

j sin (ωL/υp) /Z0 cos (ωL/υp)

)
. (C.13)

From the periodicity of the circuit, the ABCD matrix of the entire resonator chain becomes

Mcca(ω) = Mcpw MCc [MucMCc ]
N Mcpw. (C.14)

Since we are interested in the transmission coefficient through the device, we can easily calcu-

late the scattering parameter S21 using the ABCD matrix of the chain

S21(ω) =
2

A+B/Z0 + CZ0 +D
, (C.15)

where A, B, C, and D are functions of the probe frequency ω.
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The advantage of this method over the Lagrangian approach is the capability of finding the

eigenmodes of the circuit for arbitrary boundary conditions set by input and output port impedances

Zin and Zout, which are set to 50Ω for this experiment. The eigenmode frequencies correspond to

the resonances found in transmission. In the Lagrangian case, as mentioned in the previous section,

these impedances can only be set to zero or infinity. The small disadvantage of this method is that

the precision of eigenmode values is set by the resolution of the frequency grid in which you are

evaluating the ABCD matrices, whereas diagonalizing a 2N × 2N matrix can be more efficient.

We combine both methods for determining the circuit parameters of the device.

For completeness, we compare these two methods as shown in Fig. C.3. The eigenfrequen-

cies of the differential modes, inferred from the eigenvalues of the ˆ|C⟩⟨C|
−1

±
ˆ|L⟩⟨L|

−1

± matrix, are

overlayed on top of the magnitude of the transmission coefficient |S21| evaluated over a frequency

range that captures the dispersive single-photon band. The eigenfrequencies align with the res-

onance frequencies found as Lorentzian peaks in transmission, with small discrepancies ranging

between 1 MHz to 10 MHz. Both calculations are performed with the circuit parameters used in

the experiment, displayed in Table C.1, which yield similar eigenmode frequencies.

C.2.1.3 Tight-binding model

In this section the circuit Lagrangian is translated into a tight-binding model, which is a more fa-

miliar approach for describing lattices in condensed matter. The first step is to move to the Hamil-

tonian picture, described using the flux Φn and charge Qn at each node. The charge variables are

conjugate momenta of the node fluxes, and are found from ⃗|Q⟩⟨Q| = ∂Lcca/∂
˙⃗|Φ⟩⟨Φ| = Ĉ

˙⃗|Φ⟩⟨Φ|,

where ⃗|Q⟩⟨Q| represents the basis vector for all the node charges (Q1, Q2, . . . Q2N)
t. A similar
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relationship holds in the differential/COM basis ⃗|Q⟩⟨Q|± = Ĉ±
˙⃗|Φ⟩⟨Φ|±. Using the Lagrangian in

Eq. C.6, we can obtain the Hamiltonian for the resonator chain from a Legendre transformation

H±
cca =

1

2
⃗|Q⟩⟨Q|

t

±
ˆ|C⟩⟨C|

−1

±
⃗|Q⟩⟨Q|± +

1

2
⃗|Φ⟩⟨Φ|

t

±
ˆ|L⟩⟨L|

−1

±
⃗|Φ⟩⟨Φ|± (C.16)

Following the discussion from section C.2.1.1, we can expand the Hamiltonian in terms of

differential variables, and purposefully write it in this form

H±
cca =

∑
j

(
1

2

[
ˆ|C⟩⟨C|

−1

±

]
j,j
Q−

j
2
+

1

2

[
ˆ|L⟩⟨L|

−1

±

]
j,j

Φ−
j
2

)
+
∑
⟨i,j⟩

[
ˆ|C⟩⟨C|

−1

±

]
i,j
Q−

i Q
−
j , (C.17)

where we decouple harmonic oscillator terms containing quadratic charge and flux variables with

the same resonator coordinate, from terms which couple the charge degrees of freedom of different

resonators.

Moving to the quantum picture, the flux Φ and charge Q variables are promoted to quan-

tum variables, Φ and Q, which obey the canonical commutation relation for bosonic operators

[Φn,Qm] = ih̄δn,m. As we do for the case of a single harmonic oscillator, we can express the

charge and flux operators in terms of bosonic ladder operators

Q−
j = i

√
h̄

2
Z

− 1
2

j

(
|a⟩⟨a|†j − |a⟩⟨a|j

)
Φ−

j =

√
h̄

2
Z

1
2
j

(
|a⟩⟨a|†j + |a⟩⟨a|j

)
,

where |a⟩⟨a|†j (|a⟩⟨a|j) create (annihilate) photons in the j th resonator, and the resonator’s char-

acteristic impedance which enters in the zero point fluctuation amplitudes is given by Zj ≜[
ˆ|C⟩⟨C|

−1

±

] 1
2

j,j
/
[

ˆ|L⟩⟨L|
−1

±

] 1
2

j,j
. Inserting the quantum operators into the Hamiltonian in Eq. C.16

gives the following tight-binding model for describing the photonic lattice
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Htb/h̄ =
∑
j

ωj

(
|a⟩⟨a|†j |a⟩⟨a|j +

1

2

)
+
∑
⟨i,j⟩

ti,j

(
|a⟩⟨a|†i − |a⟩⟨a|i

)(
|a⟩⟨a|†j − |a⟩⟨a|j

)
, (C.18)

where the first summation takes into account the on-site energy given by the resonator frequency

ωj , and the second summation accounts for the tunneling of microwave excitations between near-

est neighbor oscillators with a tunneling rate ti,j . These terms can be easily extracted from the

capacitance and inductance matrices in the circuit model

ωj ≜
[

ˆ|L⟩⟨L|
−1

±

] 1
2

j,j

[
ˆ|C⟩⟨C|

−1

±

] 1
2

j,j
ti,j ≜ −1

2
(ZiZj)

− 1
2

[
ˆ|C⟩⟨C|

−1

±

]
i,j
. (C.19)

Describing the photonic crystal in this tight-binding model provides a more intuitive represen-

tation which we will adopt for modeling transport through the lattice doped with an impurity.

C.2.2 Galvanically coupled impurity

In this section we analyze and derive the microscopic model for a fluxonium circuit, which plays

the role of a highly nonlinear impurity, embedded in the photonic crystal. At first we will thor-

oughly formulate the coupling to a single unit cell, a resonator, and extend that to the full oscillator

chain.

C.2.2.1 Coupling to a single unit cell

The circuit diagram for a fluxonium qubit galvanically coupled to a single lumped-element res-

onator is shown in Fig. C.4. The independent resonator circuit has a total inductance of Lr and a

capacitance to ground Cr at both resonator nodes. The fluxonium circuit consists of a Josephson

junction, with a characteristic critical current Ic and energy EJ , shunted by its self-capacitance
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Cq and by an inductor implemented using a linear array of larger Josephson junctions. The total

inductance consists of two sections: one section of total inductance Lq independent from the res-

onator circuit, and a smaller section of inductance Lc shared between the resonator and fluxonium

which leads to their currents being coupled. This mutual inductive coupling will lead to a magnetic

dipole interaction between the resonator field and the qubit phase difference across the Josephson

junction. A static magnetic flux Φext is externally applied to the fluxonium loop.

The equations of motion for the node fluxes are given by Kirchoff’s law of current conservation

at each node

2

Lr

(ΦR − Φb) + CrΦ̈R = 0 (node R)

2

Lr

(ΦL − Φa) + CrΦ̈L = 0 (node L)

2

Lq

(Φ2 − Φb) + Ic sin
2π

Φ0

(Φ2 − Φ1 − Φext) + Cq

(
Φ̈2 − Φ̈1

)
= 0 (node 1)

2

Lq

(Φ1 − Φa)− Ic sin
2π

Φ0

(Φ2 − Φ1 − Φext)− Cq

(
Φ̈2 − Φ̈1

)
= 0 (node 2)

2

Lr

(ΦR − Φb)−
1

Lc

(Φb − Φa)−
2

Lq

(Φb − Φ2) = 0 (node a)

2

Lr

(ΦL − Φa) +
1

Lc

(Φb − Φa)−
2

Lq

(Φa − Φ1) = 0 (node b).

(C.20)

Similar to the analysis for the resonator chain, we define the new variables Φ±
r ≜ ΦR ± ΦL,

Φ±
q ≜ Φ2 ± Φ1, Φ±

s ≜ Φb ± Φa. Combining the above equations, we arrive at the equations of

motion for the differential variables

2

Lr

(
Φ−

r − Φ−
s

)
+ CrΦ̈

−
r = 0

2

Lq

(
Φ−

q − Φ−
s

)
+ 2Ic sin

2π

Φ0

(
Φ−

q − Φext

)
+ 2CqΦ̈

−
q = 0

2

Lr

(
Φ−

r − Φ−
s

)
− 2

Lc

Φ−
s − 2

Lq

(
Φ−

s − Φ−
q

)
= 0.

(C.21)

From the last equation we can express the shunt differential variable Φ−
s in terms of the resonator
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Figure C.4: Circuit diagram for a galvanically coupled fluxonium. Schematic diagram for a flux-
onium artificial atom current-coupled to a single microwave resonator, through a mutually shared
inductor.

Φ−
r and fluxonium Φ−

q differential variables

Φ−
s =

LqLc

L2
Σ

Φ−
r +

LrLc

L2
Σ

Φ−
q , (C.22)

where for brevity we define L2
Σ ≜ LrLq + LqLc + LcLr.

In combining Eqs. C.20 we find that the fluxonium and resonator have the same center of mass

Φ+
q = Φ+

r = Φ+
s , as expected from the symmetry of the circuit. Additionally, the COM variables

are not coupled to the differential ones, in particular the phase difference across the qubit junction

Φ−
q which captures the internal fluxonium states. For the remainder of the analysis we consider

only the differential variables. Replacing the shunt variable (Eq. C.22) in Eq. C.21 gives a set of

equations just for the resonator and fluxonium

Lq + Lc

L2
Σ

Φ−
r +

Cr

2
Φ̈−

r − Lc

L2
Σ

Φ−
q = 0

Lr + Lc

L2
Σ

Φ−
q + Ic sin

2π

Φ0

(
Φ−

q − Φext

)
+ CqΦ̈

−
q − Lc

L2
Σ

Φ−
r = 0.

(C.23)

The Euler-Lagrange equations of motion can be directly derived from the following Lagrangian
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L =
1

2

(
Cr

2

)
Φ̇−2

r − 1

2

Lq + Lc

L2
Σ

Φ−
r
2
+
Lc

L2
Σ

Φ−
r Φ

−
q

+
1

2
CqΦ̇

−2
q − 1

2

Lr + Lc

L2
Σ

Φ−
q
2
+ EJ cos

2π

Φ0

(
Φ−

q − Φext

)
.

(C.24)

The canonical conjugate momenta, corresponding to the charge variables, are given by Q−
r =

∂L/∂Φ̇−
r = (Cr/2)Φ̇

−
r for the resonator and Q−

q = ∂L/∂Φ̇−
q = CqΦ̇

−
q for the fluxonium. Follow-

ing the Legendre transformation we obtain the circuit Hamiltonian

H = Q−
r Φ̇

−
r +Q−

q Φ̇
−
q − L

=
1

Cr

Q−
r
2
+

1

2L′
r

Φ−
r
2
+
Lc

L2
Σ

Φ−
r Φ

−
q

+
1

2Cq

Q−
q
2
+

1

2L′
r

Φ−
q
2 − EJ cos

2π

Φ0

(
Φ−

q − Φext

) (C.25)

Moving to the quantum picture, the flux and charge variables are promoted to quantum vari-

ables, |Φ⟩⟨Φ|n and |Q⟩⟨Q|n, which obey the canonical commutation relation for bosonic operators

[|Φ⟩⟨Φ|n, |Q⟩⟨Q|m] = ih̄δn,m. For brevity, the minus superscript is removed since all variables

are differential. The total Hamiltonian can be decomposed as H = Hr + Hq + Hint with sepa-

rate terms corresponding to the resonator, fluxonium and fluxonium-resonator dipole interaction,

respectively.

The resonator Hamiltonian can be written in a second quantized form as

Hr =
1

Cr

|Q⟩⟨Q|r
2 +

1

2L′
r

|Φ⟩⟨Φ|2r = h̄ωr

(
|a⟩⟨a|† |a⟩⟨a|+ 1

2

)
, (C.26)

writing the charge and flux operators in terms of raising (lowering) operators |a⟩⟨a|† (|a⟩⟨a|),

|Φ⟩⟨Φ|r =
√
h̄Zr/2

(
|a⟩⟨a|† + |a⟩⟨a|

)
and |Q⟩⟨Q|r = i

√
h̄/2Zr

(
|a⟩⟨a|† − |a⟩⟨a|

)
. The cavity

resonance frequency and impedance is given by ωr =
√

2/L′
rCr and Zr =

√
2L′

r/Cr. Due to

the galvanic coupling with the fluxonium circuit, the renormalised resonator inductance becomes

L′
r = L2

Σ/(Lq + Lc) = Lr + (Lq ∥ Lc), which effectively translates to an inductive contribution
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Figure C.5: Fluxonium-resonator coupling strength. (left) Transition frequencies between the
ground state and first three excited states of the fluxonium circuit and (right) their normalized
coupling strengths with the edge-resonator as a function of applied flux.

from the parallel combination of the bare fluxonium inductance and coupling inductance.

Moving to the fluxonium Hamiltonian, we can write it in the familiar form [276]

Hq = 4EC |n⟩⟨n|2q +
1

2
EL|φ⟩⟨φ|2q − EJ cos

(
|φ⟩⟨φ|q − φext

)
=
∑
l

εl|l⟩⟨l|, (C.27)

using the charge number |n⟩⟨n|q = |Q⟩⟨Q|q/2e and phase |φ⟩⟨φ|q = 2π|Φ⟩⟨Φ|q/Φ0 operators. The

charging and inductive energies are defined as EC = e2/2Cq and EL = (Φ0/2π)
2 /L′

q, and the

flux bias phase is defined as φext = 2πΦext/Φ0. Similarly due to the galvanic coupling, the renor-

malized fluxonium inductance becomes L′
q = L2

Σ/(Lr + Lc) = Lq + (Lr ∥ Lc), which effectively

translates to an inductive contribution from the parallel combination of the bare resonator induc-

tance and coupling inductance. To calculate the fluxonium eigenspectrum, the phase difference

across the junction is discretized in a 1D grid and the operators are expressed in matrix form in

this grid basis. The eigenvalues εl and eigenstates |l⟩ are then obtained from diagonalizing the

fluxonium Hamiltonian in the grid basis.

The magnetic dipole coupling is given by the inductive term
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Hint =
Lc

L2
Σ

|Φ⟩⟨Φ|r · |Φ⟩⟨Φ|q

=
ωr

Zr

Lc

Lc + Lq

√
h̄Zr

2

(
|a⟩⟨a|† + |a⟩⟨a|

)
· Φ0

2π

∑
l,l′

⟨l||φ⟩⟨φ|q|l
′⟩|l⟩⟨l′|

=
∑
l,l′

h̄gl,l′ |σ⟩⟨σ|l,l′
(
|a⟩⟨a|† + |a⟩⟨a|

)
,

(C.28)

where we expanded the qubit flux operator in terms of all possible transitions between fluxonium

eigenstates l → l′ coupled to the cavity field through the dipole matrix elements ⟨l||φ⟩⟨φ|q|l′⟩.

These matrix elements dictate the selection rules for the fluxonium circuit which, unlike the trans-

mon, allow non-trivial dipole transitions between eigenstates differing by more than one quanta.

The coupling amplitude between the oscillator current and the fluxonium dipole, normalized by

the oscillator resonance frequency, can be rewritten as

gl,l′

ωr

=
Φ0

2π

Lc

Lc + Lq

(2h̄Zr)
− 1

2 ⟨l||φ⟩⟨φ|q|l
′⟩. (C.29)

This form emphasizes how the normalized coupling strength depends on the resonator impedance,

fluxonium matrix element, and the inductive participation which sets the fraction of the qubit phase

bias |φ⟩⟨φ|q interacting with the resonator. The range of parameters for the full circuit are chosen

to reach the USC regime g0,1/ωr ≈ 1 (see Fig. C.5).

C.2.2.2 Tunable coupling

Following the expression in Eq. C.29, the normalized fluxonium-resonator coupling can be varied

by tuning the coupling inductorLc. Operating in the parameter regimeLq > Lc ≫ Lr, the effective

fluxonium shunting inductance L′
q = Lq+(Lr ∥ Lc) ≈ Lq, and with thatEL, does not significantly

depend on Lc. Given that the other parameters EJ and EC remain fixed, this approach is suitable

for maintaining the same fluxonium energy spectrum while varying the light-matter coupling.
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The coupling inductor is implemented as a chain of flux-tunable asymmetric SQuIDs as shown

in the diagram in Fig. 4.1b. Each SQuID is defined as a ring interrupted by two junctions with

different energies, EJ1 and EJ2, with a relative asymmetry defined as d = (EJ2 − EJ1)/(EJ2 +

EJ1). The Hamiltonian for a single SQuID is given by HJ = −EJ1 cos |φ⟩⟨φ|1 − EJ2 cos |φ⟩⟨φ|2,

where |φ⟩⟨φ|1 , |φ⟩⟨φ|2 denote the phase difference across each junction. For an externally applied

magnetic flux Φext, these phase differences satisfy the fluxoid quantization condition in the loop

|φ⟩⟨φ|2 − |φ⟩⟨φ|1 + 2πΦext/Φ0 = 2πm, where m ∈ Z. Defining the phase difference across the

SQuID as |φ⟩⟨φ| = (|φ⟩⟨φ|2 + |φ⟩⟨φ|1)/2, the Hamiltonian can be rewritten as a single cosine

potential with a tunable junction energy [455]

HJ = −(EJ1 + EJ2) cos

(
π
Φext

Φ0

)√
1 + d2 tan2

(
π
Φext

Φ0

)
cos
(

ˆ|φ⟩⟨φ| − φ0

)
≜ −E ′

J(Φext) cos
(

ˆ|φ⟩⟨φ| − φ0

)
,

(C.30)

where the phase shift in the potential φ0 = tan−1[d tan(πΦext/Φ0)] can be safely disregarded by a

change of variables. The SQuID can be regarded as a flux-tunable inductor L′
J = (Φ0/2π)

2 /E ′
J .

The coupling element is implemented asM = 4 SQuIDs connected in series, and has an inductance

Lc =ML′
J . Since we are using junctions of similar size as the fluxonium inductance, we can treat

the SQuID array as a tunable linear inductor and neglect the nonlinearities originating from the

cosine potential.

C.2.2.3 Coupling to a resonator chain

After describing the linear resonator chain in Eq. C.18 and the inductive coupling between a res-

onator and a qubit in Eq. C.28, it becomes straightforward to combine these to describe the full

Hamiltonian where the fluxonium is coupled to the multi-mode metamaterial
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Figure C.6: Coupling inductor calibration. Transmission spectrum near the lower band edge. The
frequency shift of the lowest lattice mode is fitted (dotted line) to estimate the values of the SQuID
coupling inductors.

H/h̄ =
∑
j

ωj |a⟩⟨a|†j |a⟩⟨a|j +
∑
l

εl|l⟩⟨l|

−
∑
⟨i,j⟩

tij

(
|a⟩⟨a|†i |a⟩⟨a|j + |a⟩⟨a|†j |a⟩⟨a|

†
i

)
+
∑
l,l′

gll′ |σ⟩⟨σ|ll′
(
|a⟩⟨a|†0 + |a⟩⟨a|0

)
,

(C.31)

where the fluxonium is coupled to the edge resonator (site 0) in the tight-binding chain. The

expression for the on-site cavity resonances ωj and photon hopping rates tij follow the relations

in Eq. C.19, with modifications from the inductive coupling element at the edge and finite size

of the chain. It is assumed that the fluxonium circuit and the SQuID coupler do not modify the

capacitance matrix ˆ|C⟩⟨C| for the resonator chain .

The resonator sites in the bulk have the same resonance frequency and impedance, given by

ωr = L
− 1

2
r

[
ˆ|C⟩⟨C|

−1

±

] 1
2

jj
and Zr = L

1
2
r

[
ˆ|C⟩⟨C|

−1

±

] 1
2

jj
. This makes the hopping rate between the bulk

sites t = tij = −1
2
Zr

[
ˆ|C⟩⟨C|

−1

±

]
i,j

. For the edge site not coupled to the qubit (j = N ), the diag-

onal and off-diagonal capacitance matrix elements are different from the bulk since the the edge
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is coupled on side to another resonator and on the other to the 50Ω waveguide. This difference in

the capacitive loading leads to a very small change in the on-site resonance ωN ≃ ωr and hopping

rate tN,N−1 ≃ t, which is nevertheless taken into consideration in the numerical analysis. In addi-

tion to a capacitive perturbation, the edge site coupled to the qubit (j = 0) has also an inductive

perturbation. The edge resonator inductance has contributions from both the coupler and qubit

L′
r = Lr +(Lq ∥ Lc), which is mostly given by the coupler inductance for the choice of device pa-

rameters. This leads to modified expressions for the resonance frequency ω′
r = L

′ 1
2
r

[
ˆ|C⟩⟨C|

−1

±

] 1
2

1,1
,

impedance Z ′
r = L

′ 1
2
r

[
ˆ|C⟩⟨C|

−1

±

] 1
2

1,1
and hopping t′ = −1

2

√
ZrZ ′

r

[
ˆ|C⟩⟨C|

−1

±

]
1,2

. This inductive

perturbation leads to a lattice mode being shifted outside the single-particle band. We reduce the

bare inductance of this edge resonator such that this perturbation in the resonance frequency does

not decouple the edge resonator from the rest of the lattice. Additionally, the frequency shift in the

lowest eigenmode is used to extract the SQuID inductor values (see Fig. C.6).

C.2.3 Qubit Stark shift calculation

We attribute the qubit frequency shift in Fig. 4.4b to an ac-Stark shift induced by driving the lowest

lattice mode, having a resonant frequency ωk=0 and linewidth κ, and populating it with an average

number of photons n̄ = Pd/h̄ωk=0κ. The line attenuation in the experimental setup has been

calibrated to provide an estimate for the input drive power Pd at the device. The Stark shift is given

by χk=0,l=1n̄, where χk,l corresponds to the dispersive shift between the lattice mode k and |l⟩ state

of the fluxonium. This dispersive shift was calculated following the procedure outlined in [456]

χk,l =
∑

l′(χk,ll′ − χk,l′l). The partial dispersive shifts between mode k and the l → l′ transitions

are given by χk,ll′ = |gk,ll′|2/(εll′ − ωk), with the dipole coupling gk,ll′ = uk,0gll′ being rescaled by
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the eigenmode participation uk,0 at the j = 0 edge lattice site.

C.3 Elastic scattering

In this section, we present the theoretical modeling of the elastic scattering. We model the de-

vice by an infinite tight-binding model, which is locally coupled to a fluxonium, described by the

Hamiltonian

H/h̄ = ω0

∞∑
j=−∞

|a⟩⟨a|†j |a⟩⟨a|j − δ |a⟩⟨a|†0 |a⟩⟨a|0 +
∑
l

εl|l⟩⟨l|

−t
∑
i

(
|a⟩⟨a|†i |a⟩⟨a|i+1 + H.c

)
+
∑
l,l′

gll′ |σ⟩⟨σ|ll′
(
|a⟩⟨a|†0 + |a⟩⟨a|0

)
,

(C.32)

where the fluxonium is coupled to the zeroth cavity, and we take into account the multi-level

structure of the Fluxonium, as well as the detuning, δ, of the zeroth cavity frequency due to the

coupling inductor.

C.3.1 Scattering coefficients for a two-level system within the rotating-wave ap-

proximation

Truncating the fluxonium to the two lowest energy states and performing the rotating-wave ap-

proximation (RWA), we can derive simple analytical expressions for the scattering coefficients of

a single photon. Writing a single-particle eigenstate as

|ψk⟩ =

[∑
x

uk(x) |a⟩⟨a|†x + c1 |σ⟩⟨σ|+

]
|0, 0k⟩, uk(x) =

{
eikx +Rke

−ikx, x < 0,

Tke
ikx, 0 < x,

(C.33)

where |0, 0k⟩ corresponds to the ground state of the fluxonium and the vacuum of all the photonic
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Figure C.7: MPS simulations. Normalized elastic scattering coefficient using MPS, for the cou-
pling strengths g/ω0 probed in the experiment (see top labels). Upper plots represent the full
model, while the lower plots represent the RWA model without the counter-rotating terms.

modes. We can solve for the scattering coefficients R, T , giving

Tk =
2t sin(k)

−δ +G(k)− 2ti sin(k)
,

Rk =− δ +G(k)

−δ +G(k)− 2ti sin(k)
,

(C.34)

where G(k) = g2/(ωk −∆) and ωk = ω0 − 2t cos(k). We have also defined ∆ = ε1 and g = g10

for simplicity.

Equation (C.34) admits two resonance-like behaviors. First, when ∆ = ωk, i.e., the incoming

photon is resonant with the qubit transition, we have that T → 0, R → 1, as expected and as was

predicted for a uniform cavity array [457]. Second, when G(k)− δ = 0, i.e., ωk = ∆+ g2/δ, we

have R → 0, T → 1. Thus, we see that the detuned cavity (with detuning δ) acts as an impurity,

giving rise to a non-zero reflection even in the absence of the fluxonium.
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C.3.2 Matrix-product-states

To go beyond the RWA and the two-level truncation of the fluxonium, we employ matrix-product-

states (MPS), using the methods of Refs. [242, 284]. We describe the system in real space, using

200 cavities on each side of the fluxonium. This allows us to simulate the scattering of a single

photon free of boundary effects. The on-site bosonic Hilbert space is truncated to 5 Fock states, and

all results were found to have converged at this value. To obtain the elastic scattering coefficients

we perform the procedure from [242]. We first find the ground state |GS⟩ of the Hamiltonian

in Eq. (C.32) using the density-matrix-renormalization-group method. We then create a single-

photon Gaussian wavepacket on top of the ground state, i.e., we create the state |ψ(t = 0)⟩ =∑
x cx |a⟩⟨a|

†
x |GS⟩, where cx = N e−

(x−x0)
2

2σ2 +ik0x, and N is a normalization so that
∑

x|cx|2= 1.

We choose the wavepacket parameters so that it spans the whole frequency band, and so that it

starts localized on one side of the spin. We then evolve this state for a sufficiently long time t∞,

until the scattering process has ended. From the resulting state, |ψ(t∞)⟩, we extract the overlaps

⟨GS||a⟩⟨a|x |ψ(t∞)⟩ for all x. Fourier transforming this quantity, and dividing by ck (the Fourier

transform of the wavepacket cx) gives us the normalized elastic scattering coefficients, shown in

Fig. 4.3c and reproduced here in the top row of Fig. C.7. In the bottom row of Fig. C.7 we show the

same simulations under the RWA, i.e we consider Eq. (C.32) but with the counter-rotating terms

(
∑

l>l′(|σ⟩⟨σ|ll′ |a⟩⟨a|
† + h.c.)) removed. This is not equivalent to Appendix C.3.1 since here we

include higher levels of the fluxonium and their coupling to the cavity. In particular, g02, g12 couple

the N = 1, 2, 3 number of excitations sectors, even in the absence of the counter-rotating terms.

Nevertheless, for our device parameters, g02 ≪ g01, ε1, and as a result, the Fano resonances that

are visible in the top row of Fig. C.7 are essentially invisible in the RWA model in the bottom
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row of Fig. C.7. The theory curves in Fig. 4.3 are calculated from diagnolizing the tight-binding

Hamiltonian in Eq. (C.31) with flux-tunable parameters. Given the large Hilbert space of the joint

system, the Hamiltonian was truncated to a maximum number of excitations. The discrepancy

between the calculated energy levels for the two- and three-photon bound states and the MPS

resonances is likely caused by this truncation restriction.

C.4 Multimode correlations and entanglement

For characterizing the inelastically emitted microwave fields we adopt the formalism in Refs. [281,

458] for probing the quantum state of propagating microwave photons and their correlations using

linear amplifiers and quadrature amplitude detectors. In the case of a single mode, the output

field |a⟩⟨a| goes through a phase insensitive amplifier of gain G which introduces an additional

noise mode |h⟩⟨h|. The amplified field is then down-converted in a microwave mixer using a local

oscillator (LO), in order to detect the in-phase and quadrature components |I⟩⟨I| and |Q⟩⟨Q|. These

quantities are related through the complex amplitude operator defined as |S⟩⟨S| =
√
G(|a⟩⟨a| +

|h⟩⟨h|†) = |I⟩⟨I|+ i |Q⟩⟨Q|.

For probing correlations in the emitted microwave fields, the device output is split at room

temperature into two separate homodyne branches, as shown in Fig. C.1. Each branch has a sepa-

rate local oscillator set to the desired mode frequencies ωα and ωβ , respectively. The time domain

traces of the complex field amplitudes |S⟩⟨S|α,β on each branch are recorded simultaneously, and

the gain prefactors are accounted from calibrated values at the mode frequencies Gα = G(ωα)

and Gβ = G(ωβ), respectively. If the noise added by the detection chain is uncorrelated with

the generated signal, then the field moments can be decomposed into products of signal and noise
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moments:

⟨(|S⟩⟨S|†α)
n |S⟩⟨S|mβ ⟩ = G

n
2
αG

m
2
β

n,m∑
i,j=0

(
n

i

)(
m

j

)
⟨(|a⟩⟨a|†α)

i |a⟩⟨a|jβ⟩⟨(|h⟩⟨h|
n−i
α (|h⟩⟨h|†β)

m−j⟩.

(C.35)

For the measured inelastic multi-mode emission presented in Chapter 4, the power spectrum

⟨|a⟩⟨a|†ω |a⟩⟨a|ω⟩ is extracted from the measured moments of the signal |S⟩⟨S|ω and noise |h⟩⟨h|ω,

at a single homodyne branch, by sweeping the local oscillator frequency around the single-photon

band. Processing the time domain traces such that the noise amplitude has zero mean ⟨|h⟩⟨h|†⟩ = 0

yields the simplified relationship between signal and noise power terms:

⟨|S⟩⟨S|†ω |S⟩⟨S|ω⟩ = G(ω)
(
⟨|a⟩⟨a|†ω |a⟩⟨a|ω⟩+ ⟨|h⟩⟨h|ω |h⟩⟨h|

†
ω⟩
)
. (C.36)

Therefore, the power spectrum is measured from the signal power subtracted by the noise power.

The noise power term is extracted from the output noise of the detection chain when the waveguide

is not driven by the pump tone.

C.4.1 Hillery-Zubairy criteria

To characterize the entanglement properties of the generated multimode state we rely on the

Hillery-Zubairy criterion for two-mode states [282]. For two harmonic modes with annihilation

operators |a⟩⟨a|A and |a⟩⟨a|B, respectively, the following Cauchy-Schwarz inequality holds for pure

product states

|⟨|a⟩⟨a|A |a⟩⟨a|B⟩|
2= |⟨|a⟩⟨a|A⟩|

2|⟨|a⟩⟨a|B⟩|
2≤ ⟨|a⟩⟨a|†A |a⟩⟨a|A⟩⟨|a⟩⟨a|

†
B |a⟩⟨a|B⟩. (C.37)

Furthermore, Hillery and Zubairy have shown that this inequality holds for any separable state,

generalized as a mixture of pure product states ρAB =
∑
pn|ΨAB

n ⟩⟨ΨAB
n |. A violation of this
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inequality implies that the two-mode state is entangled, which is a necessary but not sufficient

condition since there exist two-mode entangled states that satisfy this inequality.

This entanglement criterion justifies our choice of two-mode correlators

Cij = |⟨|a⟩⟨a|i |a⟩⟨a|j⟩|
2/⟨|a⟩⟨a|†i |a⟩⟨a|i⟩⟨|a⟩⟨a|

†
j |a⟩⟨a|j⟩,

measured for every pair of waveguide modes. The photon intensity ⟨|a⟩⟨a|†i |a⟩⟨a|i⟩ is measured

from the power spectrum, while the squeezing correlators ⟨|a⟩⟨a|i |a⟩⟨a|j⟩ are extracted from the

dual homodyne measurement of the second order moments.

⟨|S⟩⟨S|i |S⟩⟨S|j⟩ =
√
GiGj

(
⟨|a⟩⟨a|i |a⟩⟨a|j⟩+ ⟨|h⟩⟨h|†i |h⟩⟨h|

†
j⟩
)
. (C.38)

The map of squeezing correlators for every pair of waveguide modes, and its dependence on

the pump amplitude, is displayed in Fig. C.8.
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Figure C.8: Hillery-Zubairy criterion. Two-mode squeezing correlators Cij as a function of the
pump amplitude. The diagonal elements i = j are not a relevant measure of entanglement and
have been removed.
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Appendix D: Supplemental Material for Chapter 5

In this Supplemental Material we present additional details concerning the random circuit of Sec-

tion 5.2. In Appendix D.1, we derive the general transition rate matrix W , given in Eq. (5.5).

In Appendix D.2 we specialize it to the case of an initial single-site operator, deriving Eqs. (5.7)

and (5.8). In Appendix D.3, we present the continuum approximation for small g, deriving the

Fokker-Planck equation, Eqs. (5.9) to (5.11). In Appendix D.4, we derive the relation between

the average squared commutator and the mean operator weight. In Appendix D.5, we provide

additional details on the dynamics and steady-state of the probability weight distribution. In Ap-

pendix D.6, we derive an analytical expression for the probability weight distribution after one step

of the random circuit and show that if the interactions are strong enough, the scrambling time is

O(1).

D.1 Derivation of the stochastic matrix W

To be slightly more general, we consider a system of N sites, each of local dimension q. As

discussed in Section 5.2, we are interested in the time evolution of a simple initial operator O(t) =

U †(t)OU(t)

O(t) =
∑
S
aS(t)S, (D.1)

where the strings S form a basis for SU(qN), normalized as tr(S) = qNδS,1, tr(SS ′) = qNδSS′ .
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We take U(t) =
∏t

i=1 Ui where Ui = UIUIIUI and UI is a product of single site Haar random

unitaries while UII is the global interaction. Note that the two UI appearing on either side of the

UII are different, i.e the random unitaries are random in both space in time. Here we inserted an

additional layer of the Haar unitaries, as compared to Chapter 5. This is completely equivalent,

as this extra layer can always be absorbed into the Haar layer of either the step before or the step

after, but it simplifies calculations.

Using aS(t) = q−N tr(O(t)S), we can write a2S(t) in terms of the coefficients at the previous

time step

(D.2)a2S(t) = q−2N
∑
S′,S′′

aS′(t− 1)aS′′(t− 1) tr
(
U †S ′US

)
tr
(
U †S ′′US

)
.

Thus, we want to evaluate the quantity〈
tr
(
U †S ′US

)
tr
(
U †S ′′US

)〉
, (D.3)

where ⟨...⟩ denotes Haar average over the random unitaries.

Using properties of trace, we can write〈
tr
(
U †S ′US

)
tr
(
U †S ′′US

)〉
=
〈
tr
(
U †S ′US ⊗ U †S ′′US

)〉
. (D.4)

In doing so, we now have a trace over two copies of the system, which could still be thought as

a N -site system, where every site is now of dimension q2 instead of q. In the following, we will

denote operators acting on the right system by an overbar. For example ZiZ̄i corresponds to the

Pauli Z operator acting on site i of both copies, i.e Zi ⊗ Zi.

For our choice of U , Eq. (D.4) becomes

(D.5)

〈
tr
(
U †S ′US

)
tr
(
U †S ′′US

)〉
= tr

(〈
(UI ⊗ UI)(UII ⊗ UII)

〈
UIS ′U †

I ⊗ UIS ′′U †
I

〉
(UII ⊗ UII)

†(UI ⊗ UI)
†
〉
(S ⊗ S)

)
.

We will calculate the above in several steps, working from inside out
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I1 =
〈
UIS ′U †

I ⊗ UIS ′′U †
I

〉
, (D.6)

I2 = (UII ⊗ UII)I1(UII ⊗ UII)
†, (D.7)

I3 =
〈
(UI ⊗ UI)I2(UI ⊗ UI)

†〉 , (D.8)

with tr(I3(S ⊗ S)) being our quantity of interest.

Before proceeding, let us introduce an important formula for calculating the Haar averages.

Consider a d2 × d2 matrix A, and a d × d Haar random unitary matrix U . Then, we have the

following formula [318, 459]

(D.9)

〈
(U ⊗ U)A(U ⊗ U)†

〉
≡
∫
U(d)

(U ⊗ U)A(U ⊗ U)†dµ(U)

=

(
tr(A)

d2 − 1
− tr(AF )

d(d2 − 1)

)
1d2 −

(
tr(A)

d(d2 − 1)
− tr(AF )

d2 − 1

)
F,

where F =
∑

ij |ij⟩ ⟨ji| is the swap operator.

From this, it follows that

I1 =
∏
r

〈
U †
rS ′

rUr ⊗ U †
rS ′′

rUr

〉
= δS′,S′′

∏
r

(
q2δS′

r,1 − 1

q2 − 1
1q2 +

q − qδS′
r,1

q2 − 1
Fr

)
(D.10)

where we used tr(Sr) = qδSr,1 and tr(SrS ′
r) = qδSr,S′

r
. Here Fr swaps site r of the left system

with the corresponding site r of the right system.

The overall delta function δS′,S′′ immediately implies that the Haar average of Eq. (D.2) may

be written as

(D.11)
〈
a2S(t+ 1)

〉
=
∑
S′

WS,S′
〈
a2S′(t)

〉
,

where WS,S′ = q−2N tr(I3(S ⊗ S)).

To proceed, we specialize to qubits, i.e. q = 2, in which case the swap operator can be written

as Fr = 1
2
(1r ⊗ 1̄r + σr · σ̄r) = 1

2
(1r1̄r + XrX̄r + YrȲr + ZrZ̄r) where bar denotes operators

acting on the second system. We can combine all the 1s together, giving
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(D.12)

I1 = δS′,S′′
∏
i

(
δS′

i,1
122 +

1− δS′
i,1

3
σi · σ̄i

)
= δS′,S′′

∑
ΩS′⊂{1,2,···,N}

∏
i∈{1,2,···,N}/ΩS′

δS′
i,1
14

∏
j∈ΩS′

1− δS′
j ,1

3
σj · σ̄j,

where in the second equality the sum is over the powerset of {1, 2, · · · , N}, i.e, all the (2N ) subsets

of {1, 2, · · · , N}. The sum above essentially contains every possible string of the form S ⊗ S,

i.e the same operator appears on both copies of the system. Note that for a given string S ′, there

is only one nonzero term in the sum. For each site i, we either put an 14 if S ′
i = 1 or we place

1
3
σi · σ̄i, if S ′

i is any other generator. The set ΩS′ therefore represents the support of the string S ′.

Before proceeding, let us summarize the high-level idea behind the derivation that follows. Our

tasks consist of the following:

1. First, we need to apply the global interaction UII ⊗ UII on Eq. (D.12), giving us I2.

2. Then, we need to apply the layer of single-site Haar unitaries UI ⊗ UI, and average over the

Haar distribution on each site, giving us I3.

3. Finally, we need to multiply the result by S ⊗ S and take the trace, giving us WS,S′ .

Recall that

UII = e−i g
′
2

∑
i<j ZiZj , (D.13)

where in Chapter 5 we have assumed g′ = g√
N

. To perform the first step, we will make use of the

formulas
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UIIXrU
†
II = Xr cos

(
g′
∑
i ̸=r

Zi

)
+ Yr sin

(
g′
∑
i ̸=r

Zi

)
, (D.14)

UIIYrU
†
II = Yr cos

(
g′
∑
i ̸=r

Zi

)
−Xr sin

(
g′
∑
i ̸=r

Zi

)
. (D.15)

Now, note that each term in the sum in Eq. (D.12) is a product of single-site operators. By perform-

ing our first task, using Eqs. (D.14) and (D.15), we will obtain complicated operators, like those

appearing on the right-hand-side of Eqs. (D.14) and (D.15), that are supported on a large number

of sites. In order to perform the second step, we can make use of Eq. (D.9). However, to use

Eq. (D.9), we need A to be a single-site operator. Thus, we will have to break down complicated

operators, like those appearing on the right-hand-side of Eqs. (D.14) and (D.15), into sums of sim-

ple terms consisting of products of single-site operators. This will allow us to use Eq. (D.9), after

which we can easily perform the last step, 3, since this will only require taking traces of single-site

operators.

The result of step 1 and 2 can be simplified by noting that Eq. (D.12) contains all possible

strings of the form S ⊗ S . Hence, it is instructive to first consider the result of applying UII ⊗ UII

and UI ⊗ UI to a single string of this form. Note that the result of applying UII ⊗ UII, UI ⊗ UI, and

averaging over the Haar unitaries is invariant if we replace any number ofXs in the string by Y s or

vice-versa. To see this, we use the fact that we can change aX into a Y (or vice-versa) by applying

a rotation about the Z axis, i.e e−iπ
4
ZXei

π
4
Z = Y . This rotation clearly commutes with UII and can

be absorbed into UI, since by definition, the Haar measure is invariant under multiplication by any

unitary.

This means that we may calculate the result for a single representative string from each group
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and multiply by the degeneracy. Let us denote ΩS the support of some string S. We can further

divide ΩS based on the number and location of Zs in the string. Define the subset Σ ⊆ Ω as the set

of all sites with Z in them, and the remaining sites (with eitherXs or Y s) by Λ = Ω\Σ. For strings

that are supported on k sites (i.e |ΩS | = k), with fixed number and position of Zs, the degeneracy

is 2|Λ|.

Without loss of generality, we can therefore consider strings composed of either Xs or Zs.

Consider the string
∏

i∈ΛXiX̄i

∏
j∈Σ ZjZ̄j . To apply UII, we can use the fact that [XiXj, ZiZj] =

0. We get

(D.16)

(UII ⊗ UII)(
∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
†

=
∏
i∈Λ

[
(Xi cos(QΛ) + Yi sin(QΛ))

(
X̄i cos

(
Q̄Λ

)
+ Ȳi sin

(
Q̄Λ

))]∏
j∈Σ

ZjZ̄j

where we used Eq. (D.14). Here, QΛ acts on all sites except those in Λ, i.e QΛ ≡ g′
∑

l /∈Λ Zl.

We see that we can safely apply the Haar unitaries and perform the Haar average on sites inside

of Λ, since all the cosines and sines and the ZZ̄ act on sites outside of Λ. With slight abuse of

notation, let us denote
〈
(UI ⊗ UI)A(UI ⊗ UI)

†〉 by simply ⟨A⟩ where it is understood that the Haar

unitaries act only on the support of A.

From Eq. (D.9), one can easily check that
〈
XiȲi

〉
= 0, so the cross terms in the above expres-

sion will vanish. Only
〈
XiX̄i

〉
=
〈
YiȲi

〉
≡ Vi will remain. Here the single site operator Vi is

defined as Vj = −1
3
14 +

2
3
F . Explicitly, we find

(D.17)

〈
(UII ⊗ UII)(

∏
i∈Λ

XiX̄i

∏
j∈Σ

ZjZ̄j)(UII ⊗ UII)
†
〉

=
∏
i∈Λ

Vi

〈
cos|Λ|(RΛ)

∏
j∈Σ

ZjZ̄j

〉

where RΛ = Q̄Λ −QΛ.

Combining this with the discussion above, we find that I3 may be written as
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I3 = δS′,S′′
∑

ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

∏
i∈ΩS′

1− δS′
i,1

3


×
∑

Λ⊂ΩS′

2|Λ|
(∏

m∈Λ
Vm

)〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
. (D.18)

It remains to compute
〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ ZnZ̄n

〉
. To do so we expand the cosine as follows

cosk(x) = 1
2k

∑k
n=0

k
n

 cos[(2n− k)x],

(D.19)

〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=

1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

)〈
cos((2l − |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
.

To proceed we can pull a single-site operator out of RΛ. Since RΛ =
∑

k/∈ΛDk where Dk =

g′(Z̄k − Zk), we can pull out a Dj, j ∈ ΩS′ \ Λ so that RΛ = RΛ∪{j} +Dj . We then use the trig

identity

(D.20)cos((2l − |Λ|)RΛ) = cos
(
(2l − |Λ|)RΛ∪{j}

)
cos((2l − |Λ|)Dj)

− sin
(
(2l − |Λ|)RΛ∪{j}

)
sin((2l − |Λ|)Dj).

This allows us to perform the Haar average over site j. The sine term will not contribute, since〈
sin((2l − |Λ|)Dj)ZjZ̄j

〉
= 0. Repeating this procedure recursively for all sites in ΩS′ \Λ, we get〈

cos((2l − |Λ|)RΛ)
∏

n∈ΩS′\Λ
ZnZ̄n

〉
=
〈
cos
(
(2l − |Λ|)RΩS′

)〉 ∏
n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.

(D.21)

Continuing the procedure for the
〈
cos
(
(2l − |Λ|)RΩS′

)〉
term, we have

(D.22)

〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

⟨cos((2l − |Λ|)Dt)⟩
∏

n∈ΩS′\Λ

〈
cos((2l − |Λ|)Dn)ZnZ̄n

〉
.
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Using cos((2l − |Λ|)D) = cos2((2l − |Λ|)g′) + ZZ̄ sin2((2l − |Λ|)g′) gives〈
cos((2n− |Λ|)RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin

2((2l − |Λ|)g′)
)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
.

(D.23)

Putting things together, we find that Eq. (D.19) is

〈
cos|Λ|(RΛ)

∏
n∈ΩS′\Λ

ZnZ̄n

〉
=

1

2|Λ|

|Λ|∑
l=0

(
|Λ|
l

) ∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin

2((2l − |Λ|)g′)
)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
, (D.24)

and finally, I3 is given by

I3 = δS′,S′′
∑

ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

Vm

) |Λ|∑
l=0

(
|Λ|
l

)
×
∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′) + Vt sin

2((2l − |Λ|)g′)
)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)Vn + sin2((2l − |Λ|)g′)

)
. (D.25)

To compute the WS,S′-matrix from Eq. (D.11), it remains to take the trace of Eq. (D.25) with

S ⊗ S and divide by 22N , i.e

WS,S′ =
1

22N
tr(I3(S ⊗ S)). (D.26)

Using Eq. (D.25) together with tr(Vi(Si ⊗ Si)) =
4
3
(1− δSi,1), gives
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WS,S′ =
1

22N

∑
ΩS′⊂{1,2,···,N}

 ∏
j /∈ΩS′

δS′
j ,1

∏
i∈ΩS′

1− δS′
i,1

3

 ∑
Λ⊂ΩS′

(∏
m∈Λ

4

3
(1− δSm,1)

)

×
|Λ|∑
l=0

(
|Λ|
l

) ∏
t/∈ΩS′

(
cos2((2l − |Λ|)g′)4δSt,1 +

4

3
(1− δSt,1) sin

2((2l − |Λ|)g′)
)

×
∏

n∈ΩS′\Λ

(
cos2((2l − |Λ|)g′)4

3
(1− δSn,1) + 4δSn,1 sin

2((2l − |Λ|)g′)
)
. (D.27)

Note that because of
∏

m∈Λ
4
3
(1 − δSm,1) in Eq. (D.27), Λ is constrained to be in ΩS ∩ ΩS′ . The

matrix elements of W are

W =
1

22N

(
1

3

)|ΩS′ | ∑
Λ⊂ΩS∩ΩS′

(
4

3

)|Λ|[ |Λ|∑
l=0,2l ̸=|Λ|

(
|Λ|
l

)(
4 cos2((2l − |Λ|)g′)

)N−|ΩS∪ΩS′ |

×
(
4

3
sin2((2l − |Λ|)g′)

)|ΩS\ΩS′ |
×
(
4

3
cos2((2l − |Λ|)g′)

)|ΩS∩ΩS′ |−|Λ|
×
(
4 sin2((2l − |Λ|)g′)

)|ΩS′\ΩS |

+ δ2l,|Λ|

(
|Λ|
|Λ|/2

) ∏
t/∈ΩS′

(4δSt,1)
∏

n∈ΩS′\Λ

(
4

3
(1− δSn,1)

)]
. (D.28)

Note that the last term is only nonzero when both 2l = |Λ| and ΩS = ΩS′ . The last condition is

equivalent to |ΩS |+ |ΩS′ | − 2|ΩS ∩ ΩS′ | = 0.

We can combine all constant factors (with the same result holding for the 2l = |Λ| term)

(D.29)
1

22N

(
1

3

)|ΩS′ |(4

3

)|Λ|
4N−|ΩS∪ΩS′ |

(
4

3

)|ΩS\ΩS′ |(4

3

)|ΩS∩ΩS′ |−|Λ|
4|ΩS′\ΩS | =

(
1

3

)|ΩS′ |+|ΩS |
.

Now, note that Λ only appears in Eq. (D.28) as |Λ|. Thus, we can replace the sum over subsets

of ΩS ∩ ΩS′ as
∑

Λ⊂ΩS∩ΩS′ =
∑|ΩS∩ΩS′ |

k=0

|ΩS ∩ ΩS′|

k

. Thus, the W matrix can be written as
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WS,S′ = W (|ΩS |, |ΩS′ |, |ΩS ∩ ΩS′ |) (D.30)

=

(
1

3

)|ΩS′ |+|ΩS | |ΩS∩ΩS′ |∑
k=0

(
|ΩS ∩ ΩS′ |

k

)[ k∑
l=0,2l ̸=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |)

×
[
sin2((2l − k)g′)

]|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |
+ δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0

(
k
k/2

)]
,

which is what appears in Eq. (5.5), with the identification w = |ΩS |, w′ = |ΩS′ |, v = |ΩS ∩ ΩS′|.

In Section 5.2, we also dropped the δ2l,kδ|ΩS |+|ΩS′ |−2|ΩS∩ΩS′ |,0 term and the 2l ̸= k restriction in the

sum which requires one to be careful to identify 00 as 1. From this expression it is clear that W is

a real symmetric (WS,S′ = WS′,S) matrix with all positive matrix elements.

D.2 Master equation for simple initial operator

Let us now assume that the initial operator O starts as a single-site operator on site 1 without loss

of generality. We may further assume that we start with X1, i.e aS = δS,X1 . Since the circuit will

involve random Haar unitaries, let us consider the result of applying a Haar random unitary on X1,

which, after averaging over the Haar unitary, will be 1
3
(X1 + Y1 + Z1), which already does not

contain any information about the specific generator we picked. Let us therefore pick this as the

initial conditions at t = 0 for the master equation, Eq. (D.11),

〈
a2S(t = 0)

〉
=

{
1
3

if S = X1, Y1, Z1,

0 otherwise .
(D.31)

We now claim that for these initial conditions, the probabilities ⟨a2S(t)⟩ only depend on the string

weight w ≡ |ΩS | and the weight on site 1, w1 ≡ |ΩS ∩ {1}|. Note that w1 takes values either 0 or

1. In light of this, it is convenient to account for the number of string configurations with constant

w and w1 by defining the operator weight probability ht,
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ht(w,w1) =
〈
a2S(t)

〉
D(w,w1), (D.32)

where D(w,w1) is the number of string configurations for a given w and w1. Since
∑

S′ =∑
w1=0,1

∑N−1+w1

w=w1
3k

N − 1

w − w1

, we have

D(w,w1) = 3w
(
N − 1
w − w1

)
. (D.33)

Note that ht(w,w1) is a valid (normalized) probability distribution since∑
w1=0,1

∑N−1+w1

w=w1
ht(w,w1) =

∑
w1=0,1

∑N−1+w1

w=w1
⟨a2S(t)⟩D(w,w1) =

∑
S ⟨a2S(t)⟩ = 1,

using the fact that a2S are probabilities that sum to 1. Thus, ht(w,w1) gives the probability of O(t)

being a string of total weight w with a weight of w1 on the initial site 1.

The claim above can be proved by induction. The base case is trivial to see, by multiplying the

initial conditions Eq. (D.31) by the transition matrix W from Eq. (D.30) (see also Appendix D.6).

The inductive step proceeds as follows. First, we decompose the sum over strings S ′ as
∑

S′ =∑
ΩS′⊂{1,···,N} 3

|ΩS′ |, which yields

〈
a2S(t+ 1)

〉
=

∑
ΩS′⊂{1,···,N}

1

D(|ΩS′ |, |ΩS′ ∩ 1|)
3|ΩS′ |W (|ΩS |, |ΩS′|, |ΩS ∩ ΩS′ |)ht(|ΩS′ |, |ΩS′ ∩ 1|).

(D.34)

We then split the sum over terms where |ΩS′ ∩ {1}| = 0 or |ΩS′ ∩ {1}| = 1. For each of these

terms, we further decompose the sum over terms with equal |ΩS′ |. The remaining sum can be

written as a sum over different values of the overlap |ΩS ∩ ΩS′|. The final result is
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〈
a2S(t+ 1)

〉
=

N−1∑
k=0

3k
[min{|ΩS |−|ΩS∩{1}|,k}∑

m=0

(
|ΩS | − |ΩS ∩ {1}|

m

)
×
(
N − 1− |ΩS |+ |ΩS ∩ {1}|

k −m

)
W (|ΩS |, k,m)

]
ht(k, 0)

D(k, 0)

+
N∑
k=1

3k
[min{|ΩS |,k−1+|ΩS∩{1}|}∑

m=|ΩS∩{1}|

(
|ΩS | − |ΩS ∩ {1}|
m− |ΩS ∩ {1}|

)

×
(
N − 1 + |ΩS ∩ {1}| − |ΩS |
k −m− 1 + |ΩS ∩ {1}|

)
W (|ΩS |, k,m)

]
ht(k, 1)

D(k, 1)
. (D.35)

Here, the first binomial in each bracket counts the number of ways one can choose the part of ΩS′

that is overlapping with ΩS and the second binomial counts the number of ways to choose the non-

overlapping part of ΩS′ . It is clear at this point that the right-hand-side is a function of w = |ΩS |

and w1 = |ΩS ∩ 1|. Thus, replacing ⟨a2S(t+ 1)⟩ by Eq. (D.32) and simplifying gives

(D.36)ht+1(w,w1) =
∑

w′
1=0,1

N−1+w′
1∑

w′=w′
1

R(w,w1, w
′, w′

1)ht(w
′, w′

1)

where the 2N × 2N matrix R is

R(w,w1, w
′, w′

1) = 3w
min{w−w1,w′−w′

1}∑
m=max{0,w+w′−N+1−w1−w′

1}

(
w′ − w′

1
m

)
×
(
N − 1− w′ + w′

1
w − w1 −m

)
W (w,w′,m+ w1w

′
1), (D.37)

where w1, w
′
1 ∈ {0, 1}, w ∈ [w1, N − 1 + w1], w

′ ∈ [w′
1, N − 1 + w′

1], and for completeness

W (w,w′, v) =

(
1

3

)w+w′ v∑
k=0

(
v
k

)[ k∑
l=0,2l ̸=k

(
k
l

)[
cos2((2l − k)g′)

]N−k−(w+w′−2v)

×
[
sin2((2l − k)g′)

]w+w′−2v
+ δ2l,kδw+w′−2v,0

(
k
k/2

)]
. (D.38)

One may verify that
∑

i Ri,j = 1 where i = (w,w1) and j = (w′, w′
1). This means that if we start
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with normalized h0, we will have a valid (normalized) probability distribution at later times.

The initial conditions become

(D.39)h0(w,w1) =

{
1 if w = w1 = 1,

0 otherwise .

To get the probability of having a specific weight, we can sum over w1,

h(w) =


h(0, 0) if w = 0,

h(N, 1) if w = N,

h(w, 0) + h(w, 1) otherwise .

(D.40)

Note that h(0, 0) does not actually participate in the dynamics since R(0, 0, w′, w′
1) =

W (0, w′, 0) = δw′,0.

D.3 Continuum approximation

We assume here the normalization g′ = g√
N

. The first step is to approximate W (w,w′, v) for small

g. We consider the two cases w + w′ − 2v = 0, 1 which amount to a change of the string weight

by 0,±1 and give rise to terms up to g2.

Taylor expanding the factors of cosine and sine appearing in Eq. (D.38), up to g2, gives

(D.41)

[
cos2

(
(2l − k)

g√
N

)]N−k−(w+w′−2v)[
sin2

(
(2l − k)

g√
N

)]w+w′−2v

≈

{
g2(k−2l)2(k−N)

N
+ 1 if w + w′ − 2v = 0,

g2(k−2l)2

N
if w + w′ − 2v = 1.

In general, the w + w′ − 2v = n, n ∈ N>0 case will scale as O(g2n). We can now perform the

sums over l and k appearing in Eq. (D.38). We find

(D.42)W (w,w′, v) ≈
(
1

3

)w+w′−v
{
1 + g2 2v

32N
(1− 3N + 2v) if w + w′ − 2v = 0,

g2 2v
3N

if w + w′ − 2v = 1.

The higher order terms will scale at most like O(g4N2/N2) = O(g4) and so for small g, the above

expression for W (w,w′, v) is an excellent approximation. In the general case of g′ = g
Na , a ≥ 0,
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the above Taylor expansion yields a series expression for W (w,w′, v) where the nth term scales

at most as O(g2nNn/N2na). Thus, for a < 1
2
, the series is not convergent, and Eq. (D.42) does

not constitute a good approximation. Below, we assume a = 1
2
, but all results and expressions

in this section are applicable for a ≥ 1
2

as well, with the appropriate replacement of g. For some

discussion of the a = 0 case, see Appendix D.6.

Let us now consider the R matrix. The w + w′ − 2v = 0, 1 cases contribute to the diagonal as

well as super- and sub-diagonals of each block of R. These matrix elements are

R(w, 0, w′, 0) = δw,w′3wW (w,w′, w′) + δw,w′+13
w(N − w′ − 1)W (w,w′, w′) (D.43)

+ δw,w′−13
ww′W (w,w′, w′ − 1) +O(g4),

R(w, 1, w′, 0) = δw,w′+13
wW (w,w′, w′) +O(g4), (D.44)

R(w, 0, w′, 1) = δw,w′−13
wW (w,w′, w′ − 1) +O(g4), (D.45)

R(w, 1, w′, 1) = δw,w′3wW (w,w′, w′) + δw,w′+13
w(N − w′)W (w,w′, w′) (D.46)

+ δw,w′−13
w(w′ − 1)W (w,w′, w′ − 1) +O(g4).

Writing out the master equation, Eq. (D.36), within the g2 approximation, we have two coupled

equations for the two (w1 = 0, 1) blocks:

ht+1(w, 0)− ht(w, 0)

g2
=
2w

9N
ht(w + 1, 1) +

2w

9N
(1− 3N + 2w)ht(w, 0) (D.47)

+
2(N − w)

3N
(w − 1)ht(w − 1, 0) +

2w(w + 1)

9N
ht(w + 1, 0),

ht+1(w, 1)− ht(w, 1)

g2
=
2(w − 1)

3N
ht(w − 1, 0) +

2w

9N
(1− 3N + 2w)ht(w, 1) (D.48)

+
2(w − 1)

3N
(N − w + 1)ht(w − 1, 1) +

2w2

9N
ht(w + 1, 1).

Note that the coupling between the two w1 sectors scales as w/N . Since the initial conditions are

constrained to the w1 = 1 sector [see Eq. (D.39)], the early time dynamics will remain approxi-

mately in ht(w, 1) (i.e ht(w, 0) ≈ 0 at early times) until w reaches O(N).

By adding Eqs. (D.47) and (D.48), we get a closed equation for the total operator weight
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probability ht(w) ≡ ht(w, 0) + ht(w, 1)

(D.49)

ht+1(w)− ht(w)

g2
=

2w(w + 1)

9N
ht(w + 1) +

2w

9N
(1− 3N + 2w)ht(w)

+
N − w + 1

3N
2(w − 1)ht(w − 1).

Up to now, the only approximation we made was the expansion up to g2. We now assume that

h(w, t) varies slowly with respect to g2t and w, and replace finite differences by derivatives which

yields a Fokker-Planck equation

∂τh(w, τ) = −∂w(D1(w)h(w, τ)) + ∂2w(D2(w)h(w, τ)), (D.50)

where we introduced a rescaled time τ = g2t. Note that Eqs. (D.47) and (D.48) individually are

not in the form of a Fokker-Planck equation, but their sum is. The drift and diffusion coefficients

are

D1(w) =
2(4 + w + 3Nw − 4w2)

9N
, (D.51)

D2(w) =
−3 + 3N(w − 1) + 7w − 2w2

9N
. (D.52)

In terms of the scaled weight ϕ ≡ w/N , the Fokker-Planck equation takes the form

∂τh(ϕ, τ) = −∂ϕ
(
2

3

(
ϕ− 4

3
ϕ2

)
h(ϕ, τ)

)
+ ∂2ϕ

((
ϕ

3N
− 2

9

ϕ2

N

)
h(ϕ, τ)

)
, (D.53)

where we dropped all the O(1/N) terms from the drift coefficient and all the O(1/N2) terms from

the diffusion.
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D.4 Relation between the average of the squared commutator and the mean op-

erator weight

In this section, we derive the relation between the average of the squared commutator, defined in

Eq. (5.1), and the operator weight probability ht(w,w1).

Let us start with Eq. (5.1), and, without loss of generality, pick the two operators to be X1 at

position 1 and Yr at position r > 1

C(r, t) = −1

2
tr
(
ρ∞[X1(t), Yr]

2), (D.54)

where ρ∞ is the infinite-temperature Gibbs state, and X1(t) is the Heisenberg evolved operator.

Using Eq. (D.1), the commutator in Eq. (D.54) can be written as

[X1(t), Yr]
2 =

(∑
S
aS(t)[S, Yr]

)2

=

(
2

∑
S:Sr=X,Z

aS(t)SYr

)2

, (D.55)

which gives

C(r, t) =− 2
∑

S:Sr=X,Z

∑
S′:S′

r=X,Z

aS(t)aS′(t) tr(ρ∞SYrS ′Yr) (D.56)

=2
∑

S:Sr=X,Z

aS(t)
2, (D.57)

where we used tr(ρ∞SS ′) = δSS′ and the fact that different Pauli matrices anti-commute. Here

the sum is constrained to be over all strings that have an X or a Z on site r.

The average of Eq. (D.56) over many realizations of the random circuit is therefore given by

⟨C(r, t)⟩ = 2
∑

S:Sr=X,Z

〈
aS(t)

2
〉
, (D.58)

where the evolution of ⟨a2S(t)⟩ is what we calculated in the previous sections.

Since we have assumed in this section that we start from a single site operator, as we did in
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Appendix D.2, we have that the average probabilities ⟨a2S(t)⟩ only depend on the total weight w

and weight w1 on site 1, as explained in Appendix D.2. Thus, we may rewrite Eq. (D.58) in terms

of ht(w,w1), using Eq. (D.32). A similar calculation to the one leading to Eq. (D.36) yields

⟨C(r, t)⟩ =4
∑

ΩS⊂{1,···,N}
r∈ΩS

3|ΩS |−1 ht(|ΩS |, |ΩS ∩ {1}|)

3|ΩS |
(

N − 1
|ΩS | − |ΩS ∩ {1}|

) (D.59)

=
4

3

N−1∑
w=1

(
N − 2
w − 1

) ht(w, 0)(
N − 1
w

) +
N∑

w=2

(
N − 2
w − 2

) ht(w, 1)(
N − 1
w − 1

)
 (D.60)

=
4

3(N − 1)

N∑
w=1

[(w − 1)ht(w) + ht(w, 0)], (D.61)

where ht(w) ≡ ht(w, 0) + ht(w, 1), as defined in Section 5.2 and in Appendix D.3 [Eq. (D.40)].

Using the fact that ht(w) is normalized (i.e.
∑

w ht(w) = 1) and defining the mean weight

⟨w(t)⟩ =
∑

w wht(w), we get

⟨C(r, t)⟩ = 4

3

⟨w(t)⟩ − 1

N − 1
+

4

3(N − 1)

N∑
w=1

ht(w, 0). (D.62)

By the normalization of the probability distribution, we further know that
∑N

w=1 ht(w, 0) < 1.

Hence, the second term in the equation above scales as O(1/N) and is therefore negligible for

large N . Thus, in the limit of large N we have

(D.63)⟨C(r, t)⟩ = 4

3

⟨w(t)⟩
N

+O(1/N).

D.5 Additional details on the time-evolution of h(w,w1)

In this section, we provide additional numerical and analytical details regarding the probability

weight distribution.

In Fig. D.1, we plot snapshots of h(w) and h(w,w1 = 0, 1), at different times, computed
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numerically using the exact master equation. The initial distribution starts in the w1 = 1 sector and

quickly (exponentially) expands. At early times, during the exponential growth, the distribution

is supported almost exclusively on the w1 = 1 sector. At later times, when h(w) is very broad in

weight space and has large support on weights w ∼ O(N), the coupling between the two w1 = 0, 1

sectors turns on and h(w, 0) starts to get populated. Finally, h(w) reaches the steady-state, which,

as we show below, is, to a good approximation, a Gaussian centered at w = 3N/4 with a width

∼ ∆w/N ∝ 1/
√
N . The steady-state corresponds to all strings being equally likely, and hence

the Gaussian peak in h(w, 1) is three times as large as the one in h(w, 0).
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Figure D.1: (a) Snapshots of the numerically computed total probability weight distribution
h(w) = h(w, 0) + h(w, 1) for g = 0.1 and N = 100, together with the analytical expression
of the steady-state from Eq. (D.71), which essentially agrees with the g2t = 30 numerics. (b) The
same plot for h(w,w1 = 0). While h(w, 0) ≈ 0 for early and intermediate times, the numerics for
g2t = 30 essentially agree with the analytical prediction for the steady state. (c) The same plot for
h(w,w1 = 1).

D.5.1 Stationary solution for h(w)

At large t the distribution h(t, ϕ = w/N) approaches a stationary solution that obeys following

equation

−∂ϕ [D1(ϕ)h(ϕ)] + ∂2ϕ [D2(ϕ)h(ϕ)] = 0, (D.64)
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where

D1(ϕ) =
2

3
ϕ

(
1− 4ϕ

3

)
, D2(ϕ) =

ϕ

3N

(
1− 2ϕ

3

)
. (D.65)

Integrating out Eq. D.64 we obtain

−D1(ϕ)h(ϕ) + ∂ϕ [D2(ϕ)h(ϕ)] = C. (D.66)

Equation (D.66) can be rewritten as

∂ϕh(ϕ) =

(
D1(ϕ)− ∂ϕD2(ϕ)

D2(ϕ)

)
h(ϕ) +

C

D2(ϕ)
. (D.67)

Solution of (D.67) is straightforward:

h(ϕ) = const × eJ(ϕ)
∫ ϕ

0

dϕ′e−J(ϕ′)

D2(ϕ′)
,

J(ϕ) =

∫
dϕ
D1 − ∂ϕD2

D2

= 4Nϕ− log ϕ+ (3N − 1) log (3− 2ϕ).

(D.68)

As a result we obtain solution for h(ϕ) in the form:

h(ϕ) = const × eNS(ϕ)

(3− 2ϕ)ϕ

∫ ϕ

0

dϕ′ e−NS(ϕ′), (D.69)

where

S(ϕ) = 4ϕ+ 3 log (3− 2ϕ). (D.70)

In the limit N → ∞ the main contribution in the integral (D.69) comes from the vicinity of

the boundary point ϕ = 0. Expanding S(ϕ) in Taylor series in powers ϕ: S(ϕ) ≈ S(0) + 2ϕ and

substituting it inside of the integrand in Eq. (D.69) results in

h(ϕ) ∼ eNS(ϕ)

(3− 2ϕ)ϕ

[
1− e−2Nϕ

]
. (D.71)

Expression Eq. (D.71) can be further simplified since eNS(ϕ) is strongly peaked in the vicinity of

ϕ0 = 3/4 which is the extremum of S(ϕ): S(ϕ) ≈ S(ϕ0) +
S′′(ϕ0)

2
(ϕ− ϕ0)

2 + ..., that gives
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h(ϕ) ∼ e−
8N
3

(ϕ−3/4)2

ϕ(3− 2ϕ)

[
1− e−2Nϕ

]
. (D.72)

D.6 Mean-weight after one step and scrambling in O(1)

In this section, we derive a simple expression for the mean-weight after a single step of the random

circuit. Here, a single step is defined as in Appendix D.1, i.e U = UIUIIUI. In doing so, we show

that if the global interactions are sufficiently strong (i.e if g′ is independent of N ) then a single step

of the circuit is sufficient to achieve scrambling.

Starting from the initial conditions defined in Eq. (D.39), and using the master equation in

Eq. (D.36), we find after a single step

ht=1(w,w1) = R(w,w1, 1, 1). (D.73)

Using Eqs. (D.37) and (D.38), we can further simplify

(D.74)

ht =1(w,w1) = 3w
(
N − 1

w − w1

)
W (w, 1, w1)

=

{
0 if w1 = 0,
1
3

(
N−1
w−1

)(
δw,1 + 2[cos2(g′)]

2(N−w)[
sin2(g′)

]2(w−1)
)

if w1 = 1.

The above describes the probability weight distribution after a single step, valid for arbitrary g′.

The mean of the above distribution can be computed exactly,

⟨w⟩ =
N∑

w=1

wht=1(w,w1 = 1) =
1

3
+

2

3
cos2(g′) +

2

3
N sin2(g′). (D.75)

Thus, if g′ is independent of N , then ⟨w⟩ is O(N) and ⟨C⟩ (see Appendix D.4) is O(1) after just a

single step.
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Appendix E: Supplemental Material for Chapter 6

E.1 Experimental Details

The experimental setup and basic parameters are described in detail in the supplement of

Ref. [460]. The procedure for calibrating the spatial light modulator is described in the supplement

of Ref [392]. The 231 nm UV laser system for Rydberg excitation is described in the supplement

of Ref. [387].

Power stabilization of the Rydberg dressing light

The UV light used for Rydberg dressing is generated using a 923 nm amplified diode laser system

followed by two second harmonic generation cavities in series. The fractional power stability of

the UV light after the second cavity is about 10% which was sufficient for our previous work

with direct excitation to Rydberg states [387]. However, in the case of dressing, power stability

is more critical due to the interaction strength having a quartic dependence on the Rabi frequency

(V ∝ Ω4). Furthermore, the stability of the power during the spin-echo sequence used in the

Ramsey interferometry is important to cancel the phases accumulated due to the single-particle

light shift. We improved the power stability to much better than 1 % by adding a noise-eater.

The noise-eater consists of an electro-optic polarization modulator (QuBig PCx2B-UV) and an
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Figure E.1: Rydberg dressing of 6Li. (a) Level diagram showing the hyperfine ground states of 6Li
directly coupled to the 28P Rydberg state using linearly (π) polarized light at a field of 592G. The
basis used is |ml,ms⟩. (b) Rydberg dressing scheme for two atoms in different hyperfine ground
states |1⟩ and |2⟩ coupled to the Rydberg state |r⟩. Ω is the Rabi coupling of the laser, ∆ is the
detuning from the resonant transition between |1⟩ and |r⟩, ∆0 is the hyperfine splitting between
|1⟩ and |2⟩ and V (R) = −C6/R

6 is the van der Waals interaction potential between two Rydberg
states |r⟩.

α-BBO Glan-Taylor polarizer (EKSMA 441-2108). By measuring the laser power using a pick-off

before the last acousto-optic modulator ([387]) and feeding back on the noise-eater, we suppressed

intensity noise for frequencies up to 1MHz and eliminated shot-to-shot drifts in the dressing light

intensity that limited our previous experiments.

Ground and Rydberg states used in the experiments

We work at a magnetic field of 592G pointing in the direction perpendicular to the 2D lattice

plane. At this field, both the ground and Rydberg states are in the Paschen-Back regime such that

we can approximately label them using the |nl,ml,ms,mI⟩ basis (Fig. E.1a). As explained in the

text, the hyperfine ground states we use are |1⟩ , |2⟩ and |3⟩ numbered from lowest to highest in
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energy and having mI = 1, 0,−1 respectively. For the Rydberg states, the nuclear spin splitting

is negligible so states with different mI can be considered degenerate. This approximation means

that two atoms in different hyperfine ground states will couple to Rydberg states at the same energy

(both labeled as |r⟩) and interact with each other via a van der Waals potential (Fig. E.1b).

In our quenches and lifetime measurements, we always start with a spin-polarized gas of either

state |1⟩ or |3⟩ atoms (both states are essentially equivalent and we happen to have take some of

our data in this Chapter using one or the other). However, for the interferometry measurements, we

need to take into account the dressed interaction potential between two atoms in different hyperfine

ground states which couple to |r⟩.

E.2 Interaction potential for two Rydberg dressed atoms in different ground

states

To obtain the dressed potential for two atoms in different ground states, we start by writing down

the single-particle Hamiltonians for each atom in the {|i⟩ , |r⟩} basis in the rotating frame (where

i ∈ {1, 2} labels the ground states):

Ĥ1 =

(
0 Ω/2

Ω/2 −∆

)
and Ĥ2 =

(
0 Ω/2

Ω/2 −(∆ +∆0)

)
(E.1)

Using these and the interaction potential between two atoms in the Rydberg state separated by a

distance R, V (R) = −C6/R
6, we write down the two-particle dressing Hamiltonian as

Ĥdr(R) = Ĥ1 ⊗ Î+ Î⊗ Ĥ2 + V (R)(|r⟩ ⟨r| ⊗ |r⟩ ⟨r|). (E.2)

We calculate the dressed potential by solving for the eigenenergy of the eigenstate with maximum
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overlap with the bare ground state |1, 2⟩. This can be done numerically, or using perturbation

theory up to 4th order in Ω assuming Ω ≪ ∆. In this limit, we find that the relevant eigenergy has

the form

E(R) =− Ω4(2∆ +∆0)

16∆2(∆ +∆0)2

(
1

1 + (2∆+∆0)R6

|C6|

)
+ δ(Ω,∆) + δ(Ω,∆+∆0), (E.3)

where δ(Ω,∆) = (−∆ +
√
∆2 + Ω2)/2 is the single-particle light shift and the first term is the

desired interaction potential.

E.3 Many-body Ramsey interferometry

We use the same many-body Ramsey interferometry technique as Ref. [364] to characterize the

interaction potentials of the Rydberg dressed atoms. However, because the splitting between the

ground states we use in the Ramsey interferometry is only 75.806(3)MHz and the detunings we use

are between 30MHz and 100MHz, we need to take into account the dressing of both states. Since

the experiments are performed in the frozen-gas regime, we rewrite the dressing Hamiltonian as a

spin Hamiltonian. For our interferometer, we use hyperfine ground states |1⟩ ≡ |↑⟩ and |2⟩ ≡ |↓⟩.

The many-body dressing Hamiltonian is

Ĥdr =
∑
i

(
δ↑i σ̂

(i)
↑↑ + δ↓i σ̂

(i)
↓↓

)
+

1

2

∑
i ̸=j

(
V ↑↑
ij σ̂

(i)
↑↑ σ̂

(j)
↑↑ + V ↓↓

ij σ̂
(i)
↓↓ σ̂

(j)
↓↓

+ V ↑↓
ij σ̂

(i)
↑↑ σ̂

(j)
↓↓ + V ↓↑

ij σ̂
(i)
↓↓ σ̂

(j)
↑↑

)
, (E.4)

where δαi is the single-particle light shift for spin α at site i, V αβ
ij is the Rydberg dressed potential
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between spins α and β at sites i and j, and V ↑↓
ij = V ↓↑

ij . Using the relations σ̂(i)
↑↑ = 1

2

(
Î+ σ̂

(i)
z

)
and

σ̂
(i)
↓↓ = 1

2

(
Î− σ̂

(i)
z

)
, we can rewrite the Hamiltonian as

Ĥdr = H0

+
1

2

∑
i

(
δ↑i − δ↓i +

1

2

∑
j ̸=i

(
V ↑↑
ij − V ↓↓

ij

))
σ̂(i)
z

+
1

8

∑
i ̸=j

(
V ↑↑
ij + V ↓↓

ij − 2V ↑↓
ij

)
σ̂(i)
z σ̂

(j)
z (E.5)

Ĥdr = H0 +
1

2

∑
i

δ∗i σ̂
(i)
z +

1

8

∑
i ̸=j

V ∗
ij σ̂

(i)
z σ̂

(j)
z , (E.6)

where H0 is an energy offset, the second term is a longitudinal field of strength δ∗i dominated by

the single-particle light shifts, and the third term is an effective interaction term with strength V ∗
ij .

Similar to what is done in the supplement of Ref. [364], we can calculate various observables

for different pulse sequences in terms of the accumulated phases ϕi =
∫ τ

0
δ∗i (t)dt and Φij =∫ τ

0
V ∗
ij(t)dt over the length τ of the dressing pulse.

For a π/2− τ − π/2 pulse sequence, the observable is the expected single-component density

σ̂i
↑↑ = |↑⟩ ⟨↑| which can be calculated to be:

〈
σ̂i
↑↑
〉
=

1

2
− 1

2
cos(ϕi)

∏
j ̸=i

cos

(
Φij

2

)
. (E.7)

For a spin echo π/2− τ −π− τ −π/2 pulse sequence, the observable is the single-component

density correlation which can be calculated to be:

〈
σ̂i
↑↑σ̂

j
↑↑
〉
C
=
1

8

(∏
k ̸=i,j

cosΦ
(+)
k,ij +

∏
k ̸=i,j

cosΦ
(−)
k,ij

)

− 1

4
cosΦ2

ij

∏
k ̸=i,j

cosΦik cosΦjk, (E.8)

where Φ
(±)
k,ij = Φik ± Φjk and Φii = 0.
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E.4 Dependence of lifetime on atom number at fixed density

In our search for a suitable Rydberg state to use for our dressing experiments, we explored many

different principal quantum numbers. We eventually chose 28P because it gave us a good ra-

tio between the measured collective lifetime and the theoretical single-particle lifetime, while also

having a large enoughC6 to achieve strong nearest-neighbor interactions in the lattice. We explored

larger principal quantum numbers but found much shorter lifetimes than the expected values. One

possible reason is the coupling to neighboring pair-potentials that have non-zero overlaps with the

target state at close distances (Fig. 6.1). However, the general behavior of the many-body life-

times with atom number and geometry of the cloud remained the same over significantly different

principal quantum numbers. In particular, the lifetime showed no strong dependence on the atom

number at fixed density over the range we could explore in the experiment. Fig. E.2 shows the

initial lifetime vs. the initial atom number for 2D systems 4 alatt wide and of variable length along

the direction parallel to the dressing beam for the 31P and 40P Rydberg states.
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Figure E.2: Dependence of lifetime on atom number at fixed density. (a) Initial lifetime for 2D
systems with different initial atom number dressed to 31P . Measurements are made in a 2D
rectangular system of small width ∼ 4 alatt and variable length along the dressing beam direction.
We observe no strong dependence on the atom number. The Rabi frequency is approximately
constant over the entire system. For this data, Ω = 2π× 7.02(5)MHz,∆ = 2π× 60MHz and n =
0.8. (b) Same as in (a) but for systems dressed to 40P . For this data, Ω = 2π × 5.6(2)MHz,∆ =
2π×40MHz and n = 0.55. (insets) Raw data with exponential fits to extract the initial decay rate.
Experimental error bars correspond to standard error of the mean.

E.5 Atom loss during charge density wave dynamics

We observe an atom loss of ∼ 30% for the longest evolution times for the dataset with the max-

imum initial density and interaction strength. For the dataset where interaction was varied by

changing the dressing laser intensity, the lifetime gets longer for smaller interactions due to the

reduction of the Rydberg dressing parameter β = Ω
2∆

. For the dataset where the initial density

was varied at fixed interaction strength, the lifetime increased for lower initial densities (Fig. E.3).

These measurements are in accordance with our observed density dependent lifetime measure-

ments shown in Fig. 6.3.
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Figure E.3: Atom loss during charge density wave dynamics. (a) Atom number decay over the
quenches shown in Fig. 6.5. Each color represents a set with a different initial density. Circles are
measured data with error bars and lines are simple exponential decay fits. The dressing parameters
were Ω = 2π×6.99(8)MHz and ∆ = 2π×30MHz. (b) Lifetime vs. the initial average density of
the charge density wave as extracted from the data in (a). This behavior is in agreement with our
observations shown in Fig. 6.3. Experimental error bars correspond to standard error of the mean.
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Appendix F: Supplemental Material for Chapter 7

This supplemental material is organized as follows: in Appendix F.1, we derive the Hamiltonian

for the van-der-Waals interactions between the Zeeman sublevels of two atoms in either S1/2+S1/2,

S1/2+P1/2, or P1/2+P1/2. In Appendix F.2, we derive the Hamiltonian for the phonon interactions

between two atoms and discuss how to implement the phonon-swap for up to two trap components.

We also comment on the validity of the Taylor approximation. Then, in Appendix F.3, we present

the adiabatic protocol for the phonon-swap and discuss how to perform 3D cooling by swapping

all three trap components. In Appendix F.4, we generalize the phonon-swap for a 1D chain of

data and auxiliary atoms and derive the time-dependence of the average phonon number in each

species. Finally, in Appendix F.5, we give an example of the spin-1/2 states and the choice of the

laser polarizations for a 87Rb atom.

F.1 vdW interactions

In this section, we derive the van-der-Waals interactions (Eqs. (7.4), (7.5) and (7.8)) between the

Zeeman sublevels of two atoms. In second order perturbation theory, this can be written as [68]

ĤvdW = P̂
∑
α,β

V̂ddQ̂α,βV̂dd
δαβ

P̂ , (F.1)

where Q̂α,β = |α, β⟩ ⟨α, β| and P̂ =
∑

k,l |k, l⟩ ⟨k, l| are projectors onto the intermediate and

initial states, respectively. The dipole-dipole operator, V̂dd, is given by
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S1/2 + S1/2 → P1/2 + P3/2

S1/2 + P1/2 → P1/2 + S1/2

S1/2 + P1/2 → P3/2 +D3/2

S1/2 + P1/2 → P3/2 + S1/2

S1/2 + P1/2 → P1/2 +D3/2

P1/2 + P1/2 → S1/2 + S1/2

P1/2 + P1/2 → D3/2 +D3/2

P1/2 + P1/2 → S1/2 +D3/2

P1/2 + P1/2 → D3/2 + S1/2

Table F.1: The four channels describing the dipole-allowed virtual processes (L1, J1)+(L2, J2) →
(L′

1, J
′
1)+ (L′

2, J
′
2) that lead to vdW interactions, in the case of both atoms in S1/2 states (left), one

atom in S1/2 and the other in P1/2 (middle), both atoms in P1/2 states (right).

V̂dd = −
√

24π

5

1

r3

∑
µ,ν

C1,1;2
µ,ν;µ+νY

µ+ν
2 (θ, ϕ)∗d̂(1)µ d̂(2)ν , (F.2)

where CJ1,J2;J
m1,m2;M

is a Clebsch-Gordan coefficient and Y m
l spherical harmonics. d̂(1)µ and d̂(2)ν are the

spherical components of the dipole operators for the two atoms (µ, ν ∈ {−1, 0, 1}), whose matrix

elements are

⟨na, La, Ja,ma| d̂q |nc, Lc, Jc,mc⟩ ≡ Rna,La,Ja,nc,Lc,JcJ
q
La,Ja,ma,Lc,Jc,mc

, (F.3)

where

Rna,La,Ja,nc,Lc,Jc =

∫
Rna,La,Jc(r)Rnc,Lc,Jc(r)r

3dr, (F.4)

is the overlap of the radial wavefunctions Rn,L,J(r) and

Jq
La,Ja,ma,Lc,Jc,mc

= (−1)2Jc+1/2+ma
√
(2Ja + 1)(2Jc + 1)(2La + 1)(2Lc + 1)(

Jc 1 Ja
mc q −ma

)(
La 1 Lc
0 0 0

){
Ja 1 Jc
Lc 1/2 La

}
.

(F.5)

We can write the sum over the intermediate states α, β in Eq. (F.1) as follows∑
α,β

=
∑

channels

∑
nα,nβ

∑
mα,mβ

, (F.6)

where the channels for S1/2 + S1/2, S1/2 + P1/2 and P1/2 + P1/2 are given in Table F.1.

Note that specifying the channel specifies both the L and J quantum numbers. We first consider

the diagonal interactions, where the initial and final principal quantum numbers n1, n2 of the atoms
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are the same. Note that for n1S1/2+n2S1/2 and n1P1/2+n2P1/2 with n1 ̸= n2 there are additional

flip-flop interactions that swap the principal quantum numbers of the two atoms. We describe these

at the end of this section.

Using Eqs. (F.2), (F.3) and (F.6), we can rewrite the diagonal interactions part of Eq. (F.1) in

the following form

ĤvdW =
1

r6

∑
channels

∑
nα,nβ

(Rα,1)
2(Rβ,2)

2

δαβ

×

∑
mk,ml
m′

k,m
′
l

[
24π

5

∑
mα,mβ

∑
µ,ν
µ′,ν′

C1,1;2
µ,ν;µ+νY

µ+ν ∗
2 Jµ

1k,α
Jν
2l,β
C1,1;2

µ′,ν′;µ′+ν′Y
µ′+ν′ ∗
2 Jµ′

α,1k′
Jν′
β,2l′


× |mk,ml⟩ ⟨mk′ ,ml′ |

]
.

(F.7)

In Eq. (F.7), each term in the parentheses on the first line only depends on the intermediate nα, nβ

values, for a given channel. The label α in Rα,1 is short for nα, Lα, Jα where Lα, Jα are specified

by the channel. Similarly, the label 1 (2) is specifying the n, L, J values of the first (second) term

in the channel.

The quantity in the second line of Eq. (F.7) is a 4×4 matrix in the subspace of the magnetic sub-

levels |++⟩ , |+−⟩ , |−+⟩ , |−−⟩. For a given channel, the matrix elements are found by summing

over the mα,mβ values and are independent of n.

Thus, for a given channel, p, we can define a C(p)
6 coefficient and a matrix D(p)

C
(p)
6 =

∑
nα,nβ

(Rα,1)
2(Rβ,2)

2

δαβ
,

D(p)
kl,k′l′ =

24π

5

∑
mα,mβ

∑
µ,ν
µ′,ν′

C1,1;2
µ,ν;µ+νY

µ+ν ∗
2 Jµ

1k,α
Jν
2l,β
C1,1;2

µ′,ν′;µ′+ν′Y
µ′+ν′ ∗
2 Jµ′

α,1k′
Jν′
β,2l′

. (F.8)
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With these, Eq. (F.7) takes the simple form

ĤvdW =
1

r6

∑
p

C
(p)
6 D(p). (F.9)

For the channels in Table F.1 (same results for all three cases) we find (different definition than

in [68])

D(a) =
2

27
1−D0,

D(b) =
8

27
1−D0,

D(c) =
4

27
1+D0,

D(d) =
4

27
1+D0,

(F.10)

where

D0(θ, ϕ) =


1
81
(3 cos(2θ)− 1) 1

27
e−iϕ sin(2θ) 1

27
e−iϕ sin(2θ) 2

27
e−2iϕ sin2(θ)

1
27
eiϕ sin(2θ) 1

81
(1− 3 cos(2θ)) 1

81
(−3 cos(2θ)− 5) − 1

27
e−iϕ sin(2θ)

1
27
eiϕ sin(2θ) 1

81
(−3 cos(2θ)− 5) 1

81
(1− 3 cos(2θ)) − 1

27
e−iϕ sin(2θ)

2
27
e2iϕ sin2(θ) − 1

27
eiϕ sin(2θ) − 1

27
eiϕ sin(2θ) 1

81
(3 cos(2θ)− 1)

 ,

(F.11)

is a traceless matrix. Writing Eq. (F.9) in terms of 1 and D0 gives Eq. (7.4).

We now discuss the flip-flop interactions that are present for n1S1/2 + n2S1/2 and n1P1/2 +

n2P1/2 with n1 ̸= n2 (for n1S + n2P they are forbidden by selection rules). These take a very

similar form to the above. In particular, the full vdW Hamiltonian can be written in a block form

as follows

ĤvdW =

(
Ĥdiag

vdW Ĥflip−flop
vdW

Ĥflip−flop
vdW Ĥdiag

vdW

)
, (F.12)

where the diagonals Ĥdiag
vdW are given by Eq. (F.9). In the diagonal terms (Ĥdiag

vdW), the atoms undergo

virtual transitions to nearby states and then back, i.e. n1 → nα → n1 and n2 → nβ → n2. For the

flip-flop terms (Ĥflip−flop
vdW ), the atoms jump all the way between n1 and n2, i.e n1 → nα → n2 and
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Figure F.1: Flip-flop vdW interactions for n1S + n2S as a function of n1 and ∆n = n2 − n1.
(a) Norm of the off-diagonal vdW block. (b) Ratio of the off-diagonal vdW interactions to the
diagonal identity interactions.

n2 → nβ → n1. The flip-flop terms, Ĥflip−flop
vdW , have a similar matrix structure to Ĥdiag

vdW, with the

only difference being the C6 coefficients, i.e.,

Ĥflip−flop
vdW =

1

r6

∑
p

C̃
(p)
6 D(p), (F.13)

where the D(p) are identical to Eq. (F.10) but the C̃(p)
6 coefficients are given by

C̃
(p)
6 =

∑
nα,nβ

R1,αRα,2R2,βRβ,1

δαβ
. (F.14)

The radial matrix element Rnn′ is only significant for n − n′ ≈ 0, hence we expect the flip-

flop vdW terms to decay rapidly as ∆n = n1 − n2 is increased. Figure F.1(a) shows the strength

of these flip-flop vdW interactions for n1S + n2S and Fig. F.1(b) shows the ratio of the flip-flop

interactions to the desired identity C6 interactions. We see that already for ∆n > 5, the off-

diagonal interactions are 103 times smaller than the identity interactions. Moreover, the deviation

of Eq. (F.12) from an identity is dominated by the off-diagonal D0 term appearing in Ĥdiag
vdW for

∆n > 1. Already at ∆n = 2, the deviation from identity due to the latter [shown in Fig. 7.3(b) of

Chapter 7] is an order of magnitude larger than the corresponding error due to Ĥflip−flop
vdW .

206



F.2 Phonon interactions

In this section, we derive the effective phonon interactions (Eq. (7.1)) between two atoms in har-

monic traps, separated by a macroscopic distance r. We assume that the interactions are indepen-

dent of the internal state and are given by

Ĥint(r) =
A

r6 +R6
c

, (F.15)

where Rc is a blockade radius and A depends on the vdW interaction strength. We further assume

that the position of each atom can be decomposed into quantum fluctuations on top of a coherent

(classical) part: ri → ri + r̂i. Without loss of generality, we assume that the macroscopic sepa-

ration r0 = |r1 − r2| is along the y direction. In this case, to second order in the small quantum

fluctuations we get

Ĥint ≈ Ĥx + Ĥy + Ĥz + Constants, (F.16)

where

Ĥx = −3A (x̂1 − x̂2)
2

r80[1 + (Rc/r0)6]
2 ,

Ĥy = −6A (ŷ1 − ŷ2)

r70[1 + (Rc/r0)6]
2 + 3A(ŷ1 − ŷ2)

2[7− 5(Rc/r0)
6]

r80[1 + (Rc/r0)6]
3 ,

Ĥz = −3A (ẑ1 − ẑ2)
2

r80[1 + (Rc/r0)6]
2 .

(F.17)

The full Hamiltonian of the motional degrees of freedom is

Ĥ =
∑

α=x,y,z

[∑
i=1,2

(
P̂ 2
i,α

2M
+

1

2
Mω2

αα̂
2
i

)
+ Ĥα

]
. (F.18)

The full Hamiltonian is therefore a sum of three independent, commuting Hamiltonians for the

three directions, which means we can analyze each direction separately. Note that Ĥx and Ĥz

have the same form while Ĥy contains a linear term. This linear term, which represents the force
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between the two atoms, is inherently larger than the quadratic term which gives rise to the phonon-

swap terms. This fact prevents an efficient cooling of the y direction. In Appendix F.3 we show

how one can overcome this and nevertheless cool all three directions using an adiabatic protocol.

Here we assume that the confinement along y is sufficiently strong and hence focus on the x and z

directions.

The Hamiltonian for the z direction in terms of bosonic creation and annihilation operators

ẑ1 =
1√

2Mωz
(âz+â

†
z), P̂1,z = −i

√
Mωz

2
(âz−â†z) and ẑ2 = 1√

2Mωz
(d̂z+d̂

†
z), P̂2,z = −i

√
Mωz

2
(d̂z−d̂†z)

is given by (the Hamiltonian for x is the same with z → x)

(F.19)Ĥph,z = ωz(d̂
†
zd̂z + â†zâz)−

Gz

2

[
(d̂z + d̂†z)

2 + (âz + â†z)
2
]
+Gz(d̂z + d̂†z)(âz + â†z),

where the phonon-coupling Gz is

Gz =
3A

Mωzr80

1

[1 + (Rc/r0)6]2
. (F.20)

which is given under Eq. (7.1) in Chapter 7, where we dropped the z label. Assuming that ωz ≫ Gz

and making the rotating wave approximation we have

(F.21)Ĥph,z ≈ ωz(d̂
†
zd̂z + â†zâz) +Gz(d̂zâ

†
z + d̂†zâz),

or in the rotating frame simply Gz(d̂zâ
†
z + d̂†zâz).

This Hamiltonian effectuates a state-transfer between the two modes âz, d̂z, which can be seen

from the solution to the Heisenberg equations of motion ( ˙̂dz(t) = i
[
Gz(d̂zâ

†
z + d̂†zâz), d̂z

]
, ˙̂az(t) =

i
[
Gz(d̂zâ

†
z + d̂†zâz), âz

]
)

âz(t) = cos(Gzt)âz(0)− i sin(Gzt)d̂z(0),

d̂z(t) = −i sin(Gzt)âz(0) + cos(Gzt)d̂z(0).
(F.22)

After a time of ts = π
2Gz

, the states of the two modes, and hence the phonon occupations, are

swapped. If, in addition, we have that ωz = ωx (and accordingly Gz = Gx) then the same swap
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process would cool both the x and z directions.

Finally, let us comment on the higher-order terms that we neglect in the Taylor expansion.

Each term in the expansion of Eq. (F.15) is smaller than the precedent by the dimensionless factor

∼ 1
r0

√
1

Mωα
(α = x, y, z). For Rubidium atoms separated by 3 µm in ωz/2π = 15 kHz traps

(assuming ωz < ωx,y) this factor is ∼ 0.03. Moreover, if we work in the regime where the rotating-

wave approximation is valid, i.e ωz ≫ Gz, all the terms that do not conserve the total number

of excitations, and in particular all the odd powers in the expansion, can be neglected. Thus, in

that regime, the leading order correction to Eq. (F.19) is smaller by the factor ∼
(

1
r0

√
1

Mωz

)2
∼

9× 10−4.

F.3 Adiabatic phonon-swap

In this section, we present an adiabatic protocol for performing the phonon-swap. As we have

discussed in the previous section, the repulsive force between a pair of atoms prevents the simple

phonon-swap from taking place for the trap component parallel to the inter-atomic axis. This

manifests itself in the presence of the linear term in the y component of Eq. (F.17). We show here

how this can be mitigated by implementing a smooth, slowly varying π/2 pulse.

This adiabatic protocol can be intuitively understood as follows: we imagine slowly turning on

and off the interactions [A → A(t)] such that the atoms adiabatically follow the new equilibrium

positions, determined by the total potential, which is the sum of the trap potentials and the inter-

actions. During this time, the phonon-swap can take place, swapping the phonon excitations while

the displacements slowly change.

We assume the same setup as in the previous section, where the two atoms, data and auxiliary,
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are initially (at time t = 0) separated by some distance r0 ≡ r(0) = yeq2 (0) − yeq1 (0) (determined

by the trap separation). As we slowly increase A(t), the equilibrium positions (which at t =

0 are yeq1 (0) = 0, yeq2 (0) = r0) slowly change as well. These equilibrium positions are found

by minimizing the full potential at each time t, and are given by the solutions to the following

equations

Mω2
yy

eq
1 (t)− 6A(t)[yeq1 (t)− yeq2 (t)]5

[R6
c + (yeq1 (t)− yeq2 (t))6]2

= 0,

6A(t)[yeq1 (t)− yeq2 (t)]5

[R6
c + (yeq1 (t)− yeq2 (t))6]2

+Mω2
y(y

eq
2 (t)− r0) = 0.

(F.23)

Taylor expanding the potential about those equilibrium positions gives (up to constants)

(F.24)Ĥph,y =
P̂ 2
1,y + P̂ 2

2,y

2M
+

1

2
Mω2

y(ŷ1 − yeq1 (t))2 +
1

2
Mω2

y(ŷ2 − yeq2 (t))2

−MωyGy(t)[ŷ1 − yeq1 (t)− (ŷ2 − yeq2 (t))]2,

where

Gy(t) = −3A(t)

Mωy

7− 5(Rb/r(t))
6

r(t)8[1 + (Rb/r(t))6]
3 , r(t) = yeq2 (t)− yeq1 (t). (F.25)

The x and z Hamiltonians are still given by Eq. (F.17) and Eq. (F.19) with the only difference

being that Gz, Gx are now time-dependent. In the following we therefore first focus on the y

component. Note that by expanding about the equilibrium positions, we have implicitly assumed

that the process is adiabatic. This assumption can be justified self-consistently, as we show later in

this section.

We now transform to the bosonic creation and annihilation operators ŷ1 = 1√
2Mωy

(ây + â†y),

ŷ2 =
1√

2Mωy
(d̂y + d̂†y), P̂1,y = i

√
Mωy

2
(â†y − ây), P̂2,y = i

√
Mωy

2
(d̂†y − d̂y) which gives

(F.26)
Ĥph,y = ωy(â

†
yây + d̂†yd̂y)− ωyα1(t)(ây + â†y)− ωyα2(t)(d̂y + d̂†y)

− Gy(t)

2
[ây + â†y − 2α1(t)− (d̂y + d̂†y − 2α2(t))]

2,
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where αi(t) =
√

Mωy

2
yeqi (t). Moving to the adiabatic frame with the displacement operator D̂(t) =

exp
[
−α1(t)(â

†
y − ây)− α2(t)(d̂

†
y − d̂y)

]
yields

(F.27)

Ĥph,y,ad = D̂(t)Ĥph,yD̂
†(t) + iḊ(t)D†(t)

= ωy(â
†
yây + d̂†yd̂y)−

Gy(t)

2

[
(â†y + ây)

2 + (d̂†y + d̂y)
2
]

+Gy(t)(â
†
y + ây)(d̂

†
y + d̂y) + iα̇1(ây − â†y) + iα̇2(d̂y − d̂†y).

From Eq. (F.27) we can see that the adiabatic Hamiltonian for the y component has a sim-

ilar structure as the x and z Hamiltonians in the previous section in Eq. (F.19), with additional

non-adiabatic corrections proportional to α̇1 and α̇2. The adiabaticity condition is therefore

ωy ≫ α̇1, α̇2, which together with the condition ωy ≫ Gy allows us to make the rotating wave

approximation, giving

(F.28)Ĥph,y,ad ≈ ωy(â
†
yây + d̂†yd̂y) +Gy(t)(â

†
yd̂y + âyd̂

†
y).

If ωy ≫ α̇1, α̇2, then the atoms follow adiabatically the equilibria of the total potential. This is in

fact the justification for the self-consistent assumption mentioned at the beginning of this section.

Equation (F.28) effectuates a state-transfer between the two modes, exactly as the time-

independent version in the previous section [see Eq. (F.21)]. The solution of the Heisenberg equa-

tions (in the rotating frame) are in this case (with equivalent expressions for the x, z components)

ây(t) = cos

(∫
Gy(t)dt

)
ây(0)− i sin

(∫
Gy(t)dt

)
d̂y(0),

d̂y(t) = −i sin
(∫

Gy(t)dt

)
ây(0) + cos

(∫
Gy(t)dt

)
d̂y(0).

(F.29)

For a full phonon-swap of the y phonons to take place we require
∫
Gy(t)dt =

π
2
. However, since

the phonon interaction strength for the y direction is different than for the x and z directions [i.e.,

Gy(t) ̸= Gx,z(t) as one can see in Fig. F.2(a)] a π/2 pulse for y is not necessarily a π/2 pulse for

the other two directions. Nevertheless, in typical scenarios the traps are not isotropic, and one can
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Figure F.2: (a) Normalized phonon interactions as a function of distance. (b) Non-adiabatic correc-
tions normalized to the trap frequency ωy/2π = 50 kHz as a function of time for a Gaussian pulse
with Amax/2π = 34.4MHz µm6, σ = 6.7 µs, t0 = 215.9 µs for a trap separation of r0 = 1.93 µm.

utilize this fact together with the different interaction curves to compensate and optimize a pulse

that is as close as possible to π/2 for all three directions.

As a simple example, we take a Gaussian pulse for A(t) = Amax

[
exp
(
− (t−t0)2

2σ2

)
− c
]

where c

is a constant chosen such that A(0) = 0. Using similar parameters as in Chapter 7 (see caption of

Fig. F.2), assuming ωx/2π = ωz/2π = 15 kHz and ωy/2π = 50 kHz we can find pulse parameters

that yield
∫
Gy(t)dt/(π/2) ≈

∫
Gx,z(t)dt/(π/2) ≈ 1. Furthermore, even if for a given parameter

regime it is not possible to perform the 3D phonon-swap with a single pulse, one can always

perform the cooling in three steps: one can first apply a π/2 pulse to swap the phonons in the x and

z components. This would only partially swap the y phonons. One then has to cool the auxiliary

atoms before applying another π/2 pulse, this time designed to fully swap the y phonons.

Finally, in Fig. F.2(b) we show the ratios of α̇1,2 to the trap frequency ωy for the Gaussian pulse

described above. As one can see, the adiabaticity constraint is satisfied well at all times.
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F.4 Phonon-swap for 1D chain

Here we generalize the results of the previous sections to the more realistic case of an atomic

register consisting of many atoms. We derive Eq. (7.3).

For concreteness we consider the setup in Fig. 7.1(a) of Chapter 7 where a 1D chain of N aux-

iliary atoms (lattice constant x0) is brought to a distance of y0 from an identical 1D chain ofN data

atoms. For simplicity we only consider a single trap direction (z) and the time-independent swap

protocol. The generalizations to two or three directions and the adiabatic swap are straightforward.

The Hamiltonian for the vibrational modes in the z direction is (we drop the z labels from here on)

Ĥ =
N∑
i=1

ωz(â
†
i âi + d̂†i d̂i)−

1

2

N∑
i=1,j=1,i ̸=j

Gij

[
(ẑai − ẑaj )

2 + (ẑdi − ẑdj )
2
]
−

N∑
i=1,j=1

Fij(ẑ
a
i − ẑdj )

2,

(F.30)

where by âi (d̂i) we denote the phonon-annihilation operator for an auxiliary (data) atom i and by

zai = 1√
2
(â+ â†)(zdi = 1√

2
(d̂+ d̂†)) the z coordinate of an auxiliary (data) atom (we have absorbed

Mωz into the definition of Gij and Fij). The 1
2

is to avoid double-counting and the coefficients are

given by

Gij =
G

η8|i− j|8
,

Fij =
G

[η2(i− j)2 + 1]4
,

(F.31)

where G is defined in Eq. (F.20) with r = y0 and η ≡ x0

y0
. To be consistent with the two-atom case,

we have defined G with the nearest neighbor separation between data-auxiliary atoms (y0). We

have also assumed that pairs of atoms that are farther apart than the nearest-neighbor separation (i.e

next nearest-neighbors and so on) experience power-law interactions. In other words, we assumed

that the separation between next-nearest neighbors is significantly larger than the blockade radius.
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In terms of bosonic operators Eq. (F.30) is

(F.32)
Ĥ =

N∑
i=1

[
ω̃z,i(â

†
i âi + d̂†i d̂i)−

1

2
(G̃i + F̃i)(â

2
i + d̂2i + H.c.)

]
+

1

2

∑
i ̸=j

Gij(âiâj + â†i âj + d̂id̂j + d̂†i d̂j + H.c.) +
∑
ij

Fij(âid̂j + âid̂
†
j + H.c.),

where

ω̃z,i = ωz + G̃i + F̃i,

G̃i =
∑
j ̸=i

Gij,

F̃i =
∑
j

Fij.

(F.33)

We now assume that the system is translationally invariant, i.e, ω̃z,i ≈ ω̃z, G̃i ≈ G̃, F̃i ≈ F̃ for all i.

This is a good approximation for the “bulk” of the atoms, away from the edges, in the limit where

N → ∞, or for a system with periodic boundary conditions. We also assume that ω̃z ≫ G̃, F̃

which allows us to drop terms that do not conserve the total number of excitations. With these

assumptions, the Hamiltonian in the rotating frame is given by

Ĥ =
∑
i ̸=j

Gij(â
†
i âj + d̂†i d̂j) +

∑
ij

Fij(âid̂
†
j + â†i d̂j). (F.34)

Taking the Fourier transform with

ân =
1√
N

∑
k

âke
iknx0 , âk =

1√
N

∑
n

âne
−iknx0 , (F.35)

and using the fact that Gij and Fij are transitionally invariant, i.e depend on |i− j|, we get

Ĥ =
∑
k

[
Gk(â

†
kâk + d̂†kd̂k) + Fk(âkd̂

†
k + â†kd̂k)

]
, (F.36)

where we used
∑

n e
i(k−k′)nx0 = Nδk,k′ and the following definitions
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Gk =
N∑

n=−N,n̸=0

Gne
−iknx0 = 2

N∑
n=1

Gn cos(knx0),

Fk =
N∑

n=−N

Gne
−iknx0 = Fn=0 + 2

N∑
n=1

Fn cos(knx0).

(F.37)

Equation (F.36) can be diagonalized with the transformation

ĉk =
âk + d̂k√

2
, b̂k =

âk − d̂k√
2

, (F.38)

which gives

Ĥ =
∑
k

[
(Gk + Fk)ĉ

†
kĉk + (Gk − Fk)b̂

†
kb̂k

]
. (F.39)

Using this, we can now compute the average excitation number in the auxiliary and data atoms,

given by

n̄a(t) =
1

N

∑
n

〈
â†n(t)ân(t)

〉
,

n̄d(t) =
1

N

∑
n

〈
d̂†n(t)d̂n(t)

〉
.

(F.40)

Below, we first compute n̄a(t):

(F.41)n̄a(t) =
1

N

∑
n

〈
â†n(t)ân(t)

〉
=

1

4N2

∑
k

∑
nm

eikx0(n−m)
〈
4 cos2(Fkt)â

†
nâm + 4 sin2(Fkt)d̂

†
nd̂m + 2i sin(2Fkt)â

†
nd̂m − 2i sin(2Fkt)d̂

†
nâm

〉
.

For simplicity, we now assume that the initial state is a product state and also that ⟨âi⟩ = ⟨â2i ⟩ =

⟨d̂i⟩ = ⟨d̂2i ⟩ = 0 for all i. This would be the case, for example, if every atom starts at a pure Fock

state or a thermal state. With this assumption, only the diagonal terms in Eq. (F.41) contribute,

yielding

n̄a(t) =
1

N

[∑
k

cos2(Fkt)

]
n̄a(0) +

1

N

[∑
k

sin2(Fkt)

]
n̄d(0). (F.42)
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Taking the continuum limit 1
N

∑
k →

x0

2π

∫ π/x0

−π/x0
dk and changing variables kx0 → k gives

n̄a(t) = n̄a(0)

∫ π

−π

dk

2π
cos2(Fkt) + n̄d(0)

∫ π

−π

dk

2π
sin2(Fkt). (F.43)

To obtain a closed form expression, we approximate the sum in Fk by the first term n = 1

which corresponds to only keeping up to next nearest-neighbors interactions between auxiliary

and data atoms. This gives rise to

n̄a(t) =
n̄a(0) + n̄d(0)

2
+
n̄a(0)− n̄d(0)

2
J0

[
4Gt

(1 + η2)4

]
cos(2Gt),

n̄d(t) =
n̄a(0) + n̄d(0)

2
− n̄a(0)− n̄d(0)

2
J0

[
4Gt

(1 + η2)4

]
cos(2Gt),

(F.44)

where J0(z) is a Bessel function of the first kind.

F.5 Laser excitation from ground states

In this section we give an example level structure and laser polarization choice for 87Rb atoms for

some of the schemes we presented in Chapter 7. One choice for the spin-1/2 states of the data

atoms are the following two hyperfine ground states

|g−⟩ ≡ |52S1/2, F = 1,mF = 1⟩,
|g+⟩ ≡ |52S1/2, F = 2,mF = 2⟩.

(F.45)

To excite to S1/2 states, we need to use an intermediate P state. Using σ+, σ−, and σ0 polarized

light, one can for example use the following ladder scheme

|g−⟩
σ0−→
∣∣5P3/2, F = 1,mF = 1

〉 σ+−→
∣∣nS1/2,mJ = +1

2

〉
,

|g+⟩
σ0−→
∣∣5P3/2, F = 2,mF = 2

〉 σ−−→
∣∣nS1/2,mJ = −1

2

〉
.

(F.46)

For the auxiliary atoms, a single state out of the two is sufficient. For exciting to P1/2 states, one

choice is the following
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|g−⟩
σ+−→ |nP1/2,mJ = +1

2
⟩,

|g+⟩
σ−−→ |nP1/2,mJ = −1

2
⟩.

(F.47)
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atomic ensemble by cavity feedback, Phys. Rev. A 81, 021804 (2010).

[77] V. D. Vaidya, Y. Guo, R. M. Kroeze, K. E. Ballantine, A. J. Kollár, J. Keeling, and B. L.
Lev, Tunable-range, photon-mediated atomic interactions in multimode cavity QED, Phys.
Rev. X 8, 011002 (2018).

222

https://doi.org/10.1103/PhysRevLett.108.213003
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/PhysRevA.87.013422
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1088/1367-2630/14/9/095024
https://doi.org/10.1103/PhysRevLett.114.173002
https://doi.org/10.1103/PhysRevLett.114.243002
https://arxiv.org/abs/2006.02486
https://doi.org/10.1103/RevModPhys.82.1041
https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1103/PhysRevA.66.022314
https://doi.org/10.1103/PhysRevA.66.022314
https://doi.org/10.1103/PhysRevLett.104.073602
https://doi.org/10.1103/PhysRevA.81.021804
https://doi.org/10.1103/PhysRevX.8.011002
https://doi.org/10.1103/PhysRevX.8.011002
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maalol, M. Amaryan, D. Androić, W. R. Armstrong, M. Arratia, J. Arrington, A. Asaturyan,
E. C. Aschenauer, H. Atac, et al., The Present and Future of QCD, arXiv:2303.02579 .

[84] H. Gallagher, G. Garvey, and GP. Zeller, Neutrino-nucleus interactions, Annu. Rev. Nucl.
Part. Sci. 61, 355–378 (2011).

[85] L. Alvarez-Ruso, M. S. Athar, M. Barbaro, D. Cherdack, M. Christy, P. Coloma, T. Don-
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