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Simulating quantum systems is one of the most promising avenues to harness the computational power of
quantum computers. However, hardware errors in noisy near-term devices remain a major obstacle for applica-
tions. Ideas based on the randomization of Suzuki-Trotter product formulas have been shown to be a powerful
approach to reducing the errors of quantum simulation and lowering the gate count. In this paper, we study the
performance of non-unitary simulation channels and consider the error structure of channels constructed from a
weighted average of unitary circuits. We show that averaging over just a few simulation circuits can significantly
reduce the Trotterization error for both single-step short-time and multi-step long-time simulations. We focus
our analysis on two approaches for constructing circuit ensembles for averaging: (i) permuting the order of the
terms in the Hamiltonian and (ii) applying a set of global symmetry transformations. We compare our analytical
error bounds to empirical performance and show that empirical error reduction surpasses our analytical esti-
mates in most cases. Finally, we test our method on an IonQ trapped-ion quantum computer accessed via the
Amazon Braket cloud platform, and benchmark the performance of the averaging approach.

I. INTRODUCTION

Near-term quantum computational devices possess the po-
tential to simulate the dynamics of many-body quantum sys-
tems beyond the capability of classical computers [1]. The
two main approaches for simulating quantum dynamics are (i)
analog Hamiltonian simulation and (ii) digital quantum simu-
lation. In digital quantum simulation, the physical system is
usually mapped to qubits, and quantum gates are used to ap-
proximate the desired dynamics. The most common class of
algorithms are product formulas, including the Suzuki-Trotter
formulas [2–9], which approximate the evolution unitary by
splitting the Hamiltonian into a sum of non-commuting terms
and evolving the quantum state with each term in a sequence
of small time intervals. More advanced algorithms, such as
truncated Taylor series [10], multiproduct formulas [11, 12],
and methods based on quantum signal processing [13, 14],
have also been developed in recent years. Nevertheless, prod-
uct formulas remain popular, especially for near-term de-
vices [15–22], due to their relative implementation simplicity.
Recently, a new class of quantum simulation algorithms

based on randomization has been proposed [23–30]. In con-
trast to coherent algorithms that produce unitary quantum cir-
cuits, these randomized algorithms generally result in non-
unitary simulation channels by randomly choosing a product
formula in each time step. These non-unitary channels have
better asymptotic scaling with certain Hamiltonian parameters
than deterministic algorithms.
In this paper, we study the efficiency of non-unitary simu-

lation channels in various non-asymptotic scenarios. Specifi-
cally, we consider non-unitary simulation channels (NUSCs)
constructed from weighted averages of unitary simulation cir-
cuits (as shown in Fig. 1). We provide an estimate for the
error structure of NUSCs and demonstrate how NUSCs can
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FIG. 1: An illustration of the weighted average over unitary sim-
ulations and the intuition for error reduction. We prepareM uni-
tary circuits U1 , U 2 , ..., U M (each aiming to approximate the ideal
evolution V = e− iHt ) and specify a set of weight coefficients
{ p1 , ..., p M } for each circuit (the figure shows the caseM = 2 ).
The initial quantum stateρ is evolved under the application o�ndi-
vidual unitary circuitsUm . In order to obtain the final measurement
result, a weighted average of the measurement outputs is computed
�O�p =

� M
m =1 pm Tr

�
OU †

m ρUm
�
, where O is the observable of

interest. The average of simulations reduces the simulation error due
to a partial cancellation o�ndividual error terms.

significantly reduce the simulation error in short-time and
long-time simulations. Here, the NUSCs for long-time sim-
ulation are constructed by repeatedly using the same circuit
block for each time step, which is di�erent from previous ran-
domized simulation approaches [23–25, 31]. We consider a
few methods for constructing contributing circuits and calcu-
late the optimal distribution of weight coefficients of NUSCs
in some cases. We demonstrate the performance of NUSCs
for digital quantum simulation of physically relevant systems
both numerically and experimentally on the IonQ Harmony
device [32] via the Amazon Braket cloud platform [33].
The rest of the paper is organized as follows. In Sec-

tion II , we introduce the general construction of NUSCs for
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digital quantum simulation and express the error of NUSCs in
terms of the errors of the contributing unitary simulation cir-
cuits. In Section III, we provide two constructions for NUSCs
and evaluate their performance both analytically and numer-
ically. Both constructions average over simulation circuits
based on Suzuki-Trotter product formulas. In the first con-
struction (Section III A), the different circuits are obtained by
permuting the order of the Hamiltonian terms. In the second
construction (Section III A), the different circuits are obtained
by symmetry transformations. We derive analytical represen-
tations for and bounds on the error for each construction of
NUSCs. We benchmark the technique by applying it to a
nearest-neighbor XY spin chain and to a Heisenberg chain
with power-law interactions. In Section IV, we benchmark the
performance of NUSCs experimentally on an IonQ trapped-
ion quantum computer. In Section V, we provide the sum-
mary and the outlook. In the Appendices, we provide details
omitted from the main text.

II. THE GENERAL FRAMEWORK

We consider an n-qubit state ρ and the task of simulating
on a quantum computer the evolution V(ρ) = V ρV †, where
V = e−iHt describes the time evolution under HamiltonianH
for some time t. A quantum simulation of the evolution V(·) is
a quantum channel U(·) that approximates the target evolution
for any quantum state or a particular quantum state ρ. Assume
we have M unitary simulation channels {U1, . . . ,UM} with
the corresponding unitaries {U1, . . . , UM}. We consider aver-
aging them according to a vector of M non-negative weights
{p1, ..., pM} such that

∑M
m=1 pm = 1 (as shown in Fig. 1).

Our aim is to compare how well the NUSC

U(ρ) =
M∑

m=1

pmUm(ρ) =

M∑
m=1

pmUmρU
†
m (1)

approximates V(ρ) compared to each contributing simulation
Um(ρ). In the following, we will use the Frobenius norm
∥A∥F = Tr

(
A†A

)
for convenience in the analytical calcu-

lations. It is trivial to show that

∥U(ρ)− V(ρ)∥F ≤
∑
m

pm∥Um(ρ)− V(ρ)∥F . (2)

Therefore, the performance of U(ρ) cannot be worse than the
(weighted) average performance of the contributing simula-
tions. In particular, if ∥Um(ρ)− V(ρ)∥F = ϵ for all m, the
weighted average U(ρ) approximates the target state V(ρ) at
least as well as each Um does.

In practice, the performance of U can be much better than
guaranteed by Eq. (2). To better reflect the typical perfor-
mance of U(ρ), we consider the error of U averaged over
Haar-random pure initial states [34] as the figure of merit
(which we call the loss function):

LF ≡
∫
dψ∥U(|ψ⟩ ⟨ψ|)− V(|ψ⟩ ⟨ψ|)∥2F . (3)

We note that the choice of the Frobenius norm (as opposed
to other metrics, e.g. the spectral norm) does not qualitatively
change our conclusions, but the Frobenius norm enables exact
analytical calculations of the integral above.

We consider a short evolution time t such that ∥H∥F t≪ 1
and assume that Um and V are functions of t and are both
infinitely differentiable. Under this assumption, we consider
the Taylor expansion of the error of each Um in powers of t.
Suppose the leading order error in each contributing simula-
tion U1, ..., UM is O(tq) for a positive integer q. We can then
decompose each Um up to order t2q as

Um = V − i
2q∑
s=q

E(s)
m ts +O(t2q+1), (4)

where E(s)
m = i

s!
ds

dts (Um − V ) is the coefficient matrix of
the sth-order error term in the Taylor expansion of Um. The
following result relates the error of the weighted average U to
the error terms E(s)

m of the contributing simulations Um. We
consider

√
LF , rather than LF itself, in the following theorem

so that the error appears at the same order q as in contributing
simulations Um.

Theorem 1. Given the expansions of Um in Eq. (4) and a set
of weights {p1, ..., pM} normalized to unity, the error of the
weighted average U can be written as

√
LF =

√
2

d(d+ 1)

(
L0t

q + L1t
q+1
)
+O(tq+2), (5)

where d = 2n is the dimension of the Hilbert space and

L2
0 = d∥Eq∥2F −

∣∣Tr(E†qV )∣∣2, (6)

L2
1 =

∣∣∣dTr(E†q+1Eq

)
− Tr

(
E†q+1V

)
Tr
(
V †Eq

)∣∣∣
L0

, (7)

with the weighted qth-order coefficient matrix defined as
Eq ≡

∑M
m=1 pmE

(q)
m .

We provide detailed proof for the theorem in Appendix A.
Although it is hard to obtain an analytical optimal probability
that minimizes Eq. (5), the expressions for the leading (∝ tq)
and the second leading (∝ tq+1) order error terms in Theo-
rem 1 relate the error of the NUSC U(·) to the errors of the
contributing unitary simulations Um. In particular, Eq. (6)
shows how a reduction in Eq , the weighted qth-order error,
reduces the error of the NUSC. Comparing the loss functions
for each contributing simulation and for the NUSC given by
Theorem 1, one can see that the simulation error of U can be
suppressed by choosing a set of weights that result in smaller
Eq andEq+1. For technical simplicity, we use the error reduc-
tion from E

(q)
m ’s to Eq (for the leading order q) as a bench-

mark for the error reduction by a NUSC compared to each
contributing circuit. For example, suppose we have a Hamil-
tonian H = A + B with two simulations U1 = e−iAte−iBt

and U2 = e−iBte−iAt, each having a nonzero second-order
error. If one sets the weights to be (p1, p2) = (0.5, 0.5), the
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second-order error term E2 will vanish. Therefore, the aver-
age error of the NUSC is one order in t better than the er-
ror of each contributing simulation. In general, however, for
a small number M of contributing simulations, matrices Eq

and Eq+1 cannot be reduced to zero by tuning the weight co-
efficients pm because the error matrices contain exponentially
many (say, in the number of qubits being simulated) entries,
while we only have M − 1 tuning parameters. Nevertheless,
as in the simple H = A + B example above, we can expect
a significant reduction of one or both these terms for carefully
crafted weights and contributing simulations.

For long-time simulations with ∥H∥F t ≫ 1, a standard
approach in digital quantum simulation is to divide the evolu-
tion time into N steps of duration ∆t, such that ∥H∥F∆t =
∥H∥F t/N ≪ 1. One then applies the same product for-
mula in each time step, yielding a unitary simulation cir-
cuit. We first consider the error structure of such an N -step
simulation, which is denoted as U(N,∆t). We also denote
the exact evolution and product formula in each time step as
V (∆t) = e−iH∆t and U(∆t), respectively. The simulation
error in each step is E(∆t) = V (∆t) − U(∆t). We decom-
pose the error E(∆t) into two parts as

E(∆t) = [H, η(∆t)] + ξ(∆t). (8)

The first part [H, η(∆t)] represents the error that does not
commute with the Hamiltonian, while the second part ξ(∆t)
commutes with H , i.e., [H, ξ(∆t)] = 0. The error for the
N -step simulation E(N,∆t) can be approximated to leading
order as

E(N,∆t) ≈ Nξ(∆t) + 1

∆t
[e−iHtη(∆t)eiHt − η(∆t)].

(9)

In Appendix D, we provide the proof of Eq. (9) and more
details on how to derive ξ(∆t) and η(∆t) fromH andE(∆t).
When the step size ∆t is fixed, the norm of the second term
in Eq. (9) is bounded by a constant O(∥η(∆t)∥F ) while the
first term increases linearly with N . Therefore, the first term
becomes the dominant error in the long-time (large-N ) limit.

In order to study the general structure of the NUSC error in
long-time simulation, we proceed by analogy with the setting
for a short evolution time. We suppose that the leading-order
term inEm(∆t) isO(∆tq) for an integer q. We can thus write
the expansion of Em(∆t) similarly to Eq. (4) as Em(∆t) =

V (∆t) − Um(∆t) = iE
(q)
m ∆tq + O(∆tq+1). According to

Eq. (8), we split the coefficient matrix E(q)
m into two terms as

E(q)
m = [H, η(q)m ] + ξ(q)m , (10)

where [H, ξ
(q)
m ] = 0. We can decompose the N -step simula-

tion Um(N,∆t) up to order ∆tq and ignore the part that does
not increase with N :

Um(N,∆t) = V − iNξ(q)m ∆tq +O(N∆tq), (11)

where V = e−iHt = e−iHN∆t. We then combine Eq. (11)
with Theorem 1 and obtain the following error estimate:√

LF =

√
2

d(d+ 1)
N [Llong

0 ∆tq +O(∆tq+1)], (12)

where (Llong
0 )2 = d∥ξq∥2F −

∣∣Tr(ξ†qV )∣∣2 and ξq =∑M
m=1 pmξ

(q)
m . Eq. (12) shows how a reduction in ξq ,

the weighted qth-order commuting error, reduces the sim-
ulation error of the NUSC. By carefully choosing weights
{p1, . . . , pM}, we can expect a significant reduction of ξq
compared to the contributing terms ξ(q)m , which results in a
smaller simulation error for the NUSC.

III. CONSTRUCTIONS OF NUSCS

In this section, we consider two constructions for each step
in the contributing unitaries: by permuting the terms of the
Hamiltonian [24] (Section III A) and by symmetry transfor-
mations [35] (Section III B).

A. Permutation of Hamiltonian term ordering

We construct contributing simulations by using product for-
mulas with different term orderings. We start with short-time
simulations when ∥H∥F t ≪ 1. To construct the contribut-
ing simulation unitaries for the weighted combination, we can
exploit a single-step product formula. Suppose the Hamil-
tonian can be decomposed into Γ experimentally realizable
non-commuting terms as H =

∑Γ
j=1Hj . Additionally, we

also assume the Hamiltonian can be parametrized as a sum of
Pauli string terms

H =
∑
σ

Jσσ, (13)

where σ = σ1⊗· · ·⊗σn denotes Pauli strings on n qubits and
σi ∈ {I,X, Y, Z} for all 1 ≤ i ≤ n denote Pauli matrices on
site i. In the following, we also use Xi ,Yi, and Zi to denote
Pauli X , Y , and Z operators on site i. Multiple Pauli terms
Jσσ are allowed to be included in a single Hj Hamiltonian
term.

We consider a digital quantum simulation that approxi-
mates the target evolution through a kth-order Suzuki-Trotter
product formula:

S1(t) =

Γ∏
j=1

exp(−iHjt), (14)

S2(t) =

Γ∏
j=1

exp
(
−iHj

t

2

) 1∏
j=Γ

exp
(
−iHj

t

2

)
, (15)

Sk(t) = S2
k−2 (ukt)Sk−2 ((1− 4uk)t)S

2
k−2 (ukt) , (16)

where uk = (4 − 41/(k−1))−1. The kth-order Suzuki-Trotter
formula requires O(5k/2) simulation blocks and provides a
simulation approximation error ϵk = O(tk+1). Obviously,
one way to reduce the approximation error is to increase the
order k of the Suzuki-Trotter product formula. However, this
comes with the cost of an exponential increase in the num-
ber of gates in the simulation circuit. In contrast, in our ap-
proach based on NUSCs, we keep the order k of the product
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(a) (b)

FIG. 2: (a) Deviation of the empirical average from the actual loss function. We consider the short-time simulation of a nearest-neighbor
XY spin chain in Eq. (21) at t = 0.3. For the second-order (k = 2) Suzuki-Trotter formula, we use U1 and U2 given in Eqs. (17,18). For
k = 4, 6, and 8, we construct U1 and U2 using Eq. (16) with (A,B) and (B,A) orderings. We plot the deviation of LF , quantified using
the ratio between the root-mean-square deviation

√
var(LF ) and the averaged loss function LF over 20 batches of samples, as a function of

sample numberN in each batch at different k’s and p’s. (b) Error reduction by averaging two Suzuki-Trotter formulas with (A,B) and (B,A)
orderings of Hamiltonian terms. We plot the error metric LF /LF0 as a function of the weight coefficient p, where LF0 is the simulation
error for Suzuki-Trotter formulas U1 of kth-order. The dashed vertical line shows the optimal weight p obtained in Lemma 1 for second-order
Suzuki-Trotter product formulas. The circles mark the minima of the curves and correspond to the optimal p for each k. We see that these
optimal p’s depend very weakly on k.

formula (and hence the gate count) fixed. By building upon
Suzuki-Trotter product formulas, various effective quantum
simulation algorithms have been proposed [23, 24, 35] which
improve the simulation error.

We focus on near-term applications of digital quantum sim-
ulation with Hamiltonians consisting of a few terms. In the
following analysis, we consider simulating a Hamiltonian H
of the form in Eq. (13) that can be divided into two parts,
i.e. Γ = 2. We simulate the evolution under H by averaging
the second-order product formulas with different term order-
ings. Specifically, let S be a subset of Pauli strings and let
us decompose the Hamiltonian as a sum of two terms H =
A + B, such that A =

∑
σ∈S Jσσ and B =

∑
σ∈Sc Jσσ,

where Sc is the complement of S.
We consider the simulation of exp(−iHt) using second-

order Suzuki-Trotter formulas (14) with two possible term or-
derings:

U1(t) = exp
(
−iA t

2

)
exp (−iBt) exp

(
−iA t

2

)
, (17)

U2(t) = exp
(
−iB t

2

)
exp (−iAt) exp

(
−iB t

2

)
. (18)

In the limit ∥H∥F t≪ 1, Eqs. (17) and (18) both approximate
exp(−iHt) up to the second order in t. When averaging these
two formulas with weights {p, 1 − p}, Theorem 1 relates the
error of the resulting NUSC to the weighted third-order er-
ror E3 defined after Eq. (7). The following lemma gives an
expression for the norm of E3.

Lemma 1. The norm of the weighted third-order error E3

in averaging Eqs. (17) and (18) with weights p and 1 − p,

respectively, is

∥E3∥2F = C2n
[
(2− 3p)2J2

A + (1− 3p)2J2
B

]
, (19)

where C is a constant that may depend on H but is indepen-
dent of p, J2

A =
∑

σ∈S J
2
σ , and J2

B =
∑

σ∈Sc J2
σ . In particu-

lar, the optimal p that minimizes ∥E3∥F is

popt =
2J2

A + J2
B

3 (J2
A + J2

B)
. (20)

The simulation error term ∥E3∥2F of the NUSC is
C2nJ2

AJ
2
B/(J

2
A + J2

B) at popt.

In Appendix B, we provide a proof of Lemma 1. The proof
follows from the calculation of the third-order error terms in
U1 and U2. We note that we can obtain analytic optimal
weights using orthogonal bases other than the basis of Pauli
strings. In the case where the Hamiltonian terms A and B
are not orthogonal in the Pauli basis, the expression for the
optimal weight (20) will be modified, although the analytical
calculation is straightforward.

To benchmark the effectiveness of averaging product for-
mulas, we apply this technique to a nearest-neighbor XY spin
chain:

H =

n−1∑
i=1

XiXi+1 + h

n∑
i=1

Xi︸ ︷︷ ︸
=A

+

n−1∑
i=1

YiYi+1︸ ︷︷ ︸
=B

, (21)

where h is the strength of the magnetic field along the x̂ di-
rection. In all numerical simulations that follow, we esti-
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mate LF by calculating the averaged LF on N = 103 Haar-
randomly chosen quantum states. Here, the deviation of the
empirical average from the actual Haar average is bounded by
∼ O(1/

√
N) according to the Chebyshev inequality, where

the coefficient in front of 1/
√
N depends on the error (maxi-

mized over all possible initial states) between the target evolu-
tion and the simulation. Although this coefficient depends on
the system size, the system size is small in the following, so
we can ignore this dependence. We simulate e−iHt for n = 6,
h = 1, and t = 0.3 using an average of the two second-order
product formulas given in Eqs. (17) and (18) with the corre-
sponding probabilities p and 1 − p. In Fig. 2(a), we plot the
deviation of LF as a function of sample number N in each
batch at k = 2, k = 6, p = 0, and p = 0.5 to support the
claim that the deviation is negligible compared to the actual
loss for N = 103 samples. In Fig. 2(b), we plot the reduc-
tion ratio of the error, quantified using the loss function in
Eq. (3), as a function of p. The optimal average of U1 and
U2 corresponds to about an order of magnitude reduction in
the error. The vertical dashed line in Fig. 2(b) corresponds
to the value of popt = 0.5625 from Lemma 1. We note that
∥E3∥F given in Lemma 1 is only indirectly related to the error
of the NUSC through Theorem 1. Additionally, higher-order
terms also contribute to the error of the NUSC. Nevertheless,
Fig. 2(b) shows an excellent agreement between the estimate
from Lemma 1 and the true value of p that minimizes the error
of the NUSC.

For higher-order Suzuki-Trotter formulas, the leading er-
ror term becomes more complicated. Therefore, it is more
difficult to obtain a version of Lemma 1 for a general kth-
order product formula. Nevertheless, we will now argue that,
for a non-degenerate (i.e. having all eigenenergies distinct)
Hamiltonian with Γ = 2, the reduction of the error term in
the NUSC averaging k ≥ 2th-order Suzuki-Trotter formulas
become more prominent as k grows.

To prove the above claim, we derive a recursive formula
that approximately relates the error of the kth-order Suzuki-
Trotter formula to the (k − 2)th-order one. This recursive
formula will allow us to estimate the error term Ek+1 for an
arbitrary order k of the Suzuki-Trotter formula. For a kth-
order Suzuki-Trotter formula Sk (for either ordering of A and
B), we denote ESk

(t) = V (t) − Sk(t) as the simulation er-
ror. In the limit of short evolution time and large k, we have
the following relationship between ESk

(t) and ESk−2
(t) (see

Appendix C for the proof):

ESk
(t) =

[
eiHukt,

[
eiH(1−2uk)t, ESk−2

(ukt)
]]

+O((uk − 1/3)tk+1), (22)

where uk = (4−41/(k−1))−1. Keeping only the linear part in
the Taylor-series expansion of the exponentials, we get

ESk
(t) ≈ (1− 2uk)ukt

2
[
H,
[
H,ESk−2

(ukt)
]]

≈ (1− 2uk)u
k
kt

2
[
H,
[
H,ESq−2

(t)
]]
. (23)

In the following, we consider combining M kth-order
Suzuki-Trotter formulas. To distinguish between different

formulas, we denote by E
(k+1)
m the (k + 1)th-order error

of the mth kth-order Suzuki-Trotter formula, i.e. the (k +
1)th-order term of ESk

for the mth Sk. Since Ek+1 =∑M
m=1 pmE

(k+1)
m , which is defined in Sec. II as the coeffi-

cient matrix for the averaged (k + 1)th order error, is a linear
combination of E(k+1)

m , we can use Eq. (23) to approximate
Ek+1 using the Hamiltonian and Ek−2 or lower-order Ek′

(k′ < k − 2) for the same set of weights {p1, ..., pM}. An
important application is that we can use Eq. (23) repeatedly
to approximate Ek+1(t) with E3(t) or E5(t) of the second-
order or the 4th-order Trotterization, which have analytical
representations [36]. Specifically, we can combine Eq. (23)
and the error decomposition in Eq. (8). Only the first term in
Eq. (8) for Ek−2 will remain in Ek. Specifically, for a non-
degenerate Hamiltonian (i.e. Hamiltonian whose eigenvalues
are all distinct) with Γ = 2, we have the following lemma re-
garding the error reduction when we average two higher-order
Suzuki-Trotter formulas.

Lemma 2. For a non-degenerate Hamiltonian H = A + B,
consider averaging two kth-order Suzuki-Trotter formulas
[defined in Eq. (16)] in the small-t limit [∥H∥F t≪ 1] corre-
sponding to the two orderings of A and B, with weights p and
1− p, respectively. Then

(i) The error reduction ratio Rk = ∥Ek+1∥/∥ESk
∥ for k =

4 is larger than for k = 2. Here ∥ESk
∥ refers to an error

for a fixed choice of the ordering of Hamiltonian terms in the
Suzuki-Trotter formula.

(ii) The optimal weight for averaging two kth-order formu-
las in the limit k →∞ approaches a fixed value popt → p∗opt.

We leave the detailed proof to Appendix D, where we use
Eq. (23) and the error decomposition in Eq. (8) to derive the
coefficient matrix of the leading error term for combining two
kth-order Suzuki-Trotter formulas with different orderings of
A and B. In the limit of large k, we further provide the con-
ditions for completely eliminating the leading-order error. As
a numerical illustration, we further compare the performance
improvement of the combination of two kth-order Suzuki-
Trotter formulas Sk(t) for k = 2, 4, 6, 8 in Fig. 2. We first
observe that the optimal weights popt remain nearly the same
for k = 2 and k = 4. (They are not exactly the same be-
cause Lemma 2 guarantees equality of optimal weights only
at infinite k and because we empirically optimize for the loss
function L instead of the error term in the Lemma.) As the or-
der increases, the improvement of the weighted average also
increases. For two 8-th order Suzuki-Trotter formulas, we find
that NUSCs reduce the error metric LF by four orders of mag-
nitude. These observations are consistent with the analytical
results given by Lemma 2.

For a general Hamiltonian H =
∑Γ

γ=1Hγ with Γ ≥ 3, the

error term E
(3)
m depends heavily on the structure of H and of

each termHγ . However, we can still expect an error reduction
by averaging over different product formulas constructed by
permuting the order of the terms Hγ . For example, consider
the simplest case of the second-order product formula, k = 2.
The lowest-order simulation error for a second-order Suzuki-
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(a) (b) (c)

𝑛 = 8𝑛 = 4

𝑘 = 2

𝑘 = 6

FIG. 3: Long-time simulations of the power-law Heisenberg model in Eq. (25) using a combination of six Suzuki-Trotter formulas correspond-
ing to all possible permutations of the Hamiltonian terms HX , HY , HZ . (a) We plot the ratio of the figure of merit LF and the error LF0 of
the contributing product formulas as a function of the power-law exponent α for the number of Trotter steps N = 2 × 104 and the evolution
time t = 100 for different system sizes n = 4, 8. (b) In the 6-qubit Heisenberg model (i.e. n = 6) with uniform all-to-all interactions (α = 0),
we employ 2nd-, 4th-, and 6th-order Suzuki-Trotter decompositions for each step with fixed step sizes 0.005, 0.1, and 0.33, respectively. We
plot the loss function LF for the averaged channel (the dotted lines) and the loss function for a single contributing formula (the solid lines) as
a function of step number N . Since we fix the simulation time to be t = 100 but choose different step sizes for different q, we get different
maximal values of N for different q. (c) The same as (b), but for α = 1.

Trotter formula can be represented as [36]

t3

24

Γ∑
γ1=1

γ2,γ3=γ1+1

[Hγ1
+ 2Hγ2

, [Hγ3
, Hγ1

]] +O
(
t4
)
. (24)

Notice that there are at most O(Γ3) terms in Eq. (24),
and the Frobenius norm for each commutator is bounded
by ∥[Hγ1

, [Hγ2
, Hγ3

]]∥F ≤ 4∥Hγ1
∥F ∥Hγ2

∥F ∥Hγ3
∥F .

Therefore, the simulation error for a single second-order
Suzuki-Trotter formula is bounded above by ∥ES2

∥F ≤
O((tΓmaxγ=1,...,Γ ∥Hγ∥F )

3). Consider now averaging over
all Γ! second-order Suzuki-Trotter formulas corresponding
to all possible orderings of H1, ...,HΓ with equal weights.
The simulation error is now a linear combination of terms
as in Eq. (24) corresponding to all Γ! possible permuta-
tions of Hγ . We can observe that all commutators of the
form [Hγ1

, [Hγ2
, Hγ3

]], with γ1 ̸= γ2 ̸= γ3, will cancel
each other. As a result, only at most O(Γ2) terms will re-
main, and the asymptotic simulation error will be bounded by
O((tmaxγ=1,...,Γ ∥Hγ∥F )

3Γ2), which is smaller compared
to the contributing Trotterizations by a factor of Γ. The
weighted average may also bring a further considerable reduc-
tion in the simulation error if we further optimize the weights
or increase the order of the formulas. Note that, for a large
number of terms Γ, there are exponentially many possible or-
derings of Hγ . We can therefore exploit random sampling
techniques. In Appendix F, using matrix concentration theo-
rems [25, 37–40] and the spectral norm for technical simplic-
ity, we prove that, with high probability, the statistical error
from sampling only T orderings of Hamiltonian terms is be-
low Θ(∆tqN1/2/T ), where q is the leading-order term for the
simulation error of each product formula. This result shows
that the weighted average implemented by random sampling
can efficiently converge to the expectation regardless of Γ.

We now consider long-time simulations and numerically
illustrate the effectiveness of averaging unitary circuits on
the example of the one-dimensional Heisenberg model with

power-law interactions:

H = HX +HY +HZ

=

n−1∑
j=1

n∑
i=j+1

1

|i− j|α
(
XiXj + YiYj + ZiZj

)
. (25)

Here HX,Y,Z are the Hamiltonian terms containing the prod-
ucts of Pauli matrices XiXj , YiYj , and ZiZj , respectively.
The power-law exponent α describes how fast the interaction
decays with the distance between the spins. We consider the
simulation of exp(−iHt) for 0 ≤ t ≤ 100. As mentioned in
Sec. II, we choose one ordering and repeatedly use the Suzuki-
Trotter formula of this ordering in each time step. We then av-
erage over different orderings with the corresponding weights.
We derived the analytical value for the optimal mixing prob-
ability popt in NUSCs only in the case when Hamiltonians
consist of two non-commuting terms H = A+ B [Eq. (20)].
In a more general case, when the number of non-commuting
terms is≥ 3, the analytical calculation becomes tedious, since
it relies on the general expression for the third-order Trotter
error. In order to compute the optimal vector of weight co-
efficients numerically, we discretize the interval of values of
the weight coefficients pm ∈ [0, 1] into 10 bins, so that there
are 11 possible values pm ∈ {0, 0.1, 0.2, ..., 1}. Next, we per-
form a grid search on a discrete lattice of 11M points, where
M is the number of contributing circuits for averaging. In
the Heisenberg model example we are considering, we have
M = 6 corresponding to the number of permutations of three
Hamiltonian termsHX ,HY , andHZ . In Fig. 3(a), we observe
that, for strongly long-range models with α ≤ 1, the weighted
average method reduces the error by an order of magnitude.
Even for α ≳ 2, averaging unitary circuits can still result in
a significant 40% reduction in the loss. In Fig. 3(b,c), we fo-
cus on the 6-qubit power-law Hamiltonian with α = 0 and
α = 1. We increase the number of steps and observe that
NUSCs reduce LF by an order of magnitude in both short-
time and long-time simulations. In Fig. 3(c), we observe that
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the ratio of loss functions (i.e. error reduction) is different in
short-time simulation and long-time simulation. This is be-
cause the reduction ratio is different for Eq and ξq in Eq. (8).
It is also interesting that, in the case of all-to-all interactions
(α = 0), the loss function LF grows strictly linearly with the
number of Trotter steps N , see Fig. 3(b). We provide an ana-
lytical explanation of this behavior in Appendix D.

The approach for averaging over product formulas with dif-
ferent Hamiltonian term ordering to reduce the simulation er-
ror can be used not only in the context of simulation on quan-
tum hardware but also in classical simulation methods such
as the time-evolving block-decimation (TEBD) algorithm. In
particular, in Appendix E, we apply the averaging technique
to the infinite time-evolving block-decimation algorithm [41]
to compute the ground state and the corresponding energy of a
spin chain. We provide numerical evidence that averaging uni-
tary simulations can improve the convergence rate of the clas-
sical algorithm. We believe this method could also be used to
improve a wide range of other classical computational meth-
ods for real-time and imaginary-time simulation of quantum
many-body systems.

B. Symmetry transformations

In this section, we consider the construction of the con-
tributing product formulas (in each step) using symmetry
transformations. For that, we assume that the Hamiltonian is
invariant under a set of unitary transformations from a group
S, i.e. [C,H] = 0, for all C ∈ S.

For the short-time evolution V (∆t) = e−iH∆t such that
∥H∥F∆t ≪ 1, assume that we have a simulation U1(∆t) =

V (∆t) − i
∑2q

s=q E
(s)
1 ∆ts + O(∆t2q+1) with leading order

error O(tq), where E(s)
1 are the sth-order error operators, as

defined in Sec. II. We construct M contributing product for-
mulas by choosing a finite set of unitaries (possibly including
the identity operator) C0, ..., CM−1 ∈ S and applying them to
the simulation U1: Um = C†mU1Cm. Since [Cm, V ] = 0, we
can rewrite the weighted combinatorial qth-order error opera-
tor Eq of the average channel as

Esym
q =

M−1∑
m=0

pmC
†
mE

(q)
1 Cm. (26)

The representation in Eq. (26) is a weighted average of the
error over M simulations each having error C†mE

(q)
1 Cm and

weight pm. We can explain the reduction of error in Eq. (26)
by imagining E(q)

1 as a vector and C†mE
(q)
1 Cm as a rotation

of the original vector. Unlike in Sec. III A, each contributing
simulation is now guaranteed to have the errors of the same
norm:

∥∥∥C†mE(q)
1 Cm

∥∥∥
F

=
∥∥∥E(q)

1

∥∥∥
F

. By combining different
simulations, we get a weighted combination of vectors that
have different orientations. The length for the resulting vec-
tor cannot be longer and is usually smaller compared to the
original simulations due to the triangle inequality.

If we have no information about the error structure, we
can choose symmetry transformations Cm randomly from the

group S. In the original paper on symmetry protection [35],
a symmetry transformation is added in each time step, and
each time step has the same duration. Compared with that
construction, the NUSCs considered here have an additional
degree of freedom: we can adjust the weights {pm}. Further-
more, in our averaging approach, we use the same symmetry
transformation in each time step, so the symmetry transforma-
tion Cm in each step will cancel with the C†m in the next step,
leaving symmetry transformations only at the beginning and
at the end of the circuit. Therefore, we no longer need to apply
symmetry transformations in each time step, thus potentially
reducing the total gate count.

To illustrate error reduction using simulations constructed
with symmetry transformations, we carry out numerical simu-
lations on the one-dimensional long-range Heisenberg model
in Eq. (25). The Hamiltonian is invariant under global rota-
tions S = {

⊗n
i=1Ri(θ, ϕ) : Ri ∈ SU(2)} with Ri denot-

ing an arbitrary single-qubit rotation R on the i-th spin (the
same rotation R is applied on each spin). Specifically, we
choose R Haar-randomly. Similar to the symmetry protection
approach [35], we expect anO(M−

1
2 ) decrease in the simula-

tion error non-commutative with any symmetry C ∈ S except
identity if we assume equal weights pm and randomly picked
symmetries Cm. This result can be understood by viewing the
rotations R as a random walk in the vector space of opera-
tors [35].

As shown above, randomly chosen symmetry transforma-
tions applied to the entire evolution operator can reduce the
simulation error. We can obtain greater improvement if we
know the structure of the simulation error. Here, we consider a
special case: Cm = (C1)

m for a fixed unitary operatorC1 and
m = 0, . . . ,M−1. We further assume thatC1 = exp(−iO∆)
is generated by a Hermitian operator O such that ∥O∥∆ ≪ 1
and at least one eigenvalue of O∆ is an irrational multiple of
π. In this case, we can obtain a provable O( 1

M ) reduction of
the part of the error that does not commute with C1. Given
an arbitrary simulation error E, we employ a technique simi-
lar to Eq. (8) and decompose the error as E = [O, ηC ] + ξC ,
where [O, ηC ] (ξC) is the part of the error that does not com-
mute (commutes) with O. The derivation of ξC and ηC is the
same as the derivation of ξ and η, except one needs to replace
H with the operator O. We then have

Esym
q ≈ ξC +

1

M∆t

(
eiM∆tOηCe

−iM∆tO − ηC
)
. (27)

Here, we assume that M is a large number. The derivation of
Eq. (27) follows the same pattern as the derivation of Eq. (9).
Therefore, by increasing M , we can suppress the part of the
error that does not commute with O. In Appendix G, we pro-
vide the proof of Eq. (27) and benchmark the error reduction
achieved with this scheme.

We remark that there are advantages and disadvantages for
the two methods. When the number of Hamiltonian terms Γ
is small, the averaging over term permutations involves only
a relatively small number of contributing formulas M = Γ!
and provides an asymptotic error reduction, whereas averag-
ing over symmetry group S would have 1/M convergence rate
to the same asymptotic error value as M → ∞. In the op-
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(a) (b) (c)

FIG. 4: Simulating the power-law Heisenberg model [Eq. (25)] by averaging unitary circuits using symmetry transformations. Given a formula
U1, we construct other formulas in the average by applying symmetry transformations R(θ, ϕ): U1 → R†(θ, ϕ)U1R(θ, ϕ). (a) Reduction of
the quantum simulation error in the second-order Suzuki-Trotter formula by averaging two unitary circuits constructed from repeatedly using
product formulas {U1, Ũ1} in each step, where Ũ1 = CH†U1C

H and CH is the Hadamard gate applied to all spins, as a function of the
weighting coefficient p. The Trotterized evolution consists of N = 5 × 104 time steps with a fixed step size ∆t = 2 × 10−3, corresponding
to a total simulation time t = 100. (b) Same as in (a), but we fix p = 0.5 and vary the number N of Trotter steps. (c) We implement
M = 10 different Haar-random symmetry transformations on the second-order Suzuki-Trotter formula U1 for t = 100 and increase system
sizes 3 ≤ n ≤ 11. We plot the simulation error reduction as a function of system size n for different power-law exponents α = 0, 1, 2, 4.
The solid lines show linear fits on a log-linear plot. The error bar here indicates the standard deviation due to randomly sampled symmetry
transformations.

posite limit, when the number of Hamiltonian terms is large
and the number of possible term permutations grows expo-
nentially, the averaging over the full permutation group of
Hamiltonian terms becomes prohibitive. In such a case, there
are two options: (a) perform averaging over a finite number
of symmetry transformations S, or (b) use the sampling ap-
proach to generate a finite subset of random permutations of
the Hamiltonian terms, as described in Eq. (24). Depending
on the concrete experimental setting, it might be more conve-
nient to use either method (a) or (b) for Hamiltonians with a
large number of terms.

In Fig. 4(a,b), we demonstrate the effect of symmetry-based
NUSCs for the simulation of the power-law Heisenberg spin
chain in Eq. (25). We consider n = 6 qubits with open
boundary conditions and apply a single symmetry transfor-
mation, resulting in M = 2 contributing unitaries. We choose
Ri to be π/2 rotations around the x-axis corresponding to
the Hadamard gate, which is equivalent to the substitution
X ↔ Z and Y ↔ −Y . Therefore, applying this symme-
try transformation to the evolution in this model is equivalent
to implementing a product formula with different orderings
of the three parts of the Hamiltonian. The symmetry operator
can be written asCH = (RH)⊗n, whereRH denotes a single-
qubit Hadamard gate. In Fig. 4(a), we observe a 30% to 45%
reduction in the average error for different power-law expo-
nents α by using equal weights for the two contributing uni-
taries. In Fig. 4(b), we fix the step size and increase the total
simulation time. For different power-law exponents α, we ob-
serve 40% to 65% reduction in LF in short-time simulations
and 30% to 50% reduction in long-time simulations. Similar
to the previous section, we also observe a step-like increase in
the error reduction ratio as the number of steps N grows from
N = 100 to 1000, reflecting the dominance of one of the two
terms in Eq. (8). In Fig. 4(c), we choose M = 10 symmetry
transformations randomly from the SU(2) symmetry group.

Our method works well for the power-law exponents in the
range 0 ≤ α ≤ 1 and results in simulation error reduction for
different system sizes.

An important question concerning the practical implemen-
tation of our approach is whether the error reduction persists
for larger systems without changing the choice of weights. In
general, it is hard to derive an analytical bound with favor-
able dependence on system size n for the NUSC error (the
loss function) in Eq. (3). This is because we use the Frobe-
nius norm in order to analytically compute the Haar integral.
As the Frobenius norm for spin models can increase exponen-
tially with n, it might be hard to get a useful bound in the
limit of large n. However, we remark that the scaling of error
with n will not increase exponentially if we consider the spec-
tral norm in Eq. (3) instead of the Frobenius norm. While the
spectral norm is a common choice in most analytical results on
digital quantum simulation, we cannot compute Eq. (3) using
the spectral norm. We would like to note that, as n increases,
the slope for the system-size scaling for the power-law expo-
nents α = 1 and α = 2 is small in Fig. 4. For power-law mod-
els, we can thus expect that the error reduction due to mixing
product formulas persists up to system sizes n ∼ 100, where
any classical simulation becomes computationally hard.

IV. EXPERIMENTAL BENCHMARKS ON THE IONQ
QUANTUM PROCESSOR

In the previous sections, we presented both analytical re-
sults and numerical benchmarks for averaging product formu-
las. To provide further benchmarks of NUSCs, we carry out
experiments on IonQ’s 11-qubit trapped-ion quantum com-
puter [32] via the Amazon Braket cloud platform [33]. The
IonQ Harmony device features all-to-all connectivity with av-
erage single-qubit and two-qubit gate fidelity of 99.5% and
97.5%, respectively.
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FIG. 5: Experimental error suppression using a linear combi-
nation of product formulas to simulate time evolution under the
Hamiltonian in Eq. (28). We plot the total variation distance
between the measured probability distribution of bitstrings and
the ideal distribution obtained by solving the Schrödinger equa-
tion: Total Variation Distance= 1

2

∑2n

u=1

∣∣∣p(meas)
u − p

(Schrod)
u

∣∣∣, where

p
(Schrod)
u = |ψu|2 is the squared amplitude of the wavefunction for

the computational basis state u. For each set of simulation param-
eters (µ, λ, t), we show two groups of histograms: (left) the ideal
numerical simulator and (right) the IonQ Harmony device. To distin-
guish these two groups, the simulations on the numerical simulator
are depicted using lighter colors, while the experiments on the IonQ
quantum processor are depicted using darker colors. Within each his-
togram group, we compare the performance of individual first-order
product formulas, e−iAte−iBt (blue) and e−iBte−iAt (green), and
their weighted linear combination with equal weights p⃗ = {0.5, 0.5}
(red). All simulations on the IonQ device were performed for an
n = 5 qubit subsystem, and the number of measurement shots was
set to Nshot = 104.

We consider a Hamiltonian for the Ising model in both
transverse and longitudinal magnetic fields with periodic
boundary conditions [42]:

H =

n∑
i=1

XiXi+1 + µ

n∑
i=1

Xi︸ ︷︷ ︸
A

+λ

n∑
i=1

Zi︸ ︷︷ ︸
B

. (28)

This Hamiltonian can be natively simulated using only
RXX(θ) gates and single-qubit rotations chosen from the
IonQ device gate set. The model (28) is not exactly solv-
able provided µ and λ are nonzero and provided λ ̸= 1 [42].
We simulate this model for system size n = 5 on the IonQ
device. We consider combining first-order product formulas
e−iAte−iBt and e−iBte−iAt with weights {p, 1 − p}. We fo-
cus on short-time simulations using a single step. This al-
lows us to maximally suppress the experimental noise brought
by circuit depth and simulation time. We fix the input state

to be (RH)⊗n |0⟩⊗n = 1√
2n

∑2n−1
i=0 |i⟩ (where |i⟩ runs over

all computational basis states) and estimate the total variation
distance between expected and measured probability distribu-
tions in the computational basis. We set the number of mea-
surement shots to be Nshot = 104 for each product formula.

The results of the experiment are shown in Fig. 5(a). We
simulate the dynamics of the Hamiltonian in Eq. (28) at dif-
ferent values of (µ, λ, t) on both a numerical simulator and
the real IonQ device. The error on the IonQ device is com-
posed of three parts: the analytical simulation error, the sam-
pling noise as we can only approximate the distribution using
limited samples, and the experimental noise. On a numerical
simulator, there is no experimental noise. We fix p = 0.5 to
eliminate the second-order error ∝ t2. When combining two
product formulas, we set the number of shots per product for-
mula to be N ′shot = Nshot/2 = 5 × 103 for a fair comparison
between the contributing product formulas and the average.
We found a regime of parameters where the sampling errors
remain smaller compared to hardware errors and Trotteriza-
tion errors. We set the simulation times to be small enough
t ∈ [0, 0.2], so that the accumulated errors on the quantum
hardware remain comparable to the Trotter error of an ideal
simulation. Increasing the numberNshot of measurement shots
reduces the sampling error, however, this becomes problem-
atic when the initial and final states are close to each other
so that a prohibitively large number of shots is required to
achieve the necessary level of accuracy. As the shot number
Nshot is unchanged, the sampling error (represented by the er-
ror bar) for the sampling procedure remains the same for dif-
ferent t. To ensure that the sampling error does not overwhelm
the Trotter error in such cases, we choose larger µ and λ for
t = 0.05 in order to increase the Trotter error because the pa-
rameters that control the Trotter error are the dimensionless
products µt and λt.

When simulating quantum dynamics classically, NUSCs
can achieve an improvement of one order of magnitude. On
the other hand, on the IonQ Harmony device, the improve-
ment is negligible for t = 0.2 but becomes noticeable as we
decrease the simulation time from t = 0.2 down to t = 0.05.
At t = 0.05, we experimentally demonstrate a 30% reduction
in the simulation error. Our results indicate that combining
product formulas results in the suppression of the effective
Trotter error in experimental settings. Although the Trotter
error reduction in NUSCs occurs both at short and long evo-
lution times (as demonstrated in Fig. 4), the effect becomes
experimentally measurable on noisy devices only at short evo-
lution times. Finally, in the most interesting regime when the
total evolution time is large, digital quantum simulations split
the evolution time into smaller time steps and apply a prod-
uct formula in each time step. Our approach further applies
a NUSC over full circuits of multiple time steps. However,
hardware errors depend not only on the total simulation time
t, but also on the number of gates applied throughout the evo-
lution, since every gate incurs coherent control errors which
will accumulate. Therefore, we would expect that, in a re-
alistic experimental setting, digital quantum simulation using
either NUSCs or standard Suzuki-Trotter formulas will fail
only when the number of Trotter steps is below a certain crit-
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ical value, whereas the hardware error will start to dominate
when the number of Trotter steps is above this critical value.

V. SUMMARY AND OUTLOOK

In summary, we consider an approach to reduce the digi-
tal quantum simulation error using a weighted average over a
few unitary circuits. We analyze two methods for construct-
ing contributing unitary circuits: (i) taking different orderings
of Hamiltonian terms in Suzuki-Trotter formulas and (ii) ex-
ploiting symmetry transformations. We show that one can po-
tentially achieve the accuracy of a higher-order simulation via
simply averaging the outcome of different unitary circuits re-
gardless of the number of simulation steps (i.e. regardless of
the simulation time), which can save considerable quantum
resources. We demonstrate the error reduction via NUSCs us-
ing experiments on the IonQ device via the Amazon Braket
cloud platform. Finally, in Appendix E, we demonstrate nu-
merically that our approach for averaging unitary simulations
can improve the classical infinite time-evolving block decima-
tion algorithm for simulating quantum systems [41].

While we provide the optimal weight distribution for the
lowest-order error only in the case of Hamiltonians made up
of two directly realizable terms (H = A+B), it would be im-
portant to provide an analytical bound for the error reduction
for a general Hamiltonian that contains more than 2 experi-
mentally realizable terms. It would also be interesting to ana-
lytically prove the error reduction of NUSCs and characterize
how the error reduction scales with system size in long-time
simulations.

The figure of merit exploited in this work evaluates the

performance of a given simulation by calculating the aver-
age simulation error on pure states. Error analysis averaged
over all quantum states in the low-energy subspace of a given
Hamiltonian, building upon the result in Ref. [43], would be
another interesting future direction.

It is also important and interesting to generalize the analysis
in this paper to more advanced quantum simulation methods
such as truncated Taylor series [10] or qubitization [14], as the
error structure would be typically more complicated.

Finally, we emphasize that the optimal weights in our av-
eraging approach depend on the exact error structure deter-
mined by both the simulation algorithm and the properties of
the Hamiltonian. It would be interesting to calculate the exact
optimal weights for the symmetry transformation approach
and the permutation-of-terms approach for some physically
relevant models.
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Appendix for: Improved Digital Quantum Simulation by Non-unitary Channels

In this Appendix, we provide additional details on numerical calculations in the main text and expand upon the theoretical
aspects of this work. In Appendix A, we provide a detailed proof of Theorem 1 in the main text. In Appendix B, we prove
Lemma 1 in the main text and provide more numerical evidence. In Appendix C, we provide the proof of Eq. (22) in the
main text. In Appendix D, we decompose the simulation error into two terms and study the behavior of each term in short-
time simulations and long-time simulations. We also explain the linear growth of simulation error with the number of Trotter
steps in Figure 3(b) at α = 0. Finally, we give the proof of Lemma 2 in the main text. In Appendix E, we use NUSCs in
the classical infinite time-evolving block decimation (iTEBD) algorithm to calculate the ground state and its energy for one-
dimensional quantum models. We numerically show that NUSCs could considerably accelerate the convergence rate of the
algorithm. In Appendix F, we provide the step and sample complexity calculations to bound the random fluctuations when
implementing random sampling for Hamiltonians with a large number of terms in Section III A. In Appendix G, we provide
additional numerical results for the symmetry protection approach in Section III B. We also provide analytical and numerical
verification for the O(1/M) reduction for combining a simulation under a particular group of symmetry protection considered
in Section III B: {Cm = (C1)

m}m=0,...,M−1.

Appendix A: Proof of Theorem 1

In this section, we prove Theorem 1 in the main text.
Suppose that we have M contributing simulations U1, ..., UM and the target evolution V . The average error LF in Eq. (3) for

the NUSC can be written as

LF (U1, ..., UM , p1, ..., pM , V ) =

∫
d|ψ⟩

∥∥∥∥∥
M∑

m=1

pmUm |ψ⟩⟨ψ|U†m − V |ψ⟩⟨ψ|V †
∥∥∥∥∥
2

F

, (A1)

where ∥·∥F is the Frobenius norm, and the integral is over pure states drawn from the Haar measure. When M = 1, this integral
can be evaluated analytically [34]:

LF (U, V ) =

∫
d|ψ⟩

∥∥U |ψ⟩⟨ψ|U† − V |ψ⟩⟨ψ|V †∥∥2
F
= 2

[
1− 1

d(d+ 1)

(
d+

∣∣Tr (U†V )∣∣2)] , (A2)

where d is the dimension of the system. This result makes use of the observation that U† |ψ⟩⟨ψ|U and V † |ψ⟩⟨ψ|V are pure
states and of the calculations of Haar integrals in Refs. [44–46].

The choice of using the Frobenius norm enables analytical evaluation of the average error for any M :

LF (U1, ..., UM , p1, ..., pM , V ) =2

(
1− 1

d+ 1

)( M∑
m=1

p2m +
∑
m>n

pmpn

)

− 2

d(d+ 1)

[
M∑

m=1

pm
∣∣Tr(U†mV )∣∣2 −∑

m>n

pmpn
∣∣Tr(U†mUn

)∣∣2] . (A3)

Now we provide the proof of Theorem 1 in the main text. Given a product formula with leading order error O(tq), we expand
the approximation error up to the (2q + 1)-th order. Since each simulation Um = V − i

∑2q+1
s=q E

(s)
m ts + O(t2q+2) is unitary,

i.e. U†mUm = V †V = I, the error operators E(s)
m satisfy

i

2q+1∑
s=q

ts
(
E(s)†

m V − V †E(s)
m

)
+ t2qE(q)†

m E(q)
m + t2q+1

(
E(q+1)†

m E(q)
m + E(q)†

m E(q+1)
m

)
= O

(
t2q+2

)
. (A4)
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We exploit this constraint to expand Tr
(
U†mV

)
and Tr

(
U†mUn

)
. Ignoring higher order terms O(t2q+2), we have

Tr
(
U†mV

)
= d+ i

2q+1∑
s=q

ts Tr
(
E(s)†

m V
)
, (A5)

∣∣Tr(U†mV )∣∣2 = d2 − t2q
[
dTr

(
E(q)†

m E(q)
m

)
−
∣∣∣Tr(E(q)†

m V
)∣∣∣2]

− 2t2q+1Re
[
dTr

(
E(q+1)†

m E(q)
m

)
− Tr

(
E(q+1)†

m V
)
Tr
(
V †E(q)

m

)]
, (A6)

Tr
(
U†mUn

)
= d+ i

2q+1∑
s=q

ts
[
Tr
(
E(s)†

m V
)
− Tr

(
V †E(s)

n

)]
+ t2q Tr

(
E(q)†

m E(q)
n

)
− t2q+1

[
Tr
(
E(q+1)†

m E(q)
n

)
+Tr

(
E(q)†

m E(q+1)
n

)]
, (A7)∣∣Tr(U†mUn

)∣∣2 = d2 − t2q
{
d
[
Tr
(
E(q)†

m E(q)
m

)
+Tr

(
E(q)†

n E(q)
n

)
− 2Re(Tr

(
E(q)†

m E(q)
n

)]
−
∣∣∣Tr(E(q)†

m V
)∣∣∣2

−
∣∣∣Tr(E(q)†

n V
)∣∣∣2 + 2Tr

(
E(q)†

m V
)
Tr
(
E(q)†

n V
)}
− 2t2q+1

{
dRe

[
Tr
(
E(q+1)†

m E(q)
m

)
+Tr

(
E(q+1)†

n E(q)
n

)]
+ d

[
Tr
(
E(q+1)†

m E(q)
n

)
+Tr

(
E(q)†

m E(q+1)
n

)]
− Re

[
Tr
(
E(q+1)†

m V
)
Tr
(
V †E(q)

m

)
− Tr

(
E(q+1)†

n V
)
Tr
(
V †E(q)

n

)
−Tr

(
E(q+1)†

n V
)
Tr
(
V †E(q)

m

)
− Tr

(
E(q+1)†

m V
)
Tr
(
V †E(q)

n

)]}
. (A8)

Hence, we obtain the lowest two orders of the average error LF :

LF =
2t2q

d(d+ 1)

[
dTr

(
E†qEq

)
−
∣∣Tr(E†qV )∣∣2]+ 4t2q+1

d(d+ 1)
Re
[
dTr

(
E†q+1Eq

)
− Tr

(
E†q+1V

)
Tr
(
V †Eq

)]
, (A9)

where Eq =
∑M

m=1 pmE
(q)
m and Eq+1 =

∑M
m=1 pmE

(q+1)
m . Eq. (A9) is exactly the conclusion of Theorem 1. We note that the

above equation also guarantees that the (2q)-th order error is always positive. This is because dTr
(
A†A

)
≥ |Tr(A)|2, where

A = E†qV .

Appendix B: Proof of Lemma 1

In this section, we present a detailed proof of Lemma 1 in the main text and provide additional numerical evidence illustrating
the Lemma.

As defined in Eqs. (17,18) in the main text, U1 and U2 are the two possible second-order Trotterizations of A and B, which
are the two experimentally realizable parts of the Hamiltonian H = A + B. Following the notation in Appendix A, we derive
the third-order error for the two product formulas and the NUSC according to Ref. [36]:

E
(3)
1 =

1

12
[B, [B,A]]− 1

24
[A, [A,B]] , (B1)

E
(3)
2 =

1

12
[A, [A,B]]− 1

24
[B, [B,A]] , (B2)

E3 =
3p− 1

24
[B, [B,A]] +

2− 3p

24
[A, [A,B]] =

1

24
[(2− 3p)A+ (1− 3p)B, [A,B]] . (B3)

By exploiting the triangle inequality and the sub-multiplicative property of the norm, we can bound the norm of E3 by

∥E3∥F ≤
1

12
∥(2− 3p)A+ (1− 3p)B∥F ∥[A,B]∥. (B4)

This bound indicates that the norm of the averaged third-order error depends on ∥(2− 3p)A+ (1− 3p)B∥F . We write the
Hamiltonian as H =

∑
σ Jσσ, where σ are Pauli strings, and assume that A and B have support on non-overlapping sets S and

Sc of Pauli strings. In this case, we have Tr
[
(αA+ βB)

2
]
= α2 Tr

(
A2
)
+ β2 Tr

(
B2
)
, so that

∥E3∥2F ≤
1

12
2n
[
(2− 3p)2J2

A + (1− 3p)2J2
B

]
∥[A,B]∥2, (B5)



14

FIG. 6: Illustrative numerical simulation of the one-dimensional spin model H =
∑

iXiXi+1 + JXi +
∑

j YjYj+1. We plot the actual
average error (i.e. loss) LF (blue), the numerical result for ∥E3∥2F (red), and the analytical result for ∥E3∥2F (green). All curves are normalized
to be 1.0 at p = 0 (where we only apply U1). The optimal weight for the (approximate) analytical result is popt = 0.5625, while the actual
optimal weight is very close: popt = 0.5750.

where J2
A =

∑
σ∈S J

2
σ , J2

B =
∑

σ∈Sc J2
σ , and n is the number of qubits. Equation (B5) also allows us to derive the optimal

weight popt =
2J2

A+J2
B

3(J2
A+J2

B)
and the corresponding improvement in Lemma 1 in the main text.

To further illustrate the result of Lemma 1, we provide the numerical simulation of the one-dimensional spin model
H =

∑
iXiXi+1 + JXi +

∑
j YjYj+1. As shown in Fig. 6, we consider averaging two second-order Trotterizations given

in Eqs. (17,18) in the main text with A =
∑

iXiXi+1 + JXi and B =
∑

j YjYj+1. We set the system size to be n = 6, the
simulation time to be t = 0.1, and the parameter J to be J = 1. In this case, we have J2

A = 2n(2n − 1) and J2
B = 2n(n − 1).

By Lemma 1, we can obtain the optimal weight to be popt = 0.5625 and the error to be 0.070 and 0.111 of the errors of U1 and
U2, respectively. Here, the absolute value of the errors for U1, U2, and the average with the optimal weights are 0.0213, 0.0130,
and 0.0023. We observe from the numerical results in Fig. 6 that the actual loss LF and error ∥E3∥2F deviate from the analytical
result slightly due to the higher-order error.

Appendix C: Proof of Equation (22)

In this section, we provide the proof of Eq. (22) in the main text.
As mentioned in the main text, the recursive definition for higher-order Suzuki-Trotter product formulas is given by

S2(t) =

Γ∏
j=1

exp
(
iHj

t

2

) 1∏
j=Γ

exp
(
iHj

t

2

)
, (C1)

Sk(t) = S2
k−2 (ukt)Sk−2 ((1− 4uk) t)S

2
k−2 (ukt) , (C2)

where uk =
(
4− 41/(k−1)

)−1
. Here, Sk(t) provides a digital quantum simulation with (k + 1)th-order error in t. Without loss

of generality, we can assume that ESk
(t) has the form

ESk
(t) = Kk

k+1t
k+1 +Kk

k+2t
k+2 +Kk

k+3t
k+3 +O(tk+4), (C3)

where Kk
i denotes the error coefficient matrix of th i-th order error for ESk

(t). By the recursive relation given by Eq. (C1), we
can derive the following relation between ESk

(t) and ESk−2
(t) under the assumption ∥H∥F t≪ 1:

ESk
(t) =ESk−2

(ukt)e
iH(1−uk)t + eiHuktESk−2

(ukt)e
iH(1−2uk)t + eiH(1−uk)tESk−2

(ukt)

+ eiH(1−2uk)tESk−2
(ukt)e

iHukt + eiH2uktESk−2
((1− 4uk)t)e

iH2ukt,
(C4)

where the higher-order terms of the form ESk−2
(ukt)ESk−2

(ukt) and ESk−2
(ukt)ESk−2

((1 − 4uk)t) are ignored. ESk
(t) has

the lowest-order error term of (k + 1)th-order, while ESk−2
(t) has the lowest-order error term of (k − 1)th-order. We consider
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the kth-order error on both the left-hand and the right-hand side of Eq. (C4). The coefficient on the left-hand side is 0, while the
coefficient on the right-hand side can be computed to yield the following equation:

0 = 2uk−1k (5uk − 1)tk ·
(
2Kk−2

k − i
{
Kk−2

k−1 , H
})
, (C5)

where {A,B} = AB +BA is the anticommutator. We utilized the fact that 4uk−1k + (1− 4uk)
k−1 = 0.

Now we consider the difference between the left-hand side and the right-hand side of Eq. (22) in the main text. Taking
advantage of the representation in Eq. (C4), this difference can be written as

2eiHuktESk−2
(ukt)e

iH(1−2uk)t + 2eiH(1−2uk)tESk−2
(ukt)e

iHukt + eiH2uktESk−2
((1− 4uk)t)e

iH2ukt. (C6)

The kth-order term in Eq. (C6) gives exactly the right-hand side of Eq. (C5) and hence vanishes. We now consider the
(k + 1)th-order term in Eq. (C6). It gives

− 4Kk−2
k+1u

k−1
k tk+1(5uk − 1)(3uk − 1)

+ uk−1k tk+1
[
i
{
Kk−2

k , H
}
· 6uk(5uk − 1) +

(
Kk−2

k H2 +H2Kk−2
k

)
·
(
3u2k + 4uk − 1

)
+HKk−2

k H · (24u2k − 4uk)
]
.

(C7)
Given that, as k → ∞, uk → 1/3, we have the first term approaching 0 and the rest of the terms approaching to
2/3uk−1k tk+1

{
(2Kk−2

k − i
{
Kk−2

k−1 , H
}
), iH

}
in this limit. Then, using Eq. (C5), we find these remaining terms also van-

ish. Therefore, the leading-order error of Eq. (C6) has a scaling of O(tk+2) when k →∞. According to Eq. (C4), the difference
between the left-hand side and the right-hand side of Eq. (22) is exactly Eq. (C6) and has a (k + 2)th order leading-order term.
This concludes the proof of Eq. (22) in the main text.

In addition, in Table I, we provide numerical values for some of the parameters in Eq. (C7) and their ratios for k =
4, 6, 8, 10,∞.

k 6uk(5uk − 1) (3u2
k + 4uk − 1)/6uk(5uk − 1) (24u2

k − 4uk)/6uk(5uk − 1)
4 2.667 0.440 0.924
6 1.937 0.470 0.954
8 1.722 0.480 0.967

10 1.619 0.485 0.974
∞ 4

3
1
2

1

TABLE I: The parameters in Eq. (C7) for some finite k and for infinite k

From Table I, we see that, when k = 8, the ratios (3u2k + 4uk − 1)/6uk(5uk − 1) and (24u2k − 4uk)/6uk(5uk − 1) deviate
by only about 5% from their ideal values at k →∞. Since the average error LF is defined using the square of the norm, such a
deviation would only cause an ≈ 10−3 deviation.

Appendix D: Error decomposition for long-time simulations

In this section, we consider the error structure of a N -step simulation U(N,∆t). Suppose the exact evolution in a time step
∆t is V (∆t) = e−iH∆t. We consider a simulation circuit U(∆t) = V (∆t)− E(∆t), where E(∆t) is the simulation error. We
can decompose E(∆t) into

E(∆t) = [H, η(∆t)] + ξ(∆t) (D1)

for some operators η and ξ such that ξ commutes with H . In terms of η and ξ, the error for the N -step simulation can be
approximated to leading order as

E(t) ≈
N∑
j=1

e−iH(N−j)∆tE(∆t)eiH(N−j)∆t ≈
∫ t

0

e−iHt′E(∆t)

∆t
eiHtdt′ (D2)

= ξ(∆t)N +
1

∆t

[
e−iHtη(∆t)eiHt − η(∆t)

]
. (D3)

Notice that, at a fixed ∆t, the second term in Eq. (D3) is bounded by 2∥η∥
∆t , independent ofN . Meanwhile, the first term increases

linearly with N and hence becomes the dominant error in the long-time (large-N ) limit.
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To derive an analytical form of η and ξ, we consider an n-qubit Hamiltonian H represented by its eigenvalues and eigenstates
as

H =

d∑
i=1

Ei|i⟩⟨i|, (D4)

where d = 2n is the dimension of the Hilbert space, {|i⟩} are the eigenvectors, and {Ei} are the energy spectrum of the
Hamiltonian. For simplicity, we suppose the error E(∆t) = E =

∑
i,j eij |i⟩⟨j|. We can calculate ξ as

ξ = lim
T→∞

1

T

∫ T

0

e−iHtEeiHtdt (D5)

=
∑

i,j:Ei=Ej

ei(Ej−Ei)t|i⟩⟨j|eij . (D6)

Now we consider an example of the all-to-all-interacting Heisenberg model:

H =
∑
i<j

(XiXj + YiYj + ZiZj) (D7)

and analyze the Trotter error in simulating time evolution under H . This Hamiltonian corresponds to the long-range-interacting
Heisenberg model with the power-law exponent α = 0. The presence of additional symmetries in Eq. (D7) allows us to compute
the error terms analytically. We consider this special model in order to explain why, in Figure 3(b) and Figure 4(b) in the main
text, the α = 0 model does not undergo a transition in what error term dominates Eq. (D3).

We can simplify our calculations by noticing that the Hamiltonian (D7) can be written in terms of a large spin:

H = 2(S2
x + S2

y + S2
z )−

3

4
N = Hx +Hy +Hz −

3

4
N, (D8)

where Hx,y,z = 2S2
x,y,z and the components of the ”large spin” are defined sums of Pauli operators: Sx = 1

2

∑
iXi, Sy =

1
2

∑
i Yi, Sz = 1

2

∑
i Zi. Components of the spin operator satisfy standard commutation relations:

[Sα, Sβ ] = iϵαβγSγ . (D9)

To construct the Trotter product formula, we split the Hamiltonian into three terms Hx, Hy , and Hz . We first consider the
error term for the first-order product formula. The error has the following structure:

Eq=2 ∝ ∆t2
∑
µ>ν

[Hµ, Hν ]. (D10)

We will show that the second-order error Eq=2 commutes with H . Due to the rotational symmetry of the Hamiltonian, we only
need to show that [H,C1] = 0, where

C1 = [S2
x, S

2
y ] = Sx[Sx, Sy]Sy + [Sx, Sy]SxSy + SySx[Sx, Sy] + Sy[Sx, Sy]Sx

= i
{
4SxSzSy − 2i(S2

y + S2
z ) + 2iS2

x

}
= i (4SxSySz − 2iH) . (D11)

From Eq. (D11) it follows that we only need to compute [H,SxSySz]. We now separately calculate the contribution to this
commutator from each of the three terms in H . The contribution from S2

x reads

[S2
x, SxSySz] = Sx[S

2
x, Sy]Sz + SxSy[S

2
x, Sz] = Sx (Sx[Sx, Sy]Sz + [Sx, Sy]SxSz)+

SxSy (Sx[Sx, Sz] + [Sx, Sz]Sx) = i
(
S2
xS

2
z + SxSzSxSz − SxSySxSy − SxS

2
ySx

)
. (D12)

Next, the contribution from S2
y reads

[S2
y , SxSySz] = [S2

y , Sx]SySz + SxSy[S
2
y , Sz] = i

(
−SySzSySz − SzS

2
ySz + SxS

2
ySx + SxSySxSy

)
. (D13)

Finally, the contribution from S2
z reads

[S2
z , SxSySz] = [S2

z , Sx]SySz + Sx[S
2
z , Sy]Sz = i

(
SzS

2
ySz + SySzSySz − SxSzSxSz − S2

xS
2
z

)
. (D14)
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Summing up the three contributions we obtain

[H,C1] = [S2
x + S2

y + S2
z , 4iSxSySz] = 0. (D15)

Equation (D15) implies that the total error for the N -step first-order Suzuki-Trotter formula scales linearly with the number of
time steps: ∥Eq=2(t)∥ = N∥E(∆t)∥. Similarly, one can show that the second-order error term Eq=3 for the second-order product
formula [36],

t3

24

Γ∑
γ1=1

[
Hγ1

+ 2

Γ∑
γ2=γ1+1

Hγ2
,

[
Γ∑

γ3=γ1+1

Hγ3
, Hγ1

]]
, (D16)

commutes with the Hamiltonian (D7). The commutativity of the second-order error term with the all-to-all-interacting spin
Hamiltonian (D7) explains the strictly linear growth of the simulation error with the number of Trotter steps in Fig. 3(b) at
α = 0.

We now give the proof of Lemma 2 in the main text. We consider a non-degenerate Hamiltonian, i.e. Ei ̸= Ej for i ̸= j. In
this case, for a given simulation error E, ξ is just the diagonal part of E in the Hamiltonian eigenbasis:

ξ =

d∑
i=1

eii|i⟩⟨i|. (D17)

To obtain the expression of η satisfying [H, η] = E − ξ, we write η =
∑

i ̸=j e
(1)
ij |i⟩⟨j| and find

e1ij =
eij

Ei − Ej
. (D18)

We now consider the weighted average of second-order Trotterizations for non-degenerate bipartite Hamiltonian H = A+B.
We write the Hamiltonian as H =

∑d
i=1Ei|i⟩⟨i| and A,B as

A =
∑
i

αi|i⟩⟨i|+
∑
i̸=j

αij |i⟩⟨j|, (D19)

B =
∑
i

(Ei − αi)|i⟩⟨i| −
∑
i̸=j

αij |i⟩⟨j|. (D20)

Consider two second-order Suzuki-Trotter formulas U1 and U2 given in Eqs. (17,18). Referring to the second term of Eq. (D1)
for U1 and U2 as ξ1 and ξ2, we find

ξ1 = ξ2 ∝
∑
i

κi|i⟩⟨i|, (D21)

κi =
∑
j ̸=i

2αijαji(Ej − Ei). (D22)

Here, we only consider the leading term and therefore focus on the coefficient matrix for ∆t3. This result demonstrates that, no
matter what non-degenerate Hamiltonian we choose, as long as A and B are not diagonal, we will have ξ1 ≡ ξ2 to the leading
order. This means that, by averaging these two product formulas, we can never reduce the leading-order (∝ ∆t3) coefficient in
ξ. All the error reduction in this case will be from the reduction in the first term of Eq. (D1) by combining [H, η1] and [H, η2]
for short-time simulations.

Suppose that the optimal weight p for the second-order simulation is popt and that it results in a reduction of the term [H, η].
If we now consider fourth-order simulation, Eq. (23) implies that the resulting error does not depend on the commuting part
(ξ) of the second-order error, and is instead entirely determined by the non-commuting part ([H, η]) of the second-order error.
Therefore, the optimal weight p for the fourth-order simulation is the same as the optimal weight popt for the second-order
simulation, and the corresponding error is reduced by the same factor as the non-commuting part of the second-order error.
Since the second-order error also contains the commuting part, which is not reduced, this concludes the proof of part (i) of
Lemma 2.

To prove part (ii) of Lemma 2, we first derive expressions of the first term in the second-order error:

[H, η1] ∝
∑
i,j ̸=i

[αij(Ej − Ei)(2Ei − αi − 2Ej + αj) +
∑
l ̸=i,j

αilαjl(2El − Ei − Ej)] |i⟩ ⟨j| , (D23)

[H, η2] ∝
∑
i,j ̸=i

[αij(Ej − Ei)(2Ej − αi − 2Ei + αj) +
∑
l ̸=i,j

αilαjl(2El − Ei − Ej)] |i⟩ ⟨j| . (D24)
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Again, we only consider the leading term and therefore focus on the coefficient matrix for ∆t3. We consider combining two
product formulas of (2k + 4)th order. By using Eq. (23) k times, we can approximate the simulation error for the two formulas
as

[H, ...,H, [H, η1]] ∝
∑
i,j ̸=i

(Ej − Ei)
2k[αij(Ej − Ei)(2Ei − αi − 2Ej + αj) +

∑
l ̸=i,j

αilαjl(2El − Ei − Ej)] |i⟩ ⟨j| , (D25)

[H, ...,H, [H, η2]] ∝
∑
i,j ̸=i

(Ej − Ei)
2k[αij(Ej − Ei)(2Ej − αi − 2Ei + αj) +

∑
l ̸=i,j

αilαjl(2El − Ei − Ej)] |i⟩ ⟨j| . (D26)

As k increases, only the terms with large (Ej −Ei) will matter. At large k, the value of a few terms will determine the absolute
value of the simulation error, which requires fewer weight parameters to optimize. This observation makes it possible to obtain
significant error reduction via averaging over a few product formulas. In the limit k →∞, since the largest (Ej −Ei) is unique
as the Hamiltonian is non-degenerate, we can ignore all but one entry in [H, ...,H, [H, η1]] and [H, ...,H, [H, η2]]. Therefore,
the optimal weights for our approach would converge to a particular value p∗ that only depends on these two terms as the order
k increases. This concludes the proof of part (ii) of Lemma 2 in the main text. Furthermore, in the case when this entry has the
opposite sign in the two errors, we can completely eliminate the leading-order error in this limit by adjusting p.

Appendix E: Application to classical algorithms for studying quantum models of infinite size

In this section, we consider applying our averaging approach to classical simulations of quantum models. The infinite time-
evolving block decimation (iTEBD) algorithm [41, 47, 48] is widely used to approximate ground-state energies and ground
states of one-dimensional quantum models. It is a method based on matrix product states (MPS) [49] and can approximate the
ground state of an infinite-size one-dimensional chain.

We consider a one-dimensional translationally-invariant infinite-chain model with sites labeled by r ∈ Z and each described by
a complex Ds-dimensional vector space Vr ∼= CDs . Starting with a translationally invariant initial pure state |Ψ⟩ not orthogonal
to the desired ground state, we can find the ground state by evolving |Ψ⟩ in imaginary time:

|G⟩ = lim
τ→∞

e−τH |Ψ⟩, (E1)

which requires classically simulating e−τH .
The iTEBD method represents |Ψ⟩ using an MPS, and we briefly recap here the main idea of this representation. For any site

r, we denote by [← r] and [r + 1→] the semi-infinite sub-chain of sites {−∞, ..., r} and {r + 1, ...,∞}, respectively. We then
write the Schmidt decomposition of |Ψ⟩ across this partition as

|Ψ⟩ =
Dp∑
α=1

G[r]
α |Ψ[←r]

α ⟩ ⊗ |Ψ[r+1→]
α ⟩, (E2)

where the Schmidt rank Dp is assumed to be finite, {G[r]
α } are the Schmidt coefficients, and {|Ψ[←r]

α }, {|Ψ[r+1→]
α } are basis

states. We use a three-index tensor T [r] to relate the Schmidt basis across two neighboring partitions. Therefore, the initial state
|Ψ⟩ can be expanded using the local basis |i[r]⟩ for site r and using G[r]T [r+1]G[r+1]:

|Ψ⟩ =
Dp∑

α,β=1

Ds∑
i=1

G[r]
α T

[r+1]
iαβ G

[r+1]
β |Ψ[←r]

α ⟩|i[r]⟩|Ψ[r+2→]
α ⟩. (E3)

We can then decompose |Ψ⟩ using local bases for sites {r + 1, r + 2} in terms of G[r]T [r+1]G[r+1]T [r+2]G[r+2] and so on. By
repeatedly exploiting this decomposition, we can derive an MPS representation for |Ψ⟩.

Notice that directly implementing the evolution using the entire Hamiltonian H is impossible for MPS. We thus implement
the imaginary-time evolution e−τH using digital simulation. A direct method is to split the Hamiltonian and apply the first-order
product formula. As shown in Fig. 7(a), in case of a two-body nearest-neighbor Hamiltonian H , we can split H into a block of
terms Hi,i+1 with even i (Heven) and a block of terms Hi,i+1 with odd i (Hodd). Therefore, for a fixed step size dτ , the digital
simulation of e−τH at τ = Ndτ →∞ takes the form

lim
τ→∞

e−τH ≈
∏

N→∞

( ∏
i=odd

Ui,i+1(dτ)

)( ∏
i=even

Ui,i+1(dτ)

)
=
∏

N→∞

( ∏
i=odd

e−dτHi,i+1

)( ∏
i=even

e−dτHi,i+1

)
, (E4)
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(a) (b)

FIG. 7: An illustration of (a) 2-site and (b) 3-site iTEBD algorithm using the first-order product formula.

where Ui,i+1(dτ) = e−dτHi,i+1 andN is the number of steps for the digital simulation. This method is known as a 2-site iTEBD
method. In each iteration corresponding to time step dτ , we contract G[r]T [r+1]G[r+1] and apply a block Ui,i+1(dτ). We then
use singular-value decomposition to decompose the tensor into the new G[r]T [r+1]G[r+1].

Similarly, a Hamiltonian composed of terms Hi,i+1,i+2 acting on triples of adjacent sites can be decomposed into three parts
according to the value of i modulo 3, as shown in Fig. 7(b). This method is known as the 3-site iTEBD method. Compared
to the 2-site algorithm, two singular-value decompositions are required to decompose the tensor into a product of five smaller
tensors. While we presented the example of a first-order product formula, imaginary time evolution can also be realized using
higher-order product formulas.

Now we consider constructing NUSCs by averaging different Suzuki-Trotter product formulas. When calculating the ground-
state energy via Tr(H|G⟩⟨G|)/Tr(|G⟩⟨G|) with |G⟩ = limτ→∞ e−τH |Ψ⟩, we can represent |G⟩⟨G| as a weighted average of
different simulations U1, ..., UM as

|G⟩⟨G| =
M∑

m=1

pmUm|Ψ⟩⟨Ψ|U†m, (E5)

where {p1, ..., pM} are the weights. Since the iTEBD algorithm is a classical computational method, we can directly take the
average of the unitaries Um, which can be regarded as a non-unitary operation on the initial state |Ψ⟩:

|G⟩ =
M∑

m=1

pmUm|Ψ⟩. (E6)

To study the performance of the averaging technique, we perform a numerical experiment on both two-body Hamiltonians and
three-body Hamiltonians. For the 2-site iTEBD method, we consider a Heisenberg model with nearest-neighbor 2-body terms:

H =
∑
i

(XiXi+1 + YiYi+1 + ZiZi+1) , (E7)

where Xi, Yi, Zi are Pauli operators on spin i. We exploit an algorithm similar to that in Ref. [41] and decrease time-step
size dτ ∈ {0.1, 0.01, 0.001}. As we expect the ground state as the output of the algorithm, the converged state should remain
unchanged after each iteration dτ . We measure the distance between the states before and after each iteration and regard it as
the error for each iteration. Once this distance is below a certain threshold, we say the algorithm has converged at the current
time-step size and we decrease the time-step size. Otherwise, we enter the next iteration. We count the total number of iterations
required for the algorithm to converge for all dτ ∈ {0.1, 0.01, 0.001}. We set the threshold value as 10−10 in the following
numerical experiments. As shown in Fig. 8(a), we compare the number of iterations that the algorithm requires to convergence
for first, second, and fourth-order standard Suzuki-Trotter formulas and for the unweighted average (p = 0.5)—using Eq. (E5)—
of two first- and second-order Suzuki-Trotter formulas corresponding to the two orderings of Hodd and Heven. In Fig. 8(b), we
perform a similar numerical experiment using a linear combination of unitaries [Eq. (E6)] instead of taking a mixture of states
[Eq. (E5)]. We observe that, by averaging different simulations, one can reduce the required iteration number by a factor of
three.
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(a)

(b)

(c)

(d)

2-body Heisenberg model + Combining states

2-body Heisenberg model + Combining untaries

3-body SPT model + Combining states

3-body model in Eq. (E9) + Combining states

𝑘 = 1

𝑘 = 1

𝑘 = 1

𝑘 = 1

𝑘 = 2
𝑘 = 4

𝑘 = 2
𝑘 = 4

𝑘 = 2
𝑘 = 4

𝑘 = 2
𝑘 = 4

Rand. 𝑘 = 1

Rand. 𝑘 = 1

Rand. 𝑘 = 1

Rand. 𝑘 = 1

Rand. 𝑘 = 2

Rand. 𝑘 = 2

Rand. 𝑘 = 2

Rand. 𝑘 = 2

FIG. 8: Application of averaging simulations in iTEBD methods with equal weight p1 = p2 = 0.5 for two first- and second-order Suzuki-
Trotter formulas with permuted sequences.
(a) Using 2-site iTEBD methods to calculate the ground state of the Hamiltonian in Eq. (E7). We compute the error as a function of iteration

number for first- (k = 1), second- (k = 2), and fourth-order (k = 4) Suzuki-Trotter formulas and for combining two first-order (labeled
“Rand. k = 1”) and two second-order (labeled “Rand. k = 2”) simulations via Eq. (E5). (b) Same as (a), but using a linear combination of
unitaries [Eq. (E6)]. (c) Same as (a), but using the 3-site iTEBD method to calculate the ground state of the Hamiltonian in Eq. (E8) with

Ji = hi = −Vi = 1. (d) Same as (c), but for the Hamiltonian in Eq. (E9).

For the 3-site iTEBD method, we observe a similar speedup in the convergence of the iTEBD algorithm. Specifically, we
consider the family of Hamiltonians

H = −
∑
i

(JiZi−1XiZi+1 + ViXiXi+1 + hiXi), (E8)

specified by parameters Ji, Vi, and hi. This family of Hamiltonians is used in the study of topological edge states defined at
arbitrarily high energies [50] and in the study of Floquet symmetry-protected topological (SPT) phases [51, 52]. The Hamiltonian
in Eq. (E8) has a Z2 × Z2 symmetry. In the extreme case when Vi = hi = 0, the model is exactly solvable by mapping to free
fermions, and the eigenstates of Eq. (E8) are the mutual eigenstates of the stabilizers Zi−1XiZi+1. These eigenstates are SPT
states and the ground states are called cluster states. When Vi, hi ̸= 0, the single- and two-body terms make the ground states
deviate from cluster states, and the model can not be solved exactly. In Fig. 8(c), we fix the parameters to be Ji = hi = −Vi = 1
and apply the 3-site iTEBD method to calculate the ground-state energy and the ground-state wavefunction. In particular, we plot
the error for the ground state (the trace distance between the output state and the actual ground state) as a function of the number
the iterations. In order to perform averaging, we combine with equal weight (p = 0.5) via Eq. (E5) two product formulas, such
that the first product formula has the term ordering as in Eq. (E8) and the second product formula has the order of the terms
reversed. We see that, using the averaging technique, we achieve a 50% reduction in the iteration number required to converge
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to the ground state.
It is worth mentioning that, in some cases, we can get more dramatic reductions in the number of iterations required to

converge. As an example, consider the following one-dimensional spin model with 3-body terms:

H = −
∑
i

(Zi−1XiZi+1 + Yi). (E9)

In Fig. 8(d), we use the 3-site iTEBD method to approximate the ground state and the ground-state energy for this model.
For the averaging technique, we again combine with equal weight (p = 0.5) via Eq. (E5) two product formulas at both order
k = 1 and order k = 2 with the second one reversing the order of the three Hamiltonian terms. While the algorithms that
exploit standard (not averaged) Suzuki-Trotter formulas require more than 5×104 steps even for fourth-order formulas, a simple
equally-weighted combination of two first-order product formulas requires fewer than 500 steps to converge to the final energy,
which is a two-orders-of-magnitude improvement compared to the unaveraged algorithm.

Appendix F: Derivation of step and sample complexity for long-time simulations

In Section III A, we have shown that, by applying permutations of Hamiltonian terms and using weighted averaging, we can
reduce the quantum simulation error. In particular, we demonstrated how this approach works in the case where we choose
only a few permutations. By choosing a larger number of contributing permutations, we expect an increasing ability to reduce
the simulation error. In particular, in Section III A, we show that averaging over the complete permutation group with equal
weights for a Hamiltonian composed of Γ terms provides a reduction in the asymptotic leading error term by a factor of Γ.
This approach is immediately applicable to Hamiltonians with a small number of terms. However, the size of the permutation
group grows exponentially with the number of Hamiltonian terms, and averaging a large number of permuted product formulas
requires more resources. To address this issue, we mention in Section III A an alternative approach: to randomly sample all the
product formulas in the permutation group with equal weights. In Section III A, we also give an upper bound on the statistical
error from sampling a limited number of permutations. In this appendix, we prove this bound. The resulting bound also holds
for Section III B, where we are averaging over a large number of symmetries in the symmetry group with equal weights. For
technical simplicity, we consider the spectral norm in this section, which is different from the Frobenius norm considered in the
main text.

We assume that the simulation Um(N,∆t) is an N -step simulation with the simulation block Um(∆t) in each step being a
product formula with leading-order error O(tq). Consider running our algorithm T times (corresponding to T different choices
of m in Um(N,∆t)) and averaging (with equal weights) the results of observable measurements afterward. The step size should
be small, ∆t = t/N << 1, while t could have an arbitrary value. The simulation error for a particular input state ρ can be written
as (1/T )

∑
j U(j)ρU

†
(j) − V ρV

†, where V is the ideal evolution. Defining U(ρ) = (1/T )
∑

j U(j)ρU
†
(j) and V(ρ) = V ρV †, we

can write the spectral norm of the simulation error as

∥U(ρ)− V(ρ)∥ ≤ ∥U(ρ)− V(ρ)∥1
≤ max

ρ
∥U(ρ)− V(ρ)∥1

≤ max
φ∈C4n×4n

∥(I⊗ U)(φ)− (I⊗ V)(φ)∥1

= ∥U − V∥⋄

≤ 2

∥∥∥∥∥∥ 1T
∑
j

U(j) − V

∥∥∥∥∥∥ (F1)

where ∥·∥1 is the trace norm, ∥·∥⋄ is the diamond norm between quantum channels, and I ⊗ U(·) is the channel that performs
the identity channel on the first n qubits and U(·) on the remaining n qubits. Here, the first line follows from the definition of
the norms, the third line uses the fact that

∥∥(I⊗ U) ( I
2n ⊗ ρ

)
− (I⊗ V)

(
I
2n ⊗ ρ

)∥∥
1
= ∥U(ρ)− V(ρ)∥1 for any ρ, and the last

line follows from Lemma 3.4 of Ref. [25]. We decompose (1/T )
∑

j U(j) − V into the expectation bias E[U(j)] − V and the
fluctuation error represented as

EFluc =
1

T

T∑
j=1

U(j)(N,∆t)− E [Um(N,∆t)] , (F2)

where U(j) is the j-th random sample of our algorithm (i.e. one of the Um(∆t)). The following theorem asserts the sample (T )
and step (N ) complexity required to bound ∥EFluc∥2. We remark that this sample complexity does not consider the number of
samples that are required to converge to expectation values of observables.
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Theorem 2. Consider simulating the dynamics V = e−iHt of an n-qubit Hamiltonian H =
∑Γ

j=1Hj . Pick ϵ, δ > 0 and
consider drawing T random simulations U(1), . . . , U(j), . . . , U(T ) each of N steps and ∆t = t/N ≪ 1 such that

T = Ω

(
γtq

N (2q−1)/2ϵ

(
n+ log

(
1

δ

))1/2
)
, (F3)

where γ =
∥∥∥E(q)

m

∥∥∥
2
+
∥∥∥ξ(q)m

∥∥∥
2
, E(q)

m is the error matrix for each time step, and ξ(q)m is the part of E(q)
m that commutes with H ,

following notation from the main text. Then with probability at least 1 − δ, the fluctuation error ||EFluc||2 is bounded above by
ϵ. Equivalently, if we fix T and set the step number to be

N = Ω

(
γ2/(2q−1)t2q/(2q−1)

(Tϵ)2/(2q−1)

(
n+ log

(
1

δ

))1/(2q−1)
)
, (F4)

then the fluctuation error ∥EFluc∥2 is bounded above by ϵ with probability at least 1− δ.

Proof. The proof of Theorem 2 follows from the matrix Bernstein inequality [37–39]. We introduce several mathematical results
regarding matrix concentration inequalities. Suppose X1, ..., XN are independent and identically distributed (i.i.d.) random
variables. According to the strong law of large numbers, the sample mean 1/N

∑N
i=1Xi converges to the expectation E[Xi] for

large N . For random matrices X1, ..., XN , the following matrix Bernstein inequality holds [37]:

Lemma 3 (matrix Bernstein inequality [37–39, 53, 54]). Consider a set of d×d random matrices {X1, ..., XT } with E[Xi] = 0
and ||Xi||2 ≤ R for all i. Then for any τ > 0, we have

Pr

[∥∥∥∥∥
T∑

i=1

Xi

∥∥∥∥∥
2

≥ τ

]
≤ 2d exp

(
−τ2/2

TR2 +Rτ/3

)
. (F5)

Now we continue to prove Theorem 2. We first prove the sample complexity result given in Eq. (F3). We denote Xj =
1
T U(j) − 1

T (E[Um]) for j = 1, . . . , T , which satisfies E[Xj ] = 0. Moreover, the spectral norm of each random variable Xj is
bounded by

∥Xj∥2 =
1

T

∥∥U(j) − (E[Um])
∥∥
2

(F6)

≤ 1

T
∥E[Um]− V ∥2 +

∥∥V − U(j)

∥∥
2

(F7)

≤ N

T
max
m

[∥∥∥E(q)
m

∥∥∥
2
+
∥∥∥ξ(q)m

∥∥∥
2

]
tq/Nq. (F8)

In the second line, we used the triangle inequality. The first term in the second line is bounded by N
∥∥∥ξ(q)m

∥∥∥
2
(t/N)q according to

Eq. (11) in the main text if we only consider the leading-order error. The second term in the second line is bounded byN
∥∥∥E(q)

m

∥∥∥
2

using the assumption that Um is a product formula with leading order O(tq). Thus we obtain the bound in the third line. We
apply the matrix Bernstein inequality to the sum 1

T

∑T
j=1 U(j)− (E[Um]) =

∑T
j=1Xj with R = γtq/TNq−1. Therefore, given

ϵ ≤ NR, the probability that
∥∥∥ 1
T

∑T
j=1 U(j) − (E[Um])

∥∥∥
2
≥ ϵ can be bounded by

Pr

[∥∥∥∥∥
T∑

i=1

Xi

∥∥∥∥∥
2

≥ ϵ

]
= Pr

∥∥∥∥∥∥ 1T
T∑

j=1

UN,j ...U1,j − (E[Um])N

∥∥∥∥∥∥
2

≥ ϵ

 (F9)

≤ 2d exp

(
−ϵ2/2

NR2 +Rϵ/3

)
(F10)

≤ 2d exp

(
−3ϵ2

8NR2

)
(F11)

= 2d exp

(
−3T 2N2q−1ϵ2

8γ2t2q

)
. (F12)

Therefore, if we choose T ≥ Θ
(
tqγϵ−1N−(2q−1)/2

(
n+ log(1/δ)

1/2
))

, then we have
∥∥∥ 1
T

∑T
j=1 U(j) − (E[Um])

∥∥∥
2
≤ ϵ with

probability at least 1− δ.
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Random Symmetry, 𝑘 = 2 Random Symmetry, 𝑘 = 4 Random Symmetry, 𝑘 = 6 Single-qubit Hadamard, 𝑘 = 6(a) (b) (c) (d)

FIG. 9: (a) We employ the second-order (k = 2) product formula as U1 and plot the error reduction as a function of the number of
Haar-randomly chosen symmetry transformations at t = 100 and different power-law exponents α = 0, 1, 2, 4. The dashed horizontal line
represents the error reduction achieved by combining 3! second-order product formulas with all possible orderings of Hamiltonian terms HX ,
HY , and HZ . (b) Same as (a), but for the 4th-order (k = 4) product formula. (c) Same as (a), but for the 6th-order (k = 6) product formula.
(d) We use the symmetry operator

∑n
i=1Hi and construct Cm = exp(i(m)

⊕n
i=1Hi∆) for m = 0, ...,M − 1 and ∆ = 0.01, where Hi

is the Hermitian Hadamard matrix acting on qubit i. The initial simulation is the 6th-order product formula. We plot the error reduction as a
function of the number of symmetry transformations at different power-law exponents α.

For the step complexity when we fix T , it follows from Eq. (F12) that, if N ≥
Θ
(
γ2/(2q−1)t2q/(2q−1) (n+ log(1/δ))

1/(2q−1)
/(Tϵ)2/(2q−1)

)
, then

∥∥∥ 1
T

∑T
j=1 U(j) − (E[Um])

∥∥∥
2
≤ ϵ with probability

at least 1− δ.

The sample complexity given by Eq. (F3) has polynomial dependence on t and n. Moreover, when the step size ∆t = t/N

is fixed, the sample complexity is Θ
(
N1/2γ∆tq (n+ log(1/δ))

1/2
/ϵ
)

. This means that, when step size ∆t is fixed, the

sample complexity scales as T ∝ t1/2. On the other hand, if we replace ∆t with t/N , we find that sample complexity
scales as N−(2q−1)/2. This means that, for fixed t, we can reduce sample complexity by increasing the step number N
(i.e. by decreasing the step size ∆t). Alternatively, we can also bound the fluctuation error with high probability even with
T = 1 random sequence (i.e. no averaging), provided that the step complexity N is large enough to satisfy Eq. (F4). In this
extreme case, the contributing simulation error itself is very small, which makes the fluctuation error bounded by ϵ. Com-
pared with the step complexity of qDRIFT, which is Θ

(
t2γ2 (n+ log(1/δ)) /ϵ2

)
[25], our step complexity has more favor-

able dependence on t, ϵ, γ, (n+ log(1/δ)) as we employ higher-order (q > 1) digital quantum simulations in each step. In
particular, when the simulations U(1), ..., U(T ) are chosen as product formulas with large q, our step complexity approaches

Θ
(
γ1/qt (n+ log(1/δ))

1/(2q)
/ϵ1/q

)
, which is linear in t. It is worth mentioning that this algorithm is scalable to larger sys-

tems at the price of an Θ
(
n1/2

)
increase in sample complexity or an Θ

(
n1/(2q)

)
increase in step complexity. Notice that, since

step complexity N scales as T−2/(2q−1), increasing sample number T is not an effective way to reduce step complexity at large
q. Finally, we remark again that the sample complexity considered in this paper doesn’t take into account the experimental fact
that we have to repeat the experiment multiple times to get expectation values of observables.

Appendix G: Symmetry-based error reduction for the long-range Heisenberg chain

In this section, we first provide additional numerical results for the symmetry protection approach in Section III B. We then
prove Eq. (27) in the main text and provide numerics illustrating this equation.

In Fig. 9(a,b,c), we consider the Heisenberg spin chain with power-law interactions [see Eq. (25) in the main text]. We choose
symmetry transformations Haar-randomly and observe that, as the number of symmetry transformations M increases, the final
error reduction (solid lines) approaches an asymptotic value (dashed lines) given by the uniform mixture of 3! kth-order Suzuki-
Trotter formulas with all possible term orderings of HX , HY , and HZ . For the case of k = 1, the leading-order (second-order)
error only contains commutators [HX , HY ], [HX , HZ ], and [HY , HZ ]. By averaging over all 6 sequences, we can eliminate the
second-order error term. Averaging over Haar-randomly chosen symmetry transformations also reduces the leading-order error
to zero as the commutator of the form [HX , HY ] contains no quadratic terms such as X2 where X =

∑n
i=1Xi. Yet, we were

not able to rigorously prove the equivalence between the two approaches in the general case for k ≥ 2 due to the non-isotropic
structure of the high-order error terms.

We now prove Eq. (27) in the main text and provide numerics illustrating this equation. We consider a specific choice of the
Hamiltonian-like operator O =

∑n
i=1Hi, where Hi is the Hadamard matrix acting on qubit i, that generates global rotations

around the axis defined by n = 1√
2
(1, 0, 1). Constructing the group elements as Cm = exp(imO∆) for m = 0, ...,M − 1 such

that ∥O∥F∆ ≪ 1 and at least on eigenvalue of O∆ is an irrational multiple of π, we see that the resulting group has infinite
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size since the rotation angles ϕm are irrational multiples of π. In a generic case, when the symmetry group is infinite (the phases
are irrational multiples of π), it is beneficial to have large M because this reduces the error. For an infinite symmetry group
{Cm = exp(imO∆)}∞m=0 and for a given simulation error E, we decompose the error as E = [O, ηC ] + ξC similar to Eq. (8)
in the main text, where [O, ηC ] (ξC) is the part of the error that does not commute (commutes) with O. We have

Esym
q =

1

M

M−1∑
i=0

e−imO∆Eei(m−1)O∆ ≈ 1

M

∫ (M−1)∆

0

e−iOt′ E

∆
eiOt′dt′ (G1)

= ξC +
1

M∆

[
e−i(M−1)O∆ηCe

i(M−1)O∆ − ηC
]
, (G2)

where Esym
q is defined in Eq. (26) in the main text. This provides the proof for Eq. (27) in the main text, which indicates the

O(1/M) reduction of ηC , which is the part of the error that does not commute of O. This allows us to consider the unitary error
term Esym

q as a function of the number of symmetry transformations M . Fig. 9(d) shows that the NUSC error is suppressed as
M grows, similar to the Haar-random case in Fig. 9(a-c) and approaches an asymptotic value. Fig. 9(d) demonstrates that, if the
symmetry group does not coincide with the permutation group of Hamiltonian terms, it is beneficial to average the NUSC over
a large number M of symmetry transformations.
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