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Neural-network decoders for measurement
induced phase transitions

Hossein Dehghani 1,2 , Ali Lavasani1,3, Mohammad Hafezi 1,2 &
Michael J. Gullans2

Open quantum systems have been shown to host a plethora of exotic dyna-
mical phases. Measurement-induced entanglement phase transitions in mon-
itored quantum systems are a striking example of this phenomena. However,
naive realizations of such phase transitions requires an exponential number of
repetitions of the experiment which is practically unfeasible on large systems.
Recently, it has been proposed that these phase transitions can be probed
locally via entangling reference qubits and studying their purification
dynamics. In this work, we leveragemodernmachine learning tools to devise a
neural network decoder to determine the state of the reference qubits con-
ditioned on the measurement outcomes. We show that the entanglement
phase transition manifests itself as a stark change in the learnability of the
decoder function. We study the complexity and scalability of this approach in
both Clifford and Haar random circuits and discuss how it can be utilized to
detect entanglement phase transitions in generic experiments.

Entanglement entropy in closed quantum systems that thermalize
generally tends to increase until reaching a volume-law behavior with
entanglement spread throughout the system1,2. Coupling to a bath
profoundly changes the internal evolution of the system3, which in turn
can suppress the growth of entanglement and correlations within the
system to an area-law behavior4,5. A prominent example of such systems
is random quantum circuits with intermediate measurements6–10. In
these circuits, where the unitary time evolution of the system is inter-
spersed by quantum measurements, the competition between unitary
and non-unitary elements leads to a measurement-induced phase
transition (MIPT) between a pure phase with an area-law and a mixed
phasewith a volume-law entanglement behavior11–33. Such entanglement
phase transitions are only accessible when the density matrix is condi-
tioned on the measurement outcomes while they are hidden from any
observable which can be expressed as a linear function of the density
matrix. On the other hand, to experimentally probe observables which
are non-linear functions of the density matrix, one naively needs to
reproduce multiple copies of the same state. However, due to intrinsic
randomness in measurement outcomes, this naive approach requires
repeating the experiment exponentially many times (in system size)10,26.

Building on the close connection between measurement-induced
entanglement phase transitions and quantum error correction11,12,34–37,
a possible workaround to this obstacle was found in ref. 38 for pur-
ification transitions, which generically coincide with area-to-volume-
law entanglement transitions in random circuit models without sym-
metry or topological order27. It was shown how to probe these phase
transitions through purification dynamics of an ancilla reference qubit
that is initially entangled to local system degrees of freedom. Subse-
quently, the time dependence of the entanglement entropy of the
reference qubits signifies the phase transition properties11,15,38. To
employ this method, one needs to find the density matrix of reference
qubits conditioned on the measurement outcomes of the circuit.
Hence, the final objective of this approach is to obtain a “decoder” that
maps the measurement outcomes to the density matrix of the refer-
ence qubit. However, such decoders are only known and implemented
for special classes of circuits such as stabilizer circuits9. For more
generic circuits like Haar-random circuits, finding an analytical solu-
tion to this problem is likely unfeasible.

Here, motivated by the recent successful applications of machine
learning algorithms in quantum sciences39 and especially optimizing
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quantum error correction codes and quantum decoders40–48, we pro-
vide a generic neural network (NN) approach that can efficiently find
the aforementioned decoders. First, we sketch our physically moti-
vated NN architecture. Although we use numerical simulations of
Clifford circuits to show the efficacy of our NN decoder, we argue that
in principle the same decoder with slight modifications should work
for any generic circuit. We investigate the complexity of our learning
task by studying the number of circuit runs required for training the
neural network decoder. Importantly, we show that the learning task
only needs measurement outcomes inside a rectangle encompassing
the statistical light-cone19,38 of the reference qubit. Furthermore, we
demonstrate that by studying the temporal behavior of the learnability
of the quantum trajectories, one can estimate the critical properties of
the phase transition. We also verify that for large circuits one can train
theNNover smaller circuits which provides evidence for the scalability
of our method. Finally, we explain how our method can be applied to
generic circuits with Haar random gates, and we study the temporal
behavior of the averaged entanglement entropy for two values of
measurement rate in the area-law and volume-law phases for a small
ensemble of such circuits.

Results
Model
The circuits thatwe study have a brickwork structure as in Fig. 1, with L
qubits. We consider time evolution with T time steps with repetitive
layers of two-qubit random unitary gates, followed by a round of
single-site measurements of the Pauli Z operators at each site with
probability p. As one tune p past some critical value pc, there is a phase
transition from a volume-law entanglement behavior (p < pc) to an
area-law behavior (p > pc) and a logarithmic scaling at the critical point
(p = pc). Crucially for this work, this phase transition is alsomanifested
in the time dependence of the entanglement entropy of a reference
qubit entangled with the system SQ(t)38. SQ(T), averaged over many
circuit runs, is known as the coherent quantum information andplays a
crucial role in the fundamental theory of quantum error correction49.
For polynomials in system-size circuit depths, SQ(T) maintains a finite

value in the volume-law phase and vanishes in the area-law phase. The
protocol we use to probe SQ(t) is illustrated in Fig. 1a. Starting from a
pure product state, we make a Bell pair out of the qubit in the middle
and an ancilla reference qubit. Throughout the paper, we use periodic
boundary conditions for the circuit.

Decoder
To find SQ(T) in the experiment, we need to find the density matrix of
the reference qubit at time T, which is a vector inside the Bloch sphere
and can be specified by its three components 〈σX〉, 〈σY〉 and 〈σZ〉.
Therefore, probing the phase transition can be viewed as the task of
finding a decoder function FC for a given circuit C, such that

FCðMTÞ= ðhσX i,hσY i,hσZ iÞ ð1Þ

whereMT is the set of circuit measurement outcomes. Let pPðm∣MTÞ
for P∈ {X, Y, Z} denote the probability of getting reference qubit out-
comem = ± 1 whenmeasuring σP of the reference qubit after time t = T,
conditioned on the measurement outcomes MT. Since
hσPi=

P
m= ± 1mpPðm∣MTÞ, the problem of finding the decoder FC is

equivalent to finding the probability distributions pPðm∣MTÞ
for P∈ {X, Y, Z}.

Deep learning algorithm
InsteadoffindingpPðm∣MTÞ analytically for a given circuit C, we plan to
use ML methods to learn these functions from a set of sampled data
points which in principle could be obtained from experiments. The
task of learning conditional probability distributions is known as the
probabilistic classification task inML literature50,51. Let us fix the circuit
C and the Pauli P. A sample data point is a pair of ðMT,mÞ for a single
run of the circuit whereMT is the circuit measurement outcomes and
m is the of outcome ofmeasuring the reference qubit in the σP basis at
the end of the circuit. By repeating the experiment Nt times, we can
generate a training set of Nt data points. By training a neural network
using this data set, we obtain a neural network representation of the
function pPðm∣MTÞ.

Framing the problem as a probabilistic classification task does not
necessarily mean that the learning task would be efficient. Indeed,
given that the number of different possible MT outcomes scales
exponentially with the system size, one would naively expect that the
minimum required Nt should also scale exponentially for the learning
task to succeed, i.e., we need to run the circuit exponential number of
times to generate the required training data set. However, the crucial
point made in ref. 38 is that, when the reference qubit is initially
entangled locally to the system, its density matrix at the end of the
circuit only depends on the measurement outcomes that lie inside a
statistical light cone, and up to a depth bounded by the correlation
time that is finite in the system size away from the critical point. Hence,
for a typical circuit away from the critical point, the function pPðm∣MTÞ
depends only on a finite number of elements inMT and thatmakes the
learning task feasible.

To show the effectiveness of this method, we test our decoder
using data points gathered from numerical simulation of Clifford cir-
cuits with pc = 0.160(1)8, which enables us to study circuits of large
enough sizes. Due to Clifford dynamics, the reference qubit either
remains completelymixed at t = Tor it is purified along one of the Pauli
axis. This means the measurement outcome of σP at the end of the
circuit is either deterministic or completely random. Therefore, it is
more natural to view the problem as a hard classification task (rather
than probabilistic) wherewe train the neural network to determine the
measurement outcome of σP (see the “Methods” section). Note, if the
reference qubit is purified at the end of the circuit, then the decoder
can in principle learn the decoding function while, if it is not, then the
measurement outcomes are completely random, leading to an inevi-
table failure of the hard classification. Thus, the purification phase

Fig. 1 | Schematic demonstration of the circuits and the decoding protocol
using neural-networks. a Brickwall structure of a hybrid circuit with random two-
qubit Cliffordgates interspersedwith projective Zmeasurements andwith periodic
boundary conditions. MT denotes the measurement outcome matrix with matrix
elements mi = {0, ± 1} (mi =0 when the corresponding qubit is not measured, and
mi = ± 1 when a qubit’s Pauli Z is measured). Here, T = 3 for this example. b Neural
network architecture: We use convolutional neural networks composed of C:
convolutional, P: pooling, and F: fully connected layers, trained on quantum tra-
jectories. The neural network implements a decoder function that predicts the
measurement result for the referencequbitσp using themeasurement record in the
circuitMT as input.
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transition shows itself as a learnability phase transition. It is worth
noting that we are only changing how we interpret the output of the
NN, i.e. we pick the label with the highest probability, so the same NN
architecture can be used for more generic gate sets. For simplicity, we
also only look at the data points corresponding to the basis P in which
the reference qubit is purified. In an experiment, the purification axis is
not known, so one needs to train the NN for each of the three choices
of P; if the learning task fails for all of them, itmeans the qubit is totally
mixed. Otherwise, the learning task will succeed for one axis and fail
for the other two (Note, for a fixed Clifford circuit, the purification axis
does not depend onMT), whichmeans the reference qubit is purified.

Since locality plays an important role in purification dynamics, we
employ a particular deep learning52–54 architecture called convolu-
tional neural networks (CNN) that are efficient in detecting local fea-
tures in image recognition applications55. In utilizing these networks
the input data is treated as a snapshot as in Fig. 1b with each pixel
treated as a feature of the NN and the label of each image is the
measurement outcome of σP.

Learning complexity
For a fixed circuit C, we start the training procedure by training the NN
with a given number of labeled quantum trajectorymeasurements and
then evaluate its performance in predicting the labels of new randomly
generated trajectories produced by the same circuit C. The learning
accuracy 1−ϵl is the probability that the NN predicts the right label. The
minimum number of training samples denoted by M(ϵl) to reach a
specified learning error ϵl can provide an empirical measure of the
learning complexity of the decoder function FC

56. In what follows, we
fix the learning error of each circuit to be ϵl = 0.02.

In performing this analysis, different learning settings can be
considered. Intuitively, for a fixed circuit, we expect the purification
time of the reference qubit, tp, after which the reference qubit’s state

does not alter any further, to play an important role in determiningM.
Therefore, in our first learning setup, we consider a conditional
learning scheme where for a given measurement rate, we select
quantumcircuits based on their purification time tp, which allows us to
study the effect of the system size on the learning complexity. More-
over, we discard measurement outcomes corresponding to measure-
ments performed after tp. This is to say that for each tp, measurement
outcomes outside a mask with width L and height tp will be masked.
Here, we note that given Nc circuits with the same purification time, in
addition to the learning efficiency of each circuit, we need to fix the
learning inaccuracy averaged over Nc circuits, δl, which we fix to be
δl = 20%.We remark that this number is larger than ϵl since someof the
conditionally selected circuits have not been learned.

In the second setting, we remove the conditioning constraint and
only consider the overall complexity of the learning task when we
randomly generate circuits for a given p in a completely unconditional
manner. The two schemes can be related using the probability dis-
tribution rp of the purification time as shown in Fig. 2a and explained
more concretely in the methods section. We should emphasize that a
conditional learning scheme is only a tool for studying the complexity
of the learning problem for Clifford circuits. For probing the phases
and phase transitions in both Clifford and Haar circuits, we use the
unconditional learning scheme. Note that since the reference qubit is
entangled locally at the beginning, there is always a finite probability
that it will be purified in early times. In the mixed phase, the dis-
tribution has an exponentially small tail until exponentially long times
(both in system size)whereas, in thepure phase, the ancilla purifies in a
constant time independent of system size. Inspired by the approx-
imate locality structure of hybrid circuits38, we also consider a light-
cone learning scheme, where we train the NN using only the mea-
surement outcomes inside a box centered in themiddle (see below). In
Fig. 2b, we compare the complexity of the conditional learning task in

Fig. 2 | Statistical analysis of the learning complexity and its relation with the
purification time.aDistributionofpurified circuits as a functionof thepurification
time for different measurement rates p =0.05 (mixed phase), p = pc≃0.16 (critical
value), p =0.5 (pure phase) with L = 16 qubits and Nc = 107 random circuits. b and
cAveraged the number of quantum trajectories required for learning the reference
qubit after conditioning on the purification time tp, for p =0.1 (mixed phase) and
p =0.3 (pure phase). Averaging is performed over Nc = 20 circuits for each tp and
error bars are set according to the standard deviation. In b we have circuits with

L = 128 qubits. In the main plot measurement outcomes from inside the fixed light-
cone box are used for training while for the inset we use the measurement out-
comes from the whole circuit. In c we have circuits with L = 128 qubits (solid-line)
and L = 64 qubits (dashed-line) with p =0.1 in the main plot and p =0.3 in the inset.
d Ratio of learned circuits as a function of a number of quantum trajectories with
L = 64 and fordifferentpwithout conditioning on the purification timewithNc = 103

circuits for each p.
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thepure andmixedphases bothbyusing the light-cone box (main) and
whole circuit (inset) measurement data. For each purification time and
p, we consider Nc = 20 different circuits and we average over their
minimum required training numbers to calculate �Mðϵl,δlÞ, and show
the standard deviation as the error bar. Here, for all the curves, we
observe an approximate exponential growth of �Mðϵl,δlÞ as a function
of the purification time tp. By comparing the mixed and pure phases,
we notice that the conditional learning task is more complicated in the
pure phase than the mixed phase, which is expected since, all else
being equal, there are more measurements in the pure phase. Addi-
tionally, as shown in the inset,wefind that learningwith light-conedata
is less complicated than using all the measurement outcomes. These
behaviors can be understood by recognizing that to learn the decoder
we need to explore the domain of the mapping in Eq. (1) whose size
scales exponentially with 2pTL.

In Fig. 2c we compare the system size dependence of the com-
plexity in the two phases with L = 64,128 where we train our networks
with the light-cone data. We note that since the size of the light-cone
box for a fixed tp is independent of the system size, we expect the
asymptotic complexity to be independent of the system size. Our
numerical observation is partially in agreement with this theoretical
expectation. In the “Methods” section, this point has been studied
further where we explicitly depict the system size dependence of the
complexity for circuits with experimentally relevant system sizes
L = {16, 32, 64, 128}. In the “Methods” section, we also obtain similar
complexity results for circuits with initial states scrambled by a high-
depth random Clifford circuit.

In the final step, we consider the unconditional learning task.
Figure 2d shows the ratio of circuits that can be learned, denoted by Rl,
as a function of Nt, with the circuit depth fixed at T = 10.

After an initial fast growth in Rl, the learning procedure slows
down. This can be understood by noting that exponentially more
samples are required to learn the decoder for circuits with longer
purification time.Moreover, the saturation value for eachp is bounded
by the ratio of circuits that are purified by time T, which can be
expressed as

RpðTÞ=
Z T

0
rpdt ð2Þ

where rp is the purification rate plotted in Fig. 2a.

Dynamics of coherent information
We can utilize the NN decoder to study the critical properties of the
phase transition. For a fixed circuit configuration cwith a given p, let ρc
and scðtÞ= � trðρclog2ρcÞ denote its density matrix and von Neumann
entropy of the reference qubit after time t, respectively. Based on this
definition, we let SQðtÞ= �PNc

c = 1
1
Nc
trðρclog2ρcÞ denote the average

entropy of the reference qubit after time t, i.e., the coherent quantum
information of the system with 1 encoded qubit. We may assume on
general grounds that SQ(t) follows an early-time exponential decay e−λt

with λ following the scaling form:

λ= L�z f ½ðp� pcÞLz=ν �, ð3Þ

where z and ν are the dynamical and correlation length critical expo-
nents respectively9. In stabilizer circuits, the density matrix of the
reference qubit will be either purified completely with sc = 0, or will be
in a totally mixed state with sc = 1. Since SQ(t) and the ratio of purified
circuits Rp(t) are related by SQ = 1−Rp, we can estimate SQ(t) by the ratio
of learnable circuits of depth t in the unconditional scheme described
above. We denote the estimated value of SQ(t) from learning by ~SQ.
More concretely: (1) For each given p and L we generate Nc = 103 ran-
dom circuits and we evolve them for T ∼Oð10Þ time steps that do not
scale with the system size and record the measurement outcomes

MT,ð2Þ At the end of this time evolution, we measure the spin of the
reference qubits along the purification axis,m, (3) For each circuit we
use the corresponding labeled data ðMT,mÞ and we train our neural
network with this data to make future predictions. We note that since
in this approach, there is no constraint in generating the circuits and
their quantum trajectories, this procedure can be directly applied to
experimental data without requiring any post-selection or condition-
ing procedure.

In Fig. 3a we compare the temporal behavior of the coherent
information obtained from an ideal decoder and the NN decoder
introduced here where for each pwe considerNc = 103 different circuit
configurations. As demonstrated in Fig. 3a, in the mixed phase the
learned entanglement entropy closely follows the simulated entan-
glement entropy, while in the pure phase, the two curves start to
deviate from each other after a few time steps. This behavior is con-
sistent with previous observations in Fig. 2 where we demonstrated
that the learning task is easier in the mixed phase. Since at the critical
point this phase transition can be described by a 1 + 1-D conformalfield
theory6,8, the dynamical critical exponent can be fixed in advance z = 1
and correspondingly we define the scaled time τ = t/L. Furthermore,
since the argument of the scaling function f on the right-hand side of
Eq. (3) becomes independent of L at pc, we expect to see a crossing in

Lλτd ≈
d ln SQ
dτ

����
����
τd

: ð4Þ

when it is plotted for different system sizes. Here, τd = td/L is the dif-
ferentiation time which should be sufficiently large. In Fig. 3b, we
evaluate the decay rate obtained by learning, ~λτd , for three different
system sizes, L = {32, 48, 64}, at τd = 1/16 using ~SQ. The corresponding
times are td = {2, 3, 4} for which the deviation of the learned and
simulated coherent information is negligible. Here, we notice an
approximate crossing in the region 0.1≲ pc≲0.15 signaling a phase
transition in this region.

More systematically, wemay find the best-estimated values of the
critical data by collapsing the decay rate curves according to the
scaling ansatz in Eq. (3). In particular after fixing z = 1, we can search
simultaneously for pc and ν so that the fitting error of the regression
curve would be minimized (see the “Methods” section). The inverse
error has been plotted as a function of pc and ν in Fig. 3c where we
observe that the lowest error corresponds to the region
pc≃0.13, ν≃ 1.5. Similarly, we can examine our assumption about the
conformal symmetry of the transition, by fixing pc = 0.13, and allowing
ν and z to vary as in Fig. 3d. Here, we observe that the lowest error
corresponds to the region around ν≃ 1.5, z≃ 1. Using the obtained
estimates, namely, ν≃ 1.5, z≃ 1, and pc≃0.13, in the inset of Fig. 3b we
collapse the three curves of Lz~λ as a function of ~p= ðp� pcÞLz=ν . In the
“Methods” section,we search simultaneously over all three parameters
and find that the best estimates for the critical data are in the region
pc = 0.14 ± 0.03, z = 0.9 ±0.15, and ν = 1.5 ± 0.3. Once the error margins
are considered, these results are consistent with the results obtained
from the half-chain entanglement entropy, z = 1, pc≃0.16, and
ν≃ 1.36,8. However, in order to differentiate this phase transition from
the percolation phase transition57, more precise results for the critical
exponents are required. Additionally, we verify our learning results by
comparing them with the results obtained from exact simulations of
SQ(t), where we demonstrate that by increasing L, td, and Nc, the phase
transition parameters can be determined more accurately.

Scalability of learning
An important featureof a practical decoder is the possibility of training
it on small circuits and then utilizing it for decoding larger circuits.
Here, due to the approximate locality of the temporal evolution of the
random hybrid circuits, one can examine the scalability of the deco-
ders in a concrete manner. For a given circuit with L qubits, we

Article https://doi.org/10.1038/s41467-023-37902-1

Nature Communications |         (2023) 14:2918 4



generate smaller circuits with LB < L number of qubits which have
identical gates as the original circuit in a rectangular narrow strip
around themiddle qubit which is entangled to the reference qubit. The
geometry of the two sets of circuits is displayed in Fig. 4a where the
depth of the two sets of circuits is chosen to be equal. Here, for each p
we generateNc large circuits with L = {32, 64} and T = 10-time steps.We
also only consider those circuits that are learnable usingmeasurement
outcomes from the original circuit. Next, for each of these circuits, for
LB = {4, 8,⋯ , 20} we generate their corresponding smaller circuits and
we run them to generate Nt = 5 × 103 quantum trajectories. In the
training step, we use the quantum trajectories produced from the
smaller circuits to train our neural networks. In the testing step,
however, we use these neural networks to make predictions for the
quantum trajectories obtained from the larger circuits. As we observe

in Fig. 4b, by increasing LB the ratio of the circuits that can be learned
by the smaller circuits’ NNs increases. Also, consistent with the effec-
tive light-cone picture, we see that for both system sizes, L = {32, 64},
the largest required LB to reach almost full efficiency, according to the
light cone condition can be determined by LB ≳ 2T which in our case
corresponds to LB = 20. This demonstration provides evidence that
independent of the systemsize, the light-cone-trainedNNs canbe used
for learning larger circuits.

Generalization to Haar random circuits
To benchmark the methods, we have focused on Clifford circuits,
which have two important simplifications for our learning procedure.
First, the purification axis is independent of the measurement out-
comes and the learning only needs to be performed along one of the

Fig. 4 | Scalability analysis of the learning procedure. a Predicting the decoder
function of a circuit using the neural network trained by the measurement out-
comes inside the small circuit in the orange box.b Fraction of experiments that can

be learned using smaller circuits of width LB. When the ratio is 1, that means that
there is no benefit in the training from increasing LB. Main: L = 64 and Nc = 100.
Inset: L = 32 and Nc = 200.

Fig. 3 | Temporal behavior of the reference qubit’s entanglement entropy and
its scaling analysis. a Comparing the temporal behavior for a circuit with L = 32
qubits in themixed (p =0.1) and pure (p =0.3) phases averaged overNc = 103 circuit
configurations for each p. The dashed and solid lines are achieved from learning
quantum trajectories, and exact simulation of the circuits, respectively. Each point
in these curves has a statistical error <2%. b Scaled temporal rate of the learned

entanglement entropy, L~λτd , as a function of themeasurement rate at a fixed scaled
time τd = td/L = 1/16. Inset: Collapsing the curves for Lz~λτd as a function of
~p= ðp� pcÞLz=ν , using pc = 0.13, ν = 1.5, and z = 1. c Inverse fitting error as a function
of ν and pc for z = 1. d Inverse fitting error as a function of ν and z for pc = 0.13. In
c and d yellow areas show the best parameter estimates for the phase transition.
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{X, Y, Z} axes in the Bloch sphere. In addition, the purification occurs at
the specific layer of the circuit. Therefore, it is important to test our
results in more generic Haar random circuits, where the purification
axis can be along any radius in the Bloch sphere and purification
dynamics occurs throughout the circuit evolution15. Here, we show
how to adapt ourmethod toHaar randomcircuits to see clearevidence
of the two phases. We leave the study of critical properties of the
entanglement phase transition with our method for future work.

To obtain the decoder function FC for generic circuits, we need to
create three independent sets of labeled data for measuring σi with
i∈ {X, Y, Z} obtained from quantum trajectories. Next, these three sets
of labeled measurement data, represented by fMi

T,mig, are used to
train three independent neural networks to produce the probability
distribution of reference qubit density matrix expectation values
piðm∣MTÞ. Consequently, given new quantum trajectories, the trained
pi’s will be employed to estimate 〈σi〉. Finally, using standard density
matrix tomography methods, such as the maximum likelihood esti-
mation of the densitymatrix of a single qubit58, we canobtain themost
likely physical density matrix associated with the predicted 〈σi〉’s. An
illustrative example of the learning dynamics in the two phases for a
small number of circuits is shown in Fig. 5 where we study SQ(t) and its
learned value as a function of time for a circuit with L = 8 qubits in the
two phases (pc ≈0.17 for this model15). We see from this example that
our NN decoder straightforwardly generalizes to generic quantum
circuits and using a larger circuit ensemble and quantum trajectories it
should be possible to study the phase transition properties.

Discussion
We first note that since in our approach obtaining the critical expo-
nents is obtained from the temporal behavior of the learning efficiency
at long times, the most important obstacle in obtainingmore accurate
results for the critical exponents is the low efficiency of our learning
algorithms for deep circuits in the area law phase. Hence, an intriguing
possibility is to find state-of-art neural network architectures that are
more efficient in learning deep circuits with local data37. Similarly,
implementing neural network decoders for other MIPTs such as sys-
tems with long-range interactions30, and symmetric MIPT59, is an
immediate extension of this work. As an alternative main future
direction to explore, we note that from an experimental perspective, it
is possible to incorporate different errors, which are common in the
realization of the two-qubit gates and/or measurement processes, in
our machine learning framework. Another intriguing question is to

investigate whether it is possible to use our decoder approach for
MIPTs where it is not equivalent to purification transitions. In the
context of quantum error correction and fault tolerance, the pur-
ification dynamics inmeasurement-induced phase transitions lead to a
rich set of examples of dynamically generated quantum error-
correcting codes11,34,60,61. Designing similar decoders as considered
here for other types of dynamically generated logical qubits is a rich
avenue of investigation. We also highlight that our empirical com-
plexity results raise interesting questions about the complexity of
learning an effective Hamiltonian description32,62,63 of the measure-
ment outcome distributions for monitored quantum systems. Finally,
we note that improving our neural network algorithms to find the
optimal decoder and investigating the applicability of unsupervised
machine learning techniques for this problem is left for future
studies64,65.

Methods
Quantum dynamics
The dynamics of hybrid circuits considered in this work in general can
bedescribedusing thequantumchannel formalism. Thewave function
of the circuit, denoted by ∣ψS

�
at the beginning of time evolution is

entangled to a reference qubit. Formally, the time evolution of the
system under this setting can be modeled using Kraus operators66,

K
m! =UtP

mt
t � � �U1P

m1
1 ð5Þ

where mt,Ut and Pmt
t , denote the measurement outcomes, unitary

gates, and projective measurements at the tth layer of the circuit,
respectively. We also denote the set of all measurement outcomes in
different layers via m!. The corresponding evolution of the density
matrix, ρ, can be described via the following quantum channel:

N tðρÞ=
X
m!

KmρK
y
m � ∣m!

E
m!

D
∣: ð6Þ

For our purpose, to generate the quantum trajectories we need to
consider the time evolution of the system at the level of the wave
functions. Under an arbitrary unitary operator U, the wave function
evolves as

∣ψ
� ! U∣ψ

�
: ð7Þ

For projective measurements, we consider a complete set of ortho-
gonal projectors with eigenvalues labeled by m satisfying

P
mP

m
t = 1

and Pm
t P

m0
t = δmm0Pm

t under which the wave function evolves as,

∣ψi ! Pm
t ∣ψi

∣∣Pm
t ∣ψi∣∣

: ð8Þ

In simulating the time evolution of the wave functions, we use
random unitaries sampled from the Clifford group where, under any
conjugation operation, the Pauli group is mapped to itself67. Such
circuits, according to the Gottesman–Knill theorem, can be classically
simulated in polynomial times in the system size68,69.

Implementation of deep learning algorithms
In this work, we mainly used convolutional neural networks for learn-
ing the decoder function. These networks are composed of several
interconnected convolutional and pooling layers. The convolutional
layer uses the locality of the input data to create new features from a
linear combination of adjacent features through a convolution pro-
cess. These layers are followed by pooling layers which reduce the
number of features. Finally, a fully connected layer is used to associate
a label to the newly generated features, thus classifying the data. These
layers can be repeated a number of times for more complicated input

Fig. 5 | Reference qubit’s entanglement entropy for generic random Haar cir-
cuits.We took a system of size L = 8 with 100 random circuit realizations. Training
was performed on 5000 trajectories per circuit. Statistical errors based on the
variance of the mean SQ(t) are <1%.
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data. Our neural network architecture symbolically displayed in Fig. 1b
consists of eight layers whose hyperparameters are chosen by an
empirical parametric search to optimize the learning accuracy when
the number of samples are smaller than 5 × 104. From left to right these
layers include: (1) a convolutional layerwith a Lq/2 filterswhereLq is the
number of qubits with a kernel size of 4 × 4, and a stride size of 1 × 1
with a rectified linear unit (ReLu) activation function, (2) a convolu-
tional layer with a Lq/2 filters where Lq is the number of qubits with a
kernel size of 3 × 3, and a stride size of 1 × 1 with a Relu activation
function, (3) a maximum pooling layer with a window size of 2 × 2 to
decrease the dimension of the input data, (4) a dropout layer with a
dropping rate of rd = 0.2 to prevent overfitting, (5) a flattening layer to
convert the data into a one-dimensional vector, (6) a dense fully con-
nected layer with a Relu activation function whose number of output
neurons is variable and is determined according to the number of
training samples,Nn = 512*(1 + 2⌊Nt/2000⌋) where ⌊x⌋denotes the floor
function of x, (7) a dropout layer with a dropping rate of rd = 0.2, (8) a
dense fully connected layer with a sigmoid activation function which
generates the prediction for the spin of the reference qubit. Finally,
sincewe have a classification problem, the loss function for comparing
the predicted labels and the actual labels is a binary cross-entropy
function. Using this loss function, for training our neural network
model, we use the Adam optimization algorithm with a learning rate
l = 0.001. The implementation of our neural network layers and their
optimization was done by the Python deep-learning packages Ten-
sorFlow and Keras.

Scaling analysis and estimation of critical exponents
The critical exponents of this measurement-induced phase transition
can be investigated from the decay rate of the reference qubit’s
entanglement entropy denoted by λ, which has the scaling (see Eq. (3))

Lzλ= f ½ðp� pcÞLz=ν �: ð9Þ

While in the main text, we fixed z = 1 based on the assumption of
conformal invariance, here, we perform the analysis with z allowed to
vary. Tofind thebest combinationof the critical data that collapses our

data according to this ansatz, we compare the normalized mean
squared errors (NMSE), εNMSE such that the best fit is obtained when
ε�1
NMSE is maximized70. In particular, for a given pc, ν, and z, using cubic
polynomials we first find the regression curve of y ≡ Lzλ as a function of
(p−pc)Lz/ν, and then we evaluate the corresponding value of the mean
squared error between y and the best-fitted value of it ŷ. We point out
that in order to compare mean squared errors for different combina-
tions of (pc, ν, z), we have to normalize the data by defining
dimensionless deviations and then evaluate the NMSE for different
combinations of critical data according to εNMSE =

P
iðŷi � yiÞ2=y2i

where the summation is performed over data for all the measurement
rates and system sizes.

The results of this analysis are displayed in Fig. 6, where we have
plotted ε�1

NMSE as a function of ν andpc for six different values of z ranging
from 0.75 to 1.25. Based on the subplots in this figure, we observe that
the highest values for ε�1

NMSE are obtained for z≃0.85−0.95 which is
quite close to the value expected from theoretical results based on
conformal symmetry z= 1. Allowing ε�1

NMSE to vary within almost 10% of
its maximum value, we obtain following range for the best fits of the
critical data, pc =0.14 ±0.03, ν= 1.5 ±0.3, and z=0.9 ±0.15.

Finally, we compare our results with the results obtained directly
from exact numerical simulations of Clifford circuits without
employing our learning scheme. The results of such simulations for the
decay rates for different system sizes have been displayed in Fig. 7. In
the left subplot we have shown the results for the same system sizes as
used for our learning simulations where we observe a crossing of the
curves at pc≃0.13 which supports our results obtained from the
learning scheme. Furthermore, in the right subplot we observe that for
larger system sizes, the obtained crossing of the curves is around
pc≃0.16 which is very close to the results obtained from half-chain
entanglement entropy6,8. Accordingly, we expect that by increasing L
and Nc, the estimates obtained from our learning scheme should
improve.

Key measurements in Clifford circuits
Consider a hybrid Clifford circuit C which has M Pauli measurements.
Imagine applying this circuit on an initial stabilizer state which is

Fig. 6 | Extracting the best fit for critical properties of the phase transition.
Maximum inverse normalizedmean squared error ε�1

NMSE of the learned decay rate ~λ
when evaluated for different combinations of z, pc and ν can be used for finding the
best collapse of different ~λ curves. Colormap of the intensity ε�1

NMSE plotted as a

function of fitted pc and ν for different dynamical scaling exponent z displayed on
the top of each subplot. The best fits (highest inverse error) are obtained for
z =0.85, and z =0.95.
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entangled to a reference qubit. Assume that as a result of this, the
reference qubit disentangles and purifies into the ∣P;pR

�
state, where P

is one of the Paulis and pR = ± 1 determines which eigenvector of P the
reference qubit has been purified into. Let s1,⋯ , sM=± 1 denote the
measurement outcomes for a single run of the circuit. If we run the same
circuit again, the ancilla will purify in the same basis P, but we may get
different pR as well as different si. The goal is to understand the relation
between the value of pR and the measurement outcomes fsigMi= 1.

When a Pauli string is measured on a stabilizer state, the result is
either predetermined (in case the Pauli string is already a member of
the stabilizer group up to a phase) or it is ±1 with equal probability. We
call the former determined measurements and the latter unde-
termined measurements. Note that in a stabilizer circuit, whether a
measurement is determined or undetermined is independent of pre-
vious measurement outcomes. Therefore, for a given circuit C and a
fixed ordering of performing measurements, it is well-defined to label
measurements as either determined or undetermined without refer-
ring to a specific circuit run.

The following is a straightforward result of the Gottesmann–Knill
theorem:

Corollary. There exists a unique subset of undetermined measurement
results fsj1 , � � � ,sjm g (which we call key measurements) such that,

pR × sj1 × sj2 × � � � × sjm = c ð10Þ

where c = ± 1 is the same for all circuit runs. We call this set the key
measurements set.

Note that since key measurements are undetermined measure-
ments, their value are independent of each other. Hence, to predict pR
from undetermined measurement outcomes with any accuracy better
than 1/2, one needs to have access to all key measurement results.

Each determined measurement can be seen as a constraint
betweenprevious undeterminedmeasurement outcomes. Specifically,
if si is a determined measurement result for some i it means that there
is some fixed c0 = ± 1 (independent of circuit run) and a subset of
undetermined measurements fsj01 , � � � ,sj0m g such that

si × sj01 × � � � × sj0m = c0 ð11Þ

The similarity to theCorollary is not accidental: if the reference qubit is
purified in the P Pauli basis, it means that measuring it in the P basis
would be a determined measurement.

The existence of these constraints then means that if we relax the
condition of themeasurements being undetermined in Corollary, then
the set of key measurements is no longer unique; we may be able to

Fig. 7 | Simulated (not learned) entanglement entropy rate λ. Entanglement
entropy rate calculatedby exact stabilizer simulation ofClifford circuits is obtained
for different system sizes as a functionof themeasurement rate. The crossing point
of the scaled decay rates represents the critical measurement rate. (Left) The

dimensionless time is τd = td/L = 1/16 and the system sizes are the same as those
used for the learning protocol simulations L = 32, 48, 64. (Right) Scaled decay rates
of the entanglement entropy of the referencequbitwereobtained for larger system
sizes L = 64, 128, 256.

Fig. 8 | Sampling complexity for scrambled initial states using all mid-circuit
measurements. Average of the minimum number of training samples required for
learning the reference qubit’s state when using circuits with scrambled initial states
is plotted after conditioning on the purification time tp, for p =0.1 (mixed phase)
and p =0.3 (pure phase). Averaging is performed over Nc = 20 circuits for each tp
and error bars are set according to the standard deviation. We have circuits with
L = 128 qubits. In the main plot measurement outcomes from inside the fixed light-
cone box are used for training while for the inset we use the measurement out-
comes from the whole circuit.
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replace some measurement outcomes in Eq. (10) with a product of
others using the constraints between measurement outcomes.

Relation between conditional and unconditional learning
schemes
Here, under certain conditions, we argue that the results of the two
learning schemes as displayed in Fig. 2 are related to each other. In
particular, using the purification-time distribution of the circuits in
Fig. 2a, learnabilityRl(Nt), is related to the purification ratio rp(tp). Inwhat
follows to make our analysis more intelligible, we assume that the
learning error is nearly vanishing, ϵl≃0. Next, we need to study the
averaged learning efficiency of our decoder which for a given tp and Nt

we denote by ηl(tp,Nt). For a given tp and Nt, this quantity is related to
the averaged inaccuracy introduced in the text by ηl = 1−δl. To proceed,
we employ a simplifying assumption that is approximately consistent
with our numerical results. More concretely, we imagine a decoder with
a sharp step-like behavior for ηl(tp,Nt) as a function of Nt. Using the
Heaviside theta function θH(x), we suppose ηl(tp,Nt) =θH(Nt−M(tp))
where M(tp) is the minimum number of training samples to reach full
efficiency for t≤ tp. From the definitions, it follows straightforwardly that

RlðNtÞ=
XtMax

p ðNt Þ

tp = 1

rpðtpÞ, ð12Þ

where tMax
p ðNtÞ is the maximum purification time that can be

learned for a given Nt. However, this quantity can be evaluated by
inverting the function M(t) according to tMax

p ðNtÞ=M�1ðNtÞ where
M−1(Nt) is the inverse function of M(tp). Now, we notice that M(tp)
after averaging over different circuits, can be read from the
averaged minimum number of training samples in Fig. 2b.
Therefore, by integrating the information in Fig. 2a and b plus
ηl(tp, Nt), one can explain the behavior of Rl(Nt) in Fig. 2d. Here,
although we do not have the explicit form of ηl(tp, Nt), we use the
step-like behavior as an approximation which is justifiable due to
the exponential behaviors of the complexity as a function of the
purification time. Thus, using Eq. (12) as a plausible approxima-
tion for the learnability of our decoder, we expect that during the
initial fast growth of the curves in Fig. 2a, learned circuits mostly
belong to the circuits with short purification times. However,
since for longer purification times, an exponentially large number

of training samples is required, the initial exponential growth is
followed by a slow learning curve. Therefore, in Fig. 2d, we
observe that deep in the pure phase where the majority of circuits
have a short purification time, Rl asymptotically approaches one.

Complexity results for scrambled initial states
Here, we present our results for the circuits scrambled by a high-depth
random Clifford circuit. Concretely, to obtain such states, we first run
our circuits with the initial product states only with two-qubit random
Clifford gates in the absence of any measurements. This unitary time
evolution creates a highly entangled state after T ~ L time steps with an
entanglement entropy proportional to the system size. Next, we
entangle the reference qubit to one of the circuit’s qubits and run the
same circuit in the presence of two-qubit gates and random mea-
surements. As shown in ref. 11, there is a purification phase transition
such that for p < pc the subsystem entanglement entropy of the circuit
after T ~ L still has a volume-law behavior while for p > pc, its entan-
glement entropy is negligible. Using such initially mixed states, the
complexity results are displayed in Fig. 8. Here, as in Fig. 4, we observe
a nearly exponential behavior with the purification time. Furthermore,
we notice that the conditional learning scheme is more difficult in the
pure phase compared to the mixed phase. By comparing the inset and
main plots, we also observe that learning with the light-cone data
requires fewer training samples. Finally, by comparing Figs. 2b and 8
we observe that learning the circuits with scrambled initial conditions
requires more training samples than the circuits with product state
initial conditions.

Finally, we present further results for the system-size dependence
of the sampling complexity of our approach in Fig. 9whereweonly use
the light-cone measurement outcomes. The x-axis represents the sys-
tem size which includes L = {16, 32, 64, 128}. Different curves represent
different purification times spanning tp = {1,⋯ , 6}. In the left panel of
this figure, we have displayed our results for p = 0.3 corresponding to
the area-law phase and in the right we have displayed our results for
the volume-law phase with p =0.1. Our results after taking the error
bars into account canbe indicative of a nearly system-size independent
behavior. However, we should note that since the NN decoder that we
have employed for these simulations is not necessarily the optimum
decoder, we expect some deviation from an exact system-size inde-
pendent behavior. Changing the system size by a factor of 8, the
sample complexity increases by a factor of 2 on average and a factor of

Fig. 9 | Sampling complexity for scrambled initial states using light-cone
measurements. Average of the minimum number of training samples required for
learning the reference qubit using light-cone data as a function of the system sizes
and different purification times. Averaging is performed over Nc = 20 circuits for

each tp and error bars are set according to the standard deviation. (Left) Results for
the area-law phase with p =0.3. (Right) Results for the volume-law phase
with p =0.1.
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4 on the tails. For more definitive results, we need to consider larger
ensembles of circuits with larger Nc and also increase the system size,
which would be beyond the scope of this work.

Data availability
Source data for figures in the main text are provided with this paper.
Data that support the plots within this paper and other findings of this
study are generated and protected by the Extreme Science and Engi-
neering Discovery Environment (XSEDE), at the Pittsburgh Super-
computing Center and are available from the corresponding author
upon request. Source data are provided with this paper.

Code availability
The code used for this study is available on https://github.com/
Hossein-D/BrickwallCliffordCircuit.
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