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1. Spin selection rules for optical transitions

A fundamental condition, necessary for the spin-
selective strong coupling reported in this work, is the
existence of spin-selection rules that determine the
optical transitions that can take place in the system.
In this section, we will discuss the nature and origin of
these selection rules, mostly based on Ref. [I]. They
originate from the dipolar nature of the light-matter
interaction which in turn arises from the spin conser-
vation in photoabsorption events. Due to the strong
spin-orbit coupling, the valence band (VB) energy is
non-degenerate in quantum wells with a Zincblende
crystalline structure. The VBs are composed of a band
with a total angular momentum J! = 43/2 usually
referred to as the “heavy-hole” (HH) band and one with
JI = +1/2, referred to as “light-hole” (LH) band. It
is the relative orientation of the spin and the orbital
angular momentum which determines the nature of the
hole band. In typical GaAs structures, the HH band is
closer to the conduction band (CB) than the LH band,
hence, in this analysis, we focus on the lowest energy
optical transitions, i.e. those between the HH band and
the CB.

The optical transition has a total angular momentum
projection corresponding to the projection of the addi-
tion of angular momentum of electron (JS = £1/2) and
HH (J! = £3/2). This transition can then have projec-
tions of the total angular momentum JI = +1,42. The
angular momentum conservation implies that only those
transitions matching the photon’s angular momentum
+1 can take place, hence, only the configurations in
which the projections of electron and hole are anti-
parallel are optically allowed. Typically, for a neutral
QW system, the exciton corresponding to this projection
is called “bright” exciton, in contrast to the JI = +2
case, referred to as “dark” exciton.

These selection rules determine the existence of spin
selectivity in the strong coupling. Figure [S1|shows a di-
agram of the optical selection rules. It shows how the
transition from the spin up (down) VB to the spin up
(down) CB is optically forbidden, which justifies why
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FIG. S1. Optical selection rules for a GaAs quantum well for
transitions between the HH band and the CB.

these transitions are not indicated in Fig. 1b-d of the
main document.

2. Hole density calibration

At a temperature of 40 mK, the hole gas is capable
of sustaining correlated states of matter at integer fill-
ing fractions. As mentioned in the main text, this result
has been previously reported [2]. This gives a very ac-
curate method for calibrating the hole density: since the
magnetic field strength and the gate voltage are known
quantities, one can infer the hole density from the op-
tical signatures of the integer filling factor states v = 1
or v = 2. According to quantum Hall physics, these
correlated states are established when ph/eB € Z. De-
pending on p, one can observe both correlated states, one
of them, or none. This limitation is imposed by the finite
hole mobility in the sample. Figure shows the reflec-
tivity spectrum of the system at low numerical apertures
i.e. close to zero in-plane momentum, as a function of
the magnetic field. After systematically collecting data
for different gate voltages, and recording the magnetic
fields at which the Rabi splitting is modified, one can ob-
tain an accurate linear model that gives the hole density
of the system as a function of the gate voltage.

The density is not perfectly uniform across the sample;
we performed this calibration in different spots obtaining
different results. For this reason, it is important to
perform a calibration procedure every time the position
of the excitation spot on the sample changes. Figure
shows the deduced hole density for each given gate
voltage at a given spot of the sample. The procedure
consists in registering the magnetic field at which the
Rabi splitting is modulated for a given gate voltage.
With this information, we infer the hole density accord-
ing to the formula p = eBv/h. v taking the values 1 or 2.
Notice from the figure that for some gate voltages both
integer filling fractions are displayed, because in those
cases the optical signatures of both states are observable.
This corresponds, for example, to the case displayed
in Fig. [S2h. For other gate voltages, only one of the
correlated states can be detected as shown, for example,
in Fig [S2b. However, for very high or very low densities,
none of the correlated states can be observed (Fig. [S2f).
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FIG. S2. Differential reflectivity of the system at 40 mK. The displayed data corresponds to low numerical apertures (k ~ 0).
The gate voltage sets the hole density and a sweep over the magnetic field allows us to identify the correlated states of matter
associated with integer filling fractions. Due to the finite hole mobility of the sample, the effect is not visible for every density.
In the figure, one can observe that for high densities, the modification of the absorption spectrum corresponding to v = 1 and
v = 2 can be observed (panel a). For medium densities, only v = 1 shows the feature (panel b) and for low densities, none of
the correlated states is observable (panel ¢). The top axis indicates the magnetic fields corresponding to integer filling fractions

obtained from an interpolation of the results.

After recording the calculated density for each gate
voltage, we use the best-fitting linear function as a
reference for the system’s density once the temperature
is increased from 40 mK to 3.5 K. Finally, it is worth
mentioning that we did not detect any optical signal
related to fractional quantum Hall states in the full
range of charge density. The formation of these states
requires very high charge mobility (u). For example, the
reported fractional states in polaritonic microcavities [3]
were achieved in a system with p = 1.6-106 cm?V~!s™,
which according to our characterization, is at least 5
times higher than the mobility of the sample employed
in the present work.

3. Comparison of the system response at T=40mK
vs T=3.5K

In this section we discuss the fundamentally different
response of the physical system when probed at 40
mK or 3.5 K. This is important because the previously
reported modulation of the Rabi splitting [2H4] relies
on correlated states of matter that can only take place
at these ultra-cold temperatures, while the effect we
exploit to induce the spin-selective strong coupling does
not rely on this physics. As mentioned in the main text,
the optical features from the correlated states at integer
filling fractions are completely washed out when the
temperature is 3.5 K. A magnetic field dependence was
collected in identical conditions at 40 mK and 3.5 K for
two densities: (9.4-10%cm =2 and 6.88 - 101%m~2). The
results, displayed in Fig. respond to the difference
of the reflectivity spectra for ¢ and ¢~ polarization
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FIG. S3. Voltage to hole density calibration. From the low
momentum reflectivity spectrum, we extract the values of the
magnetic fields for which the correlated states of matter take
place for each voltage. In some cases both (v =1 and v = 2)
states are observable, in some cases only one of them is, and
for very high and very low densities, none of the correlated
states are observable. The red line shows the fitting line for
the data set, which we use as a reference to obtain the hole
density at 3.5 K. The range of the horizontal axis corresponds
to the range at which we collected data.

collected with low numerical aperture. The subtraction
of the reflectivity spectra allows us to show both of
the spin (polarization) states in a single frame. In
contraposition with the data presented in Fig. 3 of the
main text, the in-plane momentum is constant over this
set of data (k ~ 0).

Figure features a much richer behavior at a
temperature of 40mK with respect to the 3.5K case.
For example, at specific values of the magnetic field,
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FIG. S4. Difference of the reflectivity spectra for the two cir-
cular states of polarization. The data is presented for two
densities (9.41 - 10"°cm™2 and 6.88 - 10'%cm™?2) and for two
temperatures (40 mK and 3.5 K). The modulation of the reso-
nance energy peak associated with correlated states of matter
is visible only for the data collected at the dilution unit base
temperature (40 mK).

the Rabi splitting is strongly modified. =~ While the
overall splitting of different polarization branches can be
understood using our single-particle picture, presented
in the main text, the finer features require more investi-
gation. Generally, one can associate such features with
Coulomb interaction in creating correlations at such low
temperatures. For example, at v =1, certain skyrmion
physics can be observed similar to ETHZ earlier work [2].
At mK temperatures, the thermal energy is low enough
to allow the establishment of these Coulomb-induced
correlations that go beyond the Pauli exclusion. On
the other hand, at higher temperatures (3.5 K, shown
in the lower panels of Fig. , the thermal excitations
have enough energy to bring the system into excited
states, which consist of the delocalization of the charges
and the destruction of the spin order. As pointed out
in the main text, the spin selectivity reported in this
work does not rely on the Coulomb-induced spin order
but its robustness depends on the high Zeeman splitting
between Landau levels with opposite spin.

There are two energies that, when compared with T,
determine the ground state of the system: the Coulomb
interaction and the Zeeman splitting between Landau
Levels. In the previous paragraph, we established that
at 3.5 K, the thermal fluctuations destroy the localiza-
tion and magnetization induced by charge repulsion, for
which we will focus now on the second quantity: Zeeman
splitting vs T. For a system following the Fermi-Dirac
distribution, one would expect T to attempt against the
spin selectivity by inducing thermal transitions in the

hole gas. In this scenario, the holes population in the ¢~
level could be excited to the o1 level; or in other words,
T would induce electronic transitions from o% to o~.
The consequence would be the loss of spin selectivity be-
cause now both bands would have available electrons to
perform an optical transition. Although we can’t mea-
sure the band structure of the system, the robustness
of the effect indicates that the energy splitting between
the o7 and o~ levels is higher than the thermal energy
(T= 0.3 meV at 3.5 K). This allows us to neglect the
effect of T in our description. It is important to men-
tion that the energy of the Landau levels of the valence
band has a nontrivial dependence on both the magnetic
field and the charge density, as it can be observed in ref-
erence [B]. Therefore, the energy splitting between the
spin sub-bands cannot be easily estimated.

4. Details on the theoretical formalism for data
fitting

The coupled oscillators formalism employed for the
theoretical modelization of the polaritonic system is de-
scribed by the Hamiltonian

2
H=Y" (%—i—%) aap+wx(B) Y bibe+Q(B) > (bfar+bya))
k k k

(1)
As specified in the main text, w. is the cavity mode’s
energy, k its momentum, m its effective mass, and wx (B)
and Q(B) are the energy of the electronic transition and
the Rabi splitting, respectively [I]. Once collected, we
fit the data by using wyx and ) as fitting parameters
for each magnetic field. The data is then fitted to the
eigenfunctions of the hamiltonian [T} which are given by:

1 k> 1\/272
EU/L—§(wX+wC+%)j:§ Ak+4Q (2)

With Ay = we + % — wx. The cavity’s energy and
effective mass is accurately extracted from the case
Q = 0 since in this condition, only the bare cavity
mode is visible. For the mass, we obtain the value
m = 2.4 -107%m,, with m, the free electron mass. This
value is kept constant over the fitting procedure of the
full data set and it is consistent with typical values for
these devices. The cavity energy accounts only for minor
changes due to the response of the optical properties
of the bare electromagnetic mode to the high magnetic
and electric fields. In the absence of any field, the cavity
mode at 0 in-plane momentum has energy wc = 1530
meV, and for the full set of data (OV to 10V and -10T

to 10T), it never changes by more than 0.5 meV.

This model accurately reproduces the experimental
data as it can be observed in the Supplementary videos,
which show the evolution of the far-field reflectivity with



an increasing magnetic field for different hole densities.
The main document also displays one fitted set of data
in Fig. 2f.
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