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An essential aspect of topological phases of matter is the existence of Wilson loop operators that
keep the ground state subspace invariant. Here we present and implement an unbiased numerical
optimization scheme to systematically find the Wilson loop operators given a single ground state
wave function of a gapped Hamiltonian on a disk. We then show how these Wilson loop operators can
be cut and glued through further optimization to give operators that can create, move, and annihilate
anyon excitations. We subsequently use these operators to determine the braiding statistics and
topological twists of the anyons, yielding a way to fully extract topological order from a single
wave function. We apply our method to the ground state of the perturbed toric code and doubled
semion models with a magnetic field that is up to a half of the critical value. From a contemporary
perspective, this can be thought of as a machine learning approach to discover emergent 1-form
symmetries of a ground state wave function. From an application perspective, our approach can be
relevant to find Wilson loop operators in current quantum simulators.

I. INTRODUCTION

Topologically ordered phases are gapped quantum
phases of matter that cannot be characterized by local
order parameters, but rather by long-range entanglement
and fractional statistics of quasiparticle excitations. For
decades, a major question has been how to properly di-
agnose and characterize topological order in a quantum
many-body system. While much progress has been made
[1–9], an outstanding question remains: Can we fully ex-
tract topological order from a single bulk ground state
wave function, with no access to the Hamiltonian?

Apart from the fundamental interest in the above ques-
tion, there is a growing body of experimental effort in
creating topologically ordered matter in quantum simu-
lators. Recent examples include the implementation of
toric code in superconducting qubit systems [10], and
dimer models in Rydberg arrays [11, 12]. Since various
kinds of perturbation are present in any experimental im-
plementation, the precise Hamiltonian may not be known
and may depart significantly from that of the pristine,
idealized models. It is thus important to find a system-
atic approach to characterize topological order given a
wave function, with minimal knowledge of the Hamilto-
nian.

From a modern perspective, one key aspect of topolog-
ical order is the existence of an emergent, higher symme-
try. To each curve in space, there exists a set of Wilson
line operators (WLOs), which correspond to adiabati-
cally transporting topologically non-trivial quasiparticles
along γ. If γ is a contractible loop, the corresponding
Wilson loop operators, or closed WLOs, keep a particular
ground state invariant [13], while a WLO with open ends
creates quasiparticle excitations near the two endpoints
of γ. In this sense, the closed WLOs on contractible

FIG. 1: (a) WLO parameterized with a matrix product
operator. (b) Numerical procedure to optimize a WLO. (c)
The expectation value of the WLO WFP for the exactly solv-
able fixed point follows perimeter law when evaluated in the
perturbed ground state: 〈ψ|WFP|ψ〉 ∼ e−L/ξ, where L and
ξ are the perimeter of WFP and correlation length, respec-
tively. However, the expectation value of the optimized Wil-
son loop operator does not decrease exponentially with the
perimeter. (d) The expectation value of the Wilson loop op-
erator 〈ψ|W |ψ〉 during the optimization iteration described
in (b). The typical total number of iterations is around 400.
|ψ〉 is a ground state of the perturbed toric code model with
hx = 0.15, hz = 0.05. The Wilson loop operator is a rectangle
with side length Lx = 36 and Ly = 6 and thickness 1.

loops can be thought of as an emergent symmetry of
the ground state.1 The symmetry is emergent in gen-

1 Closed WLOs on non-contractible loops can be thought of as
a spontaneously broken emergent symmetry [14], because while
they keep the ground state subspace invariant, implying an emer-
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eral because, aside from certain exactly solvable models
[15, 16], the Hamiltonian need not commute with these
WLOs. In contrast to ordinary symmetries, which are
implemented by operators with support over the entire
space, the closed WLOs have support only on loops; in
the case where all topological quasiparticles are Abelian,
the WLOs can be thought of, in modern terminology, as
emergent 1-form symmetries of the system [14]. These
WLOs should in principle contain all of the data that
characterizes the topological order, however it is not well-
understood how to tease it out in practice.

In this work, we propose a numerical method to sys-
tematically search for a complete set of Wilson loop op-
erators for the case of Abelian topological orders, using
only the ground state of a gapped Hamiltonian defined
on a disk-like region of space. We do this by considering
a variational ansatz for Wilson loop operators in terms
of a matrix product operator with support on a ribbon
along γ, as schematically shown in Fig. 1(a). We then
set up a cost function in terms of the variational param-
eters of the WLOs. The minima of the cost function,
which we numerically optimize for, gives the WLOs as
diagrammatically shown in Fig. 1(c). The obtained Wil-
son loop operator expectation value can reach close to
unity after a few hundred iterations (Fig. 1(d)). We em-
phasize that our procedure is unbiased and assumes no
prior knowledge of the form of the WLOs.

Once the WLOs are obtained, we show how one can
perform further optimization-based schemes to find op-
erators that can create, move, and annihilate the anyons.
Finally, we show that these operators can be utilized to
extract the modular S and T matrices of an Abelian topo-
logical order, which gives a complete characterization of
the topological order. In particular the S and T ma-
trices encode all of the information about the fractional
statistics.

We successfully demonstrate our numerical protocol in
models with non-zero correlation lengths. For example,
we show how one can extract the modular S and T ma-
trices from only the ground states of the perturbed toric
code and doubled semion models, with a Zeeman field
that is up to half of the critical value.

To date, several invariants of two-dimensional topolog-
ically ordered states have been shown to be obtainable
from the ground state wave function through a variety
of methods. This includes the total quantum dimen-
sion measured through topological entanglement entropy
[17, 18], the many-body Chern number and Hall conduc-
tance [19–21], various invariants of symmetry-protected
topological (SPT) states [22–24], and the chiral central
charge [25–29]. The modular S and T matrices, which
encode details of the fractional statistics of the quasipar-
ticles, can, under certain conditions, be extracted from

gent symmetry, they act non-trivially on ground states, implying
‘spontaneous symmetry breaking.’

the full set of ground states on a torus [30–32] or in the
presence of twist defects [33], but not to date from a sin-
gle ground state on a disk.

We note that Ref. [34, 35] also proposed to find
WLOs through an optimization approach, by searching
for WLOs that commute with the Hamiltonian. How-
ever generic systems are not expected to have WLOs
that commute with the Hamiltonian; instead as discussed
above WLOs only appear as emergent symmetries that
keep the ground state subspace invariant. Our work, in
contrast to Ref.[34, 35], uses only the ground state with-
out requiring knowledge of the Hamiltonian.

The paper is organized as follows. In Sec. II, we re-
view the basic properties of Wilson line operators and
the algebraic theory of anyon. In Sec. III, we provide
the optimization scheme for probing closed Wilson loop
operators. In Sec. IV, we propose the scheme to cre-
ate, move, annihilate anyons and measure the topologi-
cal twist. We present numerical simulations for abelian
topological order models in Sec. V. Finally, we provide
an outlook for future works in Sec. VI.

II. WILSON LOOP OPERATORS AND ANYON
DATA

In this section, we briefly review the basic properties
of WLOs and the algebraic theory of anyons. Since our
goal is to extract topological invariants from the bulk
of the wave function, in this section we consider a two
dimensional system on an infinite plane.

The anyon theory consists of a collection of algebraic
data that characterize the universal topological proper-
ties, namely the fusion and braiding properties, of the
anyonic excitations of a many-body system. The precise
mathematical framework is that of a unitary modular
tensor category (UMTC). For reviews of UMTCs in the
context of topological phases of matter, see for example
Ref. [3, 6, 7, 36, 37]. For a detailed discussion of how to
relate the algebraic data of the UMTC to the microscopic
properties of a quantum many-body system, see Ref. [7].

The description that we provide below can be made ex-
act in the context of exactly solvable models, such as the
toric code and its generalizations, the quantum double
and Levin-Wen models [15, 16]. The effect of perturba-
tions to these exactly solvable models can also be studied
systematically, using quasi-adiabatic continuation [13].
For chiral topological phases, such as fractional quantum
Hall states or fractional Chern insulators, which have no
description in terms of an exactly solvable model, it is
expected that the same discussion applies, although it
has not been explicitly studied outside of the context of
field theory.
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A. Anyons, Wilson line and loop operators

Since the system has a finite correlation length, we
can define states with quasiparticle excitations that are
localized on the scale of the correlation length. We can
then group the quasiparticles into topological equivalence
classes: two quasi-particle excitations are equivalent if
and only if there is a local operator that can convert one
into the other. The different equivalence classes define
a finite set of distinct anyon types, sometimes also re-
ferred to as superselection sectors or topological charges,
{I, a, b, c, ...}. The set of anyons contains the identity
sector I, which corresponds to excitations that can be
created by local operators.

Since the anyonic excitations can be localized to within
a correlation length of a particular point in space, we
can consider a state with anyon type a at position x,
and denote it as |ax〉. In defining |ax〉, we assume that
far away from x, on the scale of the correlation length
ξ, |ax〉 locally looks like the ground state. Furthermore,
we assume any other non-trivial topological charges are
infinitely far away and do not include them in labeling
the state |ax〉. Note that since a refers to an equivalence
class of excitations, there are many states that can be
labeled as |ax〉, so our choice is not unique.

By construction, the expectation value of any local ob-
servable O(x′) satisfies 〈ax|O(x′)|ax〉 = 〈GS|O(x′)|GS〉,
as long as x and x′ are far away from each other,
|x − x′| � ξ, where |GS〉 is the ground state of the sys-
tem and ξ is the correlation length. The above equality
holds up to O(e−|x−x

′|/ξ) corrections. Physically, this
corresponds to the fact that the state has short-range
correlations, so that a disturbance in the vicinity of x
has exponentially decreasing effects in the ground state
beyond a correlation length.

FIG. 2: (a) When the movement operator Wa(γ) is applied
to the state |ax〉, the anyon excitation is moved to x′. (b)
When the splitting operator Wc→a,b(γ) is applied to the state
|cx〉, the anyon splits into two anyons a and b at position x
and x′, respectively.

The anyons can be moved from one place to another
by applying an operator along an arbitrary path. In par-

ticular, we define a Wilson line operator Wa(γ) along a
path γ starting at x1 and ending at x2. Wa(γ) moves the
anyon excitation from position x1 to x2 along the path γ
as shown in Fig. 2(a). Such operators are referred to as
“movement operators” in [7]. Specifically,

|ax2
〉 = Wa(γ)|ax1

〉. (1)

In general, Wa(γ) has support, up to exponentially small
corrections, on a ribbon of thickness on the scale of ξ, cen-
tered on γ. 2 The precise choice of the operator Wa(γ) is
not unique in general, and a precise definition is also non-
universal and depends on the microscopic details of the
system. Nevertheless, Wa(γ) encodes certain universal
topological data that we wish to extract.

Note that Wa(γ) in general need not be a unitary or
even invertible operator, although in many simple exam-
ples, particularly when a is an Abelian anyon, Wa(γ) can
be chosen to be unitary. Moreover, when a is Abelian,
we can take

W †a (γ) = Wā(γ) = Wa(−γ), (2)

where −γ refers to the path γ traversed in the opposite
direction and ā is the anti-particle of a. That is, W †a (γ)
effectively takes ā along γ or, equivalently, takes a along
the path −γ.

We can also define loop operators by picking γ in
Wa(γ) to be a closed loop. Physically this can be un-
derstood as creating a and its dual ā out of the ground
state, moving one around the loop γ, and reannihilating.
If γ is a contractible loop in the space, such operators
should keep the ground state invariant. Therefore, for
each loop γ we have a loop operator Wa(γ), which keeps
the ground state invariant:

Wa(γ)|GS〉 = da|GS〉. (3)

Here da ≥ 1 is referred to as the quantum dimension
of the anyon a, and is part of the universal data of the
UMTC. We have chosen a convention where da ≥ 1 ap-
pears on the RHS; we could in principle absorb da into
the definition of Wa(γ). The choice above allows us to
make contact with the fusion algebra of the UMTC de-
scription.

As with the line operators, the Wilson loop operators
Wa(γ) are in general not unitary operators, unless a is
an Abelian anyon, in which case we also have da = 1.

Eq. 3 makes explicit that the ground state of a topo-
logically ordered state has emergent symmetries, as there
are loop operators that keep the ground state invariant.

2 Specifically, Wa(γ) can be approximated by a ribbon opera-
tor with finite thickness t [13]. The error of the approximate
Wilson line operator W is of order ε = |〈ψ|W −Wexact|ψ〉| ∼
O(Nse−t/ξ), where Ns is the number of sites in the support of
W , and Wexact is the exact, and presumably non-local WLO, for
the ground state wave function |ψ〉.
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Importantly, the operators are supported, up to expo-
nentially small corrections, on a codimension-1 region,
and therefore do not correspond to ordinary global sym-
metries, which have support over the entire space. When
the anyons are Abelian, the Wilson loop operators form a
group structure and are referred to as 1-form symmetries
[14]; more generally they are referred to as categorical or
non-invertible symmetries.

B. Fusion rules and splitting operators

The anyons define a fusion algebra

a× b =
∑
c

N c
abc, (4)

where the fusion multiplicities N c
ab are non-negative in-

tegers, which indicate the number of different ways the
anyons a and b can be fused to produce the anyon type
c. Each anyon type a has a unique anti-particle ā, where
ā ∈ C is such that N I

aā 6= 0. Note that we can define a fu-
sion matrix Na, with entries (Na)bc = N c

ab; the quantum
dimension da is then the largest eigenvalue of Na.

An anyon a is Abelian if and only if it gives a unique
fusion outcome upon fusing with another anyon b. That
is, given b, N c

ab = 1 for a unique c and N c
ab = 0 otherwise.

The fusion rule leads to the following relation for the
Wilson loop operator:

Wa(γ)Wb(γ)|GS〉 =
∑
c

N c
abWc(γ)|GS〉, (5)

whenever γ is a loop. Note that with the conventions
chosen above, this implies dadb =

∑
cN

c
abdc.

In addition to movement operators and loop operators,
we can define splitting operators. For simplicity, here we
only introduce the spliting operator in the case N c

ab ≤ 1;
the generalization can be found in Ref. [7]. Suppose that
c is contained in the fusion outcome of a and b, that is,
N c
ab = 1. We can define a splitting operator,

Wc→a,b(γ)|cx1
〉 = |ax1, bx2

〉, (6)

where |ax1, bx2〉 denotes a state with two excitations:
anyon a at position x2 and anyon b at position x1 and
|x2 − x1| � ξ as shown in Fig. 2(b).

One can also create the anyon a and its antiparticle ā
by applying

WI→ā,a(γ)|Ix1
〉 = |āx1

, ax2
〉, (7)

where |I〉 is a state in the identity superselection sector.
Observe that if we start with a loop operator Wa(γ),

and we project part of the operator along some seg-
ment of γ to the identity, then we obtain a cut opera-
tor that effective creates an anyon and its anti-particle
out of the vacuum. Therefore we can obtain a choice of
WI→a,ā(γcut) by starting with Wa(γ) for a loop γ and
implementing the above cutting procedure.

C. Modular S matrix and twist product

A large portion of the universal data of a topological
phase of matter is encoded in the modular S and T ma-
trices. In fact for almost all topological phases of interest
in physics, the S and T matrices provide a complete set
of invariants.

The modular S matrix contains information about the
mutual braiding statistics between far separated anyon
excitations, and also completely defines the fusion coeffi-
cients N c

ab.

In particular, Sab is the quantum mechanical ampli-
tude of the process where a particle of type a and an-
other particle of type b are created and separated, the
particle a is moved around the particle b, and then the
particle-anti-particle pairs are annihilated.

Given a set of closed Wilson loop operators Wa, where
a ∈ C, we can define a matrix S̃ab, as

S̃a,b =
〈GS|Wa∞Wb|GS〉
〈GS|WaWb|GS〉

, (8)

where ∞ is the twist product (see e.g. Ref. [38]) and
shown in Fig. 3. For arbitrary WLOs P and Q defined in
regions A and B as shown in Fig. 3(a), P =

∑
k P

A
k ⊗PBk ,

Q =
∑
lQ

A
l ⊗QBl , the twist product P∞Q is defined as

P∞Q =
∑
kl

PAk Q
A
l ⊗QBl PBk , (9)

where the product order is reversed in the region B.

Note that to define the above twist product, we need
each operator Wa to have support strictly on a ribbon of
finite thickness.

Region B

Region A

FIG. 3: (a) Mutual-braiding statistics. To measure the
mutual braiding statistics, we calculate twist product for two
Wilson loop operators Wa and Wb. The supports of the two
Wilson loop operators are divided into two regions. In region
A, the order of the product is WaWb and in the region B,
the order of the product is reversed. (b) The matrix product
operator that measures the self-braiding statistic Ta.
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We expect that S̃ab is related to Sab as

S̃ab =
dadb
D

Sab, (10)

where D =
√∑

a d
2
a is the total quantum dimension. In

this paper we only work with Abelian anyons, in which
case da = 1 and D2 is the total number of distinct anyon
types.

For Abelian anyons, the braiding phase between anyon
i and j can be measured from the phase of the twist
product

φi,j = arg[S̃i,j ]. (11)

D. Modular T matrix

The modular T -matrix is a diagonal matrix,

Tab = θaδab (12)

where θa is the topological twist of the anyon a. Due
to the spin-statistics theorem, θa also corresponds to the
exchange statistics of a. In order to exchange a pair
of identical anyons, we first create two anyon and anti-
anyon pairs from the ground state, and we then move
the two identical anyons and exchange them. Finally
we fuse the anyon and anti-anyon and return the the
ground state as shown in Fig. 3(b). If we normalize the
process properly, the net effect of this procedure gives
the exchange statistics of the anyons.

One can create and exchange anyons and measure the
exchange statistics using the Wilson loop operators. The
detailed implementation of the extraction of exchange
statistics using the Wilson loop operators is given in Sec.
IV E.

III. OPTIMIZATION SCHEME

In order to study the WLOs in the bulk of a ground
state wave function, we propose a numerical scheme to
extract contractible closed WLOs Wa(γ) as defined in
Eq. (3). We parametrize the WLOs by an ansatz based
on matrix product operators (MPOs) [34, 39, 40]. The
ansatz is defined by two parameters: (R,χ), where R is
a set of sites corresponding to the support of the WLO
and χ is the bond dimension, as shown in Fig. 1. For a
certain class of analytically solvable topologically ordered
states, e.g. the Levin-Wen model and the Kitaev quan-
tum double model, it is known that the WLOs can be
efficiently expressed by MPOs with a support region R
with small thickness t and bond dimension χ [15, 16, 40].

To extract the closed WLOs using the MPO ansatz, we
numerically optimize the MPO ansatz in order to obtain
a Wa(γ) which approximately satisfies Eq. (3). In order
to efficiently optimize a Wilson loop, we note that for

=

=

FIG. 4: Illustration of the tensor contraction for calculating
〈ψ|W |ψ〉. The gray tensors represents corner transfer matrix
(CTM). The blue tensors are the contraction of the bra and
ket of the PEPS wave function. The two are connected by
contraction of the physical bond. The red tensors are the
contraction of the PEPS wave function and the WLOs.

Abelian topological orders, an operator W and a wave
function |ψ〉 satisfies Eq. (3) if and only if

〈ψ|W |ψ〉 = 1, (13)

〈ψ|W †W |ψ〉 = 1. (14)

The forward proof is trivial. For the backward proof, we
assume that W and |ψ〉 satisfy Eqs. (13) and (14) and
without loss of generality, W |ψ〉 = a|ψ〉 + b|ψ⊥〉, where
a and b are complex numbers and 〈ψ|ψ⊥〉 = 0. Solving
Eqs. (13) and (14) we can obtain a = 1 and b = 0. Note
that Eq. (11) implies that a = 1 and Eq. (12) ensures
that W |ψ〉 is normalized to 1, which then requires b = 0.

Therefore, we can define the cost function for a wave
function |ψ〉 as

C(W ) = [〈ψ|W |ψ〉 − 1]2 + [〈ψ|W †W |ψ〉 − 1]2. (15)

It reaches a global minimum C(W ) = 0 only when W is
an exact Wilson loop operator.

To variationally optimize the WLO, we start by initial-
izing a random MPO with fixed (R,χ). Each tensor in
the MPO is initialized randomly and independently from
each other. For a translationally invariant system, one
may naively expect that a translation symmetric closed
WLO is a better ansatz. However, we found that the
translation symmetric ansatz tends to be unstable nu-
merically, leading to diverging or vanishing gradients in
the optimization procedure.

After the initialization, we minimize the cost function
defined in Eq. (15) through gradient based optimiza-
tion. In this work, we apply the Adam algorithm [41] to
minimize the cost function. In this work, we fix the hy-
permeters of the Adam algorithm as β1 = 0.9, β2 = 0.999
and learning rate 10−3. We iterate the optimization pro-
cedure until the cost function converges, which typically
takes a few hundred to a few thousand iterations.

We repeat the initialization and minimization Nsample

times to obtain Nsample optimized WLOs Wk, where
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1 ≤ k ≤ Nsample. Throughout the manuscript, we fix
Nsample = 20. We then measure the braiding phases
and topological twists to classify the WLOs through the
equivalence relation described as follows : we compute
the mutual-braiding phases between Wi and Wj , φi,j ,
where 1 ≤ i, j ≤ Nsample and topological twist for Wi θi,
where 1 ≤ i ≤ Nsample. We say the two WLOs Wi and
Wj are equivalent when φi,k = φj,k for 1 ≤ k ≤ Nsample,
and θi = θj . After grouping the WLOs into equivalence
classes, we randomly pick one representative WLO from
each equivalent class.

This equivalence relation assumes that if two WLOs
have the same braiding phase with the rest of the WLOs
and identical topological twists, the two WLOs are equiv-
alent. We note that this condition only holds when we
obtain a complete set of WLOs in our optimization pro-
cedure. Missing one could result in a false classification.
However, one can verify whether a complete set of WLOs
is found by checking if the resulting S matrix is a unitary
matrix. If one or more WLOs are missing, we can vary
the hyper-parameters such as increasing the thickness of
the WLOs or the bond dimension χ.

The bottleneck of the numerical optimization is in the
tensor contraction when calculating the expectation val-
ues 〈ψ|W |ψ〉 and 〈ψ|W †W |ψ〉. Here, we briefly describe
the tensor contraction scheme and its computational time
complexity. Given a ground state wave function |ψ〉, rep-
resented by an infinite projective entangled pair state
(iPEPS) [42–44] as shown in Fig. 4 , we use the follow-
ing procedure to evaluate the expectation value 〈ψ|W |ψ〉.
Consider a closed WLO that takes the form of a rectangu-
lar loop with side lengths Lx and Ly as shown in Fig. 4,
for a system on a square lattice. We first contract all ten-
sors at x = 0 to form a tensor M with Ly bonds as shown
in Fig. 4. We then contract the tensors at x = 1 with M
one by one from y = 0 to y = Ly+1. We then repeat this
procedure for all x ≤ Lx + 1. In this contraction proce-
dure, the computational cost for contracting the tensors
scales linearly with the number of sites along the x direc-
tion (Lx) and exponentially with number of sites along
the y direction (Ly). Therefore, the total computational
cost is bounded by O(LxLyχ

Ly+5). Moreover, since the
thickness t and the size of the hole need to be much larger
than the correlation length, we have that Lx, Ly > 3ξ.
Thus the total computational cost for calculating the ex-
pectation value scales up as O(ξ2χαξ) for some constant
α � 1. Therefore, this method is particularly suitable
for models with small correlation length. Importantly,
the complexity of the computation scales with the corre-
lation length, not the total system size.

IV. MANIPULATION OF ANYONS

Once we have obtained the closed WLOs, we can
extract many non-trivial properties of the anyons. In
particular, we can further obtain operators that create,
move, and annihilate anyons.

In the following, we discuss how to manipulate anyons
by starting from the closed WLOs. For simplicity in this
section, we assume that the thickness of WLOs is t = 1 .
The idea can be easily generalized to t > 1 as is the case
for our numerical results in Section V.

A. Removing and adding a virtual bond

Before we proceed to the manipulation of anyons, we
first define two basic operations of a tensor A, which
is that of removing and adding a virtual bond. These
two operations will be extensively used throughout this
section.

Removing a virtual bond is useful for cutting open
closed WLOs. To remove a virtual bond in a tensor
Aα,β,...,γ , we define an edge tensor Eα that describes the
boundary condition and contract the edge tensor Eα with
Aα,β,...,γ ; the resulting tensor is

A′β,...,γ =
∑
α

EαAα,β,...,γ , (16)

and it has rank n− 1.
Adding a virtual bond is useful when extending an

open WLO or connecting two open WLOs. To add a
trivial virtual bond to an arbitrary tensor Aα,β,...,γ with

rank n, we define a new tensor Ã with rank n+ 1 as

Ãα′,α,β,...,γ = Aα,β,...,γ , (17)

for all 1 ≤ α′ ≤ χ, where χ is the bond dimension of the
new virtual bond.

Using the above two basic operations on tensors, we
can create, move and annihilate anyons, as described in
the following sections.

B. Creation of anyon and anti-anyon pairs

To create an anyon and anti-anyon pair, we simply dis-
card a segment of the closed WLO and apply an arbitrary
edge tensor to terminate its boundary as shown in Fig.
5. Specifically, we start with a closed WLO obtained us-
ing the procedure described in Sec. III for a give ground
state wave function |ψ〉, which is of the form

W =
∑
{α}

A1
α0,α1

A2
α1,α2

· · ·AL−1
αL−2,αL−1

ALαL−1,α0
, (18)

where L is the length of the closed WLO.
We then keep the tensors from sites 1, · · · , l, as shown

in step I of Fig. 5, so that the new MPO is of the form

W̃β,β′ =
∑
{α}

A1
β,α1

A2
α1,α2

· · ·Al−1
αl−2,αl−1

Alαl−1,β′
. (19)

We then remove the virtual indices β and β′ W̃β,β′

by applying the edge tensor E. The edge tensors can
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I. II.

FIG. 5: Creation of an anyon and anti-anyon pair. Step
I : We truncate a closed WLO by discarding a segment of it.
Step II : We contract two two boundary tensor with edge
tensor to terminate the open WLO.

be chosen arbitrarily, since different choices are related
to each other by a local operator. Throughout out this
article, we use

Eγ =

{
1, if γ = 1

0, otherwise
. (20)

After removing the edge virtual bond shown in step II
in Fig. 5, the open WLO is of the form

W open =
∑
β,β′

W̃β,β′EβEβ′ . (21)

When another WLO passes through the open WLO,
the system acquires an anyonic braiding phase as long as
the crossing point is away from the boundary of the open
WLO by an O(ξ).

Finally, in order to preserve the norm of the wave func-
tion, we normalize the open WLO defined above by a
factor

√
〈ψ|W open†W open|ψ〉.

C. Moving anyons

Let us imagine we have a WLO W open
x1,x2

that creates
an anyon a at one endpoint x1 and its conjugate a at
the other endpoint x2. We can use this to construct a
different operator W open

x′1,x2
, effectively moving a from x1

to x′1. We can do this as follows.
We start with an open WLO as shown in step I of Fig.

6. The open WLO with length L is of the form

W open =
∑
{α}

A1
α1
A2
α1,α2

· · ·AL−1
αL−2,αL−1

ALαL−1
. (22)

The open WLO can be obtained using the procedure de-
scribed in Sec. IV B.

We initialize another random MPO with length L′ that
is a loop complement of the WLO W open as shown in step
II of Fig. 6 and is of the form

W open
C =

∑
{β}

C1
β1
C2
β1,β2

· · ·CL
′−1

βL′−2,βL′−1
CL
′

βL′−1
, (23)

To connect W open and W open
P at the boundary, we

add a trivial virtual bond on each boundary tensor. By

I.

V.III.

II.

IV.

FIG. 6: Moving anyons. Step I : We start with an open
WLO that can be generated using the method described in
Sec. IV B. Step II : We randomly initialize an open MPO
with virtual bond at the boundary tensors. The initialized
open MPO and the open WLO form a closed MPO. Step
III: We vary the closed MPO to minimize the cost function
defined in Eq. (15). Step IV and V Finally, we cut the
closed WLO to create two excitations that can be located at
different sites from the anyons in Step I.

adding trivial virtual bond on all the boundary tensors
A1, AL, C1, CL

′
, we have

W̃ open
γ0,γL =

∑
{α}

Ã1
γ0,α1

A2
α1,α2

· · ·AL−1
αL−2,αL−1

ÃLαL−1,γL ,

W̃ open
C,µ0,µL′

=
∑
{β}

C̃1
µ0,β1

C2
β1,β2

· · ·CL
′−1

βL′−2,βL′−1
C̃L
′

βL′−1,µL′
.

(24)

We can therefore have a closed WLO of the form

W =
∑

γ0,γL,µ0,µL′

W̃ open
γ0,γLW̃

open
C,µ0,µL′

δγ0,µL′ δγL,µ0
, (25)

where δi,j is a Kronecker delta function.
In step III of Fig. 6, we minimize the cost function

of Eq. (15) for the closed WLO defined above. We note

that in addition to vary the tensors in the W̃ open
C,µ0,µL′

, we

also have to vary tensors at the boundary of W̃ open
γ0,γL i.e.

Ã1, ÃL,...etc. in order to eliminate the anyon excitation
at the boundary.

We define a length parameter b, which is of order O(ξ).
In the optimization procedure, we vary all the tensors Cs
and C̃s in W open

C and the boundary tensor of W open, Ã1,

A2, . . . , Ab and AL−b+1, · · · AL−1, ÃL, while fixing the
tensors Ai for b+ 1 ≤ i ≤ L− b+ 1.

Once we find the optimal solution that approximately
satisfies Eq. (3), we can cut the closed WLO to create
two ends as described in Sec. IV B and effectively move
the anyon as shown in step IV and V in Fig. 6.

D. Annihilation of anyon and anti-anyon pairs

In this section, we describe a procedure to fuse an
anyon and anti-anyon pair to identity. Given two open
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WLOs Wa(γ) and Wa(γ′), we show how to join them into
a single WLO, as shown in Fig. 7, by effectively bringing
together two endpoints of γ and γ′ and annihilating the
anyons.

We consider two open WLOs of the form

W open
1 =

∑
{α}

A1
α1
A2
α1,α2

· · ·AL1−1
αL1−2,αL1−1

AL1
αL1−1

,

W open
2 =

∑
{β}

B1
β1
B2
β1,β2

· · ·BL2−1
βL2−2,βL2−1

BL2

βL2−1
. (26)

For simplicity we assume that the tensors AL1−1 and
B1 are located at nearest-neighbor sites as shown in step
I of Fig. 6. If this is not the case, we can move the end
of W open

2 using the procedure described in Sec. IV C.
We then initialize a random MPO with length L′ that

is a loop complement of W open
1 and W open

2 , which takes
the form

W open
C =

∑
{γ}

C1
γ1C

2
γ1,γ2 · · ·C

L′−1
γL′−2,γL′−1

CL
′

γL′−1
. (27)

We can connect the three open WLOs by adding a
trivial virtual bond on each boundary tensor as in step
III of Fig. 7. After adding a virtual bond, the WLOs
become

W̃ open
1,µ0,µL

=
∑
{α}

Ã1
µ0,α1

A2
α1,α2

· · ·AL1−1
αL1−2,αL1−1

ÃL1
αL1−1,µL1

,

W̃ open
2,ν0,νL

=
∑
{β}

B̃1
ν0,β1

B2
β1,β2

· · ·BL2−1
βL2−2,βL2−1

B̃L2

βL2−1,νL2
,

W̃ open
C,σ0,σL

=
∑
{γ}

C̃1
σ0,γ1C

2
γ1,γ2 · · ·C

L′−1
γL′−2,γL′−1

C̃L
′

γL′−1,σL′
.(28)

We can therefore connect the three WLO and have a

I.

IV. V.III.

II.

FIG. 7: Annihilation of anyon and anti-anyon pairs
Step I: We start with two open WLOs The boundary of
the two open WLOs are at nearest neighbor sites. Step II:
We randomly initialize an open MPO with virtual bonds at
the boundary tensors. The two open WLOs and the MPO
form a closed MPO. Step III: We vary the closed MPO to
minimize the cost function defined in Eq. (15). Step IV and
V : Finally, we cut the closed WLO and keep the tensors on
supports of the two open WLOs in Step I.

closed MPO of the form

W =
∑

µ0,µL1
,ν0,νL2

,σ0,σL′

W̃ open
1,µ0,µL1

W̃ open
2,ν0,νL2

W̃ open
C,σ0,σL

×δµL1
,ν0δνL2

,σ0δσL′ ,µ0 .(29)

To minimize the cost in Eq. (15) for the WLO above,
we vary the MPO above except for the tensors Aiαi−1,αi

,

Biβi−1,βi
, where b ≤ i ≤ L1 − b . After obtaining a closed

WLO as shown in step III of Fig. 7, we cut the WLO
at the support of W open

C using the procedure described
in Sec. IV B. The resulting open WLO is the fusion of
W open

1 and W open
2 .

E. Topological twist (exchange statistics)

Here we present the scheme that we use to extract
the topological twists of the anyons. To calculate the
topological twists, we calculate the ratio of the amplitude
for the following two processes. In the first process (P1),
we create an anyon and anti-anyon pair from the ground
state wave function. We then exchange them, and finally,
we annihilate the pair of anyon and anti-anyon. In the
second process (P2), we create and annihilate the pair
directly without any exchange

For the first process, we start with a closed WLO with
length Lo of the form

W =
∑
{α}

A1
α0,α1

A2
α1,α2

· · ·ALo−1
αLo−2,αLo−1

ALo
αLo−1,α0

. (30)

We then cut the closed WLO and keep two segments
with length l as shown in step I of Fig. 8. These segments
represent a creation of an anyon and anti-anyon. The end
of the two segments of the WLOs are away from each
other by distance b which is an integer larger than O(ξ).

The WLOs are of the form

W open
1 =

∑
{α}

A1
α1
A2
α1,α2

· · ·Al−1
αl−2,αl−1

Alαl−1
,

W open
2 =

∑
{α}

Ab+1
αb+1

Ab+2
αb+1,αb+2

· · ·Ab+l−1
αb+l−2,αb+l−1

Ab+lαb+l−1
.

(31)

In Step II, we flip the direction of the anyon transport
for the WLO W open

2 by applying Hermitian conjugation.
After cutting and flipping the WLO, we move the

anyon located at the open ends i and n to sites m and
j respectively, as shown in step III of Fig. 8. We then
connect the WLOs by annihilating anyon and anti-anyon
pairs in step IV of Fig. 8. The WLO becomes a self-
intersecting closed loop of the form

W twist
P1

=
∑
{β}

B1
β0,β1

B2
β1,β2

· · ·BL−1
βL−2,βL−1

BLβL,β0
, (32)

where L is the path length of the closed WLO W twist
P1

.
The labels for the supports are shown in Fig. 8. Finally,
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I.

IV.

II.

III. V.
1

2

l’
...
.

l’+1
l’+2

...

l’+l l’+l+1

....

.

....

3l’+l 3l’+l+1
3l’+l+2

....

3l’+2l3l’+2l+1
...
.

L

FIG. 8: Topological twist. Step I. We cut a closed WLO and keep two open WLO. Step II. We flip the right open WLO
to reverse the direction of the anyon and anti-anyon. The boundary sites are denoted as i, j, m and n. Step III. We move
the anyons at i and n to m and j respectively. Step IV. We connect the WLO to form a closed loop. Step V. Finally, we
contract the physical indices in the self-intersecting region.

(a)

(b) =

=

=

=

FIG. 9: (a) Procedure for creating the support of WLO for
process P2 defined in Sec. IV E from process P1. We start
with the support of process P1. We rotate the right half of the
support and stack it on top of the left half of the support. This
WLO is equivalent to a trivial loop. (b) Transformation from
the WLO for process P1 to process P2, using the procedure
described in (a).

we contract the physical indices in the self-intersecting
region as shown in step V of Fig. 8.

In step I of process P1, we cut and discard two segments
of a closed WLO as described in Eq. (31). This step ex-
plicitly breaks the gauge symmetry of a matrix product
operator, which introduces non-universal complex phases
to W open

1 and W open
2 . The non-universal complex phase

depends on the details of the implementation. In order
to cancel the non-universal complex phase, we calculate
the amplitude of the second process P2 using the same
tensors in Eq. (32), but we contract the tensors with-
out exchanging anyons. We conjecture and numerically
verify that the process P2 has the same non-universal
complex phase as the process P1. The calculation of pro-
cess P2 can be achieved by rotating the right half of the
support of W twist

P1
around the center of self-intersecting

region and stacking it on top of the left half of the support

as shown in Fig. 9(a). Instead of creating, exchanging
and annihilating the anyon and anti-anyon pair, this pro-
cess creates an anyon and anti-anyon pair and the anyon
travels around the left half of the support twice. And
subsequently it is annihilated with the anti-anyon. We
note that in order to perform the rotation, presumably
the ground state wave function must have rotation sym-
metry around the center of the self-intersecting region
and translation symmetry. We have not systematically
studied how the above procedure would need to be mod-
ified if the translation and rotation symmetries of the
system are broken.

The WLO after the rotation is of the following form

W twist
P2 =

∑
{β}

Cβ1,βL
2
−1
,βL

2
+1
,βL−1

L
2∏
i=2

Di
βi−1,βL−i+1,βi,βL−i

(33)

where

Cβ1,βL
2
−1
,βL

2
+1
,βL−1

=
∑
β0,βL

2

B1
β0,β1

∗B
L
2

βL
2
−1
,βL

2

∗ B
L
2 +1

βL
2
,βL

2
+1
∗BLβL,β0

,

Di
βi−1,βL−i+1,βi,βL−i

= Biβi−1,βi
∗BL−i+1

βL−i,βL−i+1
(34)

and the tensor multiplication ∗ denotes the contraction
of physical indices as shown in Fig. 9(b).

Therefore, the topological twist that represents the ex-
change statistics is calculated from the ratio of the ex-
pectation value of W twist

P1
and W twist

P2
,

T̃a =
〈ψ|W twist

P1;a |ψ〉
〈ψ|W twist

P2;a |ψ〉
, (35)

where the label a denotes the anyon type.
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V. NUMERICAL RESULTS

In this section, we present the numerical results for
extracting WLOs and braiding statistics for various sys-
tems.

A. Z2 toric code model in a magnetic field

We first consider the Z2 toric code model in a magnetic
(Zeeman) field [45–49]. The Hamiltonian is of the form

HTC = −
∑

p∈plaquette

Bp−
∑

v∈vertex

Av−
∑
i

(hxXi+hzZi), (36)

where the plaquette operators Bp =
∏
i∈p Zi, the vertex

operators Av =
∏
i∈vXi and hx and hz are the magnetic

fields along the x and z directions respectively.
In the following, we consider a dual lattice, so that the

spins are on the lattice sites instead of the bonds. The
plaquette operators Ap and the vertice operators Bv of
the toric code model are then on alternating plaquettes,
as depicted in gray and white respectively in Fig. 10 (a).

When the magnetic fields hx = hz = 0, the ground
state of the toric code model can be solved analytically.
The ground state has zero correlation length and the Wil-
son loop operators can be solved exactly (cost C = 0) with
bond dimension χ = 1 and thickness t = 1 for any size of
the closed WLOs Lx and Ly.

There exist four distinct Wilson loop operators for the
anyon types : I, e, m and ψ, where I is the identity sec-
tor, e and m are bosons with trivial self-braiding phase
and a π mutual-braiding phase and ψ = e × m is the
fermion. The modular S matrix characterizing the mu-
tual braiding statistics, listing the anyons in the order I,
e, m, ψ is of the form,

S =
1

2

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (37)

The topological twists, which characterize the exchange
statistics of the anyons, is given by

T = diag(1, 1, 1,−1). (38)

Figure 10 (b) and (c) illustrate the measurement of mod-
ular S and T matrices with thickness t = 1 on 2D square
lattice.

With non-zero magnetic fields, the ground state wave
function has a finite correlation length ξ. The Wilson
loop operators with finite thickness t can no longer repre-
sent the exact WLOs. However, the optimization scheme
can still find approximate WLOs with error of order
O(Nse

−t/ξ), where Ns is the number of sites.
We first obtain the ground state wave function by

minimizing the infinite projective entangled pair state

(iPEPS) using a recently proposed differential program-
ming approach [43, 44] with corner transfer matrix renor-
malization group (CTMRG) [42].

Next, we follow the protocol described in Sec. III,
minimizing the cost function defined in Eq. (15) starting
from random MPO initializations, to find the Wilson loop
operators. Figure 10(d) shows the minimum cost as a
function of hx with a fixed hz = 0.05 for thickness t =
1 and t = 2. The cost decreases when the thickess t
increases, demonstrating that a larger thickness gives a
better approximation to the true Wilson loop operator.

In Fig. 10(e), we compare the optimized closed WLOs
to the WLOs known for the fixed point toric code Hamil-
tonian (hx = hz = 0). The expectation values of the
optimized closed WLOs stay close to 1 as the magnetic
field is increased. However, the expectation values of the
fixed point WLOs decrease with increasing hx. We note
that this is remarkable given that we do not use prior
knowldge of the WLOs of the fixed point Hamiltonian;
our scheme is completely unbiased and uses no prior in-
formation aside from the ground state of the perturbed
Hamiltonian whose WLOs we are trying to find.

While we do not know the form of the exact WLOs in
the presence of non-zero hx, hz, we do know that their
expectation value in the ground state is 1. Therefore, we
can compute how close our optimized WLOs are to the
exact WLOs. We define the error

ε = |〈ψ|W −Wexact|ψ〉|, (39)

where we use the fact that the exact WLO, Wexact, sat-
isfies 〈Wexact〉 = 1. Here W represents a WLO found
through our optimization protocol.

We present the error ε of the WLOs as a function
of the inverse of the correlation length 1/ξ and num-
ber of sites Ns in Fig. 10(f) and (g), respectively The
correlation length is computed by through the exponen-
tial decay of the correlation funcion, 〈Xx0,y0Xx0+d,y0〉 −
〈Xx0,y0〉〈Xx0+d,y0〉 = Ae−d/ξ. The largest correlation
length we reach in our simulation is ξ = 1.21.

In Fig. 10(f), we vary the correlation length by varying
the magnetic field hx. We show that the error drops
exponentially as function of 1/ξ. Fig. 10 (g) shows how
the error ε scales with the number of sites Ns in the
support of the WLO with t = 1, indicating that the error
scales up linearly with Ns. Therefore the error scaling is
consistent with the error bound O(Nse

−t/ξ) [13].
Finally, we numerically evaluate the twist product ma-

trix S̃i,j and the topological twist T̃i. The twist product
matrix is consistent with Eq. (37) up to 10−5 error and
the topological twist has error up to 10−2. For example,
the twist product matrix for hx = 0.1, hz = 0.05, t = 2,
Lx = 6, Ly = 4, χ = 1 is

S̃ =

1.0 1.0 1.0 1.0
1.0 1.0 −1.00001 −0.99996
1.0 −0.99999 1.0 −0.99977
1.0 −1.00004 −1.00024 1.0

 , (40)
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FIG. 10: (a) Schematic of toric code model on an infinite plane. The red square is the region supporting the WLO. (b) The red
and blue square are regions supporting the WLOs for calculating braiding statistic as described in II C. The circled region is
region B defined in Eq. (9). (c) The curve is the region supporting the WLOs for calculating topological twist as described in
IV E. In the twist region, the blue curve is on top of the green curve. (d) The minimum costs as function of uniform magnetic
field hx for three anyon types in the toric code model with hz = 0.05 and χ = 1. For t = 1, the support of the Wilson loops
is the perimeter of a (Lx, Ly) = (6, 4) square. For t = 2, the support is depicted in (a). (e) The expectation value of the
closed WLOs in renormalization group fixed points (hx = hz = 0), WFP and the optimized closed WLOs as function of the
magnetic field hx. In this figure, hz = 0.05, Lx = 36, Ly = 6, χ = 1 and t = 1. (f) The error of the Wilson loop operators
ε = |〈W −Wexact〉| as function of the inverse of correlation length (1/ξ) of the ground state wave function of toric code in
uniform magnetic field with hz = 0.05, 0.04 ≤ hx ≤ 0.1, χ = 1. (g) The error of the Wilson loop operators ε as function of the
number of sites Ns with hx = 0.1, hz = 0.05, t = 1, χ = 1, Ly = 4. We vary Ns by increasing the side length Lx from Lx = 4
to Lx = 8.

and

T̃ = diag(1.0, 0.963, 0.912,−0.974). (41)

B. Double semion model

In this section, we present our numerical results for the
double semion model.

The Hamiltonian of the double semion model [16],
which we take to be on the honeycomb lattice, is of the
form

HDS = −
∑

v∈vert.
Av −

∑
i

hxXi,

+ (
∑

p∈plaq.

Bp
∏

j∈legs(p)

i
1−Xj

2 + h.c.) (42)

where the plaquette operators Bp =
∏
i∈p Zi, the ver-

tex operators Av =
∏
i∈vXi and legs(p) is the legs of

plaquette p as shown in Fig. 11(a).
For hx = 0, the ground state and the Wilson loop

operators can be obtained analytically [16]. There exists

four distinct WLOs denoted by I, s, s′, b = s× s′, which
represent identity, right and left-handed semions and a
boson. The two semions have π self-braiding statistics
and trivial mutual braiding statistics. The modular S
matrix, listing the anyons in the order I, s, s′, b, is of the
form

S =
1

2

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 . (43)

The topological twists that characterize the exchnage
statistics of the double semion model is given by

T = diag(1, i,−i, 1). (44)
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(c)

(e)

L-vertex

R-vertexR-leg(d)

(f)

(a) (b)

plaquette

vertex

leg

s
s
s
s

s
s

FIG. 11: (a) Schematic of the plaquette and vertex for double
semion model. The “legs” of a plaquette are the edges that
stick out of the plaquette. (b) Schematic of the L-vertex, R-
vertex and R-leg for double semion model. (c) and (d) The
support of the Wilson loop operators with thickness t = 1
and t = 2 respectively. (e) The minimum cost as a function
of uniform magnetic field hx for two semions in the double
semion model. The support of the Wilson loops are depicted
in (c) and (d). (f) The minimum cost as a function of the
bond dimension χ for the two semions for hx = 0.1 and t = 1

The exact closed WLOs for hx = 0 are of the form

WI = I,

Ws =
∏
l∈γ

Zl
∏

k∈L−vertex

(−1)
1
4 (1−Xi)(1+Xj)

∏
l∈R−leg

i
1
2 (1−Xl)

Ws′ =
∏
l∈γ

Zl
∏

k∈L−vertex

(−1)
1
4 (1−Xi)(1+Xj)

∏
l∈R−leg

(−i) 1
2 (1−Xl)

Wb =
∏
l∈γ′

Xl, (45)

where γ is a path of a closed WLO, γ′ is a path of a closed
WLO on the duel lattice, i and j are two legs attached
to L-vertex k as shown in Fig. 11(b).

Note that the Ws and Ws′ operators above have thick-
ness t = 2 and bond dimension χ = 1. Interestingly,
using our unbiased numerical optimization, we found an
equivalent way to represent the exact WLOs at the fixed
point with t = 1 and χ = 2. We present its analytical
form in Appendix A.

In order to numerically optimize the WLOs, we nu-
merically optimize the iPEPS ground state wave func-
tion [50] and consider WLOs with thickness t = 1 and

(a) (b)

FIG. 12: (a) The red and blue curves are regions supporting
the WLOs for calculating braiding statistic for double semion
model. (b) The twisted curve is the regions supporting the
WLOs for calculating topological twist as described in IV E.
In the overlaping region, the blue curve is on top of the green
curve.

t = 2 as shown in Fig. 11(c) and 11(d) respectively. Fig.
11(e) shows the minimum cost achieved as a function of
the magnetic field hx. The optimizer converges to these
minimum costs after roughly 1000 iterations. Fig. 11(f)
shows the minimum cost as a function of the bond di-
mension χ for the two semions for hx = 0.1 and t = 1.

We then numerically evaluate the twist product matrix
S̃i,j and the topological twist T̃i. The support of S̃ and T̃
are shown in Fig. 12(a) and (b) respectively. The twist
product matrix is consistent with Eq. (43) up to 10−4

error and the topological twist has error up to 10−2. For
example, the twist product matrix for hx = 0.1, t = 1,
χ = 2 is

S̃ =

1.0 1.0 1.0 1.0
1.0 −1.0 1.001 −0.994
1.0 0.999 −1.0 −1.002
1.0 −1.006 −0.998 1.0

 , (46)

and

T̃ = diag(1.0, 0.9351eiπ0.502, 0.9412e−iπ0.489, 0.993).(47)

The correlation length of the ground state, calculated
through the exponential decay of the correlation funcion,
〈Xx0,y0Xx0+d,y0〉 − 〈Xx0,y0〉〈Xx0+d,y0〉, with hx = 0.1 is
ξ = 0.87.

VI. SUMMARY AND OUTLOOK

In conclusion, we propose a numerical optimization-
based scheme to extract Wilson loop operators of anyons
from a single ground state wave function defined on a
simply connected region of space. We show how, after
extracting closed loop operators, one can then modify
them to obtain Wilson line operators that create, move,
and annihilate anyons. This allows us to ultimately ex-
tract the braiding statistics and topological twists of the
anyons from a single bulk ground state wave function.
While our protocol for extracting the modular S matrix
is expected to be general, our protocol for extracting the
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topological twists may be benefiting from the lattice sym-
metries of our models; we leave a systematic investigation
of this for future work.

Our algorithm fully succeeds only when all distinct
equivalence classes of Wilson loop operators have been
found. We expect that in general, for a large enough
bond dimension, all Wilson loop operators can be cap-
tured by our matrix product operator ansatz. In prac-
tice it may be the case that some Wilson loop operators
might be more complicated than others, in the sense of
having higher operator entanglement or requiring larger
bond dimension. In this case, if there is an implicit bias
of the optimization procedure towards the simpler loop
operators, then the algorithm may never succeed in dis-
covering a complete set of loop operators starting from
random initialization. In this case, further work needs to
be done on either finding improved initializations or mod-
ifying the optimization procedure to remove the implicit
biases.

Our work also raises an interesting question of whether
all Wilson loop operators for anyons can always be de-
scribed by an MPO with finite bond dimension. This is
particularly intriguing to study for chiral topological or-
ders, such as fractional quantum Hall states, where loop
operators have never been explicitly computed in MPO
form and the ground state wave functions cannot be de-
scribed by a PEPS with finite bond dimension.

So far, our optimization scheme is tailored to Abelian
topological orders. It would be interesting to generalize
it to the case of non-abelian topologically ordered phases,
which can have anyons with quantum dimension greater
than one. One possible direction is to design an optimiza-
tion scheme to extract both the WLOs and the quantum
dimension of anyons simultaneously.

As we discussed, the Wilson line operators can be gen-
eralized to more generic movement and splitting oper-
ators. If we discover such generic movement and split-
ting operators through a similar optimization approach
to what we have described, it may also be possible to
extract the F and R symbols of the underlying modular
tensor category using the results of Ref. [7].

Looking further, similar optimization procedures ap-
plied to symmetry defect creation and movement op-
erators may eventually allow us to extract the full G-
crossed braided tensor category [6] that describes a given
symmetry-enriched topological ground state. This would
allow the extraction of all possible topological invariants
from a single bulk ground state wave function.

More broadly, recent developments in quantum simu-
lators allow the realization of topologically ordered states
that might not occur in conventional electronic mat-
ter [10, 11]. Given this opportunity, it is intriguing to
develop measurement protocols for probing topological
properties of a ground state wave function associated
with a prior unknown gapped Hamiltonian. Our opti-
mization protocol may be particularly relevant in this
context. Since our scheme requires measuring several ob-
servables for a given wave function, it may be useful when

combined with shadow tomography. [51].
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Appendix A: Alternative definition of Wilson loop
operator for double semion model

In Eq. (45), the operators applied on the R-leg l are

(±i) 1
2 (1−Xl). The operator in the exponent 1

2 (1 − Xl)

is equivalent to 1
2 (1 + XaXb) in the space spanned by

close string configurations as shown in fig. 13(a), where
a and b are the two sites attached to the same vertex of
the R-leg l. Therefore, the Wilson loop operators can be
rewritten as

Ws =
∏
i∈γ

Zi
∏
k∈L

(−1)
1
4 (1−Xi)(1+Xj)

∏
l∈R

i
1
2 (1−XaXb)

Ws′ =
∏
i∈γ

Zi
∏
k∈L

(−1)
1
4 (1−Xi)(1+Xj)

∏
l∈R

(−i) 1
2 (1−XaXb),

(A1)

where γ is a path of a closed WLO, R denotes R-vertex
and a and b are two legs attached to R-vertex l as shown
in fig. 11(b).

(a)

R-vertex

L-vertex

(b) (c)

(d)

FIG. 13: Alternative representation of Ws and Ws′ .

To show that the WLOs in Eq. (A1) can be repre-
sented by MPOs with t = 1, χ = 2, we consider an
open Wilson operator shown in fig. 13(b) which cre-
ates semions on the both ends of the Wilson opera-
tor for illustration. A closed WLO can be defined in
a similar fashion. To simplify the notation, we define
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OR = (±i) 1
2 (1−XaXb) for right and left-handed semion

respectively and OL = (−1)
1
4 (1−Xi)(1+Xj). The Wilson

loop operators can be represented in the tensor network
notation as shown in 13(b). The operators OR and OL
can be decomposed through singular value decomposition
(SVD) as

OR =

2∑
α=1

OR1,αOR2,α

OL =

2∑
α=1

OL1,αOL2,α, (A2)

where α is the index auxiliary bond as shown in fig. 13(c)
and

OR1
=

√
i

2

(
I −iX

)
, OR2

=

(
I
X

)
OL1 =

(
I −2P−

)
, OL2 =

(
I
P+

)
, (A3)

where P± = 1
2 (1±X). After SVD, the Wilson operators

can be expressed by a two-site periodic MPO terminated
by edge tensors :

Ws =
∑
{α}

E1α1
Aα1α2

Bα2α3
. . . AαL−2αL−1

BαL−1αL
E2αL

,

(A4)

where Aα,β = ZOL1,βOR2,α, Bα,β = ZOL2,αOR1,β ,
E1(2) = ZOR1(2)

and α, β = 1, 2. Ws′ can be defined
similarly. Therefore, the WLO for creating semions can
be expressed by MPO with t = 1 and χ = 2.
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