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Optical conductivity and orbital magnetization of
Floquet vortex states
Iman Ahmadabadi 1,2✉, Hossein Dehghani 1,2 & Mohammad Hafezi 1,2

Motivated by recent experimental demonstrations of Floquet topological insulators, there

have been several theoretical proposals for using structured light, either spatial or spectral, to

create other properties such as flat bands and vortex states. In particular, the generation of

vortex states in a massive Dirac fermion insulator irradiated by light carrying nonzero orbital

angular momentum (OAM) has been proposed. Here, we evaluate the orbital magnetization

and optical conductivity as physical observables for such a system. We show that the OAM

of light induces nonzero orbital magnetization and current density. The orbital magnetization

density increases linearly as a function of the OAM degree. In certain regimes, we find that

orbital magnetization density is independent of the system size, width, and Rabi frequency of

light. It is shown that the orbital magnetization arising from our Floquet theory is large and

can be probed by magnetometry measurements. Furthermore, we study the optical con-

ductivity for various types of electron transitions between different states such as vortex,

edge, and bulk that are present in the system. Based on the peaks in conductance, a scheme

for the detection of vortex states is proposed.
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A class of condensed matter systems which have gained
much attraction in recent years are periodically driven
materials, known as Floquet systems, that have resulted in

a new paradigm for realizing exotic quantum phases of
matter1–12, and some of them have been experimentally realized
via optical tools in the last few years13–15. Furthermore, there
have been recent experimental developments in the spatial
manipulation of optical beams for controlling ultra-atomic
systems16–21. Potentially, applying similar techniques to electro-
nic systems can yield new possibilities for engineering novel
quantum phases of matter. In particular, in a recent work22, it was
shown that linearly polarized (LP) or circularly polarized (CP)
light with nonzero orbital angular momentum (OAM)23,24, can
create vortex states in a two dimensional semiconductor.

More generally, it is intriguing to investigate whether the
application of structured light, spatial22,25,26 or spectral27, can
lead to interesting topological features, and which physical
observables could reveal the properties of bulk, edge, and vortex
states in such driven topological systems. For example, the
frequency-dependence of the optical conductivity provides valu-
able information about charge carriers and elementary excitations
in the dynamical responses. In particular, the real part of the
dynamical Hall conductivity describes the reactive carrier
response dynamics, and its imaginary part provides the dis-
sipative response28–42. Additionally, orbital magnetization,
defined by the magnetization arising from orbital motion of
electrons, and its origin can yield an insightful picture about the
electronic properties of the system43–51. The current density
induced by OAM of light52,53 has been proposed for further
optical control of the magnetization in materials, enabling topo-
logical memory applications54.

In this work, we evaluate the optical conductivity and orbital
magnetization of a semiconductor driven with structured light, as
proposed in22. To study the Hall conductivity, we employ a finite
lattice derivation of dynamical conductivities via Kubo
formalism28,55–57, and we separate the contributions of different
types of transitions determined by their initial and final states.
This approach allows us to propose an experimental scheme to

measure different contributions to the optical conductivity and to
find the experimental signatures of vortex states as shown sche-
matically in Fig. 1. Specifically, by tuning the chemical potential
and the probe field frequency, we can measure the conductivity
contribution arising only from the transition between two vortex
states. By further tuning the frequency of the probe field, we can
also measure other possible contributions from transitions
between bulk, edge, and vortex states shown in Fig. 1c. Since the
gap is set by the Rabi frequency, Ω0, the relevant energy scale for
bulk-bulk transition is Ω0 while the energy difference between
vortex-vortex and edge-edge is given by the light width and
system size, respectively. For example, among different types of
transitions, vortex-vortex and edge-edge transitions occur at
lower probe frequencies compared to those required for the
detection of the bulk-bulk contributions. The vortex-bulk and
edge-bulk transitions need probe frequencies between these two
frequency regimes.

Moreover, we study the orbital magnetization and current
density of our Floquet system. We show that the current density
induces nonzero orbital magnetization in the semiconductor. The
orbital magnetization increases linearly with OAM of light, for
both LP and CP light. Furthermore, we illustrate that the orbital
magnetization density is independent of the Rabi frequency and
light width. Finally, we demonstrate that in our setting, the orbital
magnetization density is an intensive quantity because we assume
that the light profile covers the entire system.

The orbital magnetization and current density induced by
driving the system can be detected based on sensitive magnet-
ometers, such as superconducting quantum interference devices
(SQUIDs)58 and nitrogen-vacancy (NV) centers59–62. We find
that the CP light can create a rotating current density around the
center of the light beam in a vortex state, while the density of
current is localized along with the polarization of the LP light.

Results and discussion
Electronic Floquet vortex states of the driven system. In this
section, we review our driven system Hamiltonian and the energy

Fig. 1 Schematic of the driven two dimensional semiconductor system and energy dispersion of Floquet vortex states. a Schematic for the driven two
dimensional (2D) semiconductor illuminated by light carrying orbital angular momentum with vorticity m= 1. The light beam’s frequency is ω. This laser
field opens up an energy gap in the rotating frame, while creating several midgap (vortex) states. The schematic profile of electrons in a vortex state is
shown as the red circle around the light beam’s center. Additionally, a setup for the measurement of longitudinal and Hall conductivity of the driven system
using a probe field with frequency ω0 and a detector to measure the conductivity is shown. b In the rotating frame, coupling the laser field with the
semiconductor with gap 2M and detuning δ=ω− 2M, introduces the hybridization radius k0 and the Floquet gap 2Ω0 with the thickness kδ. c The energy
dispersion is plotted as a function of pseudo orbital angular momentum l as it becomes a good quantum number regarding the vorticity of light. The bulk,
vortex, and edge states are shown in the blue area, red, and green dots, respectively.
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spectrum. It is shown that shining light carrying nonzero OAM
on a two dimensional semiconductor results in vortex states near
resonant and weak field regimes22. Specifically, by considering a
spinless massive Dirac 2D semiconductor described by the
Hamiltonian H0= (vkx, vky,M) ⋅ σ, the rotating wave approx-
imation (RWA) for the driven system by light with OAM can be
applied. We set ℏ= 1 and e= 1 for all calculations, except when
these parameters are explicitly determined. Here, M is half of the
band gap and v is the Fermi velocity. A light beam with frequency
ω which carries a nonzero OAM is shined on a semiconductor
slab, as depicted in Fig. 1a, and its vector potential is denoted by
Aðr; tÞ ¼ A0ðrÞeimϕeiωt x̂ þ c:c: We assume that the laser field
satisfies the paraxial approximation, meaning that A0ðrÞ ¼
Amax 1� expf�r2=ð2ξ2Þg� �

varies smoothly over the length scale
of semiconductor lattice constant and of light width ξ. The radial
part A0(r)eimϕ, where r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and ϕ ¼ arctanðy=xÞ, has

integer vorticity m, representing the OAM of the laser field.
Because of the vortex structure of the field, A0(r) vanishes at
r= 0, for nonzero values of m. Since we assume that the semi-
conductor sample size is smaller than the beam size, this form of
the vector potential is an approximation of the complete form of
the Gaussian mode. As a result, the tail of the full vector potential
is not included here and the amplitude of the field reaches to the
constant value of Amax for r > > ξ. We note that this choice of
vector potential violates the Coulomb gauge as p̂:A≠A:p̂, where
p̂ ¼ ð�i∂x;�i∂yÞ is the momentum operator. However, we can
numerically show that the error is completely negligible, and the
expectation values of the two terms p̂:A and A:p̂ become even
closer to each other as the system size R increases. The applied
laser field hybridizes the valence and the conduction bands as it is
shown in Fig. 1b, opening the energy gap around the resonance
ring of momentum, jkj ¼ k0 ¼ v�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2=4�M2

p
where ω > 2M

within the small detuning regime δ= ω− 2M≪ ω. Starting with
the minimal coupling, one can replace the wave vector k with
k þ eAðr; tÞ. To obtain the effective Hamiltonian from the time-
periodic form HðtÞ ¼ H0 þ evAðr; tÞ � σ, we can use the RWA
where we neglect fast oscillating terms in the time-dependent
Floquet Hamiltonian, as an approximation method of the Floquet
formalism, see Supplementary Note 1. As it is discussed in the
Supplementary Notes 2 and 3 and shown with more details in
reference22, the final form of the Hamiltonian for the LP light
reads as follows

HRWA ¼ δ

2
k2

k20
� 1

 !
σz þ ΩðrÞe�imϕσþ þH:c:

� �

þ O Ω0

ffiffiffiffiffi
δ

M

r !
;

ð1Þ

where, Ω(r)= evA(r) and Ω0 ¼ limr!1 ΩðrÞ. We note that since
we utilize a continuum Hamiltonian for the semiconductor,
where the momentum corresponds to the large length scales in
comparison to the lattice constant. Also, since the electric field is
slowly varying over the lattice spacing, the wavevector k is
replaced with the momentum operator p̂ in real space. After
numerical diagonalization of the Hamiltonian, the dispersion of
the Floquet system for the LP light with OAM can be acquired, as
depicted in Fig. 2a for m= 1. The RWA Hamiltonian for the case
of CP is derived in the Supplementary Note 3, and the corre-
sponding energy dispersion is shown in Fig. 2b. As can be
observed from Fig. 2, there are ∣m∣ vortex state branches in the
energy versus pseudo angular momentum diagram.

Based on the formalism followed in previous studies22,63, here
we present an estimation of the energy difference between
subsequent vortex states. One can show that the energy

separation between vortex states in the low-energy regime is
given as follows

ω0 ¼
R1
0

ΩðrÞ
r e�ð2k0=δÞ

R r

0
Ωðr0 Þdr0dr

k0
R1
0 e�ð2k0=δÞ

R r

0
Ωðr0Þdr0dr

: ð2Þ

We note that this physical quantity is system size-independent
and determined solely by the bulk properties of the system and
the radial profile of the irradiating beam. Therefore, its value
remains constant in the thermodynamic limit. Here, we
demonstrate how the energy difference between vortex states
can be calculated based on properties of the shining light such as
ω, δ, and Ω0. By considering the following form for the radial
beam profile

ΩðrÞ ¼ Ω0ðr=ξÞq for r ≤ ξ

Ω0 for r > ξ

�
; q ≥ 1; ð3Þ

it can be shown that ω0 can be approximated by the following
expression

ω0 ’ Ω0ðk0ξÞ�1ðkδξÞ�ðq�1Þ=ðqþ1Þ; ð4Þ
where kδ≡ k0Ω0/δ. Therefore, the energy separations ω0 depend
on the applied light beam properties such as its frequency ω, and
the radial profile including parameters ξ for the light width, Ω0

for the intensity, and q for the light shape. From the approximate
energy separation between subsequent vortex states, we can

Fig. 2 Dispersion of energy versus pseudo orbital angular momentum for
different vorticities m. a m= 1 of the linearly polarized light and b m= 2 of
the circularly polarized light. We set ω= 2.05M, Amax ¼ 0:03MðevÞ�1,
A0ðrÞ ¼ Amax½1� expf�r2=ð2ξ2Þg�, and ξ= 20kδ. We use the disk sample
radius R= 10ξ. As shown in these two examples, the number of vortex
state branches can be determined by ∣m∣. The bulk and vortex states are
bolded in blue and red, respectively. For the circularly polarized light in
b, edge states are colored in green. The spatial profile of electronic densities
is shown in the inset of figure (a) with a color scale on the right-hand side.
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estimate the number of vortex states in one branch as follows

2Ω0=ω0 ’ k0ξðkδξÞðq�1Þ=ðqþ1Þ: ð5Þ

For q ≥ 1, one can further simplify this estimation by
determining the lower bound of 2Ω0/ω0≃ k0ξ. Since we are in
the small detuning regime ξ−1≪ k0≪M/v, there are many
vortex states in a vortex branch as 2Ω0/ω0≫ 1.

Optical conductivity. Here, the optical conductivity of the system
described in the previous section is calculated. With the obtained
wave functions in the form of Bessel functions and energy
spectrum, we can calculate the longitudinal and Hall optical
conductivities via Kubo formalism in the real space configuration
in polar coordinates. To measure the dynamical conductivity, we
apply a weak, linearly polarized alternating current (AC) probe
field that is normal to the surface of the semiconductor, as it is
shown schematically in Fig. 1a. Here, we review the real space
expression for the dynamical conductivity. We note that, due to
the vortex structure of the laser field, the translational symmetry
is explicitly broken, and all the calculations of Hall and long-
itudinal conductivities should be performed on a disc with finite
radius R. We assume that the non-perturbed time-independent
Hamiltonian is labeled by H0. We consider a time-dependent
perturbation H ¼ H0 þ H0ðtÞ and apply the Liouville-von Neu-
mann equation iℏ∂tρ= [H, ρ] for the density matrix ρ= ρ0+ δρ
in the linear response regime. Relations H0 αj i ¼ ϵα αj i, ρ0 αj i ¼
nαðϵÞ αj i can be used in Liouville-von Neumann equation, where
nα is the Fermi-Dirac distribution. In other words, we assume that
the system is thermalized in the rotating frame. With the
assumption of periodic time dependence of H0ðtÞ / eiω

0t , we have
_ω0δρ ¼ ½H0; ρ0� þ ½H0; δρ�, where ω0 is the frequency of the prob
field. Thus the components of δρ can be obtained as follows

hβjδρjαi ¼ ðnβ � nαÞhβjH0jαi
ðϵβ � ϵαÞ � _ω0 � iη

; ð6Þ

where η is the quasiparticle lifetime broadening, α(β) is a col-
lective label for the relevant quantum state including the band
index n, pseudo-OAM l, and the type of the state from the set
{bulk, vortex, edge}.

We can rewrite the perturbation in terms of velocity operator
given by H0 ¼ eAμ

ppμ=m ¼ evμEμ=ðiω0Þ, where μ, ν∈ {x, y}, e > 0 is
the elementary charge and Einstein summation rule is applied.
Employing the Heisenberg equation of motion for time-dependent
perturbations, one obtains β

� ��vμ αj i ¼ β
� ��½xμ;H� αj i=ði_Þ �

β
� ��xμ αj iðϵα � ϵβÞ=ði_Þ. The single particle current density operator

is defined as jμ ¼ 1
S

δH
δAμ

p ðrÞ ¼ ð�eÞvμ=S, where S is the area of the two-
dimensional system (here, S ¼ πR2). By substituting the previous
relations into the average current density defined by the following
equation, we get

Jμ ¼ Tr½ jμδρ� ¼ ∑
αβ
hβjδρjαihαjjμjβi

¼ � 2πσ0
S_

∑
αβ

ðnβ � nαÞϵ2βα
ϵβα � _ω0 � iη

hαjxμjβihβjxνjαiAν ;
ð7Þ

where ϵβα≡ ϵβ− ϵα is the energy difference between final (β) and
initial (α) transition states and σ0≡ e2/h is the quantum of
conductance. The paramagnetic current correlation function
Πμνðω0Þ is defined by the equation Jμ ¼ Πμνðω0ÞAν . Therefore, the
following final equation for the dynamical conductivity can be

acquired

σμνðω0Þ ¼ Πμνðω0Þ � Πμνð0Þ
iω0

¼ 2πiσ0
S_

∑
αβ

ðnβ � nαÞϵβα
~ϵβα � ω0 � iη

hαjxμjβihβjxνjαi:
ð8Þ

We set η= 9.6 × 10−6 and η= 5.6 × 10−7 for irradiating LP and CP
light carrying OAM, respectively. The reason we need to use different
values for η is due to the different Hamiltonian energy scales for the
LP and CP cases as shown in Eq. (1) and Supplementary Eq. (14). We
should note that while our initial steps in derivation of Eq. (8) are
similar to the reference64, our final expression that we use in our
simulation is different. The matrix elements in Eq. (8) capture the
transition processes among the bulk, edge, and vortex states. There are
five types of transitions, i.e., edge-to-edge (E-E), edge-to-bulk (E-B),
vortex-to-vortex (V-V), vortex-to-bulk (V-B), and bulk-to-bulk (B-B).
In the system, the V-E transition is not possible because vortex and
edge states’ branches are located in separate ranges of pseudo-OAM l
in the dispersion, sufficiently far from each other so that the transition
rule, l0 ¼ l ± 1, cannot be obeyed. Using the wave functions’
expressions in Supplementary Eq. (9), we obtain the following matrix
form with corresponding transition rules for various contributions.
We note that the transition rules l ¼ l0 ± 1 are obtained by integrating
the angular part of terms 〈α∣xμ∣β〉

ψS0
l0n0 jx̂jψS

ln

� � ¼ T S0S
l0n0;lnðδl;l0þ1 þ δl;l0�1Þ

ψS0
l0n0 jŷjψS

ln

� � ¼ T S0S
l0n0;lnðiδl;l0þ1 � iδl;l0�1Þ;

ð9Þ

where, δl;l0 is the Kronecker delta symbol, S0; S 2 fB;E;Vg represent
the bulk, edge, and vortex states, and T S0S

l0n0;ln is a dimensionless radial
integration part derived by

T S0S
l0n0;ln ¼

Z R

0
drr2ðun;l;þðrÞun0;l0;þðrÞ þ un;l;�ðrÞun0;l0;�ðrÞÞ: ð10Þ

In Figs. 3 and 4, different contributions of the optical
conductivity (Hall and longitudinal) for LP and CP light beams
are shown, respectively. Figure 3a illustrates the electronic
transfer among different types of states that includes V-V, V-B,
E-E, E-B, and B-B transitions, which are shown in red, gray,
green, orange, and blue, respectively. According to the transition
rule obtained in the Kubo formalism in Eq. (9), it can be seen that
V-V transition occurs only between a state below and a state
above the Fermi level. Thus, there is only one resonance peak in
m= 1 for V-V in Fig. 3b, c, corresponding to the energy
difference between two subsequent vortex states that can be
approximated by ω0 as expressed in Eq. (2). We also note that
since the two vortex states at zero energy are particle-hole
symmetric to each other as we showed below Supplementary Eq.
(10), the radial parts of their wave functions cancel each other
out. As a result, the intensity of the V-V transition at zero energy
vanishes. Therefore, we need to change the chemical potential to
select two vortex states far from the zero energy so that the
transition between two subsequent vortex states becomes
nonzero. Despite the behavior of V-V transitions for m= 1,
there are many peaks in the V-B contributions. In Fig. 3b, c, the
V-B has several peaks because of several transitions between
vortex states in the gap and possible bulk states, corresponding to
transition frequencies between these states which for our
parameters is around the energy ω0 � Ω0=4. The B-B contribu-
tion has even more peaks in comparison to the case of V-B since
the bulk transitions scale with the system’s area. The location of
peaks covers energy differences in the range 2Ω0<ω

0 and decays
for higher probe frequencies.

The V-V transition for the light beam carrying OAM with CP
shown in Fig. 4a, b, has very similar behavior to the LP light,
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where the peaks for σxx/xy occur at resonance with the energy
difference between two vortex states, ω0. We note that energy
scales for CP light are smaller than LP light by a factor of
v2(2M)−1 as it is demonstrated in the Hamiltonian in
Supplementary Eq. (14). As can be observed from Fig. 4, in the
case of CP light, the E-E contribution to the Hall conductivity is
dominant. The E-E contribution reaches the value ~1.95 as
ω0 ! 0, corresponding to the quantized Hall conductance,
according to the existing two chiral edge modes and Chern
number two for topological Floquet insulator. In the E-B
contribution of CP light, similar to the case of LP light, there
are more possible transitions than the cases of V-V and E-E as

shown in Fig. 4. The V-B transition for the LP light shown in
Fig. 3 has distinct peaks because of the more separate vortex states
(larger ω0) in the gap of the driven system in comparison to the
case of CP light. The B-B transition for CP illumination has more
resonance peaks than all other transition types. Similarly, the
reason is that more possible electron transfers obeying transition
rules between bulk states are available in comparison to other
contributions. For the CP light, most B-B peaks occur around
frequency range v4Ω0ð2MÞ�1 <ω0 and decay exponentially at
higher frequencies. Different types of transitions are also
discussed for the OAM of light m= 2 for the LP light in the
Supplementary Note 4 and Supplementary Fig. 1. Most of the

Fig. 4 Optical conductivity of Floquet system driven by the circularly polarized light. The optical conductivities, a Hall (σxy) and b longitudinal (σxx), for
circularly polarized light, versus probe frequency ω0 and vorticity m= 1 for different types of transitions. The Hall conductance at zero frequency is shown in
the inset of the edge-edge panel in (b). Parameters are the same as in Fig. 2. Blue and red lines indicate the real and imaginary parts of optical conductivity,
respectively.

Fig. 3 Optical conductivity of Floquet vortex states for the linearly polarized light. a Schematic of energy dispersion illustrating that tuning the probe
field frequency through different regimes can measure different optical conductivity contributions. The bulk, vortex, and edge states are shown in blue
areas, red, and green dots, respectively. Three contributions vortex-vortex (V-V), vortex-bulk (V-B), and bulk-bulk (B-B) can be considered for the Hall and
longitudinal conductivities of linearly polarized light. In addition, two more contributions edge-edge (E-E) and edge-bulk (E-B) are also possible for the
circularly polarized light. The vortex-vortex, vortex-bulk, edge-edge, edge-bulk, and bulk-bulk transitions are shown in red, gray, green, orange, and blue
arrows, respectively. The corresponding location of each type of transition for Re(σxx) is shown below schematically, for a system driven by linearly
polarized light. b Numerical results for the longitudinal and c the Hall conductivity of linearly polarized light σxy and σxx, versus probe frequency ω0 for
contributions from different types of transitions. Parameters here are the same as shown in Fig. 2 and the vorticity of light is m= 1. Blue and red lines
correspond to the real and imaginary parts of conductivity, respectively.
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contributions are very similar to the case of m= 1, except the
V-V transition for vorticity m= 2 has more peaks for electron
transfer between vortex states. This is because, for m= 2,
transitions between vortex branches are also possible and
introduce more peaks as it is depicted in the Supplementary
Fig. 1.

We note that it is not possible to measure the optical
conductivity of vortex states locally. This is because the
wavelength of the probe field for V-V transition is of the order
of λ � 1

ω0
� R, and thus larger than the radius of localized

electronic density in a vortex state that is located around the
center of the light as shown schematically in Fig. 1a.

However, we can show that it is possible to distinguish
transitions between different types of states spectrally. To separate
different contributions of conductivity in experiments, one can
use the optical conductivity measurements by tuning the probe
field frequency properly. To detect vortex states and measure
their contributions to the dynamical conductivity, the chemical
potential should be tuned to be in the bulk gap of the driven
system and not exactly at energy zero. The reason for the latter
condition is because of the vanishing amplitude of the transitions
between vortex states above and below the energy zero as their
radial integration in Eq. (10) vanishes. By tuning the probe field
frequency ω0 to be less than the bulk gap, one can remove any
bulk contributions as shown by the red transition in Fig. 3a. Then
to measure the B-V contribution, the probe frequency can be
tuned to include B-V contributions as illustrated in Fig. 3a in gray
transition. After measuring the contribution of V-V and V-B, by
choosing the probe frequency to be equal to or higher than the
bulk gap, B-B contribution can be possible and measured as
shown with blue transition in Fig. 3a. We note that the
amplitudes of V-V transitions are system size-dependent and
they decrease as the radius of the system, R, increases. However,
here we use this finite-size effect to acquire the signature of the
vortex states in the optical conductivity. We can also tune Rabi
frequency Ω0 and light width ξ to change the intensity of optical
conductivity. The optical conductivity can increase as a function
of light width and decrease when the Rabi frequency increases, as
shown in Fig. 5a, b, respectively.

To verify the experimental feasibility of the optical conductivity
measurements in our system, we note that realizing our Floquet
system, similar to other recent studies14,15, requires strong laser
fields. While so far the experiments have been performed on
gapped states, we use their numbers as a guide for our proposal in
semiconductors. The intense fields pump a considerable amount
of energy into the system, and therefore can quickly heat the
system. Therefore, in such settings where states of the driven
Hamiltonian have been shown to survive for around 1ps, our
proposed vortex states can be created transiently.

Correspondingly, to measure the physical signatures of these
states, one needs to consider an ultrafast measurement protocol.
The typical vector potential and detuning that we have assumed
in our proposal are A0= 0.015M(ev)−1 and δ= 0.1M. This value
corresponds to the Rabi frequency Ω0= evA0= 3.6 THz for a
semiconductor band gap M ~ 1 eV and Fermi velocity
v ~ 105 ms−1. The corresponding intensity for such a Rabi
frequency is I ¼ cϵ0

2 ω2A2 ¼ 2:1 ´ 1012 Wm�2 which is close to
the intensity used in ref. 15, where c is the speed of light and ϵ0 is
the dielectric permittivity of vacuum. Based on Figs. 3 and 4,
optical conductivity peaks in our system occur in the range of
probe frequencies ω0 � 1

100Ω0 to ω
0 � Ω0. Here, the inverse of the

probe frequency can be compared with the duration of the recent
ultrafast DC measurement of anomalous Hall conductivity in the
driven graphene15. The inverse of probe frequencies in optical
conductivity can be within the range of 30–1000 fs and are less
than the duration of such experiments. Therefore, we conclude
that our measurement scheme for the optical conductivity of
different types of transitions is experimentally achievable.

Orbital magnetization and current density. To further under-
stand the effect of the vorticity of light on the electronic system,
we calculate the electronic current density and orbital magneti-
zation. Here, for the wave functions of the quantum states,
ψ(r)=〈r∣ψm,k〉, the current density is given by

jðrÞ ¼ �eψyðrÞ ∂HRWA

∂k
ψðrÞ: ð11Þ

As shown in Fig. 6a, the current density of a vortex state is
highly localized around the center of the light carrying nonzero
OAM for both LP and CP laser fields. In the case of linear
polarization, the current density is aligned linearly along the
polarization of the light beam. The width of this localization
increases as ξ increases and as we select the vortex states far from
the zero energy as shown in Fig. 6b. The rotation of the current
density for the CP case is detected by the handedness of the beam.
Then, we calculate the orbital magnetization of occupied states in
the presence of vortex states for different vorticities m. The orbital
magnetization is defined as follows

m ¼ � e
2
∑
ϵi<μ

ψi

� ��r´ v ψi

�� �
; ð12Þ

Fig. 5 Tuning of optical conductivity by light width and Rabi frequency.
a Optical conductivity as a function of light width ξ, and b as a function of
Rabi frequency Ω0 for vortex-vortex transition of linearly polarized light as it
is depicted in Fig. 3c.

Fig. 6 Current density induced by light carrying orbital angular
momentum. a Current density of vortex states, demonstrating highly
localized current density around the center of light for the vortex states
closest to the zero energy. b Current densities for the vortex states far from
the zero energy and near the bulk states. Parameters for both a and b are
the same as Fig. 2, except ξ that is determined here separately.
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where summation is over occupied states, v ¼ � i
_ ½r;H� and the

disc area S= πR2 for r ¼ ðx̂; ŷ; ẑÞ. Since our low momentum
Floquet theory captures the physics only around the early Dirac
point in the semiconductor, we always set chemical potential
μ= 0 when calculating the orbital magnetization. One can write
the following expression

Mz ¼
ie
2S_

∑
ϵi<μ

ψi

� ��ðx̂½ ŷ;H� � ŷ½x̂;H�Þ ψi

�� �
: ð13Þ

The averaged magnetization densityMz can then be defined as
the magnetic moment m per unit area for a 2D system along the
z-direction. As shown in Fig. 7, the averaged magnetization
density increases linearly as a function of light vorticity m for
both LP and CP cases. Therefore, the orbital magnetization
density is zero for m= 0 for the LP light. However, there is a
remaining magnetization of CP light for vorticity m= 0 that
results from states hosting circular current density and nonzero
magnetic moments. We note that the circular current density can
also be observed among bulk and edge states in the case of CP
light. Additionally, the averaged orbital magnetization density for
the system is independent of the Rabi frequency of light Ω0, the
width of light carrying OAM ξ, and the disc’s radius R (an
intensive quantity) as demonstrated in Fig. 8a, b, and c,

respectively. It should be noted that while Fig. 8c shows the
entire range for R, small disc radii in the range R≲ 5ξ are not
physical. The value of ξ is limited by the lower bound of λ/2,
where λ is the wavelength of the light. Therefore, for the
semiconductor with a gap of 1eV, the ξ has the typical value of 1
micron. As a result, the minimum value of the sample size R is
around 10 microns. We note that the independence of the
magnetization results from the Rabi frequency may at first seem
counter-intuitive, especially from the point of view of a driven
two-level system. However, upon further scrutiny, it turns out
that such behavior is acceptable within our model. The under-
lying reason is that in evaluating the magnetization, to simplify
our calculations, we have assumed a nearly zero-temperature
occupation of the Floquet bands corresponding to a full
occupation of the Floquet valence band65. However, in a typical
experimental setting, the dissipative electron-phonon interactions
tend to relax the distribution of the electrons from the undriven
conduction band to the valence band, so that the occupation
probability of electrons in the Floquet valence band around the
resonance surface could be significantly lower than one and is
controlled by the Rabi frequency5,34. Therefore, our model
assumes that the occupation of the bands is insensitive to the Rabi
frequency, the resulting magnetization tends to be independent of
the Rabi frequency.

From a semiclassical point of view, electronic magnetization is
determined by the angular speed of electrons. Therefore, based on
our results, we can deduce that the effective angular speed of
electrons in our system is proportional to the vorticity of the light,
and is independent of the Rabi frequency and width of the light. For
the same semiconductor parameters described in the last paragraph
of the optical conductivity section and the sample radius of
R= 10 μm, the typical evaluated magnetization Mz ¼ 0:1ðeM_�1Þ
yield a total magnetic moment of μ ¼ Mz ´ πR

2 ’ 109 μB in terms
of Bohr magneton. Such a magnetic moment can be probed by
sensitive SQUID scanning microscopy measurements58. The
nonzero magnetization indicates the existence of nonzero current
densities as some examples are calculated in Fig. 6. To measure the
magnetization spatially with a nano-scale resolution, one can use
the magnetometry based on nitrogen-vacancy (NV) centers in the
diamond59–62. Other possible experimental schemes to study the
magnetization are magneto-optical measurements of Kerr rotation
and Faraday effects66,67 and circular dichroism in angle-resolved
photoemission spectroscopy (ARPES) measurements68–70. How-
ever, since our Floquet system can only be realized transiently,
ultrafast measurement devices that can measure transient magnetic
signals are required. We also note that the energy of vortex states
can be visible by ARPES measurements as this method can acquire
the energy dispersion of the system13,14.

Fig. 7 Orbital magnetization of the Floquet system. Orbital magnetization
of the Floquet system, indicating a linear increase in the diagram of orbital
magnetization as a function of m for both circularly polarized and linearly
polarized laser fields. The same set of parameters as in Fig. 2 are used here.

Fig. 8 The dependence of orbital magnetization on system parameters. The independence of orbital magnetization density as a function of a Rabi
frequency, Ω0, b the light width, ξ, while keeping the system size R constant, and c disc radius R, where the light width ξ is constant. The same parameters
as in Fig. 2 are used here, except the one that is changed in this figure.
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Regarding the applicability of a low-momentum treatment of
the Hall conductivity and the magnetization, we note that because
of the structured profile of the light, the translational symmetry is
broken, and we only can sum over states that are being created
from our low momentum theory. Therefore, our results for the
magnetization depend on the pseudo-OAM cutoff of the
dispersion (lc), albeit weakly. As a result, the magnetization
calculated here can represent only the order of magnitude of the
magnetization in the Floquet system instead of its exact values.
However, since generally, in the presence of translational
symmetry, the magnetization density depends on the momentum
derivatives of the wave functions71, we expect that for our system,
the main contribution to the magnetization density should be
attributable to the region in the vicinity of the Dirac points where
the curvature of the bands is significant, and we expect it to be
captured by our low-momentum theory. In particular, in72 it is
demonstrated that in a gapped graphene system, only momenta
around the Dirac points K and K’ contribute to the magnetiza-
tion. Therefore, this assumption that our low momentum theory
calculates the main part of the magnetization should be valid.

Conclusions
In this study, two physical observables – optical conductivity and
orbital magnetization – of the Floquet system driven by a struc-
tured light carrying nonzero OAM are calculated. While we only
considered the modification of the electronic band structure from
the OAM light beam, it is a stepping stone to adding electronic
interactions in the system which may realize novel many-body
states. In particular, the possibility of creating exotic states in the
presence of non-equilibrium superconducting phases in semi-
metals, semiconductors, and strongly correlated materials73–78

could be subjects of future research. Another aspect of our pro-
posal that needs further investigation is the study of thermo-
dynamic effects. In particular, while here we have assumed that
our driven system has thermalized in the driven frame such that
only the ground state in the rotating frame is occupied, in general
creating such a distribution requires system-bath engineering
techniques. Such methods have been studied in the presence of
electron-phonon interactions5,34,65,79 and applying these methods
to our proposal could be the subject of future studies.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.
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