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Circuit quantum electrodynamics (QED) has emerged as a promising platform for implementing
quantum computation and simulation. Typically, junctions in these systems are of a sufficiently
small size, such that only the lowest plasma oscillation is relevant. The interplay between the
Josephson effect and charging energy renders this mode nonlinear, forming the basis of a qubit. In
this work, we introduce a novel QED architecture based on extended Josephson Junctions (JJs),
which possess a non-negligible spatial extent. We present a comprehensive microscopic analysis and
demonstrate that each extended junction can host multiple nonlinear plasmon modes, effectively
functioning as a multi-qubit interacting system, in contrast to conventional JJs. Furthermore, the
phase modes exhibit distinct spatial profiles, enabling individual addressing through frequency-
momentum selective coupling to photons. Our platform has potential applications in quantum
computation, specifically in implementing single- and two-qubit gates within a single junction. We
also investigate a setup comprising several driven extended junctions interacting via a multimode
electromagnetic waveguide. This configuration serves as a powerful platform for simulating the
generalized Bose-Hubbard model, as the photon-mediated coupling between junctions can create
a lattice in both real and synthetic dimensions. This allows for the exploration of novel quantum
phenomena, such as topological phases of interacting many-body systems.

I. INTRODUCTION

Josephson qubits, characterized by strong nonlinearity
and low dissipation, serve as promising building blocks
for quantum computers [1] and quantum simulators of
complex many-body systems [2, 3]. Fundamentally, these
qubits encode quantum information in the form of plasma
oscillations occurring between two superconducting ele-
ments. Although this is an intrinsically collective phe-
nomenon within a many-electron system, each junction
typically operates within a regime that hosts only a sin-
gle qubit [4]. Various methods exist for interfacing these
qubits, such as coupling to a waveguide or an electromag-
netic resonator [5]. When the junction size is sufficiently
small, it can be treated as a lumped element, and its in-
teraction with the electromagnetic field is considered as
an oscillating point-like dipole [6, 7].

However, more complex scenarios involving multiple
junctions or a multimode resonator present a challeng-
ing theoretical problem. These are often addressed phe-
nomenologically using the so-called black-box quanti-
zation or energy-participation ratio approaches [8, 9].
These methods are only valid in the weak nonlinearity
limit, and the regime of strong light-matter interaction is
inaccessible. Furthermore, as the number of parameters
increases, determining all coefficients within the black-
box quantization framework becomes impractical. More
generally, the dipole picture loses its validity when the
junction size becomes comparable to or larger than the
Josephson penetration length (λJ), which characterizes
the stiffness of phase fluctuations in junctions. As a re-
sult, the extended quasi-1D junctions can host multiple
plasmon modes with the discrete spectrum given by:

ωm = ωpl

√
1 +

(
λJ
L
πm

)2

, (1)

where ωpl is the fundamental plasma frequency. We note
that in circuit-QED architecture, conventional qubits
correspond to the m = 0 plasmonic mode as described in
Eq. (1). This mode prevails in small junctions where L is
significantly smaller than λJ . On the other hand, as we
approach the opposite limit, the plasmon spectrum un-
dergoes a transformation into a continuous form [10, 11].
This is accompanied by a reduction in the non-linearity
of these modes, and the full dynamics can be effectively
described by the classical sine-Gordon equations. While
the investigation of this classical regime has a rich his-
tory [12–14], given the technological developments in the
past several decades, it is interesting to explore the quan-
tum regime of such systems. The intermediate regime,
L ∼ λJ , is particularly interesting since one can expect
several low-energy plasmon modes to be accessible while
the strong nonlinearity is not compromised.

In this work, we investigate the light-matter interac-
tion within extended junctions, taking into consideration
the inherent complexity of each junction and its mul-
tiple degrees of freedom. From a conceptual point of
view, our setup could be considered a “beyond dipole-
approximation circuit-QED architecture.” Besides, in
contrast to the black-box quantization, we follow a mi-
croscopic approach and derive both linear and nonlinear
terms of the corresponding Hamiltonian. To this end,
we develop a general theoretical framework for the quan-
tum description of extended junctions and their inter-
action with the electromagnetic field. More precisely,
we consider a fully microscopic model of two infinitely
thin superconducting layers and their coupling with the
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resonator, which is depicted in Fig. 1 (a). We also mi-
croscopically derive the Kerr and cross-Kerr non-linear
interaction terms between different plasmon modes. Ef-
fectively, each junction operates as an interacting multi-
qubit system, and we put forward a strategy for perform-
ing single- and two-qubit gates. Furthermore, the spa-
tial extent of the electronic wavefunction for each plas-
mon mode in light-matter coupling is leveraged to achieve
complete qubit addressability, underscoring its practical-
ity for quantum computing applications.

We note that our approach allows us to not only to de-
rive the black-box quantization result in a bottom-up way
but also provides a way to engineer effective Hamiltonians
based on the mutual spatial structure of the plasmon and
resonator modes. In particular, we extend our analysis to
the case of many extended junctions coupled to a single
waveguide and demonstrate that such a setup could be
used in order to simulate complex many-body interact-
ing Hamiltonians from generalized Bose-Hubbard model
to potentially lattice gauge theories. We note that our
architecture is distinct from the multi-junction circuit-

QED [15], where the qubits do not interact unless they
are coupled via resonator. In contrast, in our proposal,
nonlinear plasmon qubits do interact with each other and
their coupling can be controlled by driving the system,
i.e., a 1D array of them makes a 2D synthetic array with
full controllability. Our work is also distinct from the gi-
ant atom scheme, where the JJ phase is a single number
[16–18].

This paper is structured as follows. In Sec. II, we intro-
duce classical sine-Gordon Lagrangian and perform quan-
tization of the phase fluctuations ignoring the nonlinear-
ity. The latter is then added perturbatively, inducing
Kerr, cross-Kerr, and parametric interaction terms be-
tween plasmon modes. This action can be obtained from
fully microscopic considerations as we show in Appendix
A. In Sec. III, we derive the coupling of the quantized
fluctuations of the junction to the electromagnetic field of
a coplanar waveguide. In Sec. IV-V, we propose an archi-
tecture for quantum computation and simulation based
on an array of extended Josephson junctions coupled to
a single waveguide.
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Figure 1. Extended Josephson Junction qubit. (a) An extended Josephson junction is placed in the center of the resonator.
Superconducting phase fluctuations modes {bm} couple to the quantized resonator modes {an}. (b) Effective description of
the resonator-junction system in terms of equivalent LC circuits. Red arrows and red spider symbols respectively indicate the
cross- and self-Kerr interaction terms. Grey arrows indicate the capacitative coupling between junction and cavity modes. (c)
Schematic representation of the nonlinear two-qubit level scheme of a junction restricted to the two lowest modes. Orange
arrows indicate coupling to the resonator modes due to the parity selection rules in case the junction is located in the center
of the resonator.

II. EXTENDED JOSEPHSON JUNCTION

We consider a 2D bilayer superconductor, forming an
extended Josephson junction, interacting with the elec-
tromagnetic field of a resonator, as shown in Fig. 1 (a).
We assume that the size of the junction is given by
Lx × Ly with one of the dimensions (Lx) being com-
parable to the wavelength of the cavity field. More im-
portantly, we consider Lx ∼ λJ , where λJ is the Joseph-
son penetration length that characterizes the stiffness of
phase fluctuations in each superconducting region, and
which we explicitly define below. In conventional qubits

Lx ≪ λJ , and one deals with only one Josephson plasmon
mode, while in our case, the spatial dependence of the
superconducting phase fluctuations cannot be neglected,
and one can have many Josephson plasmon modes. In
this Section, we derive the complete quantum mechani-
cal description of the multimode Josephson junction and
its interaction with the electromagnetic environment.

As shown in Fig. 1 (a), we consider an elongated junc-
tion where Lx ≫ Ly. The well-known classical descrip-
tion of the junction is given by the sine-Gordon La-
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Figure 2. (a) Spectrum of quasi-1D quantum extended Josephson junction as function of the inverse junction length. Gray lines
indicate the numerical diagonalization of the exact Hamiltonian restricted to three modes. Colored lines stand for the qubit
states of the approximate Hamiltonian Eq. (6), (7). Zero frequency corresponds to |0, 0⟩ state. (b) Qubit energies and Hubbard
U of different modes as function of the junction size. We assume the following parameter ratio ωpl/EC = 10 for λJ/Lx=1.

grangian [10, 19]:

LsG =

∫
dx

Lx

(
1

16EC
(∂tθ)

2 − EJλ
2
J

2
(∂xθ)

2
+ EJ cos (θ)

)
,

(2)
where θ = θ (x, t) ≡ θ2 − θ1 + 2e

c

∫ 2

1
Adz denotes the

gauge-invariant phase difference between the two super-
conductors. EC and EJ are the total charging energy and
Josephson energies, respectively, and λJ is the Josephson
penetration length λ2J ≡ Φ0c/8π

2(δz + 2λL)jc, where jc
is the critical current of the junction, Φ0 is the flux quan-
tum, δz is the distance between superconducting islands
[10]. We note that Eq. (2) can be derived from the quan-
tum mechanical description of a bilayer superconductor,
as we demonstrate in App. A. The corresponding Euler-
Lagrange equation of motion of the Lagrangian in Eq. 2
is known as the sine-Gordon equation:

∂2xθ − c̃−2∂2t θ = λ−2
J sin(θ), (3)

where c̃2 = 8ECEJλ
2
J . We also supplement Eq. 3 with

the boundary conditions which are ∂xθ = 0 at the junc-
tion boundary representing the absence of supercurrents
outside the superconducting islands. In this case the vari-
ation of the phase is small δθ ≪ 2π, we can linearize
Eqs. (2, 3) which becomes equivalent to a set of har-
monic oscillators. Following this approach, we perform
the quantization of the junction below.

1. Quantization of phase fluctuations

We now quantize the fluctuations of phase in the ex-
tended Josephson junction. In the limit when the phase
variations are small δθ ≪ 1, we expand the cosine term
in Eq. (2) as cos (θ) ≈ 1− θ2/2+ θ4/24. Our goal is now
to quantize the phase fluctuations keeping only up to the
quadratic term. We then treat the higher-order terms in

Eq. (2) as perturbation. We note that throughout this
work we will assume the junction size is of the order of
several Josephson lengths. In this case, we can safely ne-
glect the spontaneous (thermal) nucleation of vortices as
we discuss in App. D.

We expand the phase over a complete set of modes
as eigenmodes of the differential operator (−∂2x +
λ−2
J ) with the appropriate boundary condition as
θ =

∑
m θmΞm (x), where

∫ Lx/2

−Lx/2
Ξm (x) Ξm′ (x) dx =

Lxδm,m′ . By performing the Legendre transformation,
we get the classical quadratic and quartic Hamiltonians:

H(2) =
∑
m

{
4ECπ

2
m +

1

16EC
ω2
mθ

2
m

}
, (4)

H(4) = −EJ

24

∫
dx

Lx

(∑
m

Ξm (x) θm

)4

, (5)

where πm is the momentum and we defined the mode

frequency ωm = ωpl

√
1 + λ2J

(
πm
L

)2, and the plasmon
frequency ωpl ≡ √

8EJEC . Eq. (4) is equivalent to a
set of harmonic oscillators and can perform quantization
of harmonic oscillators in Eq. (4). The quantization of
Eq. (2) can be performed in a standard way:

Ĥ(2) =
∑
m

ωm

2

(
π̂2
m + θ̂2m

)
=
∑
m

ωmb̂
†
mb̂m, (6)

where we defined the phase fluctuation and its canonical
conjugate operators are denoted as θ̂m =

√
4EC

ωm
(b̂†m +

b̂m), π̂m =
√

ωm

16EC
(ib̂†m− ib̂m) with b̂†m/b̂m being the cre-

ation/annihilation operators of m−th mode [b̂m, b̂
†
m′ ] =

δm,m′ . The zero-point fluctuations of the phase operator
are thus given by θZPF =

√
4EC/ωm. For the validity

of the quantization in this section, we need θZPF ≪ 1,
which is satisfied since we consider EJ ≫ EC .
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2. Nonlinearity

We now discuss the quantization of non-linearity of the
multiple modes of Eq. (5). We note that the ambiguity
in the operator ordering can be lifted in the microscopic
derivation of the fully quantum mechanical action of the
junction as we present in App. A. Here, for simplicity, we
simply extend the derivation of the single-mode junction
[7], to the multimode case of interest. Neglecting the
excitation non-conserving terms, the nonlinear part of
the Hamiltonian becomes:

Ĥ(4) ≈ −U0,0

2
b̂†0b̂

†
0b̂0b̂0 −

U1,1

2
b̂†1b̂

†
1b̂1b̂1

− U0,1

(
b̂†1b̂1b̂

†
0b̂0 +

1

4
b̂†20 b̂

2
1 +

1

4
b̂†21 b̂

2
0

)
. (7)

In the limit Lx ∼ λJ , the first several terms are found
to be U0,0 = EC , U0,1 = 2EC and U1,1 = 3EC/2. We
note that in Eq. (7), we ignored the linear terms that
renormalize the plasmon frequencies. In the case of a
finite ratio Lx/λJ , the nonlinearity coefficients depend
on the junction size as shown in Fig. 2(a). The three
terms in the equation above respectively represent the
self-, cross-Kerr, and parametric interaction terms. As
shown in Fig. 2(b), the strengths of these various differ-
ent terms strongly depend on the size of the junction. For
larger junction sizes, the spacing between qubit frequen-
cies is decreasing, and the interaction strengths (U ’s) are
decreasing. We note that the charge sensitivity [20] is
inversely proportional to the phase uncertainty, and for
our choice of parameters (also known as the transmon
regime EJ ≫ EC) it is negligible.

In addition to the Kerr and cross-Kerr terms in
Eq. (7), the terms involving three and four different
modes are allowed by the symmetry of the junction
Ĥ ′(4) ≈ −U0,1,2X̂2X̂

2
1 X̂0, Ĥ ′′(4) ≈ −U0,1,2,3X̂3X̂2X̂1X̂0

with X̂i ≡ bn + b†n. In the limit Lx/λJ ≫ 1, we find
χ0,1,2 ≈ EC/

√
2 and χ0,1,2,3 ≈ EC

√
2. We note that the

plasmon frequencies ωm are generally incommensurate,
and therefore H ′(4) and H ′′(4) terms are excitation non-
preserving. However, one can make these terms resonant
by driving, where the energy mismatch is compensated
by an external driving as we discuss in the Sec. IV.

III. COUPLING TO THE ELECTROMAGNETIC
FIELD

We proceed to examine the interaction between the
extended JJ modes, derived in the previous Section, and
the electromagnetic field of a microwave resonator, as
depicted in Fig. 1 (a). Our focus is on the interaction
with the E(z) field component, which induces a voltage
across the junction. In the classical picture, the external
voltage bias can be taken into account on the level of
Lagrangian formulation Eq. (2) by the following substi-

tution ∂tθ → ∂tθ+2e
∫ 2

1
dzE(z). By performing the Leg-

endre transformation of the resulting Lagrangian as dis-
cussed in App. A 4, we get the classical coupling Hamil-
tonian Hint = 2eδz

∑
n πmE

(z)
m , where the overlap of the

electric field and the m-th plasmon mode profile is de-
fined as E(z)

m ≡
∫

dx
Lx
E(z) (x) Ξm (x). In the following, we

assume this coupling is weak such that we can separately
quantize the electromagnetic field and the superconduc-
tor.

Initially, we examine the quantization of transverse
electromagnetic (TEM) modes in the electromagnetic
field of a coplanar resonator shown in Fig. 1 (a). We
assume the resonator length along x direction as Lres.
We do not discuss the quantization procedure as it can
be found in e.g. [7]. The quantized operator of the elec-
tromagnetic field takes the standard form [21, 22]:

Ê(z)(x) =
∑
n

E0
n(iânEn (x) + H.c.), (8)

where En(x), ωres
n , respectively denote the electromag-

netic mode profile and the frequency of i-th resonator
mode. E0

n is the zero-point electric field of n-th mode of
the resonator. In this section, we restrict our consider-
ation to a homogeneous field distribution along y and z
directions in Eq. (8) for simplicity. The total Hamilto-
nian of the EM field is given by HEM =

∑
n≥0 ω

res
n a†nan

with ωres
n = π(n + 1)c/Lres. In Eq. (8), we only consid-

ered the electromagnetic field with a polarization com-
ponent along ẑ direction that induces a voltage across
the junction. Here we assume the zero voltage boundary
conditions which can be achieved by grounding the end
points of the resonator [23].

The quantized coupling to the Josephson junction can
be obtained from the classical Hamiltonian Hint by sim-
ply replacing fields with the corresponding operators. Ig-
noring the excitation-non-preserving terms, we get:

Ĥint =
∑
m,n

gm,nânb̂
†
m + H.c., (9)

where the qubit-photon couplings are gm,n =

2eδzE
0
n

√
ωm

16EC

∫
dx
Lx

En (x) Ξm (x) and δz denotes the dis-
tance between the superconducting layers. We note that
our description of light-matter coupling is a simplified
one, and in realistic scenarios, the effective thickness
δz is determined by a combination of many factors,
including the geometry of capacitors, and it is not equal
to the distance between superconducting islands. The
most reliable approach for determination of the coupling
coefficients gm,n is based on the finite element methods
[20].

These couplings can be evaluated in a general case but
it is useful to consider a configuration where some of the
couplings vanish for symmetry reasons. In particular,
if the junction is placed in the center of the resonator,
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Figure 3. Implementation of multi-component Bose-Hubbard model with an array of extended Josephson junctions. (a)
Schematic representation of an array of 4 extended JJ is placed in a resonator. n = 2 and n = 4 resonator modes are shown
in orange and pale orange respectively. Each junction is placed in an anti-node of n = 4 mode. (b) Equivalent Bose-Hubbard
model in synthetic dimension. For schematic simplicity the junctions are shown with layers stretched along z direction, i.e.
along the dominant electric field of the resonator. The actual experimentally motivated geometry is shown in Fig. 5.

some of the coupling coefficients vanish due to the se-
lection rules imposed by the inversion symmetry with
respect to x-axis. Specifically, we have gm,n ̸= 0, if m,
n are both odd or even. The effective circuit descrip-
tion of such a junction-resonator configuration is shown
in Fig. 1 (b). The multimode structure of an extended
junction enables the encoding of multiple qubits within
a single junction. Mode-selective coupling to the electro-
magnetic field serves as a versatile tool for manipulating
the quantum state, as depicted in Fig. (1) (c), where we
schematically illustrate all the possible couplings between
the Fock states of the junction and the resonator allowed
for by Eq. (9). On a semiclassical level, our coupling can
be used to characterize the nonlinearity of the junction
itself as discussed in App. E.

IV. QUANTUM SIMULATION WITH
EXTENDED JOSEPHSON JUNCTIONS

In the following section, we aim to illustrate the wide-
ranging capabilities of our setup. We show that our
system functions as a complete toolbox for simulating
many-body physics and lattice gauge theories. In par-
ticular, we examine a system of N extended Joseph-
son junctions interacting with the electromagnetic field
within a resonator, as depicted in Fig. 3 (a). We fur-
ther assume that these junctions are subjected to exter-
nal driving, and as we will demonstrate later, this can
result in excitation tunneling in a synthetic dimension

that is parameterized by m. We focus exclusively on
the interaction of each junction with the resonator, ne-
glecting potential direct capacitive (dipole-dipole) cou-
plings between the junctions. This assumption is valid
as long as the distance between any pair of junctions is
greater than the distance between JJs and the waveg-
uides. Expanding to a multi-junction setup and incorpo-
rating their connection to the waveguide can be achieved,
by adhering to the derivation outlined in Sec. (III). By
denoting the creation/annihilation operators of the i-th
junction by b

(i)†
m /b

(i)
m , we express the full Hamiltonian

H = Hq +Hnl +Htun +H ′
tun:

Hq =
∑
m

ωmb
(i)†
m b(i)m , (10)

Hnl = −
∑
m,n,i

Um,nb̂
(i)†
m b̂(i)†n b̂(i)n b̂(i)m , (11)

Htun = −
∑
i,j,m

t
(m)
i,j b

(i)†
m b(j)m + H.c., (12)

H ′
tun = −

∑
i,m,m′

t
′(m,m′)
i b(i)†m b

(i)
m′ + H.c., (13)

whereas before we ignore the excitation-non-preserving
terms. The first two terms Hq and Hnl stand for the
Hamiltonians of each junction while Htun and H ′

tun cor-
respond to the different excitation tunneling processes
that will be discussed below.

We begin with a discussion of the Hamiltonian equa-
tion denoted as Eq. (13), which corresponds to the tun-
neling of an excitation between different junctions, me-
diated by the waveguide. The microscopic representa-
tion of this process is encapsulated by the Hamiltonian

Hint =
∑

m,n,i g
(i)
m,nanb

(i)†
m +H.c. which is an elaboration

of Eq. (9), adapted to accommodate scenarios involv-
ing multiple junctions. Adiabatically eliminating the res-
onator modes, we get Eq. (13) with the detuning denoted
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as δm,n = ωm−ωres
n and t(m)

i,j =
∑

n g
(j)
m,ng

(i)
m,n/δm,n, where

the summation is taken over all the resonator modes
parametrized by n. We note that t(m)

i,j is proportional to
the Green’s function describing the photon propagation
between two junctions i and j, where its specific form
depends on the waveguide configuration. For example,
in the configuration shown in Fig. (3) (a), the tunneling
coefficient t(m)

i,j can be expected to be of long- (infinite)
range character. We note that the tunneling can become
short-range in the case of each junction coupled to its own
resonator in a resonator array as in [2, 24–26]. To maxi-
mize tunneling and consequently the achievable quantum
simulation times, it is beneficial to minimize the detuning
between plasmon and cavity modes. One approach for
achieving this is through the adjustment of the junction
geometry. Specifically, selecting the appropriate junction
length can adjust the spacing between plasmon modes,
as follows from Eq. (1). Alternatively, the plasmon fre-
quencies can be adjusted via external driving such as to
induce AC Stark frequency shifts.

The last term, H ′
tun, characterizes the resonant excita-

tion exchange among different plasmon modes inside one
junction, which, as we show below, can be induced by
an external driving. As a specific example, we now out-
line a protocol for implementing the tunneling between
m = 0 and m = 2 junction modes, keeping in mind
that a similar approach could be used to induce tunnel-
ing between other odd pairs of modes. In particular, we
consider a weak drive for the m = 1 mode described by
the RWA Hamiltonian Hdr(t) = α1

∑
i(b̂

(i)
1 eiω

dr
1 t+iϕi +

b̂
(i)†
1 e−iωdr

1 t−iϕi) with ωdr
1 = (ω2 − ω0)/2 and ϕi denotes

the driving phase of i-th junction and α1 is the effective
Rabi frequency. The selective excitation of a single mode
can be realized through the momentum or frequency
specificity of the coupling. This yields the mean-field
quasi-steady-state coherence of the driven mode b̄1 ≈
−α1e

iϕi/(ωdr
1 − ω1). With this, the tunneling between

plasmon modes is induced by the non-linear excitation-
non-conserving Hamiltonian Ĥ ′(4) (see Sec. II 2) that is
now driven. We get an effective resonant tunneling 0 ↔ 2

that is given by Eq. (13) with t
(0,2)
i = U0,1,2|b̄1|2e−2ϕi .

This shows that the phase of complex tunneling between
same-parity sites is set by drive. Extending H ′

tunn to all
the sites and combining it with Htunn, we find a rich
set of tunneling terms in 2D shown in Fig. 3 (b), where
one dimension is spatial JJ sites and the other dimen-
sion is different plasmon modes, in form of a synthetic
dimension. In particular, one can set the drive phases to
achieve a non-zero total tunneling phase over a plaque-
tte: ϕ�

i = 2 (ϕi − ϕi+1) to obtain an artificial gauge field.
We summarize by mentioning that our final Hamilto-
nian is given by Eqs. (10-13) and it represents the multi-
component Bose-Hubbard model in an artificial external
magnetic field.

The multicomponent Bose-Hubbard model enables the
implementation of quantum simulation protocols for in-
tricate many-body phenomena, which we discuss it here.
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Figure 4. Implementation of an intra-junction two-qubit
phase gate. The qubit b0 is driven resonantly with the tran-
sition |1, 0⟩ → |2, 0⟩ for half a period of a corresponding Rabi
oscillation picking up a π phase. Other transitions are as-
sumed to be off-resonant due to the Kerr and cross-Kerr in-
teraction terms between different junction modes.

It is worth noting that comparable models have also
emerged in the study of conventional Josephson junction
arrays as referenced in [27, 28], as well as in the examina-
tion of arrays of coupled cavities inhabited by multi-level
atoms [29, 30]. This model is recognized for exhibiting
phenomena such as spin components "demixing" [31] and
spin-charge separation [32]. When subjected to strong
interactions, it is anticipated that the Hubbard models
will transition to the Mott-insulator state [33]. In this
state, the low-energy dynamics are characterized by the
effective spin Heisenberg models represented in different
bosonic components [29]. Presenting this system to a
synthetic gauge field, as in our situation, can reveal a
spectrum of fascinating phenomena, including a Mott
insulator state with chiral currents [34] and aspects of
quantum Hall physics [35, 36]. Furthermore, the glassy
phases predicted in a single-component polaritonic Hub-
bard model are explored in [37]. We finish this section by
stating that the effective Hubbard model, as presented by
Eqs. (10-13), possesses all the necessary elements to per-
form quantum simulations of lattice gauge theories [38],
as recently suggested in [39, 40].

V. QUBIT OPERATION

We now discuss the potential application of our setup
to implement single and two-qubit gates for quantum
computation. We assume the individual addressing of
each junction mode by using the parity selection rules
as discussed above. The single-qubit rotations can be
performed trivially by applying the external microwave
tone of the corresponding frequency. Therefore below, we
focus only on two-qubit gates. Theoretically, the phase
gate can be implemented for any pair of qubits residing in
one or separate junctions. Below we focus on the former
case as we expect it to have much higher fidelity.



7

Two-qubit gate — We now exemplify the implemen-
tation of an intra-junction two-qubit gate ignoring the
coupling to the resonator. We operate here with the
logical states |0⟩, |1⟩ of the two lowest modes of the
junction b0 and b1, as shown in Fig. 1 (c). We define
the two-qubit phase gate as the unitary transformation:
|i, j⟩ → exp (iπδi,1δj,0)|i, j⟩, where δ is the Kronecker
delta symbol. Such a unitary can be implemented by
assuming a field driving that is resonant only with the
transition |1, 0⟩ → |2, 0⟩. By driving this transition for
half of the period of a full Rabi oscillation, the junction
state picks up a π phase |1, 0⟩ → eiπ |1, 0⟩. In a realis-
tic situation the two other symmetry-allowed transitions
|1, 0⟩ → |0, 0⟩ and |0, 1⟩ → |1, 1⟩ will be driven as well as
shown in Fig 4. The detunings of these two transitions
are respectively given by the nonlinearity terms U0,0 and
U1,1 ≈ 2U0,0 in the limit of large junction. Therefore the
estimate of the relevant degree of qubit non-linearity can
be given in terms of the ratio of the anharmonicity to
the qubit decoherence rate U0,0/γd. The estimate of this
ratio is provided in the section below.

VI. EXPERIMENTAL CONSIDERATIONS

We now discuss the experimental parameters of the
extended junction described above. Our estimations are
based on the physical parameters in Ref. [41]. Although
a square geometry is employed in that reference, we as-
sume that similar parameters apply to our rectangular
geometry. In this section, we will use SI units for ex-
perimental purposes, deviating from the Gaussian units
employed throughout the rest of the text.

Using the critical current value jc ≈ 10nA/µm2, where
ϵ0 is the vacuum permittivity, and assuming the oxide
thickness δz ≈ 2nm and the London penetration length of
aluminum λL = 16nm, we calculate the Josephson length
to be λJ ≈

√
Φ0/2πµ0(δz + 2λL)jc ≈ 880µm, where Φ0

denotes the flux quantum [42].
For the junction area, we assume the following geomet-

ric parameters: S ≈ 10nm × λJ . Using the above crit-
ical current density, we obtain the Josephson energy as
EJ = Sjc/2e ≈ 2π×40GHz. The charging energy can be
determined as EC ≈ ω2

pl/8EJ ≈ 2π×0.06GHz, assuming
that the fundamental plasmon frequency is not influenced
by the geometry and has a value of ωpl ≈ 2π × 5GHz.
The cavity qubit coupling in our toy model can be esti-
mated using the experimentally achievable value of the
zero-point electric field E0

n=0 = 0.2V/m [43]. With this
we find the single-photon Rabi frequency g0,0 ≈ 3 MHz
(see Appendix A 4).

We also compare our predictions with the results of
finite-element numerical simulation using the commer-
cially available software (Ansys Maxwell) for a more re-
alistic geometry. More precisely, we consider two super-
conducting islands of dimensions 10 × 440µm2 oriented
in the x-z plane one on top of the other with the over-
lap junction area of 10nm × 440µm as shown in Fig. 5

a), b). With this we find the following junction pa-
rameters EC = 2π × 84 MHz, EJ ≈ 2π × 22 GHz,
ωpl ≈ 2π × 3.8 GHz. We also estimate the qubit - cav-
ity coupling strength to be g0,0 ≈ 2π × 24 MHz. The
enhanced coupling strength in this geometry stems from
the fact that the superconducting islands are larger than
the JJ itself and contribute to effective thickness δz [20]

z

x

Coplanar waveguide (top view)

Resonator

Extended JJ

Islands


z

y

b)
10µm

10nm

3nm

a)

440µm

10µm

10µm

ground 

plane center pin

Figure 5. Schematic (not to scale) representation of the long
Josephson junction configuration used for the finite-element
numerical simulation. a) top view, b) side view. Regions
highlighted in green denote the junction area.

As mentioned earlier, larger Josephson junctions (JJs)
have smaller nonlinearities and one needs to ensure that
the nonlinearity strength (approximately EC) remains
larger than the dissipation rates. Assuming an energy
dissipation time scale of T1 ≈ 30µs, we estimate such a
ratio to be favorable, with 2πECT1 ∼ 104.

We note that for larger junction sizes, where L ∼ λJ ,
an additional imperfection source arises from Josephson
vortex nucleation. The corresponding vortex density in
equilibrium is given by [44, 45]:

⟨n⟩ =
(
2

π

)1/2

λ−1
J

√
2EJ

kBT
e−2EJ/kBT .

For the parameters considered, ⟨n⟩Lx ≪ 1, which indi-
cates that nucleation can be neglected.

VII. CONCLUSIONS & OUTLOOK

In this work, we developed a theoretical framework
for describing the light-matter interaction in extended
Josephson junctions. We demonstrated that each such
junction could host multiple plasmon modes, each encod-
ing a qubit. It is possible to address each qubit mode in-
dividually due to the frequency-momentum-selective cou-
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pling, which arises from the different profiles of their elec-
tronic wavefunctions. We also consider the system of
several extended junctions interacting through a single
resonator and demonstrate that such a system could be
used to simulate an interacting 2D Bose-Hubbard model
with one of its dimensions being synthetic. Besides, we
also show that the system can be used in order to per-
form quantum computation. In particular, we proposed
the implementation of single- and two-qubit gates inside
a single extended Josephson junction. Our work allows
us to address several interesting problems in the future,
including the possibility of inducing photon-photon in-
teractions in long junctions and generating non-classical
states of light. Another interesting direction would be to
study the effects of non-trivial junction geometry (topol-
ogy) on light-matter interactions.

ACKNOWLEDGMENTS

The authors thank Z. Minev and M. Devoret for the
fruitful discussions. We also thank Maya Amouzegar for
help with executing the numerical simulations presented
in this work. This material is based upon work sup-
ported by the U.S. Department of Energy, Office of Sci-
ence, National Quantum Information Science Research
Centers, and Quantum Systems Accelerator. Additional
support is acknowledged from AFOSR MURI FA9550-19-
1-0399, FA9550-22-1-0339, ARO W911NF2010232 and
NSF QLCI OMA-2120757.

[1] M. H. Devoret and R. J. Schoelkopf, Science 339, 1169
(2013).

[2] A. A. Houck, H. E. Türeci, and J. Koch, Nature Physics
8, 292 (2012).

[3] I. Carusotto, A. A. Houck, A. J. Kollár, P. Roushan, D. I.
Schuster, and J. Simon, Nature Physics 16, 268 (2020).

[4] M. Kjaergaard, M. E. Schwartz, J. Braumüller,
P. Krantz, J. I.-J. Wang, S. Gustavsson, and W. D.
Oliver, Annual Review of Condensed Matter Physics 11,
369 (2020).

[5] J. Majer, J. Chow, J. Gambetta, J. Koch, B. John-
son, J. Schreier, L. Frunzio, D. Schuster, A. A. Houck,
A. Wallraff, et al., Nature 449, 443 (2007).

[6] A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and
R. J. Schoelkopf, Physical Review A 69, 062320 (2004).

[7] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff,
Reviews of Modern Physics 93, 025005 (2021).

[8] S. E. Nigg, H. Paik, B. Vlastakis, G. Kirchmair,
S. Shankar, L. Frunzio, M. Devoret, R. Schoelkopf, and
S. Girvin, Physical Review Letters 108, 240502 (2012).

[9] Z. K. Minev, Z. Leghtas, S. O. Mundhada, L. Christakis,
I. M. Pop, and M. H. Devoret, npj Quantum Information
7, 131 (2021).

[10] M. Tinkham, Introduction to superconductivity (Courier
Corporation, 2004).

[11] A. Sboychakov, S. Savel’ev, and F. Nori, Physical Review
B 78, 134518 (2008).

[12] A. V. Ustinov, H. Kohlstedt, M. Cirillo, N. F. Pedersen,
G. Hallmanns, and C. Heiden, Phys. Rev. B 48, 10614
(1993).

[13] A. Ustinov, Physica D: Nonlinear Phenomena 123, 315
(1998).

[14] A. Kemp, A. Wallraff, and A. V. Ustinov, physica status
solidi (b) 233, 472 (2002).

[15] M. Fitzpatrick, N. M. Sundaresan, A. C. Li, J. Koch,
and A. A. Houck, Physical Review X 7, 011016 (2017).

[16] A. F. Kockum, P. Delsing, and G. Johansson, Physical
Review A 90, 013837 (2014).

[17] X. Wang, T. Liu, A. F. Kockum, H.-R. Li, and F. Nori,
Physical Review Letters 126, 043602 (2021).

[18] B. Kannan, M. J. Ruckriegel, D. L. Campbell,
A. Frisk Kockum, J. Braumüller, D. K. Kim, M. Kjaer-

gaard, P. Krantz, A. Melville, B. M. Niedzielski, et al.,
Nature 583, 775 (2020).

[19] Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys. 61,
763 (1989).

[20] J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. I.
Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin,
and R. J. Schoelkopf, Physical Review A 76, 042319
(2007).

[21] K. Kakazu and Y. Kim, Physical Review A 50, 1830
(1994).

[22] G. Grynberg, A. Aspect, and C. Fabre, Introduction
to quantum optics: from the semi-classical approach to
quantized light (Cambridge university press, 2010).

[23] D. Bothner, M. Knufinke, H. Hattermann, R. Wölbing,
B. Ferdinand, P. Weiss, S. Bernon, J. Fortágh, D. Koelle,
and R. Kleiner, New Journal of Physics 15, 093024
(2013).

[24] S. Schmidt and J. Koch, Annalen der Physik 525, 395
(2013).

[25] N. M. Sundaresan, R. Lundgren, G. Zhu, A. V. Gorshkov,
and A. A. Houck, Physical Review X 9, 011021 (2019).

[26] M. Mirhosseini, E. Kim, V. S. Ferreira, M. Kalaee,
A. Sipahigil, A. J. Keller, and O. Painter, Nature com-
munications 9, 3706 (2018).

[27] H. Van der Zant, F. Fritschy, W. Elion, L. Geerligs, and
J. Mooij, Physical review letters 69, 2971 (1992).

[28] Y. Makhlin, G. Schön, and A. Shnirman, Reviews of
modern physics 73, 357 (2001).

[29] M. J. Hartmann, F. G. Brandao, and M. B. Plenio, Laser
& Photonics Reviews 2, 527 (2008).

[30] A. Kleine, C. Kollath, I. McCulloch, T. Giamarchi, and
U. Schollwöck, Physical Review A 77, 013607 (2008).

[31] M. Cazalilla and A. Ho, Physical review letters 91,
150403 (2003).

[32] A. Recati, P. Fedichev, W. Zwerger, and P. Zoller, Phys-
ical review letters 90, 020401 (2003).

[33] W. S. Cole, S. Zhang, A. Paramekanti, and N. Trivedi,
Physical review letters 109, 085302 (2012).

[34] A. Dhar, M. Maji, T. Mishra, R. Pai, S. Mukerjee, and
A. Paramekanti, Physical Review A 85, 041602 (2012).

[35] M. Hafezi, A. S. Sørensen, E. Demler, and M. D. Lukin,
Physical Review A 76, 023613 (2007).

http://dx.doi.org/ 10.1103/PhysRevB.48.10614
http://dx.doi.org/ 10.1103/PhysRevB.48.10614
http://dx.doi.org/10.1103/RevModPhys.61.763
http://dx.doi.org/10.1103/RevModPhys.61.763


9

[36] A. Tokuno and A. Georges, New Journal of Physics 16,
073005 (2014).

[37] D. Rossini and R. Fazio, Physical Review Letters 99,
186401 (2007).

[38] M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda,
A. Dauphin, D. González-Cuadra, P. R. Grzybowski,
S. Hands, F. Jendrzejewski, J. Jünemann, et al., Philo-
sophical Transactions of the Royal Society A 380,
20210064 (2022).

[39] J. Osborne, I. P. McCulloch, B. Yang, P. Hauke,
and J. C. Halimeh, arXiv preprint ARXIV.2211.01380
(2022).

[40] A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K.
Oberthaler, P. Hauke, J. Berges, and F. Jendrzejewski,
Science 367, 1128 (2020).

[41] H. Mamin, E. Huang, S. Carnevale, C. Rettner, N. Arel-
lano, M. Sherwood, C. Kurter, B. Trimm, M. Sandberg,

R. Shelby, et al., Physical Review Applied 16, 024023
(2021).

[42] C. P. Poole, H. A. Farach, and R. J. Creswick, Super-
conductivity (Academic press, 2013).

[43] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S.
Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J.
Schoelkopf, Nature 431, 162 (2004).

[44] W. Wonneberger, Physica A: Statistical Mechanics and
its Applications 103, 543 (1980).

[45] Y. S. Kivshar and B. A. Malomed, Reviews of Modern
Physics 61, 763 (1989).

[46] A. Altland and B. D. Simons, Condensed matter field
theory (Cambridge university press, 2010).

[47] Z. Sun, M. Fogler, D. Basov, and A. J. Millis, Physical
Review Research 2, 023413 (2020).

[48] M. O. Scully and M. S. Zubairy, “Quantum optics,”
(1999).

Appendix A: Microscopic derivation

In this section we derive the effective action of Josephson junction interacting with the resonator EM field. The
setup we have in mind is shown in Fig. 1. In this note to some extent the formalism follows [46, 47]. We consider the
imaginary-time action of two quasi-two-dimensional superconductors Sfull = S0 + SJ + SEM:

S0 =
∑
i=1,2

∫
d2rLz

∫ β

0

dτ

{
ν

2

(
∂τθ

(i)
r − eϕ(i)r

)2
+
ns
2m

(
∇θ(i)r − e

c
A(i)

r

)2}
, (A1)

SJ = −EJ

S

∫
d2r

∫ β

0

dτ cos 2

(
θ(1)r − θ(2)r − e

c

∫ 2

1

dz⃗ ·Ar,z

)
, (A2)

where ϕ(i)r ,A
(i)
r , denotes the values of the scalar and vector potentials at i-th layers respectively, m, e are the electron

mass and charge respectively, ns denotes the superfluid density. θ(i) is the phase of i-th superconductor. The boundary
conditions imposed by resonator can be straightforwardly included into Eqs. A1. In the following we denote the in-
plane vectors as r. The size of each superconductor is assumed to be Lx × Ly × Lz such that Lz ≪ Lx,y. EJ is the
Josephson coupling energy.

We follow the procedure outlined below. We first consider the junction alone and derive its effective action by
integrating-out the static components of EM field responsible for the inductive and charging interaction between
superconductors. We then add the interaction with the electromagnetic resonator modes perturbatively in a gauge-
invariant way with the only assumption that resonator does not affect the Lorentz and Coulomb force between
superconductors.

1. Josephson junction action

We now define the symmetric and the anti-symmetric phase variable as follows θ(±)
r = 2

(
θ
(1)
r ± θ

(2)
r

)
and we

integrate-out the static parts of vector and scalar potentials (see below) in Eqs. (A1-A2). We find the following
action:

S0 ≈
∫
d2r

S
dτ

{
1

16EC

(
∂τθ

(−)
r

)2
+
EJλ

2
J

2

(
∇⃗θ(−)

r

)2}
(A3)

SJ ≈ −EJ

S

∫
d2rdτ cos

(
θ(−)
r

)
(A4)

where EC is the total charging energy and λ2J ≡ Φ0c/8π
2δzjc is the Josephson penetration length and S is the surface

are of the junction. Φ0 denotes the flux quantum and jc is the critical current through the junction which we assume
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to be constant. The + component of the field becomes gapped and is neglected in the action above. We note that the
Josephson term A4 is only valid at lengthscales larger than the coherence length k−1 ≫ vF /∆ where ∆ is the gap of
the superconductor and vF is the Fermi velocity.

2. Quantized phase fluctuations

In this section we derive the Hamiltonian of the effective Josephson qubit. We first expand the action Eqs. A3-A4
up to quartic term and get:

S(2) ≈ 1

16ECS

∫
d2rdτθ(−)

r

{
−∂2τ + ω2

pl

{
1− λ2J∇⃗2

}}
θ(−)
r (A5)

S(4) ≈ − 1

24

EJ

S

∫
d2rdτθ(−)4

r (A6)

where the Josephson plasmon frequency is ωpl =
√
8ECEJ. If we neglect the fact that θ is the angle variable and

treat it as a bosonic field then the linear part of the action Eq. A5 represents the set of harmonic oscillators. We now
expand the phase field over eigensystem of the

{
1− λ2J∇⃗2

}
operator with the boundary conditions ∇θ(−) = 0:

θ(−)
r (τ) ≡

∑
m

√
4EC

ωm
Ξm (r) θm (τ) , (A7)

where
{
1− λ2J∇⃗2

}
Ξm (r) ≡ ϵ2mΞm (r) and we assumed the normalization condition

∫
d2rΞm (r) Ξm′ (r) = Sδm,m′ ,

where S is the junction surface. The prefactor in Eq. (A7) guarantees the proper normalization of the phase fluc-
tuations. From now on we focus on a “long” rectangular Josephson junction, i.e. we consider Lx ≫ Ly. Assuming
x ∈ [Lx

2 ,
Lx

2 ] we can restrict the modes to Ξm(x, y) ≈ Ξm (x) =
√
2 sin πx

Lx
m for m being odd, Ξm (x) =

√
2 cos πx

Lx
m

for m being even and Ξm=0 (x) = 1. The oscillator energies are given by

ωm = ωpl

√
λ2J

(
π

Lx
m

)2

+ 1.

Substituting Eq. (A7) to Eq. (A5) we can infer the effective linear Hamiltonian (we just replace the fluctuating field
with bosonic variables as θm → bm + b†m, where

[
am, a

†
m′

]
= δm,m′ ):

H(2) =
∑
m

ϵmb
†
mbm

The quartic term depends on the junction parameters. Below we derive the expression for the junction assuming
Lx ≫ Ly for simplicity.

3. Extended Josephson junction

We now derive the nonlinear term for the junction assuming Lx ≫ Ly. We note that the quadratic part of the
Hamiltonian corresponding to Eq. (A6) has divergent contributions. In particular, the correction to the 0-th plasmon

mode has the following form EC

(∑
n≥0 1/

√
1 + λ2J

(
πn
L

)2), where the sum taken is over all modes. The contribution

to the rest modes is found to be 1/

√
1 + λ2J

(
πn
L

)2
EC

(
1
2 +

∑
m≥0 1/

√
1 + λ2J

(
πm
L

)2). The mode cut-off has to be

imposed to get a convergent expression. Such cut-off can be obtained on the physical grounds by e.g. demanding
the momentum of the contributing mode to be smaller than the coherence length of the superconductor. Here we
simply absorb the formally divergent sum into the plasmon frequency definition. In this case, the result is cut-off
independent. Below we restrict our consideration to just the two lowest plasmon modes.

Restricting to the lowest two modes we find the expression for the quartic term corresponding to the nonlinear part
of the action Eq. (A6):
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H(4) =
EC

12

∫ Lx

0

dx

Lx

{√
ωpl

ϵ0
X0 +

√
2ωpl

ϵ1
cos

(
π

Lx
x

)
X1

}4

=
EC

12

{
X4

0 + 6
ωpl

ϵ1
X2

0X
2
1 +

(
ωpl

ϵ1

)2
3X4

1

2

}
(A8)

where we neglected quadratic terms and Xi ≡ bi + b†i . The Hamiltonian Eq. (A8) can be simplified even further
assuming that the non-linearity is weak compared to the plasma frequency ωpl ≪ EC . In this limit the excitation-
number-non conserving terms in H(4) are strongly off-resonant and can be safely neglected:

H(4) ≈ −EC

4

{
2b†0b

†
0b0b0 + 3b†1b

†
1b1b1

+8b†1b1b
†
0b0 + 2

(
b†20 b

2
1 + b†21 b

2
0

)}
where we assumed Lx/λJ ≫ 1. In conclusion we note that we find interaction terms corresponding to the self-,
cross-Kerr and parametric interactions between different modes.

4. Interaction with the resonator mode

We now consider the interaction with the resonator mode assuming the geometry shown in Fig. 1. Ignoring the
magnetic effects we add the coupling in the gauge-invariant way to the ∂τθ(−) → ∂τθ

(−) − 2ie
∫ 2

1
dz⃗ · Eres action

Eq. (A2):

S0 ≈
∫
d2r

S
dτ

{
1

16EC

(
∂τθ

(−) − 2ie

∫ 2

1

dz⃗ ·Eres
)2

+
EJλ

2
J

2

(
∇⃗θ(−)

r

)2}

Following the main text we now first reduce the action to the 1-dimensional form and perform the expansion eigenmode
expansion θ(−) (x) =

∑
n θ

(−)
n Ξn (x). With this we get:

S0 ≈
∫
dτ
∑
m

{
1

16EC

(
∂τθ

(−)
m ∂τθ

(−)
m − 4ie∂τθ

(−)
m

∫ 2

1

dz⃗ ·Eres
m − 4e2

∫
dx

Lx
dτ

(∫ 2

1

dz⃗ ·Eres
)2
)}

+

∫
dx

Lx
dτ

{
EJλ

2
J

2

(
∇⃗θ(−)

r

)2}
,

where Eres
m ≡

∫
dx
Lx

EresΞm (x). We now have to deduce the quantum Hamiltonian of the resonator+junction system
which generates the action above. Due to the linearity, the easiest way to extract the coupling is to perform Legendre
transform:

π(−)
m =

1

8EC
∂τθ

(−)
m − 1

4EC

(
ie

∫ 2

1

dz⃗ ·Eres
m

)
With this we get the coupling Hamiltonian:

Ĥint = 2e

∫ 2

1

dz⃗ · Êres
m π̂m

The Hamiltonian Hint is very general in the sense that it is valid regardless of the details of the system. In realistic
scenarios its evaluation represents a complicated problem which requires taking into account e.g. near-field effects
(see Sec. VI). In the current section we resort to a simplified parallel-plate geometry. We note that in addition we
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get terms acting on the electromagnetic field degrees of freedom only. In the following we assume these terms are
absorbed in the definition of the resonator mode frequency.

Now using the expression for the quantized oscillator momentum and the resonator mode operator Eq. (8) we get:

Ĥint ≈ 2eδz
∑
n

E0
n

√
ωm

16EC
(iânEn,m + H.c.)(ib̂†m − ib̂m),

where the interaction form-factors are denoted as En,m ≡
∫ Lx/2

−Lx/2
1
Lx

En (x) Ξ (x). In the following we will assume
En (x) = sin(πnxLres

) for n being odd and En (x) = cos(πnxLres
) for even n. In particular, assuming the junction is located

exactly in between the centre of the resonator we get for several low-energy modes:

E0,0 =
sin(L̃)

L̃

E1,1 =
8
√
2πL̃ cos

(
2L̃
)

π2 − 16L̃2

E2,2 =
3
√
2L̃ sin

(
3L̃
)

π2 − 9L̃2
,

where L̃ = Lπ/(2Lres). With this, we find the coupling terms gm,n in (9) as

gm,n = 2eδzE
0
n

√
ωm

16EC
Em,n.

It is convenient to represent this expression as a product of an effective dipole moment of m−th mode dm = 2eδzEm,n

and a zero-point value of electric field in n−th field mode E0
n.

Appendix B: Derivation of the effective action Eq. (A3-A4)

In this appendix we provide the microscopic derivation of the effective action Eqs. (A1, A2).

1. Derivation of the effective action

We now consider the bilayer action Altland and Simons [46], Sun et al. [47]:

S0 =
∑
i=1,2

∫
d2rLzdτ

{
ν

2

(
∂τθ

(i)
r + eϕ(i)r

)2
+
ns
2m

(
∇⃗θ(i)r − e

c
A⃗(i)

r

)2}
,

SJ = −EJ

S

∫
d2rdτ cos

{
2

(
θ(1)r − θ(2)r − e

c

∫ 2

1

dz⃗ · A⃗r,z

)}
,

Let us now transform into the ± basis by defining new variables for all the fields X± ≡ X(1) ±X(2):

S0 =
∑
i=±

∫
d2rLzdτ

{
ν

4

(
∂τθ

(i)
r + eϕ(i)r

)2
+
ns
4m

(
∇⃗θ(i)r − e

c
A⃗(i)

r

)2}
The “-” variable we redefine in a gauge-invariant way θ(−)

r → θ
(−)
r − e

c

∫ 2

1
dz⃗·A⃗r,z by adding and subtracting e

c

∫ 2

1
dz⃗·A⃗r,z:

S
(−)
0 =

∫
d2rLzdτ

ν

4

(
∂τθ

(−)
r + eϕ(−)

r +
e

c

∫ 2

1

dz⃗ · ∂τ A⃗r,z

)2

+

∫
d2rLzdτ

ns
4m

(
∇⃗θ(−)

r − e

c
A⃗(−)

r +
e

c

∫ 2

1

dz⃗ · ∇rA⃗r,z

)2
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and the Josephson term reads:

SJ = −EJ

S

∫
d2rdτ cos

{
2θ(−)

r

}
,

We now use the following two relations which are straightforwardly found using definitions of the scalar and vector
potentials:

eϕ(i)r +
e

c

∫ 2

1

dz⃗ · ∂τ A⃗r,z = −ie
∫ 2

1

dz⃗E

and

e

c

∫ 2

1

dz [B× ez]−
e

c
A⃗(−)

r +
e

c

∫ 2

1

dz⃗ · ∇rA⃗r,z =
e

c

∫ 2

1

dz [B× ez]

With this we get:

S
(−)
0 =

∫
d2rLzdτ

{
ν

4

(
∂τθ

(−)
r − ie

∫ 2

1

dz⃗ ·E
)2

+
ns
4m

(
∇⃗θ(−)

r +
e

c

∫ 2

1

dz [B× ez]

)2
}

In order to get the action of the junction alone we now integrate-out the electromagnetic field by simply solving the
Maxwell equations. We assume that the superconductors are located sufficiently close such that the retardation can
be ignored. Denoting two fields

∫ 2

1
dzE

(z)
r and

∫ 2

1
dz [B× ez] we can find the bare correlation functions according to

the Maxwell equations:

D0,q ≡ −
〈
i

∫ 2

1

dz⃗E(z)
q i

∫ 2

1

dzE
(z)
−q

〉
≈ 2

∫ 2

1

dz

∫ 2

1

dz′dkze
ikz(z−z′)

(
k2z

q2x + k2z

)
≈ 4

π

q

(
1− e−qδz

)
≈ 4πδz

Dq ≈
〈∫ 2

1

dz [Bq × ez]q

∫ 2

1

dz [B−q × ez]−q

〉
≈ 4πδz

The cross-correlation-term yields terms linear in frequency and it can be ignored at low energies.

a. EM field integrated-out

We now integrate-out the EM field. The resulting action reads:

S
(−)
0 =

1

2

∑
q,ϵn

{
Lz
ν

2
ϵ2n

(
1

Lz
νe2

2 D
(±)
0,q + 1

)
θ(−)
q,nθ

(−)
−q,−n + Lz

ns
2m

(
1

Lz
ns

2m

(
e
c

)2
D

(±)
q + 1

)
q2θ(−)

q,nθ
(−)
−q,−n

}
The + component is of higher order in space-time derivatives and we ignore it. We only keep the “-” component

which at low energy becomes:

S
(−)
0 =

1

2

∑
q,ϵn

{(
Lz

ν
2

2πLzνe2δz + 1

)
ϵ2nθ

(−)
q,nθ

(−)
−q,−n +

Lz
ns

2m
Lzδz
2λ2

L
+ 1

q2θ(−)
q,nθ

(−)
−q,−n

}

We now denote the charging energy as EC =
(

2πLzνe
2δz+1

Lzν

)
and assume Lzδz

2λ2
L

≫ 1 and get:

S
(−)
0 =

∑
q,ϵn

1

S

 1

4EC
ϵ2nθ

(−)
q,nθ

(−)
−q,−n + 2EJ

Lz
ns

2m(
Lzδz
2λ2

L
+ 1
)
2 cjc

2e

q2θ(−)
q,nθ

(−)
−q,−n


=
∑
q,ϵn

1

S

{
1

4EC
ϵ2nθ

(−)
q,nθ

(−)
−q,−n + 2EJλ

2
Jq

2θ(−)
q,nθ

(−)
−q,−n

}
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with λJ =
√

cΦ0(
δz+

2λ2
L

Lz

)
8π2jc

. We note that this expresion for Josephson penetration length is only valid for thin

junctions. We thus find the action Eq. (A1), (A2) up to a renormalization factor θ → 2θ.

Appendix C: Derivation of the Josephson term

In this section, we derive the Josephson coupling term in the action Eq. (A3-A4). We start with the action
describing two conventional s-wave superconductors with the tunneling between them characterized by the rate t.
The imaginary-time action including only the phase modes reads [46]:

S =

∫ β

0

dτ

∫
d2r

∑
n

Ψ†
r


−∂τ − ξ̂ ∆eiθ

(1)
r t 0

∆e−iθ(1)
r −∂τ + ξ̂ 0 −t

t 0 −∂τ − ξ̂ ∆eiθ
(2)
r

0 −t ∆e−iθ(2) −∂τ + ξ̂

Ψr,

where ξ̂ = −∇2

2m − µ is the kinetic energy, Ψ = {ψ(1)
r,↑ , ψ

†(1)
r,↓ , ψ

(2)
r,↑ , ψ

†(2)
r,↓ }T is the Nambu spinor describing the electrons

electrons and ∆ is the gap. We now perform the gauge transformation [46] and get

S =

∫ β

0

dτ

∫
d2rΨ†

r


−∂τ − ξ̂ ∆ te−iθ(−)

r 0

∆ −∂τ + ξ̂ 0 −teiθ(−)
r

teiθ
(−)
r 0 −∂τ − ξ̂ ∆

0 −teiθ(−)
r ∆ −∂τ + ξ̂

Ψr,

where θ(−)
r is the phase difference. Let us now integrate-out the electron gas to one loop assuming the tunneling is

weak. We get in the limit of low momenta:

S
(2)
J = t2

∫
d2r

∑
m,n

Fm

{
cos(θ(−)

r )
}
n

{
cos(θ(−)

r )
}
m−n

+ t2
∫
d2r

∑
m,n

Bm

{
sin(θ(−)

r )
}
n

{
sin(θ(−)

r )
}
m−n

,

where the subscripts indicate taking the corresponding bosonic discrete temporal Fourier transform component Ωn =
2πn
β , Ωm = 2πm

β ,

Fm =
1

βV

∑
k,l

Tr
[
Ĝ

(0)
k (iϵl − iΩm)τ̂3Ĝ

(0)
k (iϵl)τ̂3

]
(C1)

Bm =
1

βV

∑
k,l

Tr
[
Ĝ

(0)
k (iϵl − iΩm)τ̂0Ĝ

(0)
k (iϵl)τ̂0

]
, (C2)

and ϵl = π (2l + 1) /β is the Fermionic Matsubara frequency, Ĝ(0)
k (iϵl) = (iϵlτ̂0 − ξk τ̂3 −∆τ̂1)

−1 is the unperturbed
mean-field Green’s function of either superconductors without tunneling, τ̂i is i-th Pauli matrix. Upon taking integrals
in Eqs. (C1, C2) we find Bm = 0 and

Fm = −ν0
π

4∆arccosh(
√

4∆2+Ω2
m

2∆ )

|Ωm|
√
4∆2 +Ω2

m

,

where ν0 is the normal-state density of states. In the limit of low energies Ωm ≪ ∆ we find Fm ≈ −ν0

π (1 +
Ω2

m

6∆2 ).

Ignoring the Ω2
m

6∆2 term in the Markov-like approximation we find the Josephson term:
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S
(2)
J ≈ − t

2ν0
π

∫
d2r

∑
n

{
cos(θ(−)

r )
}
n

{
cos(θ(−)

r )
}
−n

= − t
2ν0
π

∫
d2r

∫
dτ
{
cos(θ(−)

r )
}2

≈ − t
2ν0
2π

∫
d2r

∫
dτ cos(2θ(−)

r )

In conclusion we note that we neglected the finite-momentum contributions to B which are of the order of k/(vF /∆)
where k is the characteristic momentum of the phase fluctuations.

Appendix D: Nucleation of Solitons

We now study the possibility spontaneous nucleation of sine-Gordon solitons. For a sufficiently large junction the
estimate of the soliton nucleation rate ∼ e−βE0 can be obtained based on the energy E0 required for a creation of of
a kink-antikink [45] to be determined below. The derivation is rather tedious but all the necessary energy and space
scales can be understood in the classical limit. To this end, we now write the quantum sine-Gordon action in the
following form:

S

ℏ
=

1

8ℏEC

∫ βℏ

0

dτ
dx

Lx

(
1

2
(∂τθ)

2
+
ω2
plλ

2
J

2
(∂xθ)

2 − ω2
pl cos (θ)

)
, (D1)

where we kept explicitly the ℏ. It is now convenient to rescale the imaginary time as τ → ℏβτ . In this case we find:

S

ℏ
=

β

8EC

∫ 1

0

dτ
dx

Lx

(
1

2β2ℏ2
(∂τθ)

2
+
ω2
plλ

2
J

2
(∂xθ)

2 − ω2
pl cos (θ)

)
, (D2)

by taking the limit of ℏ → 0 we find that the time variations of the phase produce very large Boltzmann weight. By
neglecting them we find the action describing classical (thermal) nucleation of solitons:

Scl = lim
ℏ→0

1

ℏ
Scl =

1

8EC
β

∫
dx

Lx

(
ω2
plλ

2
J

2
(∂xθ)

2 − ω2
pl cos (θ)

)
, (D3)

The relevant length and energy scales are thus given by λJ and EJ = ω2
pl/EC respectively. Precise estimate of the

number of solitons per unit length in equilibrium is given by [44, 45]:

⟨n⟩ =
(
2

π

)1/2

λ−1
J

√
2EJ

kBT
e−2EJ/kBT

Using the temperature estimate from Mamin et al. [41], T = 20mK we find EJ/kBT ∼ 80 and thus for the junction
sizes of the order of L ∼ λJ the nucleation can be safely neglected.

Appendix E: Experimental characterization proposal

We now consider how the nonlinear terms in Eq. (7) can be probed in an experimental setting. For simplicity we
only focus on the Kerr and cross-Kerr terms. The setup we have in mind is shown in Fig. 6 (a). We assume that the
junction is placed precisely in the center of the resonator and therefore each of the lowest modes can be addressed
individually as discussed in Sec. III. The resonator is driven by a two microwave tones, nearly resonant with the
lowest junction modes. In the far-detuned regime, i.e. when the driving frequency is significantly off-resonant with
the resonator, we can assume the resonator field to be classical. In this case the external diving can be described
by the RWA Hamiltonian Hdr(t) =

∑
n=1,2 αn

(
b̂ne

iωdr
n t + b̂†ne

−iωdr
n t
)
, where αn is the slowly varying amplitude of

the n-th resonator mode and we impose ωdr
n ≈ ωn. Moreover we assume the following condition for the driving
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strengths α0 ≫ α1. Neglecting the rapidly rotating terms the set of Heisenberg equations of motion in the mean-field
approximation becomes:

d

dt
b̂0 ≈ −i

(
∆0 − ECχ0,0|⟨b̂0⟩|2

)
b̂0 − iα0, (E1)

d

dt
b̂1 ≈ −i

(
∆1 −

EC

3
χ0,1|⟨b̂0⟩|2

)
b̂1 − iα1, (E2)

where the detuning is denoted as ∆n = ωn − ωdr
n . We note that here we assumed that the decoherence is neglected

for simplicity. Its effect can be taken into account by introducing the decoherence terms to the righthand sides of
Eqs. (E1-E2) as well as the appropriate Langevin noise terms.

From Eqs. (E1-E2) we find that the resonance frequency of both junction modes, given the term in parentheses,
depends on amplitude of 0-th junction mode. By changing the driving intensity the resonances will be shifted as
shown schematically in Fig. 6 (b). This can be probed by measuring the resonator transmission which directly reflects
the amplitude of each mode [48]. We note that in the discussion above we neglected the possible decoherence effects
in the junction.

frequency
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Figure 6. Figure cross-Kerr effect characterization. (a) Scheme of a setup for probing the Kerr and cross-Kerr effects. (b)
Resonant driving of one of the junction eigenmodes leads to a frequency shift of another mode which can be probed by a weak
laser.


