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Universality and scaling laws are hallmarks of equilibrium phase transitions and critical phenom-
ena1–3. However, extending these concepts to non-equilibrium systems is an outstanding challenge.
Despite recent progress in the study of dynamical phases4,5, the universality classes and scaling laws
for non-equilibrium phenomena are far less understood than those in equilibrium6. In this work, us-
ing a trapped-ion quantum simulator with single-ion resolution, we investigate the non-equilibrium
nature of critical fluctuations following a quantum quench to the critical point. We probe the scaling
of spin fluctuations after a series of quenches to the critical Hamiltonian of a long-range Ising model.
With systems of up to 50 spins, we show that the amplitude and timescale of the post-quench fluctu-
ations scale with system size with distinct universal critical exponents. While a generic quench can
lead to thermal critical behaviour, we find that a second quench from one critical state to another
(i.e. a double quench) results in critical behaviour that does not have an equilibrium counterpart.
Our results demonstrate the ability of quantum simulators to explore universal scaling beyond the
equilibrium paradigm.

In recent years, substantial theoretical4,6–8 and exper-
imental5,9 progress has been achieved in understanding
emergent behaviour of isolated quantum systems out of
equilibrium. In this context, non-equilibrium many-body
systems can be investigated by measuring quantum dy-
namics after a quench10, namely after a change of the
Hamiltonian parameters that is much faster than the
typical energy scales in the system—which is routinely
performed in AMO (atomic, molecular, and optical) sys-
tems.

Although such dynamics are extremely complex in gen-
eral, one would expect that macroscopic observables af-
ter a short time become insensitive to the microscopic
details2. In particular, in the vicinity of a phase transi-
tion, the dynamics should give rise to universal critical
behaviour which leads to scale-invariant spatio-temporal
correlations with universal exponents11. In general, uni-
versal non-equilibrium phenomena are relevant far be-
yond the scope of AMO and condensed matter physics,
including chemistry, biology and even sociology12. Ex-
amples ranging from glassy transitions seen in polymers,
colloidal gels, and spin glasses13 to symmetry-breaking
transitions in the Universe after the ‘Big Bang’14 all ex-
hibit non-equilibrium critical behaviour.

The unprecedented degree of control over quantum
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systems in platforms such as trapped ions15,16, ul-
tracold atoms17,18, nitrogen-vacancy centers19, super-
conducting circuits20,21 and others22–24 have made it
possible to probe fundamental questions about non-
equilibrium many-body physics including prethermaliza-
tion25,26, many-body localization27,28, discrete time crys-
tals19,29, and dynamical phase transitions5,9. For exam-
ple, universal scaling around non-thermal fixed points has
been observed with Bose-Einstein condensates that ex-
hibit self-similar behaviour; these observations are how-
ever not related to an underlying critical behaviour30–32.
In contrast, the work reported here is fundamentally tied
to the existence of a phase transition and extends the
remarkably rich domain of critical phenomena in equilib-
rium to far-from-equilibrium dynamics.
Recent theoretical works have demonstrated post-

quench critical scaling behaviour in the Lipkin-Meshkov-
Glick (LMG) model11, an infinite-range version of the
Ising model. Whether a broader class of many-body sys-
tems display similar universal scaling properties is an
open question. In this work, we study the dynamics of
a transverse-field Ising chain with tunable power-law in-
teractions after a quantum quench. The Hamiltonian of
the model is represented as (ℏ = 1):

H = −
N∑

i<j

Jij(γ
xσxi σ

x
j + γyσyi σ

y
j ) +Bz

N∑

i

σzi , (1)

where σx,y,zi are the Pauli matrices acting on the
i’th spin. Jij is the interaction strength between
ions i and j, Bz is the global transverse magnetic
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FIG. 1: a. Ground-state phase diagram of a long-range transverse-field Ising model with Ising interaction only along the x
direction. J γx/Bz is the ratio of the Kac-normalized effective interaction strength J γx to the transverse field strength Bz

[see main text]. The ordered and disordered phases are shown in blue and purple colors, respectively. The arrows indicate the
quenches into different phases where the solid arrow indicates a quench to the critical point. b. Ground-state phase diagram
with Ising interaction along x or y direction. The phase boundary is shown in gray dashed lines, with red and green circles
indicating the critical points where the quenches are performed. The colored arrows indicate the sequence of quenches starting
in the disordered phase. c. The experimental sequence starting with all spins initialized along |↓⟩z. The first quench is applied
with interactions along the x direction, and the evolution is measured by projecting the spins along x. For the second quench,
both the interaction and measurement bases are switched from x to y direction. In the double-quench experiment, the second
quench is applied after evolving under the first quench, but no measurement is performed before the second quench. The curved
lines illustrate the long-range interaction among all the spins where the opacity reflects interaction strengths that weaken with
distance.

field and N is the number of spins. The coefficients
(γx, γy) ∈ [0, 1], and only one of them is non-zero dur-
ing a single quench (Methods). The interaction strength
falls off approximately following a power-law of the form
Jij ∼ J/|i− j|p, where J > 0 is the effective interac-
tion strength and p is the range of interaction15. The
exponent p was tuned to be at 0.89 for all the ex-
periments and all system sizes (Methods). In order
to maintain a well-defined thermodynamic limit, here
onwards, we refer to the interaction after it is Kac-
normalized as J = 1

N−1

∑
i,j Jij

33. We encode the quan-
tum spins in the ground state hyperfine manifold of
the 171Yb+ ions, where |↓⟩z ≡

∣∣2S1/2, F = 0,mF = 0
〉

and |↑⟩z ≡
∣∣2S1/2, F = 1,mF = 0

〉
, and we perform high-

fidelity state preparation and site-resolved detection us-
ing state-dependent fluorescence (Methods)34.

The transverse-field Ising model exhibits a ground-
state phase transition from a disordered paramagnet
to a magnetically ordered state. As the ratio of Kac-
normalized effective interaction field (J γx) to the trans-
verse magnetic field (Bz) is varied across the critical
point J γx/Bz = 1, the average in-plane magnetization
(⟨σx⟩) changes from zero (disordered phase) to a non-

zero value (ordered phase) in a second-order phase tran-
sition (Fig. 1a). By performing quenches to various val-
ues of J γx/Bz, we identify the critical point of this phase
transition and observe the characteristic divergent fluctu-
ations. We report that, after a single quench, the critical
behaviour and exponents are effectively thermal. How-
ever, this behaviour changes qualitatively in a sequence
of quenches to multiple critical points (Fig. 1b). As we
demonstrate later in this work, a double quench gives rise
to genuinely non-equilibrium critical behaviour.
We begin with a single quench sequence where all the

spins are initialized in the |↓↓ ... ↓⟩z state, which is the
ground state of the initial Hamiltonian in the absence of
the Ising interaction (Supplementary Information (SI)).
Then the spin system is evolved after an interaction
quench of the form Eq. (1), in which γx = 1, γy = 0

(Fig. 1a). We measure the total spin Sx =
∑N
i σ

x
i /2 pro-

jected along the direction of interaction (here along x)
and calculate the net correlator defined as

〈
C2
x

〉
=
〈
S2
x

〉
− ⟨Sx⟩2 . (2)

We characterize the dynamics through the net correlator
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since the Ising symmetry of the Hamiltonian together
with the initial magnetization being zero implies that
the average magnetization along the x direction remains
zero at all times. The definition of

〈
C2
x

〉
further removes

any bias of the average magnetization due to imperfect
single-qubit rotations in the experiment. In Fig. 2a, we
show the post-quench evolution of

〈
C2
x

〉
/N2 with 10 ions,

where each quench is performed with a different value of
Bz while keeping J constant. Overall, we observe, both
numerically and experimentally, that the net correlator
increases in amplitude and exhibit slower dynamics as Bz

is swept from larger to smaller values. This behaviour
hints at a continuous dynamical phase transition6.

Equilibrium phase transitions are commonly identified
by defining an order parameter observable, which ac-
quires a nonzero value as the system transitions from
the disordered to the ordered phase. However, in the
context of non-equilibrium phase transitions, defining an
order parameter can be ambiguous and different defini-
tions have been proposed5,9,35. Analogous to equilibrium
phases, one may consider the in-plane magnetization to
identify a symmetry-breaking phase transition. Using
a mean-field analysis to compute the long-time average
of the magnetization, we can identify Bzc /J = 1 as the
dynamical critical point of the disorder-to-order phase
transition, which coincides with the ground-state criti-
cal point (SI Secs. I & III). While magnetization remains
zero for our chosen initial state, we instead consider the
maximum net correlator, M2 = maxt

[〈
C2
x

〉
/N2

]
, as a

proxy for the order parameter; the maximum is chosen
to find a large signal in spite of decoherence. In Fig. 2b,
we show M2 as a function of the scaled magnetic field
strength Bz/J . While there is no sharp transition for
finite system sizes (N = 10, 15, 20), the order parame-
ter clearly shows an inflection point around Bz/J ∼ 1
and a peak at small Bz, indicating the onset of order-
ing. Notably, the observed order parameter qualitatively
follows the mean-field prediction in the ordered phase,
M2 ∝ (Bz/J )(1−Bz/J ); see dashed line in Fig. 2b.
Moreover, one can even capture the finite-size correc-
tions by considering fluctuations at finite system sizes.
The solid lines in Fig. 2b depict the function describ-
ing the finite-size corrected order parameter, which has
the critical point and an overall scale as fit parameters.
The inferred critical values are well in agreement with the
mean-field prediction (SI Secs. II.A & II.C). Having iden-
tified the dynamical critical point, the immediate ques-
tions are: What is the nature of the critical behaviour
at the phase transition, and does it genuinely go beyond
the equilibrium paradigm?

As a first step toward answering these questions, we
experimentally scale up the single quench experiment to
system sizes up to N = 50 ions and observe the net cor-
relator which, at the critical point, characterizes critical
fluctuations. As we calibrate the quench Hamiltonian
parameters to be at the (mean-field) critical point for all
the system sizes, within our experimental uncertainty,
we see that the fluctuations grow and evolve more slowly
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FIG. 2: a, Net correlator dynamics with 10 ions: Here
we compare the evolution of the experimental (dots) net corre-
lator (

〈
C2

x

〉
/N2) after a single quench with numerical results

(solid lines). The latter were obtained by exactly diagonal-
izing the Hamiltonian in Eq. (1) with experimental parame-
ters. Different colors represent the evolution at different val-
ues of Bz/J . The net correlator increases in amplitude and
evolves more slowly as Bz is swept from larger to smaller val-
ues, except near Bz/J → 0 where there are no correlations.
b, Phase transition from order parameter: We report
scaled maximum net correlator M2 = Max

[〈
C2

x

〉
/N2

]
as a

function of Bz/J for system sizes N = 10, 15, 20. The solid
lines are obtained by fitting the experimental data to the fi-
nite size corrected order parameter (Eq. (28) of SI), which
has the critical point as a fit parameter. The extracted values
are 0.83 (19), 0.88 (6), 1.01 (9) respectively for N = 10, 15, 20;
the difference from the predicted critical point Bz/J = 1 is
due to finite-size effects and experimental imperfections. For
simplicity, we use the predicted critical value for studies in
Figs. 3 and 4. We further verify the location of the criti-
cal point by simulating the (infinite-range) LMG model with
N = 103 (dashed line) as a proxy for the mean-field solution.
The error bars are statistical fluctuations around the mean
value.

with increasing system size, indicating an emergent uni-
versal critical behaviour (Fig. 3a). We numerically model
the quench dynamics with experimental parameters for
system sizes up to N = 25 and verify similar behaviour
in Fig. 3b. Such critical behaviour leads to scaling rela-
tions which are independent of microscopic length/time
scales36. Using scaling analysis, we find the net correlator
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FIG. 3: Unscaled (a, b) and scaled (c, d) fluctuations after a single quench. a, We report experimental critical
fluctuations with system sizes up to N = 50 ions. b, Numerical simulation of critical fluctuations with the experimental
Hamiltonian with up to N = 25 ions. We obtain the critical scaling exponents (α1, ζ1) by optimizing the weighted Euclidean
distance between each of the curves to get the best collapse for the experimental c, and simulation d, data separately [see main
text for details]. We observe remarkable similarity between the exponents found in the experiment and simulations, highlighting
the universality of the exponents despite experimental imperfections as well as finite-size effects. We also confirm the scaling
exponents by fitting the maximum values of the fluctuation to a power-law fit to Nα1 (Inset c). Although this method does
not capture the full evolution, we get excellent agreement of exponents for both the simulation and the experiment. Note that
the fluctuations in the experiment are reduced due to decoherence and imperfect detection fidelity; however, as we can see
from the scaled data, the errors are within acceptable range even up to 50 ions. The error bars of the experimental data are
statistical fluctuations around the mean value.

satisfies the functional form given by11

〈
C2
x

〉
= N1+α1f

(J t1
Nζ1

)
, (3)

where the exponent α1 characterizes the amplitude scal-
ing of fluctuations with system size and ζ1 describes
the dynamical scaling. We verify that the scaling re-
lation and the exponents (α1 = 0.42 (14), ζ1 = 0.19 (8))
are consistent with the results of the exact simulation
(see Fig. 3c,d). The procedure to determine exponents
that yield the best collapse of the data is detailed in the
SI Sec. VII. Remarkably, the above exponents are also
consistent with those at the thermal phase transition of
the LMG model11 α1 = 1/2, ζ1 = 1/4 (SI Sec. II.B). Ad-
ditionally we fit the maximum amplitude of fluctuations

against Nα1 to obtain the exponent α1 = 0.50 (4) (see
the inset of Fig. 3c) which is in excellent agreement with
that of thermal equilibrium. Indeed, it is expected that
the latter procedure leads to a more precise exponent
α1 since the dynamical features are more susceptible to
decoherence.

The emergence of the thermal critical exponents does
not mean that the system has thermalized. In fact, long-
range interacting systems often exhibit prethermalization
for a long window in time26,35,37. Instead, this behaviour
is due to the effective thermalization of a soft mode, which
becomes gapless at the phase transition. This can be
understood through a Holstein-Primakoff transformation

that maps spins to bosonic variables, σxi → 1√
N
(ai + a†i ),

a mapping that is valid near a fully polarized state along
the z direction. The lowest energy excitation of the sys-
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tem corresponds to a collective excitation of a bosonic
mode, characterized by the operator a ≡∑i ai, which
becomes gapless (softens) at the phase transition. The

total spin can be then described as Sx →
√
Nx where

x ∼ a+ a† may be interpreted as the position opera-
tor of a harmonic oscillator with a characteristic fre-
quency Ω which vanishes at the phase transition. Ap-
plying the equipartition theorem, limt→∞ Ω2⟨x2⟩t ∼ Teff
at long times, we find that the gapless mode is de-
scribed by a finite effective temperature (SI Secs. II.A
& III.A). In fact, identifying ⟨x2⟩ ∼ Nα and Ω ∼ N−ζ ,
the equipartition theorem reveals that the effective tem-
perature obeys the scaling relation Teff ∼ Nα−2ζ . Now,
with α→ α1 = 1/2 and ζ → ζ1 = 1/4, the effective tem-
perature becomes a constant independent of system size,
consistent with thermal equilibrium behaviour. We re-
mark that the soft mode governs not only the behaviour
of the infinite-range LMG model but also the power-law
decaying experimental interaction matrix, only with a
different identification of the soft mode (SI Secs. III &
IV).

To break away from the effective thermalization, it has
been proposed11 that preparing an initial state at the
critical point and performing a quench to a different crit-
ical point can lead to non-equilibrium dynamics, where
the scaling exponents differ from a thermal or quantum
critical point. However, realizing such a scheme in exper-
iment can be challenging as it requires high-fidelity adia-
batic preparation of the non-trivial critical state prior to
the quench. In this work, we instead modify this scheme
by applying a sequence of critical quenches to explore
truly non-equilibrium phenomena.

Experimentally, we first perform a single quench
(γx = 1, γy = 0) to a critical point and evolve until the
fluctuations reach their first maxima. Then we switch
the interaction from the x to the y-direction (Fig. 1c)
to apply a second quench i.e. we make γx = 0, γy = 1
(Methods). The intermediate evolution after the single
quench brings the system to a critical state when the
second quench is applied. Upon the second quench, the
dominant fluctuations form along the y-direction and in
Fig. 4a, we show the unscaled fluctuations (

〈
C2
y

〉
/N) for

system sizes up to 50 ions. These fluctuations also obey
the scaling relation in Eq. (3), but with the replacement
C2
x → C2

y , t1 → t2 (time after the latest quench) and with
the distinct exponents α2 and ζ2. We find the optimal
collapse for α2 = 0.63 (33) and ζ2 = 0.10 (17) (Fig. 4c).
We verify that exact numerical simulation results in very
similar critical exponents (Fig. 4b,d). These are also in

good agreement with the analytical exponents α2 = 3/4
and ζ2 = 1/8 (SI Sec. II.D). Finally, we remark that
the effective temperature now scales as Teff ∼ Nα2−2ζ2 ,
which shows a nontrivial scaling with system size, under-
scoring a dramatic departure from equilibrium critical
behaviour.

Experimental decoherences cause the observed fluctua-
tions to be damped for both single and double quenches.
We see that the unscaled 50 ion fluctuations after the
double quench are significantly damped (Fig. 3a). The
major sources of decoherence, which scale with the sys-
tem size, remain within acceptable thresholds for sys-
tem sizes N < 50, but these errors start to dominate for
N ≥ 50 (Methods). This effect is more adverse for the
double-quench sequence than the single-quench, since the
former involves longer evolution under two quenches. For
completeness, we have included all the 50 ion data in
Fig. 4a,c., but excluded it in determining the best col-
lapse exponent. Fitting the maximum amplitudes of the
fluctuations to Nα2 yields exponent α2 = 0.69 (9), with
tighter error bounds (Inset Fig. 4c). Errors in identify-
ing the peak fluctuation result in erroneous switch time
between the two quenches, contributing to imperfect ex-
ponents. This effect can be reproduced in the simula-
tion with exact experimental parameters, and correction
for such errors in further simulations results in exponents
that are well in agreement with the analytically predicted
non-equilibrium values (SI Sec. V.D).

In this work, we have demonstrated the ability to iden-
tify, both numerically and experimentally, the dynamical
critical point of a disorder-to-order phase transition in a
1D transverse-field Ising model. We have observed the
non-equilibrium critical behaviour upon single and dou-
ble quenches with up to 50 ions and extracted the uni-
versal scaling exponents. Demonstrating the universal
scaling behaviour highlights the self-verification ability
of the quantum simulators in a regime that is difficult to
simulate in classical computers. While the decay of ex-
perimental spin-spin interactions deviates from the exact
power-law models with p < 1 (see SI Sec. V.B), the result-
ing critical behaviour follows the latter models closely, a
feature that is also reflected in the spin-spin correlation
function (see SI Sec. V C). Furthermore, we theoretically
predict that the observed double-quench critical scaling
is only the first in an infinite hierarchy of universal crit-
ical behaviours that emerge in a sequence of multiple
quenches (SI Sec II.D), an exciting direction to investi-
gate in the future.
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I. METHODS

State preparation and readout: The quantum sim-
ulator used in this experiment is based on 171Yb+ ions
trapped in all three directions in a 3-layer Paul trap38

with transverse center of mass (COM) mode frequen-
cies ranging from νCOM= (4.64 to 4.73) MHz and axial
COM mode frequencies ranging from νx=(0.23 to 0.53)
MHz depending on system size (N=10-50), with axial
frequency being lowered to accommodate more ions in
a linear chain. Before each experimental cycle, the ions
are Doppler cooled in all three directions by a 369.5 nm
laser beam, 10 MHz red-detuned from the 2S1/2 to 2P1/2

transition. We use the same laser to optically pump all
the ions to initialize them in the low-energy hyperfine
qubit state, |↓z⟩ ≡ 2S1/2 |F = 0,mF = 0⟩ with > 99%
fidelity. In addition to Doppler cooling, we apply the
resolved sideband cooling method to bring the ions to
their motional ground state with > 90% fidelity. After
the Hamiltonian evolution, we apply global π/2 rotations
using composite BB1 pulses to project the spin along the
x or y direction of the Bloch sphere to the z direction.
We then measure the magnetization of each spin using
a state-dependent fluorescence by applying a beam res-
onant with the 2S1/2 |F = 1⟩ ⇐⇒ 2F1/2 |F = 0⟩ transi-
tion. The ions scatter photons if they are projected in
the |↑z⟩ state, and appear bright, while in |↓z⟩ state,
the number of scattered photons are negligible and the
ions appear dark. A finite-conjugate NA = 0.4 objective
lens system (total magnification of 70×) collects scat-
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tered 369.5 nm photons and images them onto an An-
dor iXon Ultra 897 EMCCD camera, which allows us to
perform site-resolved magnetization and correlation mea-
surements with average fidelity of 97%. No state prepa-
ration and measurement (SPAM) correction has been ap-
plied to data presented in this work. More details of
this experimental apparatus can be found in our previ-
ous works2915,42.

Generating XX and YY type Ising interaction:
The global spin-spin interaction in the trapped ion sys-
tem in consideration is generated by applying a spin-
dependent force via non-copropagating 355 nm pulsed
laser beams that uniformly illuminate the ion chain. The
pair of beams have a relative wavevector difference along
the transverse motional direction of the ions. These
beams are controlled by acousto-optic-modulators which
impart beatnote frequencies at νCOM ± µ, and phases
(ϕb, ϕr), respectively, where µ is the symmetric detuning
from the COM mode (≈ 56 kHz). These two tones re-
spectively drive the blue (BSB) and red (RSB) sideband
transitions, which, following the Mølmer-Sørensen (MS)
protocol39, generates an effective Hamiltonian

H =
N∑

i=1

N∑

m=1

ηi,mΩi
2

[ame
ιδmteiϕM+

a†me
−ιδmte−iϕM ]σϕs

i , (4)

where ηi,m is the Lamb-Dicke parameter for ion i and
mode m, Ωi is the Rabi frequency at ion i, a†m, am
are the creation and annihilation operators of motional
quanta for mth motional mode, δm = µ− νm is the
MS detuning from the mth motional mode frequency

νm. σϕs

i = cosϕsσ
x
i + sinϕsσ

y
i , where the spin-phase is

ϕs =
ϕb+ϕr+π

2 and the motional-phase is ϕM = ϕb−ϕr

2 for

the phase-sensitive realization of the MS scheme44. The
unitary time evolution operator under this Hamiltonian
(U(t) ∼ e−ιHt) can be found by taking the Magnus ex-
pansion, which after appropriate approximation leads to
an effective Hamiltonian15

H =
∑

i,j

Jijσ
ϕs

i σϕs

j . (5)

In the far detuned limit (δm ≫ ηΩ), where the vir-
tual couplings to the phonon modes are sufficiently sup-
pressed, the analytical form of the Ising coupling between
ions i and j is given by15

Jij = Ω2νR
∑

m

bimbjm
µ2 − ν2m

≈ J

|i− j|p , (6)

where νR = hδk2/(8π2M) is the recoil frequency, and
bim is the eigenvector matrix element of the i-
th ion’s participation in the m-th motional mode
(
∑
i|bim|2 =

∑
m|bim|2 = 1), M is the mass of the sin-

gle ion. J is the effective interaction strength obtained

by a power-law fit of the interaction matrix elements and
J/2π ranges within (0.25 to 0.4) kHz in the experiment
for different system sizes. If we set ϕr = 0, ϕb = π, then
ϕM = π/2 and ϕs = π, which makes the Hamiltonian of
Eq. (5) an effective σxσx interaction. We can change this
phase by changing the input waveform to the acousto-
optic-modulator. Similarly, we set ϕr = 0, ϕb = 0 to ob-
tain an effective σyσy interaction. In the double quench
experiment, we switch these waveform phases to switch
between interactions along different Bloch sphere direc-
tions.

We further apply a common offset of 2Bz to the fre-
quencies of BSB and RSB tones which in the rotating
frame of the qubit, results in an effective transverse field

term Bz
∑N
i σ

z
i in the Hamiltonian of Eq. (5)15. The

magnetic field strength Bz is chosen such that Bz ≪ δm
for the rotating frame approximation to be valid.

The approximate power law exponent can be theoreti-
cally tuned within the range 0 < p < 3. However, in this
experiment, we kept the exponent ≈ 0.89 for all the sys-
tem sizes by tuning the axial trap frequency (νx) and
motional detuning (µ). We note that the experimental
interaction matrix deviates from a pure power-law de-
cay to an exponential decay at large distances, especially
for large system sizes (SI Sec VI). In principle, one can
tune this exponent by changing only the detuning (µ)
(see Eq. (6)), but changing the axial trap frequency (νx)
for different system sizes results in more self-consistent
scaling of the exact spin-spin coupling matrix40.

Experimental error sources: One of the main chal-
lenges in scaling up the system size is to maintain the
fidelity of the quantum simulation experiments. Among
various sources of decoherence in the trapped-ion plat-
form, such as stray magnetic and electric fields, mode fre-
quency drifts, off-resonant motional excitation, sponta-
neous emission, and additional spin-motion coupling that
causes the evolution to depart from ideal simulation15.
One such important source, which becomes significant
in the large system size limit, is the off-resonant excita-
tion of the motional modes causing residual spin-motion
entanglement40,41. In order to trap longer linear chains
while maintaining the same interaction profile, we need
to operate at a lower axial confinement which can be-
come as low as ∼ 200 Hz for N = 40− 50. At such low
axial confinement, the trapped ions are more susceptible
to electric field noise and background collisions46. The
conventional laser cooling methods start to become inef-
ficient in cooling the ions to their motional ground states
and as a result, errors due to phonon evolution gets intro-
duced in the Hamiltonian evolution. To the lowest order
such an error can be modelled as an effective bit flip er-
ror during measurement40. Additional cooling methods
such as EIT (electromagnetically induced transparency)
cooling47 and sympathetic cooling46 would useful in mit-
igating effects of such errors.

Another source of bit-flip error is imperfect detection.
Off-resonant pumping from the detection beam limits our
detection fidelity to about 98%. When a large number
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of ions are trapped in a linear chain, ions near the cen-
ter of the chain are closer together than the ones at the
edges. A random bit-flip error can be introduced due
to leakage of light from neighbouring ions, which might
cause a dark ion to appear bright and vice versa. In the
Extended Data Fig. 5 we show that a bit flip error can
qualitatively explain part of the damping that we observe
in the experimental net correlator. More details about
various noise sources in this apparatus can be found in
previous works.40,42,48

Jackknife error estimation: In the experiments re-
ported in this work, we repeat the experiment and mea-
surement sequence 400 times to reduce the quantum pro-
jection noise. To estimate the standard errors of the
two-body correlators, we have implemented a Jackknife
resampling technique49. In this method, we construct a
distribution of net correlators by randomly sampling 399
experimental runs, each time leaving out only one run.
We then calculate the variance of the distribution which
corresponds to the standard error of the net correlator.

[42] Kim K., Chang M.-S., Islam R., Korenblit S., Duan L.-
M., and Monroe C. Entanglement and tunable spin-spin
couplings between trapped ions using multiple transverse
modes. Phys. Rev. Lett., 103(12):120502, (2009).

[43] Monroe C., Campbell W. C., Duan L.-M., Gong Z.-X.,
Gorshkov A. V., Hess P. W., Islam R., Kim K., Linke
N. M., Pagano G., Richerme P., Senko C., and Yao N. Y.
Programmable quantum simulations of spin systems with
trapped ions. Rev. Mod. Phys., 93(2):025001, (2021).

[44] Inlek I. V., Vittorini G., Hucul D., Crocker C., and Mon-
roe C. Quantum gates with phase stability over space and
time. Phys. Rev. A, 90(4):042316, (2014).
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simulator. PNAS, 117(41), (2020).
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Quantum, 3(1):010334, (2022).
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FIG. 5: Extended Data— Bit flip error simulation : We plot the experimental fluctuation at the critical point with
N = 10 ions (square). We compare it against numerical simulations (circle) which included varying degrees of random bit flip
errors. We see a clear trend that bit-flip errors dampen the amplitude of the fluctuation. Our estimate shows that a 10% error
per ion can result in amplitude reduction comparable to the experimental signal. We note that this number seems quite higher
than expected. We believe that the bit flip error is not the only reason of a reduced amplitude as evolution under the phonon
dynamics and other experimental drifts also causes decoherence (see main text for more details). Error bars are statistical
fluctuations around the mean value.

Author contributions

A.D., W.M., K.C., and C.M. contributed to the experi-
mental design, construction, data collection and analysis.
G.P. provided experimental support. P.C., D.P., P.T.,
A.V.G., and M.M. carried out the theoretical analysis.
All authors contributed to the discussion of the results
and the manuscript.

Competing interests

C.M. is Co-Founder and Chief Scientist at IonQ, Inc.

Data Availability

The data that support the findings of this study are
available from the corresponding author upon request.
Source data are provided with this paper.

Code availability

The code used for analyses is available from the corre-
sponding author upon request.



Supplementary Information

A. De,1, ∗ P. Cook,2, 3, † K. Collins,1 W. Morong‡,1 D. Paz,2 P. Titum,1, 4

G. Pagano,5 A. V. Gorshkov,1 M. Maghrebi,2 and C. Monroe1, 6, 7

1Joint Quantum Institute and Joint Center for Quantum Information and
Computer Science, NIST/University of Maryland, College Park, Maryland 20742

2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
3Facility for Rare Isotope Beams, East Lansing, Michigan 48824

4Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723
5Department of Physics and Astronomy, Rice University, Houston, TX, USA
6Department of Electrical and Computer Engineering, Department of Physics,
Duke Quantum Center, Duke University, Durham, North Carolina 27708, USA

7IonQ Inc., College Park, Maryland 20742, USA

Contents

I. Dynamical Phase Diagram from Mean-Field Analysis 2

II. LMG model 3
A. Gaussian Fluctuations 4
B. Critical Finite-Size Scaling 4
C. Finite-Size Behavior of the Order Parameter 6
D. Double (Multiple) Quenches 7

III. Power-law Interacting Spin Chain 9
A. Power-Law Jij with Periodic Boundary Conditions 10
B. Power-Law Jij with Open Boundary Conditions 11

IV. Long-range Interacting Spin Chain with Experimental Jij 12

V. Experiment vs Theory 13
A. Finite-Size Behavior of the Order Parameter 13
B. Long-Range Character of Jij Matrix 14
C. Correlation Matrix 14
D. Double Quench Switch Times 15

VI. Optimal Collapse Algorithm 16
A. Uncertainty Estimates via the Hessian 17

References 18

This document provides details of the theoretical analysis (sections I to IV), elaborates on and contrasts against the
experimental results (section V), and finally provides the numerical approach used to determine the critical exponents
and their errors (section VI).

‡ current address: AWS Center for Quantum Computing, Pasadena, California 91125, USA. Work done prior to joining AWS.
∗Electronic address: arinjoy@umd.edu
†Electronic address: cookpat4@msu.edu

ar
X

iv
:2

30
9.

10
85

6v
1 

 [
qu

an
t-

ph
] 

 1
9 

Se
p 

20
23



2

Theoretical Models

In this Supplemental Information, we consider theoretical models with a generalized long-range interaction:

H = − 1

2J
N∑

i ̸=j
Jij
(
γxσxi σ

x
j + γyσyi σ

y
j

)
+B

N∑

i

σzi , (1)

where σαi with α = x, y, z are the usual Pauli operators for spin i, and

J =
1

N − 1

N∑

i ̸=j
Jij , (2)

is a normalization constant known as the Kac factor (or, Kac normalization). This normalization factor is particularly
useful for long-range coupling as it renders the Hamiltonian extensive.

1. In section I, we provide a mean-field analysis to determine the dynamical phase diagram. We then consider
three versions of the model described by eq. (1) ranging from the most idealized theoretical model to one that
is most experimentally relevant.

2. In section II, we consider the collective Lipkin-Meshkov-Glick (LMG) model where Jij = 1 and the interaction
is infinite ranged. We provide a detailed analysis of the ground-state, the dynamical phase diagram as well as
the critical properties. While an idealized model, it explains the main features of the experimental results.

3. In section III, we add another layer of complexity by considering a power-law interaction Jij ∼ 1/|i− j|p with
open and periodic conditions. We show that, for 0 < p < 1, this model exhibits the same dynamical phase
diagram and critical properties.

4. Finally, in section IV, we theoretically analyze the long-range spin model with the experimental values of Jij .
The latter values fall off exponentially at large distances (see section VB), hence departing from the collective
or the truly long-range variant of the previous models. Nonetheless, we show that the critical properties of the
experimental model are consistent with those of the LMG model and its long-range variants.

Before continuing, we note that the experimental model is antiferromagnetic while the theoretical models considered
here are ferromagnetic; however, we use a simple trick to relate the two models [1–3]. Given that the Hamiltonian is
purely real (using the standard representation of Pauli matrices) and the fact that the correlation function ⟨σxi σxj ⟩ is
real, we have

⟨σxi σxj ⟩H,ψ0,t = (⟨σxi σxj ⟩H,ψ0,t)
∗ = ⟨σxi σxj ⟩−H,ψ0,t, (3)

where we have made explicit the dependence on the Hamiltonian H, time t and the initial state ψ0. We have
furthermore assumed that the initial state is also real; for example, a fully polarized state along the negative z
direction is real. By flipping the overall sign of the Hamiltonian, the antiferromagnetic coupling is then mapped to a
ferromagnetic one.

I. Dynamical Phase Diagram from Mean-Field Analysis

In this section, we obtain the dynamical phase diagram using a mean-field analysis for the generalized model in
eq. (1). Starting from the initial state |↓↓ · · · ⟩, we suddenly turn on an Ising-type Hamiltonian by setting γx = 1 and
γy = 0. In a mean-field analysis, the Hamiltonian becomes

H = −mσx +Bσz =
√
m2 +B2 n · σ, (4)

where m ≡ ⟨σx⟩. We have dropped the site index, and defined the unit vector n = (nx, 0, nz) parallel to (−m, 0, B).
At long times after the sudden quench, the initial state dephases in the new basis defined by the operator n · σ, and
the time-averaged density matrix becomes
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lim
t→∞

|ψ⟩t⟨ψ| = sin2
θ

2
|n,+⟩⟨n,+|+ cos2

θ

2
|n,−⟩⟨n,−|, (5)

where n · z = cos θ. Using the identity m = ⟨σx⟩, we then find the self-consistent equation

m = − cos θ sin θ =
m√

m2 +B2

B√
m2 +B2

, (6)

which in turn yields the time-averaged order parameter as

m =
√
B (1−B). (7)

Furthermore, this equation predicts a dynamical phase transition at Bc = 1. This mean-field analysis is exact for
the infinite-range LMG model. Furthermore, with the aid of spin-wave analysis, we show that it is also exact for
the long-range model with 0 < p < 1 (see section III), and additionally provides an excellent estimate for the phase
transition corresponding to the experimental Jij (see section IV).

II. LMG model

The LMG model is characterized by the infinite-range interaction with Jij ≡ 1. This model can be reformulated in
terms of total spin operators, with the Hamiltonian (up to a constant)

HLMG = − 2

N

(
γxS2

x + γyS2
y

)
+ 2BSz, (8)

where Sα = 1
2

∑
i σ

α
i . At zero temperature, this model exhibits a quantum phase transition at Bgs,c = 1 [4].

Interestingly, the ground state critical point coincides exactly with the dynamical critical point obtained in the
previous section. However, there are important distinctions: the order parameter’s dependence on B is different. In
fact, the ground state is perfectly ordered at B = 0 while the corresponding order parameter long after the sudden
quench vanishes when B = 0. More importantly, the critical behaviour at the respective phase transitions is different:
while the ground state exhibits a quantum phase transition at B = 1, the dynamical critical point shows distinct
(and, effectively thermal) critical behaviour (see section II B). Furthermore, we show that for a double quench, the
critical behaviour is neither quantum nor thermal, and is genuinely non-equilibrium (see section IID).

Beyond Mean Field

Next, we consider fluctuations at the phase transition. While the mean field solution in eq. (7) exactly describes the
ordered phase (where B < Bc = 1) in the thermodynamic limit, fluctuations and finite-size scaling become important
at or near the critical point for a finite system. To characterize fluctuations in the disordered phase as well as critical
fluctuations near the critical point, one can use the Holstein-Primakoff transformation to map the spin operators of
the LMG model to bosonic creation and annihilation operators as (S± = Sx + iSy)

S− = S†
+ =

√
N − a†aa Sz = −N/2 + a†a. (9)

To the lowest order in 1/N , we can identify

Sx ≈
√
N

2
x, Sy ≈

√
N

2
p. (10)

Assuming that γx > γy, the dominant Ising interaction is along the x direction. In this case, the LMG Hamiltonian
can be simply written as that of a harmonic oscillator [5],
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H =
1

2m
p2 +

1

2
mΩ2x2 +

1

4N
ux4 + · · · , (11)

where we have defined m−1 = 2 (B − γy), Ω2 = 4 (B − γx) (B − γy), and u = 2γx. The dots in the above equation
represent higher-order terms in 1/N or higher powers of x and p which are irrelevant at or away from the critical
point in the disordered phase.

A. Gaussian Fluctuations

We begin by considering eq. (11) at the quadratic level in the disordered phase, before taking into account the
interaction term (∝ 1/N). We are interested in the dynamics upon the sudden quench (γx,y0 , B0) → (γx,y, B).
Equivalently, we can consider a quench (m0,Ω0) −→ (m,Ω) of the harmonic oscillator, where it is easy to solve for
the time-averaged fluctuations:

1

N
⟨S2
x⟩ =

1

2
⟨x2⟩ = m0Ω0

8m2Ω2

(
1 +

m2Ω2

m0Ω2
0

)
, (12)

where the overline indicates time averaging. Notice that fluctuations diverge where Ω = 0, which in turn sets
(B−γx)(B−γy) = 0. This condition coincides with the mean-field prediction in eq. (7) when γx = 1 and γy = 0; this
is expected as the LMG model is infinite ranged. Furthermore, we can characterize the critical fluctuations beyond
the mean-field prediction. We first observe that fluctuations scale as ⟨x2⟩ ∼ 1/Ω2 near the critical point. Comparing
against the expression for a harmonic oscillator at high temperatures

1

2
mΩ2

〈
x2
〉 T≫Ω≈ 1

2
T,

we can identify an effective temperature [5]

Teff =
m0Ω0

4m
=
B

2

√
B0 − γx0
B0 − γy0

. (13)

Specifically, in a quench starting from a product state corresponding to the ground state in the absence of the Ising
interaction (γx,y0 = 0) to the critical point of the infinite-range Ising Hamiltonian (γx = 1, γy = 0, and B = 1), we
find a constant effective temperature, Teff = 1/2. We stress that such notion of the effective temperature does not
mean that the system is in equilibrium; rather, it means that low-frequency modes (or, more precisely, the soft modes)
have become effectively thermal. Indeed, one finds thermal critical behaviour and scaling in this type of quench [5];
see also fig. S1.

B. Critical Finite-Size Scaling

Fluctuations diverge as we approach the critical point B → 1 either in the ground state or in a quench to the
critical point. In a finite-size system, the fluctuations do not strictly diverge but rather scale with N in a nontrivial
fashion:

1

N
⟨S2
x⟩ ∼ Nα. (14)

Notice that in the disordered phase, we have α = 0 indicating noncritical fluctuations while in the ordered phases
α = 1 due to ordering ⟨Sx⟩ ∼ N . Only at the critical point, α becomes a nontrivial critical exponent. For the quantum
phase transition in the ground state, this exponent becomes α = 1/3; see fig. S1(a). This should be contrasted with a
thermal phase transition where this exponent becomes α = 1/2. In a quench to the critical point, the system evolves
and approaches a stationary state that is not an equilibrium state; however, the critical exponent takes the same
value α = 1/2 as thermal equilibrium; see fig. S1(b). One can view this as a consequence of the fact that the effective
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temperature takes a finite nonzero value (see eq. (13)). Here, we derive this critical scaling using a simple analysis.
Our approach is based on a non-equilibrium field theory which systematically leads to a semiclassical analysis similar
to the truncated Wigner approximation (see Ref. [5] for more details). To this end, we start from the partition
function

Z =

∫
Dx±W0e

i(S[x+]−S[x−]) , (15)

where W0 is the Wigner function corresponding to the initial state, and [x±(t)] denote forward and backward trajec-
tories, respectively. These trajectories are weighted by the phase factors exp(±iS) where S = 1

2

∫
dt[mẋ2 −mΩ2x2 −

(u/2N)x4] is the corresponding action. Introducing the (Keldysh) variables xc/q = (x+±x−)/
√
2, the total (Keldysh)

action becomes

SK = S[x+]− S[x−] = −
∫
dt[mxqẍc + rxqxc + (u/2N)(x3cxq + xcx

3
q)] , (16)

with r = mΩ2. We take the initial state as the ground state of the Hamiltonian in the absence of the Ising interaction.
The Wigner function then becomes a Gaussian function of phase space variables as

W0(x0, p0) ∼ e−x
2
0−p20 . (17)

Casting the Wigner function in terms of the configuration variables, the total partition function takes the form

Z =

∫
Dxc/qe

−x2
c0/2l

2
0−ẋ2

c0/2v
2
0e−

∫
dt[mxqẍc+rxqxc+(uc/2N)x3

cxq+(uq/2N)(xcx
3
q)] , (18)

where we have introduced the parameters l0 and v0 for later convenience; for the coherent initial state assumed above,
we have l0 = 1 and v0 = 1/m0. We have also introduced the coefficients uc/q to distinguish the two interaction
vertices; at the microscopic level, we have uc = uq = u. As pointed out in Ref. [5], to probe the behaviour at long
times, we can rescale time t → t/λ and identify how various terms scale. We find that that under this rescaling
l0 → 0 and uq → 0. The first condition imposes the boundary condition xc0 = 0 given the Gaussian distribution
exp(−x2c0/2l20). The latter condition simply means that the ‘quantum’ vertex proportional to uq is less relevant than
the classical vertex proportional to uc, a condition that typically emerges in the semiclassical limit. Dropping the
quantum vertex, we can integrate over the field xq to find a delta function that imposes the semiclassical equation of

motion together with a Gaussian distribution of the initial state (also changing the coordinate back to x via xc =
√
2x

and restoring uc → u):

Z =

∫
Dxδ(x0)e

−ẋ2
0/v

2
0δ
(
mẍ+ rx+

u

N
x3
)
. (19)

This equation admits a simple interpretation: A ‘particle’ whose position is given by x moves under a nonlinear
equation of motion with the initial conditions where x0 = 0 and ẋ0 is drawn from a Gaussian distribution. This
equation is simply the truncated Wigner approximation, which evolves the wavefunction with the classical equation
of motion, but captures the (quantum) fluctuations of the initial state; the only difference is that, using a scaling
argument, we have set x0 = 0.

To characterize the critical behaviour, we can study the scaling behaviour of the above equation. We remark that,
at the critical point r = 0, the partition function becomes scale invariant under the rescaling

t→ t/λ, x→ x/λ, N → N/λ4 . (20)

This immediately implies that fluctuations ⟨x2⟩ as a function of t and N both take the scaling form

⟨x(t)2⟩ = Nαf(t/Nζ) , (21)

with the critical exponents α = 1/2 and the ζ = 1/4; the latter exponent identifies a dynamical critical exponent.
This is indeed consistent with the exact numerical calculation in fig. S1(b).
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FIG. S1: Fluctuations scaling with system size at the critical point (a) in the ground state, (b) after a single quench, and
(c) after a double quench. (b) A single quench from the disordered phase to the critical point (B, γx, γy) = (1, 1, 0) gives
rise the critical exponents (α1, ζ1) = (1/2, 1/4). (c) A second quench to the other critical point (B, γx, γy) = (1, 0, 1)
is performed when the fluctuations in panel (b) reach their peak. The coordinate t2 denotes the time since the second
quench. The double quench gives rise to the critical exponents (α2, ζ2) = (3/4, 1/8).

C. Finite-Size Behavior of the Order Parameter

In eq. (7), we have presented the mean-field prediction for the time-averaged order parameter in the ordered phase,
B < 1, and in the thermodynamic limit N → ∞. In the previous section, we have further investigated the critical
fluctuations for finite system sizes exactly at the critical point B = Bc = 1. In this section, we study finite-size
corrections in the vicinity of the critical point Bc. This is crucial to identify the dynamical phase transition in a
finite-size system. To this end, we consider the equation of motion dictated by eq. (19):

ẍ+ rx+ ux3 = 0. (22)

For notational convenience, we have set m = 1 and absorbed the factor proportional to 1/N into the definition of the
interaction parameter u. For the purpose of this section, it suffices that

r ∝ B − 1, u ∝ 1/N . (23)

In the quench starting from a disorded state, the initial conditions are set by x(t = 0) = 0 and ẋ(0) = v where v is
drawn from a Gaussian distribution exp(−Dv2); the parameter D is set by the initial state, but we shall treat it as a
phenomenological parameter. Solving the above equation with the initial conditions x(t = 0) = 0 and ẋ(t = 0) = v,
we find

xv(t) = sgn(v) sn


t

√
r +

√
r2 + 2uv2

2
,
r −

√
r2 + 2uv2

r +
√
r2 + 2uv2


 , (24)

with sn(u,m) the Jacobi elliptic function. The above equation exhibits persistent oscillations. We are instead inter-

ested in the time average of x(t)2 which is given by

x2v ≡ lim
t→∞

xv(t)2 =

√
r2 + 2uv2 − r

2u
. (25)

Finally, the Gaussian integral over v (i.e., the integral ⟨·⟩v ≡
∫
dv exp(−Dv2) · /

∫
dv exp(−Dv2)) yields
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〈
x2v

〉
v
= − r

2u
+
U(− 1

2 , 0, Dr
2/(2u))√

2Du
, (26)

where U is Tricomi’s confluent hypergeometric function. Making the dependence of u on N explicit by u→ u/N , we
find

m2 ≡ 1

N2
⟨Sx(t)2⟩ =

1

N

〈
x2v

〉
v
= − r

2u
+

1√
N

U
(
− 1

2 , 0, DNr
2/(2u)

)
√
2Du

. (27)

Deep in the ordered phase, we must have m2 = m2 where the order parameter m is computed from mean field (see
eq. (7)). This is indeed the case: the above equation captures the initial linear dependence of the order parameter on

r as one enters the ordered phase, that is, m2 ∼ |r| ∝ (1−B) when r < 0, while the exact (mean-field) solution within
the ordered phase is given by m2 = B(1 − B). An expression that properly interpolates between the two extremes
can be obtained by multiplying the right hand side of the above equation by a factor of B. We also fix the coefficient
u = 1/2 to match eq. (7) deep in the ordered phase where r < 0. Making explicit the dependence on B and Bc, we
find

m2 =
B

Bc



(
1− B

Bc

)
+

1√
N

U
(
− 1

2 , 0, DN(1− B
Bc

)2
)

√
D


 . (28)

In a numerical calculation of the critical point, the above fit only contains two free parameters: the constant D and
the critical point Bc.

In the experiment, it is more convenient to study the maximum of ⟨S2
x⟩/N2 in time rather than its stationary

value. The above analysis remains valid but with an an overall amplitude, which we shall treat as a free parameter
in eq. (28). In fig. S2, we show that that above function (up to an overall amplitude A) is an excellent fit to the
order parameter obtained from the exact numerical simulation, and the extracted value of the critical point is almost
identical to the exact value of Bc = 1.

0 1 2

B/J

0.00
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0.15

m
ax t

{〈 S2 x
(t

)〉 /N
2
} N= 50 Simulation

Fit

FIG. S2: The order parameter for the LMG model with N = 50 extracted from the peak of ⟨S2
x(t)⟩. We also depict

the fit function from eq. (28) with an overall factor A = 16.15(9), as well as the fit parameters D = 0.34(1) and
Bc = 0.976(4) in excellent agreement with the exact critical point, Bc = 1.

D. Double (Multiple) Quenches

In this section, we analyze the scaling behaviour of the system as the result of a double quench starting from a
disordered initial state to the critical point of the LMG model with γx0 = 1 and γy0 = 0, and, with a delay, a subsequent
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quench to the critical point of the LMG model with γx0 = 0 and γy0 = 1; See Fig. 1(b) of the main text. Both critical
points are defined by Bc = 1. Notice that the final Hamiltonian has the Ising interaction along the y direction only,
and the dominant fluctuations correspond to the those along the y direction. To parallel the notation in the previous
sections, we use the Holstein-Primakoff expansion but now identify, to the lowest order in 1/N ,

√
2

N
Sx ≈ p2 ,

√
2

N
Sy ≈ x2 , (29)

as the dynamical variables upon a second quench, while we reserve x1 and p1 defined similarly to x and p in eq. (10),
respectively, as the dynamical variables following the first but before the second quench. At the time of the second
quench (t2 = 0), we have x2 = p1 and p2 = x1 due to continuity. The Hamiltonian at each stage is given by
Hi =

1
2mi

p2i +
1
2miΩ

2
ix

2
i where i = 0, 1, 2 correspond to pre-quench, first-quench, and second-quench variables; we also

identify x0 = x1 and p0 = p1. To characterize fluctuations at the quadratic order, we shall consider a finite distance
from the critical point at all stages of the dynamics (but approaching criticality when considering finite-size scaling).
The frequencies Ωi are then given by

Ω2
i = 4 (Bi − Jγxi ) (Bi − Jγyi ) (30)

and similarly for mi; the exact values of mi are unimportant and we just remark that they remain finite even as we
approach the critical point.

Next, we characterize the dominant fluctuations (⟨x22⟩) at late times from those of ⟨x21⟩ and ⟨p21⟩ long after the first
quench but before the second quench. Finally taking the long-time average, we find

⟨x22⟩ =
⟨p21⟩
2

+
⟨x21⟩

2m2
2Ω

2
2

=
m2

0Ω
2
0

16
+

m2
1Ω

2
1

16m2
0Ω

2
0

+
1

8m0Ω0m2
2Ω

2
2

+
m0Ω0

8m2
1Ω

2
1m

2
2Ω

2
2

. (31)

where the frequencies Ωi are defined above. For two successive quenches to the vicinity of critical points, Ω2 ≪ Ω1 ≪
Ω0, the above expression reduces to

1

2
⟨x22⟩ ∼

m0Ω0

16m2
1Ω

2
1m

2
2Ω

2
2

. (32)

Using the equipartition theorem 1
2m2Ω

2
2⟨x22⟩ ∼ 1

2T , we can now identify an effective temperature upon the second
quench (denoted by subscript 2) as

Teff,2 =
m0Ω0

8m2m2
1Ω

2
1

. (33)

Notice, however, that the effective temperature diverges as we tune the first quench to the critical point, Ω1 → 0.
Such divergence hints at a critical behaviour that is strongly athermal (see also Ref. [5]).

To characterize the critical behaviour, we can set up a scaling analysis using semiclassical dynamics. Using the
continuity of these functions at t2 = 0 where x2 = p1 and ẋ2 ∼ p2 = x1, the initial conditions for x2 and its
time derivative are given by a distribution function; we can alternatively characterize the same information via the
expectation values

⟨x22⟩ ∼ N0, ⟨ẋ22⟩ ∼ Nα1 , at t2 = 0 . (34)

For a uniform notation, we have identified α1 = α as the critical exponent emerging in the first quench. To this end,
a rather similar scaling analysis gives the partition function

Z =

∫
Dx2δ[x2(0)]P

[
(ẋ2(0))

2/Nα1
]
δ
(
m2ẍ2 + r2x2 +

u2
N
x32

)
, (35)

where r2 = m2Ω
2
2 and u2 = 2γy2 ; we have also defined x2(0) ≡ x2(t2 = 0) for ease of notation (similarly for ẋ2(0)). To

arrive at this equation, we have used the scaling limit where the quantum vertex can be ignored and the fluctuations
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of x2 right after the second quench (t2 = 0) becomes a delta function. On the other hand, we keep track of the initial
fluctuations of ẋ2 and its scaling with system size N via the the distribution function P ; for our purposes, only the
scaling behaviour, and not the exact form of the function P , is important. We stress that the scaling variable in the
argument of the function P is dictated by scaling behaviour in eq. (34) at the onset of the second quench.

Next, we observe that the partition function is scale-invariant (at r2 = 0) upon the transformation

t→ t/λ, x→ x/λ
1+α1
1−α1 , N → N/λ

4
1−α1 . (36)

We can then immediately write a scaling relation for fluctuations

⟨x2(t2)2⟩ = Nα2g(t2/N
ζ2) , (37)

with g a scaling function and the critical exponents identified as

α2 =
1 + α1

2
, ζ2 =

1− α1

2
. (38)

Using α1 = 1/2 in the first quench, we find α2 = 3
4 and ζ2 = 1

8 . These predictions are in excellent agreement the
exact numerical simulation shown in fig. S1(c).

At this point, we can also determine the scaling of the effective temperature. Note that eq. (35) remains scale-
invariant even for nonzero r2 upon scaling r2 → λ2r2, which then determines the scaling behaviour of this variable

as r2 ∼ N−2ζ2 . Now recalling the definition of the effective temperature 1
2Ω

2
2⟨x22⟩ ∼ 1

2Teff,2 together with the facts

r2 ∝ Ω2
2 ∼ N−2ζ2 and ⟨x22⟩ ∼ Nα2 , we find

Teff,2 = Nα2−2ζ2 . (39)

The same relation holds for the first quench by changing all the subscripts to 1. While in the latter case, α1− 2ζ1 = 0
indicating a constant effective temperature, for a double quench α2 − 2ζ2 = 1/2 highlighting a nontrivial scaling of
the effective temperature and a genuinely nonthermal critical behaviour.

We also remark that more generally for k+1 consecutive critical quenches γx → γy → γx → · · · (showing only the
nonzero anisotropy parameter) starting from a disordered state, we find the non-equilibrium critical exponents:

αk+1 =
1 + αk

2
, ζk+1 =

1− αk
4

, (40)

and the effective temperature scaling

Teff,k ∼ Nαk−2ζk , (41)

with α0 = 0. One can solve the above iterative equations to find the exponents

αk = 1− 2−k, ζk = 2−k−1 . (42)

The critical exponents for single and double quench are recovered by setting k = 1 and 2, respectively. We can also
determine the critical scaling of the temperature from eq. (41) as

Teff,k ∼ N1− 1

2k−1 . (43)

III. Power-law Interacting Spin Chain

In this section, we extend our analysis to include the long-range model in eq. (1) where the interaction Jij falls off
as a power-law with the distance, Jij ∼ 1/|i− j|p. We show, using a spin-wave analysis, that the universal behaviour
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discussed in the text is governed by a collective mode as long as 0 < p < 1, hence the same universality class as the
LMG model discussed in the previous section. Furthermore, we show that the critical point is consistent with the
mean-field (or, the LMG model’s) prediction, i.e., Bc = 1, in the thermodynamic limit.

We begin by applying the Holstein-Primakoff transformation to eq. (1) at the level of individual spins

σ−
i = (σ+

i )
† =

√
1− a†iaiai ≈ ai, σzi = 1− 2a†iai , (44)

where we have neglected the non-linear terms. This approximation is valid as long as we remain in the disordered
phase where the total spin is fully polarized along the z-direction, ⟨Sz⟩ = N/2. Excitations of the bosonic degrees of
freedom amount to fluctuations beyond this state. Under this approximation, the bosonic form of the Hamiltonian is
given by

H = − 1

2J
∑

ij

Jij(ai + a†i )(aj + a†j) + 2B
∑

i

a†iai , (45)

where we have neglected an unimportant constant, and have only included the quadratic terms in the Hamiltonian.
This Hamiltonian, being quadratic in the bosonic operators, can be diagonalized via a Bogoliubov transformation.
The form of this transformation depends on the form of Jij . We first consider power-law interactions with periodic
boundary conditions where simple analytical expressions can be obtained, and then extend our results to open bound-
ary conditions. In the next section, we apply the same analysis to the experimental interaction matrix and contrast
the results against those with a purely power-law interaction.

A. Power-Law Jij with Periodic Boundary Conditions

For illustrative purposes, we first consider the case where Jij is described by a power-law subject to periodic
boundary conditions:

Jij =
J

rpij
, with rij = min(|i− j|, N − |i− j|) , (46)

and Jij = 0 when i = j. We can bring the Hamiltonian into a convenient form by going to the Fourier basis,

aj =
1√
N

∑

k

eijkak , (47)

where k = 2πn/N , n ∈ {0, . . . , N − 1}. The Hamiltonian now becomes diagonal in k,

H =
∑

k

(
a†k
a−k

)T (− J̃k
2J +B − J̃k

2J
− J̃k

2J − J̃k
2J +B

)(
ak
a†−k

)
, (48)

but remains to be diagonalized in terms of the bosonic operators. Here, we have defined

J̃k =

(N−1)/2∑

r=−(N−1)/2

Jre
−irk = 2J

(N−1)/2∑

r=1

1

rp
cos(rk) , (49)

and assumed that N is odd for simplicity. Next, we employ the Bogoliubov transformation,

ak = cosh(θk)bk + sinh(θk)b
†
−k , (50)

where θk = θ−k, and the coefficients have been chosen to ensure that the new operators bk satisfy the bosonic

commutation relation [bk, b
†
k′ ] = δkk′ . To determine θk, we demand that this transformation diagonalizes eq. (48) as

H =
∑
k ωkb

†
kbk, which leads to the relation
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tanh(2θk) =
J̃k/2J

B − J̃k/2J
, (51)

determining θk, as well as the mode frequencies

ωk =

√
B(B − J̃k/J ) . (52)

With J̃0/J = (N − 1)/N , we have ω0 =
√
B(B − 1) in the thermodynamic N → ∞ limit. Therefore, the collective

mode corresponding to k = 0 becomes gapless (or, softens) at the phase transition, and should be identified as the
soft mode of the phase transition. For B < 1, the dispersion becomes complex valued and the Holstein-Primakoff
transformation is no longer valid. Most importantly, we find that all the other modes beside the k = 0 mode remain
gapped for long-range interactions with p < 1. This is because J̃k/J < 1 for any k > 0, therefore ωk > 0 at or
away from the phase transition within the normal phase, B ≥ 1. Indeed, one can show that the gap between the
k = 0 mode and the next mode corresponding to k = 2π/N remains finite for p < 1 even in the thermodynamic limit
N → ∞ [6]:

lim
N→∞

ωk=2π/N − ωk=0 > 0, (53)

at or beyond the critical point. This implies that the critical behaviour of long-range interactions with p < 1 is in the
same universality class of the LMG model.

B. Power-Law Jij with Open Boundary Conditions

It is generally expected that the bulk properties of a large system would be insensitive to boundary conditions at
least for short-range interactions. The role of boundaries are, however, more pronounced in the presence of long-
range interactions. Specifically, for truly long-range models with p < 1, the boundary conditions can even change
the qualitative behaviour [7]. In this section, we show that open boundary conditions do not alter our conclusions
for a long-range interacting chain with periodic boundary conditions. To perform a spin-wave analysis for Jij (again
taking Jii = 0) without translation invariance, we cannot use the Fourier basis and instead carry out the Bogoliubov
transformation directly in real space. We rewrite the Hamiltonian in the more convenient form

H =
∑

i,j

(
ai
a†i

)†(
Aij Cij
Cij Aij

)(
aj
a†j

)
, (54)

where Aij = −Jij/2J +Bδij , Cij = −Jij/2J . Using the fact that the matrices A and C commute (the bold notation
denotes matrix or vector objects), we can directly determine the Bogoliubov transformation which brings the above

Hamiltonian into a diagonal form H =
∑
k Λkb

†
kbk [8]. Specifically, the mode energies Λk are given by the square root

of the eigenvalues of the matrix

M = (A+C)(A−C) = A2 −C2 . (55)

The eigenvalues can be determined numerically for an arbitrary interaction matrix Jij .
In fig. S3, we consider Jij matrix describing a power-law interacting chain with open boundary conditions and plot

the mode frequencies Λ2
0 and Λ2

1 for N = 50 and p = 0.9; the value of p is chosen the mirror the experimental model
although the latter features an exponential decay at large distances (see the next section). Λ0 corresponds to the
soft mode which, by definition, becomes gapless at the phase transition, B ≃ 1. (We recover Bc = 1 exactly in the
thermodynamic limit.) In addition, we see that Λ1 remains gapped even at the critical point, and therefore does not
contribute the critical behaviour. Again, Λ2

0 becomes negative for B < 1, and our bosonic mapping is no longer valid.
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FIG. S3: The two lowest energy eigenvalues Λ0 and Λ1 corresponding to a power-law interaction with open boundary
conditions, p = .9 for a system size of N = 50. While the lowest-frequency mode softens (i.e., Λ0 → 0) at the critical
point, all the other modes remain gapped.

IV. Long-range Interacting Spin Chain with Experimental Jij

In practice, the experimental values of the long-range coupling are not completely described by a power-law decay,
and at large distances decay exponentially; see section VB. In spite of this, we show that, based on a spin-wave
analysis, a phase transition still occurs close to the predicted critical point and that a single soft mode is responsible
for the critical behaviour. To this end, we first note that the experimental Hamiltonian is given by eq. (1) without
the Kac factor. In plotting various quantities however, we divide by the corresponding Kac factor to compare and
contrast different cases on equal footing.
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FIG. S4: The two lowest energy eigenvalues Λ0 and Λ1 versus the (Kac-normalized) transverse field B/J , corre-
sponding to the experimental Jij for different system sizes; J is the Kac factor. The lowest-frequency mode softens,
Λ0 → 0, approximately at the mean-field predicted critical point Bc/J = 1. While the next eigenvalue Λ1 becomes
smaller for larger and larger system sizes, in contrast with a purely power-law Jij , it remains finite even at the critical
point (specifically, Λ1/J ≈ 0.5 for N = 50 at B = Bc).

In fig. S4, we plot the first two lowest energy eigenvalues as a function of B for different system sizes each with
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the corresponding experimental values of Jij ; we have divided B by the Kac factor J on the x-axis and re-scaled the
eigenvalues accordingly. The points where the lowest-frequency mode softens (i.e., Λ0 → 0) agree very well with the
mean-field prediction Bc/J ∼ 1. However, the gap between Λ1 and Λ0 (in units of the Kac factor) exhibits a strong
dependence on system size, in contrast to the power-law case. This suggests a departure from the collective nature
of the power-law interactions with p < 1 near the critical point. As Λ1 becomes smaller, the corresponding mode
becomes populated as well and contributes to the correlations. At the same time, we note that the latter mode still
remains gapped even for N = 50 where Λ1/J ∼ 0.5 at the critical point B/J ≈ 1 while Λ0 = 0. Therefore, the soft
mode corresponding to Λ0 should govern the critical behaviour despite the model’s departure from infinite- or truly
long-range models considered before.

For a quantitative estimate of the contribution due to the first gapped mode (corresponding to Λ1), let us first
consider a toy model where a harmonic oscillator in its ground state undergoes a sudden frequency quench Ω0 → Ω.
This quench excited the harmonic oscillator and creates a population of n+1/2 = 1

4 (Ω/Ω0+Ω0/Ω). Now considering
the first gapped mode, we can substitute Ω0 = 2B and Ω = Λ1, which gives

n1 ∼ 1

2Λ1/J
∼ 1 , (56)

where the numerical estimate is computed by setting B = Bc = J and Λ1/J ∼ 0.5 consistent with the data for N = 50
in fig. S4. This should be contrasted against the soft mode whose population scales with system size, according to
our scaling analysis, as n0 ∼

√
N at the critical point. For N = 50, for example, this means that the soft mode is

populated by n0 ≲ 10 in contrast with n1 ∼ 1. While the higher excited modes may be populated with n ∼ 1, the
soft mode still governs the critical behaviour at the phase transition.

V. Experiment vs Theory

In this section, we contrast various theoretical predictions against the experimental results.

A. Finite-Size Behavior of the Order Parameter

Mean-field analysis, together with finite-size corrections, yields eq. (28) up to an overall coefficient. Partial data
and the comparison against the experiment is shown in Fig. 2(b) of the main text. In fig. S5, we provide additional
information for larger system sizes and report the best fit for the critical point Bc.

0.0 0.5 1.0 1.5 2.0 2.5
B/J

0.000

0.025

0.050

0.075

0.100

0.125

m
ax t

{〈 S2 x
(t

)〉 /N
2
}

N= 10, Bc/J= 0.83(19)

N= 15, Bc/J= 0.883(57)

N= 20, Bc/J= 1.011(94)

N= 30, Bc/J= 0.859(55)

N= 40, Bc/J= 0.82(13)

N= 50, Bc/J= 0.89(25)

FIG. S5: Experimental data for the order parameter against the finite-size corrected mean-field prediction in eq. (28);
J is the Kac normalization. The experimental data are well described by the theoretical finite-size correction.
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We find that the experimental data are in good agreement with the mean-field prediction Bc/J = 1.

B. Long-Range Character of Jij Matrix

In fig. S6, we present the numerically calculated average interaction J(r) = 1
N−r

∑
i Ji,i+r as a function of distance

r for N = 10, and 50. We first fit the numerical values to a pure power-law J(r) ∼ J(1)/rp (dashed line in Fig. S6)
and find the exponent p to be around 0.9 for both system sizes.

1 5 10 50

10-3

10-2

10-1

100

N=
Numerical

10 50

FIG. S6: Interaction profile J(r) vs r. The numerical values of J(r) are shown for system sizes N = 10, 50 (see
the squares). A power-law fit, J(r)/J(1) ∼ r−p, gives p = 0.89 for both system sizes (see the dashed lines), and
deviates from J(r) at large distances. A better fit is provided by the product of a power-law with an exponential
decay, J(r)/J(1) ∼ r−pe−k(r−1), and gives p = 0.306, k = 0.231 for N = 10, and p = 0.306, k = 0.135 for N = 50
(see the solid lines). The latter fit captures the trend of J(r) at larger distances as well.

However, we note that the power-law fit deviates quite significantly from the calculated values, specifically at large
distances and for larger system sizes. We further fit J(r) against the product of a power-law and an exponentially

decaying function of the form J(r) = J(1)
rp e−k(r−1) [9]; see the solid lines in Fig. S6. We find the exponents p =

0.306, k = 0.231 for N = 10 and p = 0.306, k = 0.135 for N = 50 and note that the fit represents the numerical values
closely. The similarity of the power-law exponents for two system sizes indicates that the experimental interaction
matrices are self-similar at short distances. In section VC, we show that the spatial correlations after a single quench
shows a slower decay compared to the spin-spin interactions. This behaviour is consistent with the critical correlations
building up in the system.

C. Correlation Matrix

In this section, we provide the correlation matrix
〈
σxi σ

x
j

〉
after a single quench. Specifically, we consider the

average correlations between sites at a fixed distance r and at the same time as the peak of
〈
S2
x

〉
, defined as

C(r) = 1
N−r

∑
j

〈
σxj σ

x
j+r

〉
. In fig. S7, we show the correlations in the experiment and contrast them against the

exact simulation of the experimental model when available. Figure S7(a) shows that the correlation function is in rea-
sonable agreement with the exact simulation. Sources of the remaining discrepancy are expected to include imperfect
experimental detection and decoherence effects.

Figure S7(b) shows the correlation function for a system of size N = 50. Again, we find a much slower decay of the
correlation function compared to the interaction profile J(r), indicating criticality and long-range correlations in the
system. On the other hand, the decay of the correlation function is relatively pronounced, a feature that should be
contrasted against the LMG model (see section II) which shows no decay due to infinite-range interactions, and the
purely power-law models (see section III) which are expected to show a relatively slow decay of the correlations with
distance. This observation once again underscores the departure of the experiment from infinite- or truly long-range
models with p < 1. In light of this, it is quite remarkable that the critical behaviour observed in the experiment is
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almost identical to the latter models (cf. section IV).
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Simulation

J(r)/J(1)

1 11 21 31 41
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FIG. S7: Correlations upon a sudden quench to the critical point for (a) N = 15 and (b) N = 50; these correlations are
measured/computed at the same time as the peak of

〈
S2
x

〉
. (a) Correlations decay slowly compared to J(r) indicating

the build-up of critical fluctuations. (b) The data for N = 50 shows consistent results where correlations decay
rather slowly compared to the interaction J(r), indicating critical correlations. On the other hand, correlations decay
significantly with r in contrast with the infinite- or truly long-range chain chains, reflecting the distinct character of
the experimental system (see section VB).

D. Double Quench Switch Times

Our experimental and simulation data for the critical-to-critical quench does not collapse perfectly, even with
exponents found by optimizing our objective function. We have found this to be primarily due to deviations in the
time at which the second quench was performed in the experimental system, which were then used in the simulations.

The second quench should be performed at the same characteristic time for all system sizes; that is, the same
critically scaled time of the first quench, J t/N ζ1 where ζ1 ≈ 1/4. However, in order to avoid using the expected
results in the data analysis, in Fig. 4 of the main text we restricted ourselves to choosing the switch time for each
dataset (whether experiment or simulation) as the time at which the fluctuations in the experimental dataset were
observed to reach a maximum, which has an inherent uncertainty due to the limited data sampling and experimental
error sources. As a result, the switch times deviated around this value between system sizes.

0 0.3t (ms)
0

2.8

〈 S2 x〉 /N

(a)

0 3.04Jt/N ζS
0

0.34

〈 S2 x〉 /N
1

+
α
S αS = 0.686(35)

ζS = 0.054(42)

(b)

10 15 20 2510 15 20 25

FIG. S8: Simulation of the experimental critical-to-critical quench using corrected switch times. These are to be
compared to Fig. 4b,d of the main text, which instead use the best experimental estimates for these switch times.
The critical exponents are calculated using the dynamics up to the first minimum after the first maximum, just as in
the main text. The collapse up to and including the first peak is nearly perfect with the critical exponents that are
in much better agreement with the theory prediction.
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In fig. S8, we show results from simulating the experimental system with identical characteristic times. This figure
demonstrates that, with the corrected quench times, the data collapse nearly exactly.

VI. Optimal Collapse Algorithm

To determine the scaled data shown in Figs 3c,d and 4c,d of the main text, we construct an objective function to
measure the quality of the collapse of several curves each with some uncertainty. Previous work has used an objective
function similar to the weighted-squared-difference, where all curves are linearly interpolated together to produce an
estimate for the so-called “master-curve,” from which the error is calculated as the distance to each curve [10]. Here
we propose an alternative objective function that is more general and less sensitive to noise in the input data.

We define a curve in this context as a set of data points with associated uncertainties. Each point is denoted by
p ≡ [x, y,∆x,∆y] ≡ [px,py,∆px,∆py], and a curve with k data points by C ≡ {p} ∈ R4×k. We first consider the
case of two curves, C and C ′ with k and k′ data points with k and k′ not necessarily equal. We begin by equally
normalizing the two curves in both x and y such that they are wholly contained within the region [0, 1]× [0, 1]. Denote
these normalized curves by C and C ′ given by

Ymax = max
p∈C∪C′

py,

Ymin = min
p∈C∪C′

py,

Xmax = max
p∈C∪C′

px,

Xmin = min
p∈C∪C′

px,

C =

{
p−Xmin

Xmax −Xmin
,

py − Ymin

Ymax − Ymin
,

∆px
Xmax −Xmin

,
∆py

Ymax − Ymin

∣∣∣∣p ∈ C

}
,

C ′ =

{
p′ −Xmin

Xmax −Xmin
,
p′
y − Ymin

Ymax − Ymin
,

∆p′
x

Xmax −Xmin
,

∆p′
y

Ymax − Ymin

∣∣∣∣p′ ∈ C ′
}
.

(57)

We define the loss function for a single point in C relative to C ′, L
(
p ∈ C,C ′), using the square of the distance from

the point to the nearest line segment in C ′, weighted by the square of the uncertainty in that distance. If the point
in C falls outside of the bounds of C ′ then the loss is 0.

L
(
p ∈ C,C ′) =

{
0 if px < min

p′∈C′
p′
x or px > max

p′∈C′
p′
x,

D2
(
p, C ′) /∆2

(
p, C ′) otherwise,

(58)

where D2
(
p, C ′) is the square of the distance from p to the nearest line segment in C ′,

D2
(
p, C ′) ≡

[
(q′

x − r′x) (r′y − py)− (r′x − px)
(
q′
y − r′y

)]2

(q′
x − r′x)

2
+
(
q′
y − r′y

)2 ,

q′ ≡
argmin

b′∈C′
b′

x≥px

|b′
x − px| ,

r′ ≡
argmin

b′∈C′
b′

x≤px

|b′
x − px| ,

(59)

and ∆2
(
p, C ′) is the square of the uncertainty in that distance, found by propagating the uncertainties in the relevant

parameters. Note that points which fall outside the domain of C ′ are given a loss of 0, since they have no corresponding
line segment in C ′. A diagram of this calculation is shown in fig. S9.

From this formulation it is clear that the loss of a point in p ∈ C that falls exactly on some part of C ′ is 0, and
that if the uncertainty of C ′ in the region of p is large then the loss will be small.

We can then define the cost function between the two curves C and C ′, s (C,C ′) as the sum of the losses of each
point in C relative to C ′, and vice versa, normalized by the number of points which were not excluded in eq. (58),

s (C,C ′) ≡ 1

2




∑
p∈C

L
(
p, C ′)

∣∣C
∣∣
C′

+

∑
p′∈C′

L
(
p′, C

)

∣∣C ′
∣∣
C


 , (60)
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FIG. S9: Illustration of the calculations involved in the loss function, eq. (58).

where

|A|B ≡
∑

a∈A
min
b∈B

bx≤ax≤max
b∈B

bx

(61)

denotes the number of elements in A which fall within the domain of B.
Finally, the objective function for determining the collapse of a set of N curves C1, C2, . . . , CN is

S(C1, C2, . . . , CN ) ≡ 1

N2 −N

N∑

i<j

s (Ci, Cj) . (62)

The normalization of N2 −N arises from the number of pairs of non-identical curves in the set.
We perform convex optimization on this objective function with our data using Powell’s method [11] in order to

determine the critical exponents which result in an optimal collapse. Figure S10 shows the output space of our
objective function, demonstrating that it is well-behaved and exhibits an identifiable minimum.

(a) (b)

FIG. S10: Output space of the objective function, eq. (62), around the calculated minimum for the (a) simulated
and (b) experimental type-I quenches.

A. Uncertainty Estimates via the Hessian

Equation (62) incorporates the uncertainty in the data directly. To obtain an uncertainty in the predicted minimum
location of the objective function, we use the Hessian. The uncertainty of any quantity X as a function of the input
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parameters {xi} of an objective function f can be estimated by [12]

∆ (X)
2
=
(
f̃ − f̂

)∑

i,j

H−1
ij

∂X

∂xi

∂X

∂xj
. (63)

Where H−1 is the inverse of the Hessian matrix of f evaluated at the location of the predicted minimum, f̃ is the

value of f evaluated at the same location, and f̂ is the true global minimum value of the objective function.
In our application {xi} = {α, ζ}, and X = α or ζ as well. Moreover, we have designed our objective function such

that the global minimum occurs when the curves perfectly collapse and so f̂ = 0. Therefore the uncertainty in the
predicted exponents α̃ and ζ̃ is simply given by

∆α̃ =

√
S
(
α̃, ζ̃

)
H−1
αα ,

∆ζ̃ =

√
S
(
α̃, ζ̃

)
H−1
ζζ .

(64)
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