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Random circuits have emerged as an invaluable tool in the quantum computing toolkit.

On the one hand, the task of sampling outputs from a random circuit has established itself

as a promising approach to experimentally demonstrate the superiority of quantum computers

using near-term, noisy platforms. On the other hand, random circuits have also been used to

deduce far-reaching conclusions about the theoretical foundations of quantum information and

communication.

One intriguing aspect of random circuits is exemplified by the entanglement phase transition

that occurs in monitored circuits, where unitary gates compete with projective measurements to

determine the entanglement structure of the resulting quantum state. When the measurements are

sparse, the circuit is unaffected and entanglement grows ballistically; when the measurements

are too frequent, the unitary dynamics is arrested or frozen. The two phases are separated by

a sharp-phase transition. In this work, we discuss an experiment probing such phases using a

trapped-ion quantum computer.



While entanglement is an important resource in quantum communication, it does not fully

capture the non-classicality necessary to achieve universal quantum computation. A family of

measures, termed “magic”, is used to quantify the extent to which a quantum state can enable

universal quantum computation. In this dissertation, we also discuss a newly uncovered phase

transition in magic using quantum circuits that implement a random stabilizer code. This phase

transition is intimately related to the error correction threshold. In this work, we present numerical

and analytic characterizations of the magic transition.

Finally, we use a statistical mechanical mapping from random circuits acting on qubits

to Ising models to suggest thresholds in error mitigation whenever the underlying noise of a

quantum device is imperfectly characterized. We demonstrate the existence of an error-mitigation

threshold in dimensions D ≥ 2.
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Chapter 1: Introduction to Random Quantum Circuits

The technique of randomization has proven to be valuable in gaining insights into physics

and information theory by abstracting away microscopic details. Notably, random matrix theory

originated from Wigner’s exploration of spectral gaps in heavy nuclei [1,2]. Similarly, foundational

work on communication channels relied on observations about random error correcting codes [3].

Random quantum circuits follow in the footsteps of these approaches and have successfully

contributed to our understanding of fundamental concepts in quantum information theory.

In quantum information theory, a “circuit” refers to the decomposition of a unitary operator,

typically a component of a “quantum algorithm,” into elementary gates that act on qubits [4]. This

is analogous to an electronic circuit implementing a logical operation using elementary gates on

charge-carrying wires.

Although the idea of applying a random series of operations in an electronic circuit or

executing a random series of instructions on a classical computer may seem unusual, random

quantum circuits have provided valuable insights into properties of quantum dynamics, such

as information scrambling and entanglement spreading [5]. Moreover, while we would like to

ultimately use a quantum computer to solve problems like factorization or to simulate quantum

matter, the current limitations of hardware size and noise prevent those uses [6]. Meanwhile,

random circuits have emerged as a promising tool to benchmark these near-term machines and
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evaluate their capabilities.

On one front, random circuits are employed to benchmark quantum machines through

randomized benchmarking [7]. The quality of a quantum operation is quantified by the “fidelity”

between the target unitary it intends to apply and unitary it actually applies. Randomized benchmarking

is used to estimate the fidelity of a gate for an average unitary, sampled from the Haar measure.

Such a single measure of quality facilitates comparisons across different devices.

Likewise, random circuits have also been used to demonstrate the computational power

of quantum computers. A random circuit induces a probability distribution on measurement

outcomes of qubits, and it is believed that this distribution is difficult to sample from for a classical

computer [8, 9]. Recent experiments have developed devices with a number of qubits large

enough that they cannot be easily simulated on classical supercomputers [10, 11]. Proving that a

quantum computer has sampled from a quantum distribution inaccessible to classical computers

is considered a milestone in achieving quantum advantage [12]. The computational hardness of

these tasks in noisy devices is currently an active area of research.

Beyond the utility of quantum computers as computational devices, they can also be regarded

as a novel type of matter, where interactions can be engineered using gates [5]. A quantum circuit

can be seen as implementing non-equilibrium dynamics, and the study of the resulting quantum

states has revealed intriguing physics. For example, a new phase transition has been discovered to

arise from the competition between entanglement-generating unitaries and entanglement-destroying

measurements in a quantum circuit [13]. Furthermore, these new insights have led to surprising

connections with well-established topics in statistical mechanics, such as percolation theory [14].

This dissertation aims to discuss specific instances of such phase transitions observed in

monitored random circuits and to elucidate how the analytical and numerical tools used to study
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random circuits can shed light on fundamental aspects of quantum information [15–17].

1.1 Preliminaries

A quantum circuit implements a unitary operation U on a quantum state |ψ⟩. In the context

of this discussion, we assume that the quantum state is composed of qubits, each with a local

Hilbert space dimension of two. The unitary U is typically decomposed into a sequence of single-

qubit and two-qubit gates: U = GTGT−1 . . . G1, where each gate Gt acts on either a single qubit

it or a pair of qubits (it, jt).

The specific set of gates supported by a given quantum computer, also known as the

“gateset”, depends on the physical architecture or qubit design. A typical gateset may include

single-qubit rotations of the form exp
(
iθσx/y/z/2

)
, where σx, σy, σz are Pauli matrices, together

with a two-qubit entangling gate, like the CNOT gate. Furthermore, the connectivity of the

quantum computer determines which qubits can be paired for a single interaction. For instance,

an ion-trap computer with n qubits may allow any it, jt ∈ n, while a superconducting chip might

only support interactions between neighboring qubits.

When investigating random circuits, we generate a random unitary U on n qubits by

sampling local two-qubit gates from the 4-dimensional unitary group U(4). A commonly used

model for random circuits, known as a brickwork circuit, is illustrated in Fig. 1.1A. In such

circuits, at each step, a layer of two-qubit gates is applied in parallel to a subset of all available

qubit pairings. Although we do not sample from U (2n) directly, the statistical properties of

random circuits with a depth of Ω(n) are indistinguishable from those of U(2n). Specifically,

random circuits with a brickwork architecture form unitary t-designs in depth O
(
nt5+o(1)

)
[18].
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Figure 1.1: A) The brickwork model of random circuits in (1+1)D. Two-qubit unitaries are
applied in layers on an initial state |ψ(0)⟩. B) The brickwork model with interspersed projective
measurements.

In monitored circuits, projective measurements are incorporated alongside unitary gates, as

depicted in Fig. 1.1B. Without loss of generality, we focus on single-site measurements in the Z

basis, which yield outcomes |0⟩ and |1⟩. Each unitary gate Gt maps the quantum state as ρ →

GtρG
†
t , while each single-qubit measurement stochastically transforms ρ to |0⟩ ⟨0| ρ |0⟩ ⟨0| / tr(ρ |0⟩ ⟨0|))

if the measurement outcome is |0⟩, or ρ → |1⟩ ⟨1| ρ |1⟩ ⟨1| / tr(ρ |1⟩ ⟨1|) if the outcome is |1⟩.

Consequently, when projective measurements are present in a circuit, the final state obtained

depends on the measurement outcomes.

One use of random circuits is to investigate the growth and distribution of entanglement

in quantum states during monitored dynamics. Given a density matrix ρ on n qubits, we can

consider a subsection A and its complement A. The von Neumann entropy of subsection A

is given by SA = − tr ρ log ρ. Similarly, the mutual information between A and A is defined

as IA,A = SA + SA − SAA. Another entropy measure often employed, which admits helpful

mappings to statistical mechanical models, is the Rényi entropy Rα = (1 − α)−1 log(tr ρα),

where α ∈ R≥0/{1} [14].

In random circuit sampling or randomized benchmarking, observables are selected to assess
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how effectively a quantum computer can implement a target unitary or generate a target state.

Randomized benchmarking is used to obtain quality measures for single-qubit and two-qubit

gates. These measures are obtained by calculating the fidelity of a state after applying a series

of gates. If the target state is a pure state |ψ⟩ and the quantum device produces a mixed state

ρ̃, the fidelity can be computed as F (ρ̃, |ψ⟩) = ⟨ψ|ρ̃|ψ⟩. This often requires reconstructing the

resulting density matrix through state tomography. However, in experiments such as random

circuit sampling [10], performing complete state tomography on a large number of qubits is

experimentally intractable. Therefore, a related measure called linear cross entropy (XEB) is

commonly used:

XEB(ρ, ρ̃) = 2n
∑
x

p(x)q(x)− 1, with p(x) = ⟨x|ρ|x⟩ , q(x) = ⟨x|ρ̃|x⟩ . (1.1)

Both fidelity and linear cross entropy are second-moment quantities, which means they can

be expressed as expectation values of two copies of the density matrix ρ:

tr(Oρ⊗2) = tr
(
O(U ⊗ U)(ρ(0)⊗ ρ0(U

† ⊗ U †)
)
, (1.2)

where O is a 4n × 4n operator acting on the doubled Hilbert space, and U is the unitary operator

that acts on ρ0 to generate ρ. This representation is useful for developing analytic and numerical

techniques. Often, we are interested in calculating circuit-averaged expectations of k copies of

the density matrix ρ. In such cases, we may use the Schur-Weyl duality [19]:

EU(ρ
2) = EU(U

⊗kρ⊗2
0 (U †)⊗k) =

∑
Γ∈Sk

akR(Γ), (1.3)
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where Sk is the permutation group on k elements, and R(Γ) is the (2n)k × (2n)k-dimensional

representation of the permutation group. These identities can also be expressed as Weingarten

integrals [20]. An immediate observation from (1.3) is that linear observables or single-copy

expectations of random circuits converge to the same value proportional to tr(1), as the single-

element permutation group only contains the identity element. For second-order observables,

each randomized gate contributes an I (identity element) or an S (SWAP element), and the

observable can be written as a partition function of a spin-1/2 Ising model [21]. These connections

to Ising and Potts models have been instrumental in proving various theorems regarding the

convergence of random circuits to unitary t-designs [18] or the rate at which the output of noisy

quantum computers approaches the uniform distribution [22]. An example of such a calculation,

where we compute the collision probability, Z =
∑

x∈X p
2
x, of a distribution X induced by a

noisy quantum circuit, is presented in Appendix A.

Analytic solutions are not always feasible for non-linear quantities such as von Neumann

entropy. Therefore, we often resort to numerical simulations [5,23,24]. However, exact simulation

of quantum dynamics is challenging. Storing and manipulating a generic quantum state over n

qubits requires memory resources that quickly become prohibitively expensive beyond around

thirty qubits. As a result, various numerical tools have been developed to approximate quantum

dynamics. Tensor network methods, for example, have seen widespread use and have become

indispensable in the numerical investigation of quantum systems. These methods take advantage

of the fact that many interesting quantum states are not highly entangled, allowing for a more

efficient representation in computer memory [25–27]. However, tensor network methods encounter

limitations when dealing with quantum states with a large amount of entanglement.

In certain cases, we can exploit the fact that not all quantum circuits are computationally
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hard to simulate. Clifford circuits are quantum circuits constructed using only Hadamard (H),

Phase (P), and CNOT gates, with the corresponding unitaries given by

H =
1√
2

1 1

1 −1

 , P =

1 0

0 i

 , and CNOT =



1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


. (1.4)

The action of Clifford circuits on stabilizer states can be simulated exactly and efficiently using

classical computers [28]. Such simulations have been useful in exploring properties of random

circuits [23]. Certain properties, such as linear cross entropy and fidelities, are statistically

equivalent for both the Haar ensemble and the Clifford ensemble.

1.2 Phase Transitions in Random Circuits

Phase transitions in random quantum circuits are best exemplified in models that incorporate

a random sequence of gates interspersed with measurements, known as monitored quantum

circuits (see Fig. 1.1B) [13, 23]. In this model, after each gate, a qubit is projectively measured

with probability p. Each realization of the monitored random circuit generates a quantum state

that depends on the outcomes of the randomly placed measurements, giving rise to different

quantum trajectories.

The idea behind measurement-induced phase transitions is that the quantum trajectories

separate into distinct phases as a function of the measurement rate p. This behavior is particularly

evident in extreme cases. In the limit p → 1, where qubits are measured after every gate, the
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Figure 1.2: Schematic of a measurement-induced entanglement phase transition [5]. As a
function of the measurement rate p, the von Neumann entropy of trajectories obtained with
random circuits with interspersed measurements changes from one that grows with subsystem
size |A| to one that grows with the size of the boundary |∂A|.

system remains in a product state without any entanglement. Conversely, in the limit p → 0, the

circuit is unaffected by measurements, and the entanglement of a subsystem A grows linearly in

time, eventually saturating to a value proportional to the volume (or size) of the subsystem |A|.

It has been shown that the two phases are separated by a sharp phase transition occurring at

a critical point pc [13]. For p < pc, the entanglement entropy in the subsystem increases with the

volume |A|; this phase is referred to as the “volume-law phase”. On the other hand, for p > pc,

the entanglement entropy grows with the size of the boundary of the subsystem |∂A|; this phase

is known as the “area-law phase”. At the critical point p = pc, the entanglement entropy exhibits

logarithmic growth, proportional to ln |A|. A schematic illustration of the two phases and their

entanglement properties in (1+1)D is presented in Fig. 1.2.

Such a phase transition in (d + 1)-dimensional monitored circuits has been observed for

d = 1, 2, and 3 in various models of random circuits [23, 24]. Numerical simulation of the

Clifford ensemble has allowed for the investigation of this transition in large system sizes, on the

order of thousands of qubits [23,29]. Moreover, in certain limits, this transition can be mapped to

well-known problems in statistical mechanics. For instance, in the limit where the local Hilbert

space dimension q → ∞ (with q = 2 for qubits), the calculation of Rényi entropies of quantum
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states subjected to monitored circuits in (1 + 1)D can be mapped to the percolation problem in

two dimensions [30]. Furthermore, evidence suggesting that these transitions in the Clifford and

Haar ensembles belong to distinct universality classes, different from the percolation transition,

indicates that this transition exhibits rich and diverse properties that can be further understood

through probes beyond entanglement entropy.

A complementary perspective on the transition between the area- and volume-law entangled

phases is provided by the concept of the dynamical purification transition [31, 32]. Consider a

maximally mixed initial state over n qubits, given by ρ(0) = 1/2n, subjected to random unitary

dynamics and measurements at a rate p. For any measurement rate p, the system purifies into a

pure state at a time exponential in n (for example, when an event occurs where all qubits are

measured, which has a wait time ∝ 1/pn). It has also been observed that, below a critical

threshold pc, the system purifies at a rate independent of the system size. The two phases,

one with system-size-independent purification time and another with purification time diverging

exponentially in n, are referred to as the “pure phase” and the “mixed phase,” respectively. These

phases correspond to the area-law and volume-law phases of the entanglement phase transition.

The dynamical purification transition can be interpreted through the lens of quantum error

correction [33]. The quantum entropy of a state can be seen as the amount of unknown information

in the system. In the “pure phase,” local projective measurements rapidly reduce the entropy of

the system. In the “mixed phase,” the system retains finite entropy for evolution times polynomial

in the system size. This indicates that random unitary circuits enable an error correction code

resilient to local noise.

This perspective of dynamical purification also provides a natural means to probe the

transition. We can consider a reference system that is maximally entangled with the initial
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state. As the combined system evolves, the original system either purifies, removing any residual

entropy between the original system and the reference, or it remains entangled with the reference.

By measuring the entropy of the reference, we can gather information about the original system.

Notably, it has been demonstrated that even a single qubit can serve as a reference to probe the

transition, eliminating the need for expensive state tomography of the entire system [34]. This

forms the basis of the experiment discussed in Chapter 2.

While entanglement is a valuable property of quantum states, it alone cannot enable universal

quantum computation [17,35]. One measure that quantifies the usefulness of a quantum state for

universal quantum computation is “magic” [36, 37]. A phase transition in magic, as a function

of resources that introduce non-classicality to a stabilizer quantum state (such as T gates [38]),

would imply phases where the degree of non-stabilizer nature is either suppressed or amplified.

However, unlike entanglement, which can be studied using Clifford circuits, numerical and

experimental investigations of magic remain challenging [39]. An experimental probe of a phase

transition in magic is the focus of Chapter 3.

Recently, the concept of phase transitions has also emerged in the context of random circuit

sampling. While fidelity is a natural measure for quantifying the performance of a quantum

computer, it can be challenging to measure in experiments [40]. Consequently, experiments have

employed a related measure called linear cross entropy (defined in (1.1)) as an alternative [10].

However, it has recently been discovered that linear cross entropy might not always serve as a

good proxy for fidelity in noisy systems [41]. For noisy quantum devices with a local noise

rate of ϵ, it has been demonstrated that the discrepancy between fidelity and linear cross entropy

manifests as a phase transition with respect to ϵn, where the correspondence abruptly breaks

down at a certain critical value [22].
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Finally, random circuits have also been utilized to explore methods for protecting quantum

information from noise, such as error correction or error mitigation. In error correction, syndrome

measurements and decoding techniques are used to suppress errors. While error correction in

a quantum computer requires the costly overhead associated with fault-tolerance, lightweight

protection against noise can be achieved through error mitigation [42]. In Chapter 4, we demonstrate

how the statistical mechanical mappings employed in random circuits can establish the existence

of a threshold for error mitigation.

1.3 Outline of the Thesis

The remainder of the thesis is structured as follows. In Chapter 2, we present an experimental

realization of an entanglement phase transition on a trapped-ion quantum computer. Chapter

3 discusses a novel phase transition in magic, a measure associated with universal quantum

computation, and its experimental observation. In Chapter 4, we present a discussion on error

mitigation thresholds obtained through numerical and analytical methods applied to random

circuits. Supporting material for all chapters is included in the appendices.
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Chapter 2: Measurement-Induced Purification Phase Transition

2.1 Introduction

Many-body open quantum systems balance internal dynamics against decoherence and

measurements induced by interactions with an environment [43,44]. Quantum circuits composed

of random unitary gates with interspersed projective measurements represent a minimal model

to study the balance between unitary dynamics and measurement processes [45–47]. As the

measurement rate is varied, a purification phase transition is predicted to emerge at a critical point

akin to a fault-tolerant threshold [48]. Here, we explore this purification transition with random

quantum circuits implemented on a trapped-ion quantum computer. We probe the pure phase,

where the system is rapidly projected to a pure state conditioned on the measurement outcomes,

and the mixed or coding phase, where the initial state becomes partially encoded into a quantum

error correcting codespace that keeps memory of initial conditions at long times [48,49]. We find

experimental evidence of the two phases and show numerically that, with modest system scaling,

critical properties of the transition emerge.

An isolated many-body quantum system undergoes unitary evolution until it is probed by

its environment via quantum measurement [43, 44]. The irreversible process of measurement

converts quantum coherence in the system into classical entropy in the measurement apparatus

due to the intrinsic randomness of quantum measurements. When the rate of partial measurements
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is high, this process “collapses” the many-body system into a pure quantum state consisting of

locally correlated regions determined by the recent unitary dynamics and measurement outcomes.

At low measurement rates, however, there is a mixed (coding) phase where the associated projections

can leave invariant a codespace in the system that retains memory of initial conditions for exponentially

long times [48,49]. Such measurement-induced phase transitions have recently been theoretically

explored in models based on random quantum circuits [45–49], but are believed to be a ubiquitous

phenomenon in monitored non-equilibrium quantum systems. The theory of these transitions,

although still nascent, has seemingly deep connections to percolation and conformal field theory

[45, 47, 50, 51], as well as threshold theorems in fault-tolerant quantum computing [52, 53].

Observing these effects in experiment is a formidable challenge because measuring the observables

that signify the transition requires exquisite control and isolation of the system, accurate monitoring

by an external measurement apparatus, and the use of sophisticated feedback or post-processing

with the measurement data.

Here, we report on a direct experimental observation of the two phases associated with

a measurement-induced purification transition in a trapped ion quantum computer. We use a

single reference qubit initially entangled with the system to directly test for the existence of the

codespace in the mixed phase and its absence in the pure phase [34]. This approach has the

practical benefit that it relaxes experimental resource requirements compared to observables that

require measuring entanglement entropies of large numbers of qubits, such as measuring Renyi

entropy [54]. We avoid the use of post-selection on measurement outcomes through the addition

of feedback operations that reverse any measurement-induced unitary rotations on the reference

qubit (i.e., so-called “quantum steering” effects [55]). As a result, absent noise, our experimental

approach is directly scalable to large systems.
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From early measurements of the quantum-to-classical nature of measurement in ion trap

systems [56] and cavity quantum electrodynamics [57], to the recent observation of wavefunction

collapse in superconducting qubits [58], the phenomenon of measurement itself has been a

subject of great interest experimentally. Many-body coherent operations combined with controlled

dissipation or measurements have been explored experimentally in, for example, the study of

dissipative state preparation [59], as well as in recent theoretical proposals for many-body quantum

non-demolition measurements [60]. We also note related experimental results showing symmetry

resolved dynamical purification of spin chains in a long-rangeXX model with local depolarizing

noise [54,61]. By contrast, in our study, we employ a “digital” model of computing with two-site

unitaries and projective measurements with a temporal randomness to the dynamics.

2.2 Experimental Platform

Our quantum computer uses up to 13 171Yb+ qubits in a single chain of 15 trapped ions

in a microfabricated chip trap [62]. We achieve a universal gate set with native single-qubit

gate fidelities of 99.96% and two-qubit gate fidelities on any pair of 98.5-99.3%, as detailed

elsewhere [63].

2.3 Random Circuit Model

Since ion-traps allow for all-to-all connectivity, we use that. We now describe the specific

dynamics of the random circuits in this work with a system of L qubits subject to unitary

evolution with all-to-all connectivity and measurements. For such all-to-all coupled models,

spatial entanglement of the wavefunction is not a reliable diagnosis of the measurement-induced
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phase transition; instead we characterize the problem in terms of a purification transition [48].

In this picture, the system transitions at low measurement rates to a phase with long-range

correlations in time, similar to the behavior found in fault-tolerant error correction thresholds.

This dynamical purification phase transition can be efficiently probed by studying how the system

preserves entanglement over time with a single reference qubit [34].

An example circuit is shown in Fig. 2.1A. After preparing all qubits in |0⟩, the reference is

entangled to a randomly selected system qubit to form a Bell pair. The entangling operation is

followed by a scrambling unitary, which consists of random single-qubit Clifford gates and two-

qubit XX(π/4) gates on random qubit-pairs. The scrambling stage, spreads the entanglement to

the entire system and reduces finite-size effects. An example of the scrambling circuit is shown

in Fig. 2.2 After scrambling the system qubits, we evolve the system in time with random unitary

dynamics and measurements with a total number Ng = ⌊L
√
L⌋ of XX(π/4) gates applied to

randomly chosen qubit pairs.

After each entangling-gate we add a measurement with probability p (See Appendix B.1 for

details on how measurements are added). While mid-circuit readout of ion qubits is possible [64],

we use ancilla qubits to defer readout. When a circuit calls for measurement, we entangle that

qubit with an ancilla in a chosen measurement basis. Because the unitaries are XX gates, the

measurement choice of the z or x basis has a strong effect on the subsequent dynamics. This

feature of our model allows us to tune the probability, px, that a measurement is in the x basis

to go across the purification transition without directly changing p. At the end of the circuit,

all the qubits are read out in the z-basis via fluorescence imaging. For each circuit, we rotate

the reference qubit to measure in x, y and z-basis and post-select the observations to obtain

Pauli expectations conditioned on measurement outcomes. The set of three Pauli expectations
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Figure 2.1: Model and Purification Dynamics (A) Schematic of a circuit with L = 6 system
qubits, Ng = 6 two-qubit gates, 2 z-measurements and 1 x-measurement. The first XX gate
entangles the reference with a system qubit. Next, we scramble the system, US . The time
evolution of the unitary-measurement dynamics starts at the red dashed line. Probabilistic
measurement is deferred until the end of the circuit using CNOT gates between system qubits
and measurement ancillae. The x-basis measurement is shown after the third XX gate. Finally, a
feedback operation UF is applied (see Appendix B.4) (B) The entropy of reference qubit for two
L = 6 circuits where the reference qubit stays mixed (upper panel) and purifies (lower panel).
The x-axis shows the evolution of time in units of applied two-qubit gates (Ng) after scrambling
is complete (indicated again by the red dashed line). In this example, the entropy is measured by
performing single-qubit tomography of the reference by making measurements in the x, y and z-
basis. Error bars (1σ) are smaller than the markers, with 4000 and 10000 shots for experiment and
simulation, respectively. Missing experiment data are due to ion loss events, which are assumed
to be uncorrelated with the data being taken.
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Figure 2.2: Example of a scrambling unitary on a system with L = 6 qubits. Each single-qubit
gate C refers to a random single-qubit Clifford gate. The XX gates have an implied rotation
angle of π/4

are then used to construct the density matrix of the reference qubit and measure its entropy

SQ. These circuits are examples of stabilizer circuits, whose noiseless dynamics are classically

simulable [65, 66].

As an illustrative example, in Fig. 2.1B, we consider the experimentally measured evolution

of SQ in two circuits sampled from ensembles with p = 0.15. We choose one circuit sampled

from px = 0 that stays mixed (encoded) and one sampled from px = 1 that purifies over time.

Units of time are measured in number of applied two-qubit gates, Ng, for consistency between

theory and experiment. For noiseless stabilizer circuits, the entropy is always either 0 or 1 bit

[47, 66], and, as a result, the circuits that purify must do so at precisely one time step. However,

this property no longer holds exactly in the presence of noise. Experimentally, we find that the

mixed circuit maintains a high value of SQ. In the second circuit, the reference qubit purifies at

the expected time in the circuit, albeit to a constant offset due to experimental noise. It is apparent

from these examples that we observe a clear separation between pure and mixed results for SQ.

For each circuit, we ran 4000 shots of each measurement basis (x, y, z) to compute SQ at each

time step.

In order to characterize the many-body dynamics, we generate large ensembles of circuits

and average their entropy for given values of p, px, and L. In Fig. 2.3A, we show the theoretical
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Figure 2.3: Phase Diagram and Scaling Limit of Average Purification Dynamics (A) The
phase diagram of the model, parameterized by p and px. The green shaded region indicates
the numerical uncertainty in the critical region between the top phase where the reference qubit
rapidly purifies, and the bottom phase where it stays mixed. In our experiment, we fix p = 0.15,
and tune px to probe the phase transition along the dashed line. In the limit p → 0 (left blue
shaded region) with time also scaled as 1/p, our model becomes a measurement-only model [67].
A purification transition (circle) arises in this limit when tuning px along the line p = 0+. (B)
The simulated entropy of the reference qubit averaged over many random circuits ⟨SQ⟩ in the
two phases. Here, we use the same fixed value of p = 0.15 from A, with px = 0 (mixed) and
px = 1 (pure) plotted against time (measured in units of two-qubit gates) scaled by L1.5. The
dashed vertical line indicates the experimental probe time of Ng = L1.5, and the intersection of
this line with different system sizes shows increasing (decreasing) entropy in the mixed (pure)
phase that is the signature of the two phases.
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phase diagram for the model vs p and px. For low p and px, the system is driven to a mixed

(coding) phase where the non-unitary dynamics projects quantum information about the initial

state into a random quantum error correcting code. As either p or px is increased, the system

enters a pure phase, where an initial mixed state collapses to a fixed quantum state and the

encoding operation fails. The behavior at p = 0 can be smoothly connected to the finite p

behavior by scaling Ng by 1/p and taking the limit p → 0. In this limit, there is residual

purification dynamics that leads to a phase transition along the p = 0+ axis. This special critical

point arises because of the restricted nature of our gates that do not effectively scramble the

system in the absence of measurements [67]. The critical point at each value of p was obtained

from finite-size scaling analysis using simulations of L = 16 to L = 64 qubits (Appendix B.5).

Our scaling analysis is based on extracting the exponential decay rate of ⟨SQ(t)⟩ at late times.

In Fig. 2.3B, we show the simulated dynamics of ⟨SQ(t)⟩ at two representative points in

the phase diagram with p = 0.15. In the mixed phase, probed at px = 0, ⟨SQ⟩ stays near one

for exponentially long times in L. Deep in the pure phase, the reference qubit rapidly purifies,

with an average entropy that exponentially approaches zero. In the experiment, we probe small

systems L ≤ 8 after a number L1.5 of gate operations. For larger numbers of qubits L, this

scaling limit is sufficient to probe the phase because the effective depth of the circuit scales as

2
√
L, much greater than any fixed correlation time in the system. At the critical point, as we show

in the Appendix B.5 Fig. B.5, the entropy decay time scales as L1/5 to conform to the universal

critical dynamics of the system.

This feedback approach avoids postselection and remains tractable for stabilizer circuits

on any system size because we can efficiently find the feedback circuit [65]. Finding efficient

extensions of this feedback approach for arbitrary gate sets and circuit architectures is an unsolved
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problem [34]. Many of the naive approaches to investigating the phase transition for random

circuit ensembles with a universal gate set requires some form of post-selection on the measurement

outcomes. It is therefore an important goal to develop efficient feedback protocols (or other

methods to circumvent post-selection) for generic random circuit models. Alternatively, it may

be possible in some cases to give complexity theoretic evidence that an efficient feedback protocol

does not exist.

To probe the phases experimentally, we generate an ensemble of random circuits for the

chosen values of p, px, and L. To constrain the number of measurements to a low value, we

study a fixed line of parameters at p = 0.15 (Fig. 2.3A), and the evolution is applied for a time

Ng. At the end of the circuit, we measure the reference in the z-basis. We average over many

shots to determine SC for each circuit. The majority of experimental noise can be explained

with a simple noise model using XX-gate crosstalk. (See Appendix B.6 and B.7, where we also

describe techniques to further mitigate errors). We assume a Gaussian distribution of expected

SC = 0 circuit outcomes and SC = 1 circuit outcomes and find their intersection, which is used

as a threshold at SC = 0.93 (Appendix B.3 Fig. B.1, and Fig. B.2). Any outcome below the

threshold is counted as SC,T = 0, and those above as SC,T = 1. For px = 0, 1 (px = 0.5), we

average the entropy after binning with the threshold, ⟨SC,T ⟩, over the results of 300 (100) unique

circuits.

We study ⟨SC,T ⟩ at px = (0, 0.5, 1) and L = (4, 6, 8), and observe the first experimental

evidence of the phases of a dynamical purification phase transition. While the measured entropy

increases with system size in the mixed phase (px = 0), in the pure phase (px = 1), the

entropy decreases with system size (Fig. 2.4A). This behavior is expected and can readily be

seen in simulations at the experimental probe time in the example in Fig. 2.4B. To probe the
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Figure 2.4: Experimental Observation of Phases and Simulated Critical Behavior (A)
Classical entropy after thresholding ⟨SC,T ⟩ averaged over an ensemble of random circuits at
varying system sizes. We show evidence of mixed (top), intermediate (middle), and pure phase
(bottom) with px = 0, px = 0.5, and px = 1 respectively with size-scaling as predicted in Fig. 2.3.
Error bars are 1σ uncertainty with 300 circuits for px = 0, 1 and 100 circuits for px = 0.5 (B)
Simulated results showing the late-time decay rate τ of ⟨SQ⟩ near the transition. Here, z ≈ 1/5 is
the dynamical critical exponent, ν ≈ 1/2 is the correlation length exponent, and pxc = 0.72(1) is
the critical value of px. These critical parameters are extracted from a finite-size scaling analysis
(see Inset and Appendix B.5).

crossover behavior on these system sizes, we also sample at an intermediate value of px = 0.5

close (for these sizes) to the critical point at pxc = 0.72(1). We observe consistent results with

the simulations in this near-critical regime, showing behavior that interpolates between the two

extremes.

2.4 Outlook

Having obtained conclusive evidence for the two phases in our system, it remains an

outstanding challenge to experimentally probe the universal critical behavior of this model. We

predict that such effects will become accessible in our system through modest increases in system

sizes from L = 8 to L = 32 qubits combined with periodic sympathetic cooling [68], which

enables mid-circuit measurements, improves fidelties at late times, and should allow for deeper
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circuits. We have found that a sensitive probe of the critical properties of the purification transition

is the late-time exponential decay constant τ of the order parameter ⟨SQ(t)⟩ ∼ e−t/τ . Fig. 2.4B

shows an example of a finite-size scaling analysis that can be used to extract critical properties of

the model. Here, we use direct simulations of the ideal circuit evolution to predict the behavior of

our system as it is scaled to larger sizes. Crucially, these scaling results illustrate that the critical

properties of the purification transition are obtainable using the modest systems sizes and circuit

depths accessible in near-term ion-trap hardware.

Our results show that measurement-induced quantum phases are accessible in near-term

quantum computing systems despite the formidable experimental challenges. Recent years have

seen a host of advances in mapping out the phenomenology of these novel nonequilibrium phases

of matter, including the prediction of topological order stabilized by measurements in random

circuits [67, 69, 70] and applications in computational complexity theory [71] and quantum error

correction [72]. These developments point to a broad potential for the advancement of many-

body physics and quantum information science through the continued explorations of quantum

measurement.

From the perspective of fault-tolerant quantum computation, our results open up a number

of new directions. Investigating similar physics in fault-tolerant operating regimes with error

correction and feedback built into the model is an exciting direction for future work. Although

the resource demands are often difficult to satisfy for fault-tolerant simulations, the intrinsic

flexibility in implementing random circuit models allows one to circumvent the worst-case behavior

analyzed in fault-tolerant threshold theorems [53]. As a result, many of the resource costs for

fault-tolerance can be lowered for random circuits. For example, much of the overhead in the

standard models for fault-tolerance arise from implementing a universal gate set. We have shown

23



that measurement-induced phase transitions are experimentally accessible with discrete gate sets

like the Clifford group, which have efficient fault-tolerant transversal implementations in systems

with long-range interactions, such as ion traps. Additional gates outside this set can be introduced

with a low-density to avoid a large increase in the overhead for more generic random circuit

models.

An important conceptual aspect of our work is that we experimentally study an error

correction threshold as a physical phenomena, exploring its connections to universality in quantum

many-body physics. This approach contrasts with many prior works on experimental quantum

error correction that have so-far focused primarily on demonstrations of few-body gadgets in

the below-threshold regime [63]. In addition, while error correction thresholds can be studied

numerically, applying those theories in practice requires a deeper understanding of the errors in

real physical systems, and how the corresponding thresholds behave. The ability to successfully

operate quantum computing systems in these near-critical regimes is likely to be a crucial aspect

in the future of fault-tolerant quantum computing.
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Chapter 3: Phase Transition in Magic

3.1 Introduction

A central goal in physics and computer science is to understand the origins of possible

computational speedups of quantum information processors over their classical counterparts.

Entanglement is a central resource for fault-tolerant quantum computing, but it is not necessarily

sufficient to realize computational speedups. The notion of entanglement must be extended

to distinguish between the production of “easy” and “hard” quantum states by fault-tolerant

operations. Notably, even when the quantum state of the processor is highly entangled, computations

consisting of only Clifford gates —a finite, non-universal subgroup of the unitary group —applied

to stabilizer states, or eigenstates of Pauli operators, can be efficiently simulated on classical

computers [73, 74]. Non-stabilizer input states or non-Clifford gates, by contrast, are believed

to be exponentially difficult to simulate on classical computers [75, 76]. On quantum computers

non-Clifford gates are easy, however, in the context of error-corrected quantum computer, these

states and operations still require costly magic state distillation or other gate-intensive protocols

[38, 77–79].

A resource theory of stabilizer computation has emerged [36] to study this division between

easy (Clifford) and hard (non-Clifford) gates. In this theory, magic is the resource that enables

universal quantum computation; the amount of magic in a state determines how useful it is as
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a non-stabilizer input state in fault-tolerant synthesis of non-Clifford operations. Magic has

been used to bound quantum complexities [80] and to constrain tensor network models of AdS-

CFT [81]. Magic-generating non-Clifford operations have also been shown to be necessary for

simulating quantum chaos [37]. Understanding the mechanisms by which magic can be generated

or suppressed in a quantum circuit is, therefore, necessary not only to accelerate progress towards

universal quantum computing but also to understand the limits in which quantum computations

become classically accessible.

A related aspect of quantum entanglement is its behavior in monitored quantum circuits,

such as measurement-induced entanglement phase transitions [13,23]. Monitored quantum circuits

consist of local gates (or time evolution), interspersed with some rate or density of projective

measurements. The simplest example of a monitored quantum circuit is the error correcting code:

the state undergoes a series of entangling “encoding” unitaries, followed by projective syndrome

measurement and final logical “decoding” unitaries [82]. In general, monitored quantum circuits

can display a measurement-induced phase transition in entanglement. These systems display

evidence of a complicated phase diagram determined by the details of the circuit [5, 83–85], and

have connections to percolation theory [13,86], the theory of stabilizer codes [31], and statistical

mechanics models [14, 30, 32, 87]. Such hybrid circuits have also been shown to exhibit related

phase transitions beyond entanglement [88].

In this paper, we show that measurement-induced phase transitions of entanglement can be

extended to magic, and we study the transition experimentally. A quantum error correcting code

subject to coherent errors displays a phase transition in the magic as a function of the number

of logical qubits (which in our model sets the measurement rate) or the error rate. In the magic

phase transition, syndrome measurements, which can destroy magic, compete with errors, which
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can create magic, just as local dynamics and local measurement compete in the entanglement

transition. For large error rate or infrequent measurements, the encoded state has extensive magic,

while for low error rate or frequent measurements, the encoded state has nearly zero magic; the

two regimes are separated by a phase transition. A brief overview of our setup is sketched in

Fig. 3.1A and B and the resulting phase diagram is given in Fig. 3.1C. We also introduce a

new measure of magic, the basis-minimized measurement entropy. We measure this quantity

and another known measure of magic, the stabilizer Rényi entropy [89], in classical simulations,

analytical calculations, and experiments on IonQ’s Aria trapped-ion quantum computer. The

magic phase transition is visible as a finite-size scaling collapse in these measures.

3.2 Random Circuit Model

We study magic in random Clifford codes. The initial state is a product state of N qubits,

|0⟩⊗N . A randomly drawn Clifford circuit C is applied to this state. This Clifford circuit maps

the initial state to the logical space of a random Clifford code; such codes are known to make

high-performing error correcting codes [90]. After the encoding circuit C, a single-qubit rotation

Rz(α) = exp(−iσzα/2) is applied to each qubit. This “noise layer” models coherent noise and

takes the quantum state away from the codespace of the Clifford code. We call α the error rate.

The noise layer is followed by C†, the conjugate of the encoding circuit. Finally, N −K qubits

are measured in the computational basis, leaving a logical state with K qubits. These N − K

measurements are syndrome measurements for the Clifford code.

The encoding Clifford circuits are generated by interweaving d layers of single-qubit unitaries

and d layers of two-qubit Clifford unitaries (Fig. 3.1A). The odd layers are single-qubit gates
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Figure 3.1: Model and phase diagram. A: The model. The qubits start in an all-zero state,
corresponding to a logical 0 state. We apply a random Clifford encoding circuit (green),
controlled “error” unitaries (red), and the conjugate of the encoding circuit (blue). B: A schematic
illustration of how magic is created or destroyed in our model. The encoding step acting on an
input stabilizer state (represented by a blue Bloch sphere) produces a highly entangled stabilizer
state in the many-qubit Hilbert space. Coherent rotations move the state off the grid of stabilizer
states. The decoding step either snaps the state back to the grid of stabilizer states or pushes the
state away from that grid. The final state is either a multi-qubit stabilizer state, represented by
a Bloch sphere shaded blue, or a magical state, represented by a Bloch sphere shaded red. The
Pauli expectations of the resulting stabilizer (magical) state are shown as histograms shaded blue
(red). C: Phase diagram for constant-rate codes. The color bar represents the magic density at a
particular code-rate r, given by the ratio of logical qubits K and total number of qubits N , and
error rate, defined to be the angle of coherent rotation, α.
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sampled uniformly from the 24 elements of the single-qubit Clifford group. The even layers

consist of fixed-angle (π/2) entangling Mølmer-Sørensen gates, defined as MS(π/2) = eiπXX/4,

applied toN/2 randomly chosen disjoint pairs. The decoding circuit is the inverse of the encoder.

We take d = N in numerics and d = N/2 in experiment to reduce the effects of noise. Circuits

with d = N/2 have a behavior similar to those with depth d = N . In Appendix C.4, we present

numerics on d = N/2 and d = 2N circuits.

Fig. 3.1B illustrates how magic is created or destroyed in our model. The state begins

as a logical stabilizer state. The Bloch sphere, shaded blue, represents a multi-qubit stabilizer

state. The encoding step maps the state to a stabilizer state in a many-qubit Hilbert space, and

error moves the state off the grid of stabilizer states. The decoding (conjugate of the encoding

operator together with syndrome measurements) step either snaps the state back to the grid of

stabilizer states or pushes the state away from that grid; in either case it projects the state back

to the logical space. The final state is either a multi-qubit stabilizer state, represented by a

Bloch sphere shaded blue, or a magical state, represented by a Bloch sphere shaded red. The

stabilizer-ness of a state is visible in the Pauli expectations. For a stabilizer state, the distribution

of expectations is concentrated among the stabilizing Paulis, as shown in the histogram shaded

blue for a representative two-qubit stabilizer state. For a Haar state, the distribution has support

over all Paulis, as shown in the histogram shaded red for a representative two-qubit Haar state.

We study this transition for two different code rates (The code rate is the ratio of the number

of logical qubits to underlying physical qubits.) The first case, which we refer to as “vanishing

rate”, has only one logical qubit, so the code rate r = 1/N tends to zero for large N . The second

case uses constant-rate codes with the scaling K = rN logical qubits for a fixed code rate r.
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3.3 Quantifying magic

Any measure of magic for pure states is a function of quantum states that is zero for

stabilizer states and non-increasing under Clifford unitaries. Measures of magic can also be

used to quantify the non-Clifford resources required to prepare a state, and how useful it can

be in synthesizing non-Clifford gates via magic state distillation and injection. We consider two

measures of magic: the second stabilizer Rényi entropy [89] and the basis-minimized measurement

entropy.

3.3.1 Second Stabilizer Renyi Entropy

The second stabilizer Rényi entropy (SSRE) measures how spread out the state’s density

matrix is when expanded in the basis of Pauli operators. A key property of stabilizer states is

that they are the common eigenstate of a maximal set of mutually commuting Pauli operators

[91]. As a result, the stabilizer state’s density matrix is only supported on those operators, so

it is maximally concentrated and the SSRE is zero. A Haar state on N qubits, by contrast, has

approximately equal weight on all Pauli operators, so it is nearly maximally spread out and the

SSRE, defined as M2(ρ) = − log 1
2N

∑
P∈P Tr(ρP )4 for N qubits, is proportional to N . The

histograms in Fig. 3.1B illustrate the distribution of Pauli expectations for these two cases.

3.3.2 Basis-Minimized Measurement Entropy

We also consider a second measure of magic, which we call basis-minimized measurement

entropy, defined as the entropy of the Born probability distribution of measurement outcomes,

minimized over the finite set of possible stabilizer measurement bases. For instance, consider a
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two-qubit stabilizer state |00⟩ which we can measure in arbitrary length-two Pauli bases, including

X1X2 and Z1Z2. Measuring X1X2 will result in a Born probability distribution of four equally

possible measurement outcomes |±±⟩, giving an entropy of 2. On the other hand, measuring in

Z1Z2 results in only one outcome |00⟩, giving an entropy of 0. Minimizing the entropy over all

possible measured bases, the resulting basis-minimized measurement entropy is 0 in this case.

We wish to compute this basis-minimized measurement entropy for the resulting logical state

in our model—that is, the state on the logical qubits after encoding, noise, application of the

inverse of the encoding circuit, and syndrome measurement. In Appendix C.1, we show that the

basis-minimized entropy is a good measure of non-stabilizerness for pure states. It is zero for a

stabilizer state, is non-increasing under Clifford unitaries, and is subadditive for product states,

i.e. f(σ ⊗ ρ) ≤ f(σ) + f(ρ).

The basis-minimized measurement entropy of the logical state depends on the syndrome

outcome. Averaging the entropy of the logical state over all syndromes s gives us the basis-

minimized classical conditional entropy minB SlB |s = minB (SlB ,s − Ss), where Ss is the entropy

of the distribution of syndromes, B is a stabilizer basis for the logical Hilbert space, and lB is the

outcome of measurement in stabilizer basis B. Furthermore, the conditional entropy without any

basis minimization serves as a good upper-bound in the non-magical phase. Below the code’s

error correction threshold, the logical state is close to the initial computational basis state, so we

expect the optimal basis to be the computational basis. So, for small α in our model, we expect

the optimal basis to be the computational basis, and the conditional entropy is close to its optimal

value (after basis minimization). Furthermore, the Rényi analogue of the conditional entropy,

S
(2)
lB ,s − S

(2)
s where S(2)

X = − log
∑

x∈X p
2
x is the Rényi entropy of distribution X , is analytically

approachable. We compute the conditional entropy in classical simulation and experiment, and
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the Rényi analogue in experiment and analytical calculations.

The conditional entropy of the logical state quantifies the uncertainty in the logical space

given a syndrome measurement, and it directly bounds the ability of a decoder to recover encoded

classical information from measurements of the logical qubits (see Appendix C.7). A decoder

is a syndrome-dependent operation that corrects logical errors corresponding to the syndrome

measured. While the basis-minimized conditional entropy measures the minimal uncertainty over

all possible Clifford decoding operations, the conditional entropy without basis-minimization

limits the decoder to measurements in the computational basis.

In our experiment, we measure these measures of magic as a function of the error rate α,

tuning it from 0 to π/2. At zero error (α = 0) and maximal error (α = π/2), both measures are

identically zero, because in each case the state is a stabilizer state. When α = 0, the noise layer

acts as the identity operator, the encoding circuit C is cancelled by the following C†, and the final

state is the same as the input stabilizer state. When α = π/2, the error operator e−iσzα/2 is itself

a Clifford gate, so the magic is likewise zero.

3.3.3 Circuits Generation

The quantum circuits in the model were produced by randomly sampling Clifford encoders.

Each encoder has depth d, where a unit of depth consists of a layer of N single-qubit gates and

a layer of N/2 disjoint pairs of entangling gates. The single qubit gates are sampled from the set

of 24 single-qubit Clifford gates. The entangling gate is chosen to be the fixed-angle Mølmer-

Sørensen gate, MS(π/2). After selecting the gate sequence for each circuit, the encoder and

decoder are optimized separately. After optimization, the circuits are compiled natively to a
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gateset comprising GPi, GPi2 and MS gates, as described in IonQ Documentation [92]. As a

part of execution, the circuits were further augmented with single-qubit gates to minimize noise,

using a firmware-level protocol described in [93].

3.4 Vanishing Rate Code

First, we discuss the vanishing rate case with a single logical qubit. Between the two special

Clifford points α = 0, π/2 the logical qubit has finite magic according to SSRE, with a peak at

a distance ∝ 1/
√
N away from the Clifford point α = π/2 point (see Fig. 3.2B). At large N

the Clifford point, therefore, becomes a singularity. We can understand the square root scaling

by perturbing around the Clifford point α = π/2. At the Clifford point, the logical state is not

magical because it is an equal superposition over states corresponding to that syndrome. Away

from the Clifford point, the logical state becomes magical to the extent the amplitudes in the

superposition are no longer equal. If exactly two errors give rise to each syndrome and the two

errors corresponding to the measured syndrome have weights na, nb, then the ratio of amplitudes

is [tan(π/2−α)](na−nb) ≈ (π/2−α)(na−nb), and the SSRE is M2 ≈ (π/2−α)2(na−nb)
2 (see

Appendix C.3). Fig. 3.2A shows the SSRE, for classical simulations of circuits; the distribution

is sharply peaked near this prediction. Since the error weights na, nb controlling the SSRE, are

drawn from a binomial distribution, averaging over syndromes gives M2 ∝ N(π/2 − α)2 =

f((π/2 − α)
√
N). (See Appendix C.3 details.) Fig. 3.2B shows the syndrome- and circuit-

averaged SSRE, as a function of error angle α; Fig. 3.2C shows the same quantity for experiments

(see below). Both show the predicted square-root scaling ⟨M2⟩ = f((π/2− α)
√
N).
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A

B

C

Figure 3.2: A: Distribution of second stabilizer Rényi entropy (SSRE) across codes and
syndromes in classical simulation. The distribution is tightly peaked around square-integer
multiples of the distance ϵ = π/2 − α from the Clifford point, because it is controlled by the
weights of the errors. B & C: Syndrome- and circuit-averaged SSRE, in classical numerics (B)
and experiment on IonQ Aria trapped-ion quantum computer (C). Both display the predicted
square-root scaling. The error estimates are derived using bootstrapping (details in the Appendix
C.6). The scaling with respect to system size of the vertical axis of C (main) is chosen to match
the scaling of the peak in unscaled experimental data (inset). For B, the errorbars are omitted in
the collapse (main plot).

3.4.1 Experiment

We perform our experiments on IonQ’s Aria quantum processor, made available through

the QLab facility at the University of Maryland. We use 16 out of 32 qubits for our experiments

to limit the circuit depth and effects of noise. All quantum circuits, compiled into a native gateset,

were executed using API access. We provide further details on circuit execution in Appendix C.2.

For the vanishing rate case, we run the encoding, error, and decoding circuit over N physical

qubits many times. Since we need to perform tomography on the single logical qubit, we append
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an appropriate basis change Clifford gate for each instance of random encoding circuit. Finally,

we measure the entire register. Postselecting on syndrome outcomes is prohibitively expensive,

so we use the fact that the number of effective actions on the logical qubit (up to a global phase)

is much smaller than the number of possible syndromes. This allows us to group the syndrome

into equivalence classes, where elements in a class have the same effective action on the logical

qubits. These classes are identified by grouping the rotations using classical simulations. To

mitigate incoherent errors, we project the density matrix of the logical qubit, obtained using

tomography of a syndrome-class, to its maximum-eigenvalue eigenstate in post-processing. We

then calculate the circuit- and syndrome-averaged magic M(α) = ⟨|s| × ⟨MC,s⟩s∈S⟩C , where S

denotes syndrome classes and |s| denotes the size of a syndrome class s.

We present our experimental measurements in Fig. 3.2E for N = 8, 12, and 16, using 50,

50 and 30 instances, respectively, of random circuits. The error-bars are obtained via bootstrap

resampling (details in Appendix C.6). We observe that, following the mitigation techniques

discussed above, we can achieve a measurement of magic that qualitatively resembles the theoretical

expectations.

3.5 Constant Rate Code

At finite rate—that is, when the number of logical qubits K scales as K = rN with the

number of physical qubits N—the finite-magic critical region displayed by the vanishing-rate

code becomes an extended magical phase. This magical phase is visible in Fig. 3.1C, which

shows the phase diagram of SSRE as a function of the code and error rate in classical simulations

for systems ofN ≤ 14 physical qubits. Fig. 3.3A shows the density of SSRE at fixed rate r = 1/2
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Figure 3.3: Results for constant rate codes. A: Density of magic (SSRE) of the logical space
and its scaling collapse (inset) plotted against the error rate α, for code rate r = K/N = 1/2. The
error bars are derived using standard error and are omitted in the scaling collapse (inset), where
the x-axis is scaled as (α − αc)N

1/ν with critical parameters αc = 0.573(8) and ν = 1.3(1).
B: Phase diagrams of conditional entropy (upper) and its Rényi approximation (lower), without
any basis minimization. C: Finite size scaling of the conditional entropy and its collapse (inset)
computed numerically using simulations at r = 1/2. The scaling collapse (inset) has critical
parameters αc = 0.95(5) and ν = 2.8(6). D: Finite size scaling of the Rényi approximation of the
conditional entropy and its collapse (inset) computed numerically using simulations (displayed
points) and analytics (solid line) at r = 1/2.. The scaling collapse, computed with data from
simulations, has critical parameters αc = 1.090(3) and ν = 2.6(3). E: Finite size scaling of the
conditional entropy using data from experiments in IonQ Aria at r = 1/2. The error bars are
obtained using boostrap resampling. The scaling collapse (inset) uses critical exponents derived
from numerical simulations of circuits with d = N/2, as shown in Fig. C.2. F: Finite size scaling
of the Rényi-approximation of the conditional entropy and its collapse (inset) computed using
experiments at r = 1/2.

36



as a function of error rate α, again in classical simulations. The scaling collapse indicates that

the transition from non-magical to magical is indeed a phase transition, not a crossover.

Since the SSRE is an expensive quantity to measure for finite-rate codes, we use the

conditional entropy of the logical state as a diagnostic for the phases. In Fig. 3.3B (upper),

we show the phase diagram for conditional entropy density as a function of code rate and error-

rate. The conditional entropy, without any minimization over basis, serves as an upper-bound to

the basis-minimized conditional entropy, which is a genuine measure of magic. Therefore, the

conditional entropy is a good diagnostic for the non-magical phase. In Fig. 3.3C, we present

finite rate scaling, obtained through simulations, of the conditional entropy at code rate r = 1/2.

This critical error rate αc and critical exponent ν both differ from the SSRE. Such a difference in

critical point and scaling exponent is a common feature of phase transitions in monitored quantum

circuits; it comes about because different quantities correspond to different statistical mechanical

models [30,32] and because different measures quantify resources differently. For each datapoint

in numeric simulations of sizes N = 12, 16, 20 and 24, we simulate 5000, 5000, 500 and 50

circuits, respectively. The procedure used to extract the critical parameters and their errors is

described in Appendix C.5.

3.5.1 Analytical Approximations

We also observe that the Rényi conditional measurement entropy, the Rényi analogue of

the Shannon conditional measurement entropy, exhibits similar phases, as shown in Fig. 3.3B
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(lower). The circuit-averaged conditional Rényi entropy is defined as

EC

− log
∑

x∈{0,1}N

(
pα,C(ℓ,s)(x)

)2
+ log

∑
s∈{0,1}N−K

(
pα,Cs (x)

)2 , (3.1)

where pα,Cs (x) denotes the probability of measuring x in the syndrome register s, for a state

produced with a Clifford encoder C and coherent rotations of strength α. Similarly the (ℓ, s)

subscript denotes measurement in the joint syndrome and logical register. For large systems,

we can use a typicality argument to assume that the circuit-to-circuit variation in distribution

of measurement outcomes is negligible; this allows us to interchange logarithm with expectation

overC in the equation above. Finally, we can calculate EC

∑
x(p

α,C(x))2 using Clifford averaging

via Schur-Weyl duality (see Appendix C.8 for details).

Fig. 3.3D shows the finite-size scaling for Rényi conditional measurement entropy, for

system sizes N ≤ 24 comparable to those used in classical simulation and experiment, at code

rate r = 1/2. The analytical result is plotted as solid lines. The datapoints represent circuit

averages computed via numerical simulations. For each datapoint in numeric simulations of

sizes N = 12, 16, 20 and 24, we simulate 5000, 5000, 500 and 50 circuits, respectively. Indeed,

the analytical computation matches the exact numerics for large systems for which the typicality

assumption is true. While our analytics lets us access arbitrarily large sizes for this observable,

we perform the scaling collapse over sizes that are experimentally accessible. The procedure

used to perform the scaling collapse and extract related errors is described in Appendix C.5.

38



3.5.2 Experiment

The random Clifford code was implemented on up to 16 qubits of IonQ’s 32-qubit Aria

device. (The implementation was limited not by the number of qubits available but by circuit

depth, which in turn was limited by gate noise.) The second stabilizer Rényi entropy is not

accessible in experiments on finite-rate codes, because it requires full state tomography. The

conditional measurement entropy, by contrast, requires only computational basis measurements.

These computational basis measurements undergo postprocessing similar to linear cross-entropy

benchmarking in random circuit sampling experiments [10], using information from classical

simulation. The reported entropies are SX = −∑x p(x) log p̃(x), where p̃(x) is the probability

anticipated from classical simulation, and p(x) are experimentally obtained distributions projected

onto the support of the ideal distribution p̃(x).

Figures 3.3E and 3.3F show the resulting Shannon and Rényi entropies, respectively. As

expected, the scaling of the entropies with respect to system size is inverted across the threshold.

Recall that the experiments were performed using circuits of depth d = N/2. The scaling collapse

(insets) in the experimental data use the critical parameters derived from numerical simulations

for d = N/2 circuits, as shown in Fig. C.2B,C in Appendix C.4. For each experimental datapoint

of sizes N = 8, 12 and 16, we execute 50, 50 and 20 different circuit instances, respectively. The

errorbars were estimated using boostrap resampling, discussed in Appendix C.6.

3.6 Outlook

We have observed that a random Clifford code subject to coherent errors displays a phase

transition in magic. Concentrating magic of a large system to a smaller subsystem can be difficult,
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as has also been shown in [35]. In our model, measuring the syndromes of a random Clifford

code concentrates magic in the logical space if the error rate or the code rate is above a critical

value, and suppresses magic below the threshold. This result establishes a connection between

the resource theory of stabilizer computation, i.e., magic, and the study of decoder breakdown in

quantum error correction codes via the basis-minimized measurement entropy.

In this work, we study phases of magic for small systems for which calculating measures

of magic is tractable. In general, non-stabilizerness is difficult to measure. Measures of magic

usually require exponentially many measurement samples and often need extensive classical

processing, making them intractable for large systems. Our work, however, suggests the possibility

of diagnostics, like the conditional entropy, that can be estimated efficiently using a small number

of samples and classical post-processing. In the future, such measures can be used to study the

phase transition in larger systems to better approximate the thermodynamic limit.

Phase transitions in magic—both ours and the theoretical predictions of [35]—indicate

that existing measurement-induced phase transitions sit in a broader landscape of information

theoretic phase transitions. In each case, the phase transition arises from the competition between

three channels—a channel that generates the resource (whether entanglement or magic), a channel

that generates correlations, and a channel that destroys the resource—that fail to commute. In

the phase transition shown here, the correlation-generating channels are the encoding Clifford

operations, the resource-generating channels are the rotations Rz(α) of the noise layer, and

the resource-destroying maps are syndrome measurements. In the phase transition of [35] the

correlation-generating channels are layers of random Clifford gates, the resource-generating channels

are interspersed T gates, and the resource destroying maps are partial traces. In the measurement-

only entanglement phase transition of [94], all channels are projective measurements: nonlocal
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projective measurements generate entanglement as well as correlation, while onsite measurements

destroy the resource. We conjecture that any information-theoretic setting with this structure of

three competing channels can be made to show a phase transition.

Our result also suggests that error correction together with sufficiently well-characterized

coherent noise can create useful magic states. In the magical phase the syndrome measurements

move magic from the physical qubits, where non-Clifford gates like single-qubit rotations are

easy, to the logical qubits, where non-Clifford gates are typically hard. Syndrome-dependent

Clifford unitaries may then transform these states into states suitable as inputs to existing magic

state distillation protocols. In this case, an outstanding challenge is the decoding problem of

identifying the right Clifford unitary given a code and a syndrome. Notably, such unitaries are

efficiently computable under a wide-range of circumstances for zero-rate topological surface

codes [95]. If this can be done more generally, the magical phase may improve the efficiency

of magic state distillation, thereby reducing overhead in quantum computation algorithms where

magic state distillation is the bottleneck.
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Chapter 4: Error Mitigation Threshold

Extracting useful information from noisy near-term quantum simulations requires error

mitigation strategies. A broad class of these strategies rely on precise characterization of the noise

source. We study the performance of such strategies when the noise is imperfectly characterized.

We adapt an Imry-Ma argument to predict the existence of an error mitigation threshold for

random spatially local circuits in spatial dimensions D ≥ 2: characterization disorder below

the threshold rate allows for error mitigation up to times that scale with the number of qubits.

For one-dimensional circuits, by contrast, mitigation fails at an O(1) time for any imperfection

in the characterization of disorder. We discuss implications for tests of quantum computational

advantage, fault-tolerant probes of measurement-induced phase transitions, and quantum algorithms

in near-term devices.

Noise presents a fundamental barrier to realizing scalable quantum information processing

[4]. The theory of fault-tolerant quantum error correction shows how this barrier can be overcome

in principle [53, 96, 97]. However, despite remarkable experimental progress establishing the

basic validity of the theory of fault-tolerance [63,98–100], achieving large-scale quantum computing

with error corrected qubits remains a formidable challenge. In recent years, quantum error

mitigation has emerged as a complementary paradigm for addressing the effects of noise in

large-scale quantum devices [42, 101–112]. At its core, error mitigation relies on the ability
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to accurately characterize the interaction of the system with its environment. Armed with this

knowledge, one can design classical post-processing techniques to construct more accurate estimators

of the noiseless signal using data obtained from a noisy device. Similar methods have been

ubiquitously employed in quantum process tomography to reliably extract error models in the

presence of noisy operations [113–115]; using these methods to improve the accuracy of noisy

quantum circuits is a more recent development.

A key aspect of the threshold theorem for fault-tolerant quantum computing is that it applies

even in the case where the individual components used to implement the error correction are

noisy. An analogous question for error mitigation strategies is whether they work when the noise

is imperfectly characterized. As noted above, related questions have been addressed for quantum

process tomography in the presence of faulty operations [113–115]; however, these models are

often considered only at the level of a few qubits, generally precluding the existence of a sharply

defined phase transition. In the case of many-body tomographic problems (e.g., Pauli noise

estimation [116, 117] or Hamiltonian learning [118, 119]), thresholds in learnability are possible

and likely arise under some circumstances. However, to our knowledge, threshold results have

not been considered for quantum error mitigation.

In this paper, we demonstrate the possibility of thresholds for quantum error mitigation.

We focus on one of the conceptually simplest quantum error mitigation techniques, which goes

under the moniker “probabilistic error cancellation” (PEC) [102, 120]. PEC relies on the fact

that many of the most common noise channels used to model quantum devices are actually

trivially invertible at the mathematical level. Unfortunately, the inverse operation is not generally

a physical evolution. For example, the inverse of the depolarizing channel violates the complete-

positivity condition for quantum channels. As a result, the only known way to implement the
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inverse is through classical post-processing. In the case of PEC, this classical post-processing

step is implemented via Monte Carlo sampling methods but, for constant noise rates, incurs

exponential sampling overheads in the worst case [102, 120]. Nevertheless, PEC can be used to

significantly extend the accessible circuit depths of a given noisy quantum device, as demonstrated

in recent experiments [120]. Some other examples of quantum error mitigation include zero-

noise extrapolation [102–104], symmetry-based error detection [106, 107], cooling/purification

[108–110], and learning based methods [111, 112]. In the remainder of the paper we will focus

on the PEC technique, primarily because of its conceptual simplicity.

Our central prediction is that PEC has an error mitigation threshold for random, spatially

local circuits in spatial dimensions D ≥ 2 when the noise is imperfectly characterized. Building

on the extensive work characterizing quantum phases and phase transitions in hybrid random

circuits [121, 122], we consider a model of random unitary circuits subject to depolarizing noise

with binary disorder in the depolarization rate [see Fig. 4.1(a)]. To mitigate the effects of the

noise we apply a uniform “antinoise” channel that inverts the depolarizing noise on average.

We show that a replica statistical mechanics description of the problem has close parallels to

the classical random field Ising model (RFIM) in D + 1 dimensions. At the zero-mean field

condition in the RFIM, Imry-Ma arguments [123] show that the ordered phase survives random

symmetry-breaking terms in sufficiently high dimensions. In the random circuit problem, this

analysis indicates the possibility for error mitigation thresholds for D ≥ 2, while D = 1 is the

marginal dimension. We also analyze the performance of error mitigation as a function of circuit

depth. For depths larger than the linear size of the system, the mitigation fails, resulting in a

signal worse than that obtained by sampling from the uniform distribution. The corresponding

phase diagram of the system is shown in Fig. 4.1(b) for D ≥ 2. Analytic and numerical studies
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Figure 4.1: Model and phase diagram: (a) Noisy random circuit with spacetime disorder in the
noise rate and error mitigation. (b) Phase diagram for the error mitigation threshold in this model
for D ≥ 2 spatial dimensions. At high disorder rates and linear depths, the system transitions
from a “below-threshold” phase where mitigation succeeds on average to an “above-threshold”
phase where mitigation fails.

of the two-copy replica theory and exact simulations of the mitigated circuit dynamics confirm

our predictions.

4.1 Model and Simplified Limits

The basic model we consider in this work is illustrated in Fig. 4.1(a). Each two-site gate is

chosen to be Haar random [124–126] and are interspersed with noise and antinoise channels. We

focus on the case of depolarizing noise and its inverse channel as the antinoise

Ex,t(ρ) = (1− qx,t)ρ+ qx,t trx[ρ]⊗ I/2, (4.1)

Ax(ρ) =
ρ− qa trx[ρ]⊗ I/2

1− qa
, (4.2)
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where trx[ρ] is a partial trace operation at site x. Tuning qa = qx,t inverts the noise at space-

time site (x, t) such that Ax ◦ Ex,t(ρ) = ρ. To include the disorder, the noise rates are drawn

randomly at each space-time location of the circuit from one of two values qx,t = q1/2 with

probability p/1 − p and q1 < q2. The antinoise can be tuned to a zero mean-field condition by

taking (1 − qa) = (1 − q1)
p(1 − q2)

1−p equal to a geometric mean. This condition ensures that

a Pauli operator σµ
x (µ ∈ {X, Y, Z}) evolved under multiple rounds of noise and antinoise up to

depth t = d will have expectation value

tr

[
σµ
x

d∏
t=1

Ax ◦ Ex,t(ρ)
]
=
∏
t

1− qx,t
1− qa

tr[σµ
xρ], (4.3)

where the prefactor tends to a log-normal distribution that concentrates around one. Any deviations

of qa from this zero mean-field condition will result in an exponential growth rate that scales

linearly in the depth d. At the zero-mean field condition, however, the noise is canceled on

average and the prefactor deviates from one only due to random fluctuations as e±O(
√
d) (i.e., the

exponential growth rate is suppressed by a factor
√
d).

To develop some basic intuition for how unitary dynamics can improve the robustness of

error mitigation, it is helpful to consider a toy model consisting of two sites L/R with qL < qR

fixed in time. Now, take 1 − qa =
√

(1− qR)(1− qL) to satisfy the zero mean-field condition.

The R site will be subject to excess noise and the L site will experience excess antinoise.

The case of weak unitary dynamics is analogous to the above threshold phase. In the limit

where the unitary dynamics tends to trivial evolution, any state initialized with non-zero Pauli

expectation value on site L will experience exponential growth of the expectation values leading

to an unphysical density matrix after an O(1) time. We discuss below how this type of rapid
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instability to unphysical states is characteristic of the above threshold phase.

To build in the effects of unitary dynamics, consider the base circuit to consist of repeated

applications of SWAP gates. In this case, it is readily verified that the effects of the noise on Pauli

expectation values will be completely canceled for arbitrarily deep circuits except for the most

recent layer of gates. In this two-qubit example, Haar random gates behaves similarly to SWAP

gates in that the noise is cancelled on average. However, the temporal randomness will lead to

exponential fluctuations of Pauli expectation values of size eO(
√
d), where the term in the exponent

will follow the statistics of a random walk. This tendency of the random unitary dynamics to

suppress effects of the noise/antinoise from linear in d to
√
d scaling for certain initial conditions

is characteristic of the behavior we find for the below-threshold phase. To more quantitatively

capture the trends found in this simple two-site model, we now develop a mean-field theory for

the threshold.

4.2 Mean-field Theory

In deriving a mean-field theory, it is convenient to turn to a more analytically tractable

model formulated in continuous time rather than as a discrete circuit. The noise and antinoise are

now captured through a Lindblad master equation [127]

ρ̇ = −i[H(t), ρ]−
∑
j

(γj − γa)
(
ρ− trj[ρ]⊗ I/2

)
, (4.4)

H(t) =
∑

i<j,µ,ν

Jijµν(t)σ
µ
i σ

ν
j , (4.5)
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where H(t) is a time-dependent Hamiltonian that sets the unitary evolution, γi is the random

noise rate on site i, and γa is the antinoise rate. The noise rate γi = γ1/2 is drawn randomly with

probability p/1−p. The zero mean-field condition becomes γa = γ̄ ≡ p γ1+(1−p) γ2. We take

the random unitary dynamics to be given by an all-to-all coupled Brownian circuit model in which

the Jijµν(t) are drawn from a white-noise Gaussian random process with variance parameters

[128, 129]

⟨Jijµν(t)Jkℓγδ(t′)⟩ =
J

2N
δikδjℓδµγδνδδ(t− t′). (4.6)

To treat this model analytically, we average the dynamics over the random coupling constants

for multiple identical copies of the density matrix ρ(t)⊗k (k is a replica index). In the equations

of motion for the averaged moments ρk(t) ≡ EH [ρ
⊗k], the unitary drive-term averages to zero,

leading to a purely dissipative master equation for ρk(t) (see Appendix D.1). Focusing on second

moments (k = 2) gives rise to a particularly simple model with two global product steady states

given by I⊗N and S⊗N [129], where S is the SWAP operator acting on the two copies. The all

SWAP steady-state captures non-trivial corrections to second moment observables like the purity

of sub-systems. In the mean-field approximation, we enforce the density matrix to take a product

state form ρ2 =
⊗N

i=1 σi. Due to the lack of symmetries or conservation laws in the problem, σi

can be parameterized as

σi = (1/4 + δi)|s⟩⟨s|+ (1/4− δi/3)PT , (4.7)

where δi is the deviation from an infinite temperature state, |s⟩ is a two-qubit singlet state across

the two copies, and PT is the projector onto the two-qubit triplet subspace of the two copies.
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The mean-field equations for δi take the form

δ̇i = −4
[
∆i +

J

N

∑
j ̸=i

(3 + 4δj)
]
δi, (4.8)

where ∆i = γi − γa. This simple equation captures much of the basic physics we described

in the two-site model, while also exhibiting the phase transition. Notably, we can see that at

weak values of the disorder, the interaction term acts as a restoring force towards the fixed point

δi = 0. The other fixed point δi = −3/4 corresponds to an unphysical density matrix, which is

unstable at weak disorder. At a critical disorder strength of |∆1| = 3J (see App. D.1), however,

the δi = 0 fixed point becomes unstable. The dynamics flows to a new stable fixed point which

is an unphysical density matrix. Thus, we see that the above threshold phase in the mean-field

theory is characterized by an instabilty of the density matrix to unphysical states.

To rigorously characterize the threshold behavior, particularly in finite-dimensional systems,

we need a more systematic treatment of the correlations in the state beyond the mean-field

approximation. To develop this approach, it is convenient to return to the circuit models. In

these discrete models, the connections to the physics of the RFIM become more explicit.

4.3 Statistical Mechanics Mapping

Our rigorous analysis of the problem relies on well-established mappings from random

quantum circuit dynamics in D spatial dimensions to statistical mechanics models in D + 1

dimensions [51,125,126,130–134]. We outline the details of the mapping in Appendix D.2. The

approach we take is to expand ρk ≡ U[ρ⊗k] into a basis of operators based on representations of

the permutation group Sk [131]. One can then derive update rules for the averaged state following
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each layer of gates, noise, and antinoise. In this paper, we focus on the two-replica case where

the two operators are I and S (the SWAP gate). We expect this model to be sufficient to capture

many of the properties of the transition, as has been argued in the unitary case [125]. Numerical

evidence based on exact simulations is presented below that support this claim.

Without noise/antinoise, ρ2 has two fixed points I⊗N and S⊗N just as in the Brownian

circuit model. Configurations with persistent “domain walls” (i.e., mixtures of I and S) are

exponentially damped with depth in the model. As a result, the two fixed points can be interpreted

as ferromagnetic ground states of an Ising-type spin model. In this interpretation, noise acts as a

symmetry breaking field because it favors the identity configuration and damps out configurations

with S operators [51]. Antinoise acts as a field in the opposite direction, but it also adds additional

sign-structure to the problem from the second term in Eq. (4.2). We account for this sign by

labeling spacetime configurations of I and S operators by the sign of their contribution, then we

can write ρ2 = ρ+2 − ρ−2 , where ρ±2 sum over spacetime configurations with a positive/negative

sign.

4.4 Imry-Ma arguments

To make precise connections to Imry-Ma arguments [123], we rigorously analyze finite-

dimensional versions of the statistical mechanics models. First, we define a simple initial condition

as a state ρ2 that is identity everywhere except in a contiguous region A where it is given by

trAc [ρ2] ∝ I⊗|A| + S⊗|A|. Such an initial condition can be prepared physically by taking a Haar

random state (or a state drawn from a two-design such as the Clifford group [135]) on A and the

infinite temperature state on the complement of A. The first model we consider is a quenched
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Figure 4.2: Numerical tests of the threshold behavior: (a) Numerical simulations of circuit and
noise-disorder averaged the correlation metric Ĩ12 obtained from purity of subregions for two
random sites in the system. (b) Mutual information I12 for exact simulations of the mitigated
noisy random circuit. (c-b) Scaling collapse of data from (a-b) using σc/q̄ = 0.65(5)/0.55(5) and
critical exponent on x-axis obtained from local probe (see Appendix D.3). The critical scaling
on the y-axis is an ansatz. (e-f) Similar quantities as (a-b) for antipodal sites of a 1D chain.
The strong drift in the peak with increasing system size is consistent with the lack of a below-
threshold phase in this model. In all the plots, we took a Haar random initial pure state with noise
parameters q̄ = 0.1 and p = 0.9 and ran to depth d = 4N .

1D model described by a one-dimensional brickwork circuit of the type shown in Fig. 4.1(a)

with Haar random two-qubit gates and spatially random noise rates that are constant in time. We

define σ =
√
p(1− p)(q2 − q1) as the standard deviation of the noise rates. We prove that the

quenched 1D model always exhibits an instability for one of the simple initial conditions.

Theorem 1 (Instability in quenched 1D). For the quenched 1D model with any σ > 0, there is a

simple initial condition for subregion A of size O(logN) such that as N → ∞ and d→ ∞ with

high probability ||ρ±2 || ≥ eO(d logN)/22N−|A|3|A|.

Proof. The proof of the theorem essentially follows a standard Imry-Ma argument. For any finite
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σ as N → ∞ with high probability (whp) there will be a contiguous region of sites A with

noise rate q1 of size |A| = O(logN). For sufficiently large N there will be a region satisfying

(1 − q1)
|A|/(1 − qa)

|A| > (5/2)2 whp, which implies that the O(1) boundary cost of the two

domain walls at the edge of A can be overcome by the amplification of the S configurations in

the bulk. Taking a configuration of all S on A with identities elsewhere that moves by order

1 site at the boundary at each time-step according to the rules for the replica model provides a

contribution to ρ±2 that diverges as eO(d logN)/22N−|A|3|A|. The denominator is the normalization

constant for the initial state.

As a corollary to this result, an initial pure product state evolved with this model will

also have this instability. The converse of this type of Imry-Ma argument is that we expect

the instability of these initial conditions to be suppressed for weak enough disorder for high

enough dimensions. In this case, for large regions A the boundary cost of the domain wall scales

as |A|(D−1)/D, whereas the amplification from the antinoise scales as |A|1/2. As a result, with

quenched disorder in time, we expect the instability to vanish for D ≥ 3 at sufficiently small

values of σ, while D = 2 is the marginal dimension. For space-time random disorder, the

marginal dimension is D = 1 and an ordered phase persists for D ≥ 2. Note, that at large values

of σ, the domain wall cost can be overcome even by a single site with strong antinoise, leading to

an instability. As a result, there will be a disorder driven phase transition at finite σ in sufficiently

high-dimensions associated with the onset of this instability.
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4.5 Numerical Tests

Figure 4.2 summarizes our numerical results. We run numerical simulations of random

circuits, together with noise and antinoise, to characterize this phase transition in two settings.

In the first case [see Fig. 4.2(a-d)], we simulate an infinite-dimensional circuit where entangling

gates can exist between any pair of qubits and noise is random in both space and time. In the

second case [see Fig. 4.2(e-f)], we simulate (1+1)D circuit dynamics assuming quenched noise,

where the randomness is only spatial. The first model is a test of the high-dimensional limit of

the model, while the second model is the same one considered in Theorem 1.

In both cases, we initialize a state of a N -qubit register in a global Haar-random state,

which corresponds to the string ∝ I⊗N + S⊗N in the statistical-mechanical mapping. For the

infinite-dimension model, we apply random Haar gates on a set of N/2 disjoint pairs, randomly

drawn from all N(N − 1)/2 possible pairs of qubits. For the (1 + 1)D model, each time-step

corresponds to a layer in the brickwork circuit in Fig. 4.1 with periodic boundary conditions.

Each layer of unitary gates is followed by the noise-antinoise channel on all qubits.

After evolving the circuit to depth d, we take the partial trace of two qubits and calculate

correlation metrics between the two qubits [136,137]. These low-order correlations are exponentially

suppressed in N for σ = 0, but they develop a peak at the critical point where long-range

correlations develop. For D = 1, the pair consists a randomly chosen qubit and its corresponding

anti-pode at a distance of N/2; for the all-to-all model, both qubits are randomly chosen.

We study the two systems using the replica statistical-mechanical mapping introduced

above, with background details in Appendix D.2. The mapping lets us probe the phase transition

for system sizes as large as N = 20. For sizes up to N = 10, we complement the numerics on
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statistical-mechanical mapping with direct circuit simulations. In the replica stat-mech model,

we study a measure of correlations Ĩab = − log2 EU [Tr[ρ
2
a]]− log2 EU [Tr[ρ

2
b ]] + log2 EU [Tr[ρ

2
ab]]

averaged over noise-disorder (denoted by ⟨·⟩ brackets), while in the exact simulations we study

the standard mutual information Iab = Sa + Sb − Sab for the von Neumann entropy Sa =

− tr[ρa log2 ρa] [4].

The numerical results provide strong supporting evidence for the theoretical scenario outlined

above. We see evidence for a stable ordered phase in the high-dimensional limit of the all-to-all

model, whereas the 1D model with quenched randomness in the noise is consistent with the lack

of an ordered phase. In addition, we estimate critical exponents for the transition in Fig. 4.2(b-c)

that are consistent with simple rational values characteristic of mean-field behavior.

4.6 Outlook

An important application of our results is to improved benchmarking and verification of

random circuit sampling in noisy devices [12, 138–142]. In Appendix D.4, we demonstrate an

exponential improvement in a mitigated version of the so-called “linear cross-entropy” fidelity

below the error mitigation threshold. Notably, this mitigated benchmark can be computed using

existing experimental data. The below threshold behavior may have important consequences

for proofs of quantum computational advantage in noisy circuits [133, 143, 144], potentially

motivating the inclusion of error mitigation in complexity theoretic arguments. Moreover, the

exponential improvement in the fidelity score forD ≥ 2 might indicate a method to foil “spoofing”

algorithms that have been developed for unmitigated fidelity benchmarks in noisy random circuits

[134].
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These results also have implications for measurement-induced phase transitions in hybrid

random circuits [121, 122, 136, 137]. Such models are not fault-tolerant because circuit-level

depolarizing noise drives the system to a short-range correlated mixed state (it acts as a symmetry

breaking field in the replica theory [51]). The addition of the antinoise terms considered here can

restore the symmetries of the model on average, allowing for a stable ordered phase. Thus, our

analysis indicates that MIPT forD ≥ 2 can be made fault-tolerant via error mitigation techniques.

More broadly, the existence of error mitigation thresholds has important implications for

near-term quantum simulation and quantum computing. A natural question is whether the threshold

behavior observed here extends to other models. For example, in quantum simulation of Hamiltonian

dynamics, one can apply a continuous time version of PEC [127]. An error mitigation threshold

qualitatively similar to the one studied in this work should arise for chaotic Hamiltonian evolution

with sufficiently strong interactions relative to the dissipation, raising the intriguing possibility

of a rich interplay between the Hamiltonian and error mitigated dynamics. Similarly, error

mitigation thresholds may naturally arise in more conventional quantum algorithms like Shor’s

factoring algorithm.

55



Chapter A: Statistical Mechanical Mappings for Random Circuits

In this appendix chapter, I present a proof that uses a statistical mechanical mapping to

make predictions about the probability distribution induced by random quantum circuits.

A.1 Total Variation Distance of Noisy Random Circuit from Uniform Distribution

Consider a partially heralded noise model where first a random set of sites are selected after

each layer of a 1D random circuit circuit independently with probability p. At each site i in this

random subset, a local dephasing channel Ei is applied with dephasing parameter q, where

Ei(ρ) = (1− q)ρ+ qZiρZi. (A.1)

In the limit p → 1, this becomes a standard local dephasing model with parameter q, while

q → 1/2 is equivalent to a model where a random set of sites are measured at rate p in the Z-

basis, but without keeping track of the measurement outcomes. For p < 1, we absorb the random

locations of the dephasing events into the ensemble B.

The “heralding” refers to the fact that the set of sites where the measurements occurred is

known, but not the measurement outcomes. Note that this is different from a dephasing model

where each site is uniformly dephased with dephasing parameter pq. In particular, the noise
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locations act as an additional source of randomness in the model.

We focus on this noise model for two reasons. First, we would like to verify the intuition

that noise acting during a random unitary circuit renders the output distribution “worthless” (close

to the uniform distribution) after logarithmic depth [145], even though there are atypical circuits

that can avoid the effects of the noise in a heralded dephasing model. The second motivation

arises from the observation that when the measurement outcomes are also known, such models

exhibit an entanglement transition in the conditional evolution of the quantum states in monitored

quantum circuits. Our analysis of the heralded dephasing model proves that discarding the

measurement outcomes, but maintaining knowledge of the noise locations, is enough to remove

any signature of such entanglement transitions.

For a noisy Haar random circuit with this noise model, we prove an upper bound on the

circuit-averaged total variation distance δ that is independent of the circuit architecture:

Theorem 2. For a noisy Haar random circuit on any parallel circuit architecture with heralded

dephasing noise at rate p with the dephasing parameter q, we have the upper bound

EB[δ] <
32/3

2
n1/3e−γpd/3, (A.2)

where γ = 8q(1− q)/3.

Proof. We start from Pinsker’s inequality, which states that the total variation distance between

distributions P andQ is related to the corresponding KL-divergence (the classical relative entropy)

by the relation δ(P,Q) ≤
√
DKL(P ||Q)/2. The KL-divergence with respect to the uniform

distribution U is given by n log 2 − H(P ), where H(P ) is the Shannon entropy. Let D denote

the distribution of measurements for a circuit. This gives us the following chain of inequality for
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variation distance to the uniform distribution:

2δ(D,U)2 ≤ DKL (D||U) = n log 2−H(D) ≤ n log 2−H2(D), (A.3)

where the last inequality follows from the fact that second Rényi entropyH2(D) = − log (
∑

x p
2
x)

is less than or equal to the Shannon entropy H(D) = Hα→1(D) = −∑x px log px. We can now

use Markov’s inequality to bound the average TVD. For any ϵ ∈ [0, 1], letting PrB(δ = σ) denote

the probability density of the continuous variable δ, we have

EB(δ) =

∫ ϵ

0

dσσ Pr
B
(δ = σ) +

∫ 1

ϵ

dσσ Pr
B
(δ = σ) ≤ ϵ+ Pr

B
(δ ≥ ϵ) ≤ ϵ+

EB(δ
2)

ϵ2
. (A.4)

If EB(δ
2) decays exponentially or faster with depth, i.e., e−γd for some γ > 0, we can take

ϵ = e−γd/3 to ensure that EB(δ) decays exponentially as e−γd/3. To show that the second moment

of TVD must indeed decay exponentially with d, we calculate the expectation of A.1:

EB[2δ(D,U)2] ≤ n log 2− EB(H2(D)),= n log 2 + EB

[
log

(∑
x

p2x

)]
,≤ n log 2 + logEB

[∑
x

p2x

]
.

In the last inequality, we have used Jensen’s inequality for concave functions EB[f(X)] ≤

f(EB[X]). The term inside the expectation function,
∑

x p
2
x, is the collision probability. From

1, we have that the expectation of the collision probability is upper-bounded by 2−n exp[n
3
e−γpd],

where γ = 8q(1− q)/3. With this, we have

EB[2δ(D,U)2] ≤ n log 2 + log
[
2−n exp

[n
3
e−γpd

]]
=
n

3
e−γpd.
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Thus, we have that the second moment of the TVD decays exponentially in circuit depth. The

right hand side of A.4 is minimized at ϵ = (n/3)1/3 e−γpd/3. This yields the desired bound

EB(δ) ≤
32/3

2
n1/3e−γpd/3.

To complete the proof, it remains to prove the following lemma:

Lemma 1. For a noisy Haar random circuit on any parallel circuit architecture with heralded

dephasing noise at rate p with the dephasing parameter q, we have the upper bound on the

collision probability Z

EB[Z] = EB

[∑
x

p2x

]
≤ 2−n exp[

n

3
e−γpd], (A.5)

where γ = 8q(1− q)/3.

To prove this bound, we make use of the statistical mechanics mapping method developed

by [131].

A.2 Proof: Collision Probability for Random Circuits with Heralded Dephasing

Here, we introduce the concepts that go into proving Lemma 1.

If X is a random variable in {0, 1}n denoting the measurement outcome of n qubits after a
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unitary U ∼ B, the collision probability of the random-circuit architecture is defined as

Z = EB

 ∑
x∈{0,1}n

Pr(X = x)2

 = EB

 ∑
x∈{0,1}n

pU(x)
2

 , (A.6)

where pU(x) is the probability that the measurement result is x. If there is at least one gate for

each qubit in a parallel circuit architecture with Haar-random gates, all measurement outcomes

are equally random and, thus, there is a symmetry over them.

Z = EB

 ∑
x∈{0,1}n

pU(x)
2

 = 2nEB
[
pU(0

n)2
]
, (A.7)

where 0n denotes the state |00 . . . 0⟩. Assuming that the input state is also 0n, the probability of

measuring 0n after the circuit is given by tr(|0n⟩ ⟨0n|U |0n⟩ ⟨0n|U †). To get the second moment

of the probability distribution, we consider two copies of the circuit acting on two copies of the

input state. Since the trace obeys tr(A⊗B) = tr(A) tr(B), we get

Z = 2nEB
[
pU(0)

2
]
= 2nEB tr[(|0n⟩ ⟨0n|)⊗2 U⊗2 (|0n⟩ ⟨0n|)⊗2 (U †)⊗2],

= 2n tr
[
(|0n⟩ ⟨0n|)⊗2 EB

[
U⊗2 (|0n⟩ ⟨0n|)⊗2 (U †)⊗2

]]
. (A.8)

For convenience, we denote the two-copy, Haar-averaged channel over k qubits as MUk
:

MUk
[ρ] = EB

[
Uk

⊗2ρ(Uk
†)⊗2

]
, (A.9)

where Uk is a unitary acting on k qubits. To study noisy evolution, we define a dephasing noise
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of strength q given by the noise channel

E [ρ] = (1− q)ρ+ qZρZ. (A.10)

Lemma 2. For a noisy Haar random circuit of depth d on any parallel circuit architecture with

heralded dephasing noise at rate p with the dephasing parameter q, we have the upper bound on

the expected collision probability

EB[Z] = EB

[∑
x

p2x

]
≤ 2−n exp[

n

3
e−γpd], (A.11)

where γ = 8q(1− q)/3.

Proof. It is convenient to separate out the average over random locations of the dephasing events

in the heralded dephasing model from the ensemble B (an ensemble of both gates and noise

locations). We denote the ensemble of gates for a fixed set of locations L by BL and averages over

the noise locations by EL. We will show in Lemma 6 that given a random circuit ensemble BL on

a parallel circuit architecture with heralded dephasing noise and a fixed set of locations L, there

exists another circuit ensemble B′
L, with the gates drawn at random independently ofL, composed

solely of single-qubit gates and SWAP gates with an average collision probability EB′
L
[Z] greater

than or equal to the average collision probability of the original circuit EBL
[Z]. Note, for every

circuit in the new ensemble C ∈ B′
L, we can append a network of SWAP gates to C to return

all qubits to their original positions. Adding these SWAP gates does not change the collision

probability, since these gates only permute the support of the final probability distribution. We

further break up the ensemble B′
L into an ensemble of single-qubit Haar random gates B′

1 and the
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random SWAP network B′
SWAP. The distribution of gates in the ensemble B′

1 ∪ B′
SWAP is defined

by taking every two-qubit gate for the circuits in BL and replacing it with a SWAP gate or identity

gate with equal probability on those sites, followed by Haar-random single-site gates on the two

qubits. The joint distribution over SWAP networks and single-site gates is also conditionally

independent, allowing us to commute averages over single-site gates, SWAP networks, and noise

locations with each other.

Fixing a realization of SWAP gates and noise locations, we can then follow the path of

a qubit, count the total number of dephasing events in that path and merge consecutive single-

qubit gates without intervening noise locations. Since we are working with a parallel circuit

architecture, there is never a case of consecutive dephasing events (there is always a single-qubit

gate after each dephasing event). Let ti be the number of dephasing events on the path of qubit i.

For the heralded dephasing model, we can write the random variable ti as a sum

ti =
d∑

j=1

xij, (A.12)

where xij ∈ {0, 1} are independent, identically distributed Bernoulli random variables for each

i and j with parameter p. We have EL[xij] = p and PrL[xij = a, xkl = b] = PrL[xij =

a] PrL[xkl = b] for every ij ̸= kl.

After averaging over B′
1 using Lemma 5, the final two-copy circuit-averaged state is given

by

n⊗
i=1

MU1 ◦ (E ◦MU1) · · · ◦ (E ◦MU1)︸ ︷︷ ︸
ti

 [|0n⟩ ⟨0n|⊗2] =
n⊗

i=1

[(
1

12
(3− βti)

)
I +

1

6
βtiS

]
,

(A.13)
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where β = 1−8q(1− q)/3, and I and S are the 4×4 identity and SWAP operators, respectively.

Using A.8 and noting that tr(I |0⟩ ⟨0|⊗2) = tr(S |0⟩ ⟨0|⊗2) = 1, the average collision probability

for a fixed SWAP network and set of noise locations equals

EB′
1
[Z] = 2n

n∏
i=1

[
1

12
(3− βti) +

1

6
βti

]
= 2n

n∏
i=1

1

22

[
1 +

1

3
βti

]
=

1

2n

n∏
i=1

[
1 +

1

3
βti

]
. (A.14)

We now average over the noise locations using our assumption that the noise locations are

uncorrelated with each other and the realization of the SWAP network.

ELEB′
1
[Z] = E ti

1≤i≤n

[
EB′

1
[Z]
]
=

1

2n

n∏
i=1

[
1 + Eti

[
1

3
βti

]]
=

1

2n

n∏
i=1

[
1 +

1

3

d∏
j=1

Exij
[βxij ]

]
.

(A.15)

Using the fact that xij are Bernoulli random variables, we can compute the expectation Exij
[βxij ]

as

Exij
[βxij ] = pβ1 + (1− p)β0 = pβ + (1− p) = 1− p(1− β) = 1− pγ, (A.16)

where we have defined γ = 1 − β. Inserting this expectation in (A.15) and using 6, we get a

bound on the average collision probability

EB[Z] ≤ EB′ [Z] = EB′
SWAP

ELEB1′
[Z] =

1

2n

[
1 +

1

3
(1− pγ)d

]n
≤ 1

2n

[
1+

1

3
e−γpd

]n
≤ 2−n exp

[
n

3
e−γpd

]
.

(A.17)

Here, we used EB[Z] = ELEBL
[Z] ≤ EB′ [Z] := ELEB′

L
[Z] in applying 6 in the first inequality.

We also used the fact that, for any x > 0, 1 − x ≤ e−x in the second inequality and 1 + x ≤ ex

in the third inequality.
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Lemma 5. Consider a random circuit consisting of k dephasing error channels of strength q

sandwiched between k + 1 single-qubit Haar-random gates (denoted by U1). When this circuit

acts on two copies of a single-qubit, the circuit-averaged state is given by

MU1 ◦ (E ◦MU1) · · · ◦ (E ◦MU1)︸ ︷︷ ︸
k

[|0⟩ ⟨0|⊗2] =
1

12
(3− βk)I +

1

6
βkS, (A.18)

where β = 1− 8
3
q(1− q), and I and S are the 4× 4 identity and SWAP operators, respectively.

Proof. We first make an observation that MU1 [ρ] = MU1 ◦MU1 [ρ], that is, one can split a Haar-

random gate into two Haar-random gates without changing the statistics. In the circuit described

above, leaving the two terminal unitary gates intact, we split all inner gates into two. This lets us

treat the circuit as a repeating sequence of n units of the composite channel M̃U1,E = MU1 ◦ E ◦

MU1 .

From Ref. [131], we know the following:

MU1 [σ] =
1

3

(
tr(σ)− 2−1 tr(σS)

)
I +

1

3

(
tr(σS)− 2−1 tr(σ)

)
S. (A.19)
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If we follow this gate by a dephasing error channel, we get

E ◦MU1 [σ] =
1

3

(
tr(σ)− 2−1 tr(σS)

)
E [I] + 1

3

(
tr(σS)− 2−1 tr(σ)

)
E [S],

=
1

3

(
tr(σ)− 2−1 tr(σS)

)
I

+
1

3

(
tr(σS)− 2−1 tr(σ)

)
((1− q)2S + 2q(1− q)(ZI)S(ZI) + q2(ZZ)S(ZZ)),

=
1

3

(
tr(σ)− 2−1 tr(σS)

)
I

+
1

3

(
tr(σS)− 2−1 tr(σ)

) (
((1− q)2 + q2)S + 2q(1− q)(ZI)S(ZI)

)
.

We follow this channel by another single-qubit random gate to finish the composite block. First

we observe that MU1 [I] = I and MU1 [S] = S. Similarly using (A.19) together with the fact that

tr[S] = 2, tr[(IZ)S(IZ)S] = 0,

MU1 [(IZ)S(IZ)] =
2

3
I − 1

3
S.
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The composite channel thus gives

M̃U1,E [σ] =
1

3

(
tr(σ)− 2−1 tr(σS)

)
MU1 [I]+ (A.20)

1

3

(
tr(σS)− 2−1 tr(σ)

) (
((1− q)2 + q2)MU1 [S] + 2q(1− q)MU1 [(ZI)S(ZI)]

)
,

=
1

3

(
tr(σ)− 2−1 tr(σS)

)
I (A.21)

+
1

3

(
tr(σS)− 2−1 tr(σ)

)(
((1− q)2 + q2)S + 2q(1− q)

(
2

3
I − 1

3
S

))
,

=
1

3

tr(σ)− 2−1 tr(σS) +
4

3
q(1− q)︸ ︷︷ ︸

α

(
tr(σS)− 2−1 tr(σ)

) I+ (A.22)

1

3

(
tr(σS)− 2−1 tr(σ)

)(
1− 8

3
q(1− q)

)
︸ ︷︷ ︸

β

S,

=
1

3

(
tr(σ)− 2−1 tr(σS) + α

(
tr(σS)− 2−1 tr(σ)

))
I +

1

3

(
tr(σS)− 2−1 tr(σ)

)
βS.

(A.23)

The composite sum returns a state of the form aI + bS. Acting on this state with other composite

blocks only changes the coefficients a and b. In fact, we can work out exactly how a and b change

after each block. Knowing that tr(aI + bS) = 4a+ 2b and tr(S(aI + bS)) = 2a+ 4b, we get

M̃U1,E [aI + bS] =
1

3
(3a+ α(3b)) I +

1

3
(3b)βS = (a+ αb)I + (βb)S. (A.24)

The first composite acts on the state |0⟩ ⟨0|⊗2. Knowing that tr[|0⟩ ⟨0|⊗2] = tr(S |0⟩ ⟨0|⊗2) = 1,
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and using A.23,

M̃U1,E [|0⟩ ⟨0|⊗2] =
1

3

(
1− 2−1 + α

(
1− 2−1

))
I +

1

3

(
1− 2−1

)
βS =

1

6
(1 + α) I +

1

6
βS.

(A.25)

We take this state and apply another k−1 composite channels (since there are k in total). We can

calculate the final state recursively using A.24:

M̃U1,E◦· · ·◦M̃U1,E [|0⟩ ⟨0|⊗2] =
1

6

[
1 + α + α

k−1∑
i=1

βi

]
I+

1

6
βkS =

1

12
(3−βk)I+

1

6
βkS. (A.26)

This proves the lemma.

It now remains to prove the following lemma, which lets us put a bound on the average

collision probability in Lemma 1.

Lemma 6. Consider a random quantum circuit ensemble on a parallel architecture, BL, with

Haar-random two-qubit gates and heralded dephasing noise with a fixed set of noise locations

L. There is a procedure to obtain another circuit ensemble B′
L with gates drawn randomly

independently of L, composed solely of noisy single-qubit channels and SWAP gates, with an

equal or higher average collision probability, i.e., EBL
[Z] ≤ EB′

L
[Z].

Proof. Note that without loss of generality, we can assume that every two-qubit Haar-random

gate is preceded by Haar-random single-qubit gates on both incoming lines, since the two situations

correspond to the same ensemble. When the noise is heralded, the circuit consists of three kinds

of two-qubit gates:

1. Type A, where the two-qubit gate is noiseless.
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2. Type B, where one of the two outgoing legs of the gate undergoes dephasing, followed by

a single-qubit random gate.

3. Type C, where both outgoing legs undergo dephasing followed by single-qubit gates on

both legs.

We will analyze each of these types separately and start with a brief review of the methods

of Ref. [131] for noiseless random circuits. In Ref. [131], it was shown that taking a two copies

of an n-qubit state |0n⟩ ⟨0n|⊗2, acted on by a Haar random circuit U ⊗ U , and averaged over the

unitaries leads to a density matrix that can be represented by a linear combination of length-n

configurations in {I, S}n where I and S are the 4 × 4 identity and SWAP matrices. Any two-

qubit unitary gate takes a linear combination to another linear combination. More precisely, for

γ⃗ ∈ {I, S}n, a two-qubit unitary channel MU2 , acting on qubits i and j, transforms it to

MU2 [γ⃗] =MU2

[
n⊗

a=1

γa

]
=

∑
ν⃗∈{I,S}n

M γ⃗,ν⃗
U2

n⊗
b=1

νb =:
∑

ν⃗∈{I,S}

M γ⃗,ν⃗
U2
ν⃗, (A.27)

where M γ⃗,ν⃗
U2

are matrix elements determined by qubit locations i, j

M γ⃗,ν⃗
U2

=



1 if γi = γj and γ⃗ = ν⃗,

2/5 if γi ̸= γj and νi = νj and γk = νk ∀k ∈ [n]/[i, j],

0 otherwise.

(A.28)

Therefore, a state can be represented as a linear combination of trajectories of the configuration

strings, with each trajectory weighted according to A.28. Furthermore, since tr(γ⃗ |0n⟩ ⟨0n|⊗2) =

1 for each γ⃗ ∈ {I, S}n, the collision probability can be, similarly, written as a sum over weighted
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trajectories. More precisely, the average collision probability of a circuit with s gates,

EBL
[Zs] =

1

3n

∑
γ∈{I,S}n×s

s−1∏
t=1

M
γ⃗t,γ⃗t+1

U2
=

1

3n

∑
γ∈{I,S}n×s

s−1∏
t=1

wt(γ). (A.29)

In the above, the factor 1/3n comes from the fact that after the first layer of Haar-random single-

qubit gates, the Haar-averaged two-copy state is given by 1
6n

∑
γ⃗∈{I,S}n γ⃗, the uniform mixture of

all configurations in {I, S}n. Also, the weight wt(γ) of a configuration is defined as the product

of the matrix elements M γ⃗t,γ⃗t+1

U2
.

Now, we modify this construction to account for noise. We add one more gate of Type A,

B or C to this circuit. Since all three types are two-qubit gates, we let [i, j] denote the qubits the

gate acts on. We can isolate the qubits [i, j] from the decomposition in A.29 as follows:

EBL
[Zs] =

1

3n

 ∑
γ∈{I,S}ns

γ⃗s
ij=II

wt(γ) +
∑

γ∈{I,S}ns

γ⃗s
ij=IS

wt(γ) +
∑

γ∈{I,S}ns)

γ⃗s
ij=SI

wt(γ) +
∑

γ∈{I,S}ns

γ⃗s
ij=SS

wt(γ)

 . (A.30)

Figure A.1: Circuit of Type A.
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Type A: When we add a noiseless two-qubit gate, the bit-strings transform according to A.28.

Zooming on qubits i and j, the trajectories evolve as follows:

MU2 [II] = II MU2 [SS] = SS MU2 [IS, SI] =
2

5
(II + SS). (A.31)

The trajectories for which γ⃗sij ∈ {II, SS} have their weights unchanged. The trajectories for

which γ⃗sij ∈ {IS, SI} have their weights changed by 4/5 (the trajectory splits two ways, each

weighted by 2/5).

EBL
[Zs+1] =

1

3n

 ∑
γ∈{I,S}n(s+1)

γ⃗s
ij=II

wt(γ) +
4

5

∑
γ∈{I,S}n(s+1)

γ⃗s
ij=IS

wt(γ) +
4

5

∑
γ∈{I,S}n(s+1)

γ⃗s
ij=SI

wt(γ) +
∑

γ∈{I,S}n(s+1)

γ⃗s
ij=SS

wt(γ)

 .

(A.32)

If, instead, we consider a modified random circuit where the two-qubit gate consists of a SWAP

gate or identity with probability 1/2 followed by Haar random single-qubit gates, all the trajectories

retain their original weights since the collision probability is invariant under a SWAP gate and

MU1 [I] = I and MU1 [S] = S. Denoting the locally modified circuit ensemble with the same set

of noise locations by B′
L, we have, in both cases,

EB′
L
[Zs+1] = EBL

[Zs] =⇒ EB′
L
[Zs+1] > EBL

[Zs+1]. (A.33)

Figure A.2: Circuit of Type B.
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Type B: The gate of Type B has a noiseless two-qubit gate followed by dephasing on one of the

outgoing legs. The dephasing is also followed by a single-qubit random gate. To simplify things,

we first understand the effect of the channel MU1 ⊗ E on I and S. Of course, MU1 ◦ E [I] = I ,

since neither the error nor the random gate has any effect on the identity matrix. However, for S,

we get

M
(i)
U1

◦ E (i)[S] =MU1 [(1− q)2S + q(1− q)(IZ)S(IZ) + q(1− q)(ZI)S(ZI) + q2S], (A.34)

= αI + βS, (A.35)

with α = 4q(1 − q)/3, β = 1 − 8q(1 − q)/3. Without losing generality, we assume that the

dephasing happens on gate i, and the dephasing channel is denoted by E . We now tabulate the

effect of this composite channel:

M
(i)
U1

◦ E (i) ◦MU2 [II] = II, (A.36)

M
(i)
U1

◦ E (i) ◦MU2 [SS] = αIS + βSS, (A.37)

M
(i)
U1

◦ E (i) ◦MU2 [IS, SI] =M
(i)
U1

[
2

5
(II + SS)

]
=

2

5
(II + αIS + βSS). (A.38)

The average collision probability of the new circuit is given by

EBL
[Zs+1] =

1

3n

 ∑
γ⃗s
ij=II

wt(γ) +
2

5
(1 + α+ β)

 ∑
γ⃗s
ij=IS

wt(γ) +
∑

γ⃗s
ij=SI

wt(γ)

+ (α+ β)
∑

γ⃗s
ij=SS

wt(γ)

 .

(A.39)
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Using the same locally modified circuit ensemble as above, we obtain

M
(i)
U1

◦ E (i) ◦MU2 →
1

2
M

(i)
U1

◦ E (i) ◦M (i)
U1

◦M (j)
U1

+
1

2
M

(i)
U1

◦ E (i) ◦M (i)
U1

◦M (j)
U1

◦ SWAP (A.40)

=
1

2
M

(i)
U1

◦ E (i) ◦M (i)
U1

◦M (j)
U1

+
1

2
M

(j)
U1

◦ E (j) ◦M (j)
U1

◦M (i)
U1
. (A.41)

Under this new composite channel, the bit-strings evolve as follows:

II → II, SS → βSS+
α

2
(IS+SI), IS → 1

2
(IS+αII+βIS), SI → 1

2
(αII+βSI+SI).

(A.42)

The collision probability of the modified circuit is given by

EB′
L
[Zs] =

1

3n

 ∑
γ⃗s
ij=II

wt(γ) +
1

2
(1 + α + β)

 ∑
γ⃗s
ij=IS

wt(γ) +
∑

γ⃗s
ij=SI

wt(γ)

+ (α + β)
∑

γ⃗s
ij=SS

wt(γ)

 .
(A.43)

Since 2/5 < 1/2, we have Z ′
s+1 > Zs+1.

Figure A.3: Circuit of Type C.

Type C: These gates have dephasing noise on both legs. The noise is followed by single-qubit

gates for both legs. The combined channel has the form M
(j)
U1

◦ E (j) ◦M (i)
U1

◦ E (i) ◦MU2 . The
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bit-strings evolve as follows:

II → II, SS → α2II + αβIS + αβSI + β2SS (A.44)

IS → 2

5
((1 + α2)II + αβIS + αβSI + β2SS). (A.45)

The average collision probability is thus given by

EBL
[Zs+1] =

1

3n

 ∑
γ⃗s
ij=II

wt(γ) +
2

5

(
1 + (α+ β)2

) ∑
γ⃗s
ij=IS

wt(γ) +
∑

γ⃗s
ij=SI

wt(γ)

+ (α+ β)2
∑

γ⃗s
ij=SS

wt(γ)

 .

(A.46)

If instead we replace the two-qubit gate with two single-qubit Haar random gates preceded

by a SWAP gate with probability 1/2 (as shown in the diagram above), we get channels of the

form M
(j)
U1

◦ E (j) ◦ E (i) ◦M (j)
U1

◦ E (i) ◦M (i)
U1

◦ 1
2
(SWAP + I), which, up to the SWAP gate, is same

as the composite channel in Lemma 5 applied to both qubits. The states evolve as

II → II, SS → α2II + αβIS + αβSI + β2SS

IS → αII +
β

2
(IS + SI), SI → αII +

β

2
(SI + IS).

The collision probability of the modified circuit is thus

EB′
L
[Zs+1] =

1

3n

 ∑
γ⃗s
ij=II

wt(γ) + (α + β)

 ∑
γ⃗s
ij=IS

wt(γ) +
∑

γ⃗s
ij=SI

wt(γ)

+ (α + β)2
∑

γ⃗s
ij=SS

wt(γ)

 .
(A.47)

Since (α+β) = 1+4q(1−q)/3, α+β ∈ [1, 4/3] ⊂ (1
2
, 2), we have that (2/5) (1 + (α + β)2) <

(α + β), and therefore Z ′
s+1 > Zs.

Starting from the input state, we can use the replacement procedure discussed above to
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iteratively define a new circuit ensemble B′
L with the gates drawn at random independently of L,

composed solely of single-qubit gates and SWAP gates, that has an equal or higher gate-averaged

collision probability. This concludes the proof of the lemma.
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Chapter B: Supplementary Material: Measurement-Induced Purification Phase

Transition

B.1 Measurement Protocol

In our circuit ensemble, each gate after the scrambling layer is followed by a probabilistic

measurement. Given the constraints of the hardware, we choose a measurement strategy that

reduces the number of measurements. In addition, the ensemble generated with our measurement

strategy scales to system sizes that are beyond the reach of available hardware and can only be

studied with numerical simulations.

We maintain a list M which is initialized to all system qubits in the beginning of the circuit.

After each gate, we measure one of the qubits involved in the gate with probability p. Having

decided to perform a measurement after a XX gate, we randomly choose the qubit to measure

and the basis of measurement. If both qubits participating in the XX gate are in M, we randomly

select one with probability half and measure it in X basis with probability px and in Z basis with

probability 1 − px. If only one of the qubits is in M, we measure that qubit (in the X basis

with probability px and in the Z basis with probability (1 − px). If neither qubit is in M, we

do not measure any. Measurement outcomes in Clifford circuits are deterministic or are equally

likely to be zero or one. In the absence of noise, measuring a qubit with a deterministic outcome
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has no effect on the purification of the reference. As a result, we only measure qubits with non-

deterministic outcomes. Additionally, after each physically performed measurement, we remove

the measured qubit from M. Once |M| = L − 4, we reinitialize the list with all the qubits in

the system. With a low measurement probability, p = 0.15, used in our experiment the number

of measurements in the circuits investigated are less than 4, and thus the the list M need not be

reinitialized. This ensures that no system qubit in the experiment is measured more than once.

B.2 Scrambling Unitary

A scrambling unitary, US , is applied after the system is entangled with the reference, before

the random time evolution begins. The scrambling unitary consists of 4 layers: odd-numbered

layers are composed of single-qubit operations on each qubit and even-numbered layers are

composed of fully entangling XX(π/4) gates on L/2 random qubit-pairs.

B.3 Raw Data and Thresholding

Data presented in the main text Fig. 2.4A is presented after binning via a threshold. Fig. B.1

shows histograms of the outcomes for all circuits with each entropy averaged over the outcome of

1000 shots per circuit. Furthermore, Fig. B.2 shows the average classical entropy over all circuits

for each system size and px value. These average are clearly much higher than simulation.

The primary reason for the discrepancy between the simulations and the experimental

data is that the simulations do not include noise. When including realistic noise sources in the

simulations (see Appendix B.6), such as dephasing or gate amplitude errors, we find that the

entropy outcomes are pushed to higher values. Nevertheless, we see in the data for L=4 and L =
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Figure B.1: All raw outcomes of SC in study of phases (main text Fig. 2.4). The legend indicates
the simulated expected outcome for that circuit. The bin size is .033 and SC = .93 (dashed line)
is used as a threshold for all the data.

A B

Figure B.2: (A) Raw average of all circuit outcomes without thresholding applied. (B)
Thresholded data with extended simulations showing expected behavior up to L=32

6 that there is a clear separation observed in the entropy values for circuits which are mixed or

pure (Fig. B.6). This separation is also evident in Fig. 2.1B, with the clear jump from mixed to

pure in the evolution of the circuit.

We can use these properties of the circuits to mitigate noise effects. In the final data

processing, we assume a Gaussian distribution of expected SC = 0 circuit outcomes and SC = 1

circuit outcomes and find their intersection, which is used as a threshold at SC = 0.93. Circuit

outcomes below the threshold are counted as 0 and outcomes above are counted as 1. We find

three thresholded circuit outcomes disagree with the simulated expected value for that circuit,
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for an error of 3/699 circuits for the L = 8 case. Fig. B.2 shows the result after all processing

alongside simulations of the exact circuits for sizes L = (4, 6, 8) and representative samples for

sizes L = (16, 32). The same threshold is used for all system sizes.

B.4 Feedback Circuit

In order to reduce the number of circuits needed to evaluate SQ, we append a feedback

circuit to the end of each circuit that is expected to purify. The feedback uses single-qubit

rotations and a circuit of CNOT gates between the reference and measurement ancillae to disentangle

it from the measurement ancillae (Methods). With this addition, we replace measurement of SQ

with the classical entropy SC , and eliminate the need to measure in the x-basis and y-basis.

The feedback circuit is added at the end to disentangle the reference from the ancillae

qubits. In the pure phase, the reference qubit purifies in one of x, y or z bases and its state (0 or

1) depends on the projections induced upon the measurement ancillae. The basis of purification

can be anticipated with classical simulation of the Clifford circuit. A single-qubit rotation is

performed on the reference qubit to ensure that it returns to the z-basis following purification.

Since we do not have access to the measurement outcome until the very end of the circuit, we

construct a logic circuit, consisting of CNOT gates, to ensure that the reference qubit purifies to

the zero state. This is done by classically anticipating the entanglement between measurement

ancillae and reference qubit, then generating a sequence of CNOT gates to disentangle the reference.

For example, in the batch L = 4, px = 0, circuit #45 purifies the reference in the x-basis.

There are three measurements. The outcomes of the measurement ancillae and the reference

qubit are related by the truth table in Fig. B.4.
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Reference H

Measurement 1

Measurement 2

Measurement 3

•

X •

Figure B.3: Representative Example of a Feedback Circuit #45

Figure B.4: Truth table for outcomes of measurement ancillae and reference qubit for the circuit
in Fig. B.3.

B.5 Critical Scaling Theory

Our method for locating the critical point in these all-to-all models is illustrated in Fig. B.5.

For px ∼ pxc, we can run the dynamics out to a time where ⟨SQ(t)⟩ exhibits a simple exponential

decay ∝ e−t/τ . We then use least squares fitting to find the exponential decay rate τ for each

value of px and L. Deep in the mixed phase, τ diverges exponentially with L [48], while in the

pure phase τ approaches a constant independent of system size. At the critical point (p = pxc),

τ ∼ Lz, where z is the dynamical critical exponent. Thus, we can estimate pxc by looking for

the value of px where τ(L) goes through an inflection point on a log-log plot. This behavior is

illustrated in Fig. B.5B for the model with p = 0.15 and |M| ≥ L − 4). Near px = 0.7 − 0.75,

we see that the decay rate τ grows as power law L1/5 over the given range of sizes. This value of
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z = 1/5 is consistent with the scaling one would expect from mean-field percolation. The close

ties between these phase transitions and percolation have been noted in past works. Notably, for

the Hartley entropy of Haar random circuits with measurements, there is an exact mapping to a

percolation problem in the circuit geometry [45]. In the all-to-all setting considered here, this

mapping also predicts z = 1/5.

Using this estimate for z, we can accurately measure the critical point pxc and critical

exponent ν of the purification transition using the method illustrated in Fig. 3B. We hypothesize

a scaling form for τ = Lzf [(px − pxc)L
z/ν ], which predicts that a crossing will appear with

increasing sizes when plotting τ/Lz vs px. We see consistent results with this scaling assumption

in Fig. 3B, from which we locate pxc = 0.72(1). A similar analysis was used for other values of

p ̸= 0.15 to extract the phase diagram in Fig. 2.3A. After locating pxc, we then collapse the data

as shown in the inset to Fig. 2.4B to obtain an estimate ν = 1/2, which is also consistent with

the predication from mean-field percolation. We leave a more detailed analysis of the critical

properties of this model for future work.

B.6 Noise Model

For the noisy simulation, we assume a simple model of XX-gate crosstalk, which is the

dominant error mechanism in this work. The crosstalk value is predicted from the measured

single-qubit Rabi crosstalk and the participation matrix for each gate [63]. With an increase of

50% above the predicted crosstalk value, we find that the noisy simulation is qualitatively similar

to the experimental results. Such an increase could easily be caused by a shift in the ion positions

relative to the individual-addressing beams, since the addressing crosstalk increases sharply for
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A B

Figure B.5: (A) Late time decay of ⟨SQ⟩ showing the exponential decay regime used to extract
the decay rate τ . Here, we took (p, px) = (0.15, 0.7) near the critical point. (B) Scaling of τ vs
L for different values of px at p = 0.15. We can estimate pxc and extract z by looking for the
inflection point in this family of curves and fitting the slope

small ion displacements from their optimal positions. A sample noisy simulation is shown in

Fig. B.6 for the case of L = 8 and px = 1. Any additional noise that decoheres the state of

the reference or system will further shift the distribution of outcome entropies upwards, towards

the mixed state. Other noise mechanisms that likely contribute to the shift observed in the data

include T2 dephasing, random over/under rotation errors caused by beam position fluctuations,

spurious entanglement of qubits with the axial modes of the ion chain, and SPAM errors.

B.7 Error Mitigation

An interesting aspect of noiseless stabilizer circuits is that measurements of Pauli operators

often have deterministic expectation values. We can use this fact to aid error mitigation of the

noisy implementation of these circuits. As we scale the system to larger sizes or higher circuit

depths, this type of error mitigation may become useful. Here, we describe those strategies and

show data from Fig. 1B without and with these error mitigation techniques (Fig. B.7A-B). For

81



0.0 0.2 0.4 0.6 0.8 1.0
SC

100

101

102

103
Nu

m
be

r o
f C

irc
ui
ts

Noisy Simulation

0.0 0.2 0.4 0.6 0.8 1.0
SC

Experiment

Figure B.6: Comparison of Noisy Simulations to Experiment Example results of a noisy
simulation for all circuits corresponding to L = 8 and px = 1 (left) compared to the experimental
outcomes (right). Bin size is .05. Dashed lines show the threshold of SC = 0.93

simplicity, all the data presented in the main text does not use these error mitigation techniques.

In the ideal implementation of the circuit, certain qubits have a deterministic output in x, y

or z basis at the end of a circuit. In addition, the qubits that do not participate in the purification

dynamics should ideally be in the zero state in the computational (z-basis) state. The basis and

the respective deterministic outcome can be anticipated with classical simulation. If a qubit is

deterministic along x or y basis, we append a single-qubit rotation to align that qubit along the z-

basis. In the error mitigation stage, we discard the records where the non-participating qubits read

a value other than zero or the deterministic qubits, which now should all be purified in the z-basis,

do not match the simulated expectation. Note, that this method relies on post-selection, so is not

directly scalable to the large-L limit. Eventually, active error correction, or similar techniques,

would need to be applied to design scalable protocols to probe the ideal circuit evolution in the

presence of noise.

To investigate the amount of data discarded by error-mitigation, we consider the quantity

n = ⟨(∑iNb,i) /N⟩b∈{x,y,z}, which measures the proportion of observations retained after error-
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C

Figure B.7: Error Mitigation on Purifying Circuit Time evolution of a sample L = 6 circuit,
conditioned on a particular choice of outcomes for the intermediate measurements, that purifies
without (A) and with (B) error mitigation applied. (C) Average proportion of shots retained, n,
for each time step

mitigation, aggregated by measurement outcomes and averaged across the three bases. Here Nb,i

is the number of observations for a tomography circuit used to measure the Pauli expectation

along basis b, that, conditioned on the measurement record reading i, have deterministic qubits

matching simulation, and N is the total shots for each circuit used in tomography, which in this

instance is 4000. These data were taken in a random order. In (Fig. B.7C), we plot the n for each

time-step of (Fig. B.7B). As expected, the proportion of erroneous observations increases with

larger circuit depths.
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Chapter C: Supplementary Material: Phase Transition in Magic

C.1 Basis-Minimized measurement entropy as a measure of magic

Here we show that the basis-minimized conditional entropy is a good measure of non-

stabilizerness. Consider a pure state |ψ⟩. Measuring this state in the computational basis produces

a classical bitstring x drawn from the Born probability distribution p(x) = | ⟨x|ψ⟩ |2. We can

instead choose to measure in a stabilizer basis different than the computational basis, by rotating

the state using a Clifford unitary. The basis-minimized measurement entropy is the entropy of

this probability distribution, minimized over bases:

z∗(ψ) = min
C

[
−
∑
x

| ⟨x|C†|ψ⟩ |2 log | ⟨x|C†|ψ⟩ |2
]

(C.1)

We would like to show that the the basis-minimized conditional entropy is i) zero for stabilizer

states, ii) non-increasing under Clifford unitaries and iii) sub-additive.

1. Faithfulness: If |ψ⟩ is a pure stabilizer state, there exists some C∗ such that |ψ⟩ = C∗ |0⟩.

We can therefore choose C = (C∗)† in (C.1) to get z∗ = 0.

2. Stability under Clifford Unitaries: Applying anther Clifford gate C ′ to some |ψ⟩ should

not change z∗. Suppose the Shannon entropy of |ψ⟩ is minimized for some C∗. Now the
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Clifford operation C ′ takes the state to |ψ′⟩ = C ′ |ψ⟩. The quantity z∗ is now

z∗(ψ′) = min
C

[
−
∑
x

| ⟨x|ψ′⟩ |2 log | ⟨x|ψ′⟩ |2
]

= min
C

[
−
∑
x

| ⟨x|C ′|ψ⟩ |2 log | ⟨x|(C ′)|ψ⟩ |2
] (C.2)

We can recover the original z∗(ψ) by taking C = C ′C∗. Therefore z∗ does not increase

under Clifford gates.

3. Subadditivity: Given a product state |ψ⟩ = |ϕ⟩ ⊗ |σ⟩, we have

z∗(|ψ⟩) = min
C

[
−
∑
x

| ⟨x|C|ϕ, σ⟩ |2 log | ⟨x|C|ϕ, σ⟩ |2
]

≤ min
C1⊗C2

[
−
∑
x

| ⟨x|C1 ⊗ C2|ϕ, σ⟩ |2 log | ⟨x|C1 ⊗ C2|ϕ, σ⟩ |2
]

= min
C1⊗C2

[
−
∑
x1,x2

| ⟨x1, x2|C1 ⊗ C2|ϕ, σ⟩ |2 log | ⟨x1, x2|C1 ⊗ C2|ϕ, σ⟩ |2
]

= min
C1

[
−
∑
x1

| ⟨x1|C1|ϕ⟩ |2 log | ⟨x1|C1|ϕ⟩ |2
]

+min
C2

[
−
∑
x2

| ⟨x2|C2|σ⟩ |2 log | ⟨x2|C2|σ⟩ |2
]

= z∗(|ϕ⟩) + z∗(|σ⟩)

(C.3)

Here, in the second step we confine the minimization to Clifford unitaries of the form

C1 ⊗ C2. In the fourth step, we use the independence of the probability distribution across

the two halves of the quantum state to decompose the Shannon entropy.
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C.2 Details on Circuit Execution

The circuits were produced by randomly sampling Clifford encoders. Each encoder has

depth d, where a unit of depth consists of a layer of N single-qubit gates and a layer of N/2

disjoint pairs of entangling gates. The single qubit gates are sampled from the set of 24 single-

qubit Clifford gates. The entangling gate is chosen to be the fixed-angle Mølmer-Sørensen

gate, MS(π/2). After selecting the gate sequence for each circuit, the encoder and decoder

are optimized separately. After optimization, the circuits are compiled natively to a gateset

comprising GPi, GPi2 and MS gates, as described in IonQ Documentation [92]. As a part of

execution, the circuits were further augmented with single-qubit gates to minimize noise, using a

firmware-level protocol described in [93].

A

B

Figure C.1: Distribution of Errors The distribution of error per syndrome for vanishing rate
codes (A) and constant rate codes (B). We observe that in both cases, with high probability,
the errors are uniformly distributed across syndromes, such that there are 2K unique errors per
syndrome. Colorbars give the number of qubits N .
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C.3 Analytical Estimate of Magic in the Vanishing Rate Code

In this section we estimate the magic our model at vanishing rate—that is, for a single

logical qubit. We first compute the action of the channel on that logical qubit; we find that

near the Clifford point, α = π/2, it is a unitary with probability 1/2. (Whether or not it is a

unitary depends on circuit and syndrome measurement outcome.) We then pass a stabilizer state

through the channel and compute the magic of the result. For ϵ = π/2 − α we find that the

magic resulting from a single circuit (C) and syndrome measurement outcome is M2;C = (nϵ)2,

where the integer n is determined by the weights of the errors corresponding to the measurement

outcome. Averaging across measurement outcomes this becomes E(M2) = (1/4)Nϵ2 forNϵ2 ≪

1, and E(M2) = f(Nϵ2) in general.

C.3.1 Action of the Channel on the Logical Space

C.3.1.1 The Clifford point

Consider the vanishing-rate (single qubit) code at the Clifford point α = π/2. Let the

Clifford encoder used in the circuit be C. The error unitaries can be expanded as

Uα = C†
N∏
j=1

eiασz/2C =
∏
j

[cosα/2 + i sinα/2 σ̃(j)
z ] = 2−N/2

∑
a∈BN

inaσ̃a, (C.4)

where σ̃(j)
z = C†σ

(j)
z C and a are length-N bitstrings, σa is

σ̃a =
N∏
j=1

(
σ̃(j)
z

)aj with
(
σ̃(j)
z

)0
= 1 (C.5)
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and na counts the number of error Paulis in σa, that is: na =
∑

j aj .

Below we rewrite σ̃ operators as simply σz, noting that these are now highly non-local

operations due to conjugation by C.

There are 2N such bitstrings, hence 2N such errors (including the trivial “error”, the identity

operator a = 0). When we measure all the N − 1 syndrome qubits, we see one of 2N−1

syndromes. (Since vanishing rate codes have 2 errors per syndrome with high probability, we

observe in Fig. C.1, we restrict this analysis to to codes in which each syndrome corresponds to

exactly 2 errors. In numerics this can be done by postselection. ) Say the measured syndrome is

s, so projective measurement onto that syndrome is Ps. Let us also denote the two errors giving

rise to s by σa
z and σb

z . If |ψ⟩ is the state after the encoding Clifford unitary, noise layer and the

conjgate of the Clifford encoder, the state after the syndrome measurement is then proportional

to

Ps

(
σa + inb−naσb

)
|ψ⟩ . (C.6)

The errors σa,b are Pauli strings. Let σa,b
1 be the Pauli in each Pauli string that acts on site

1 in the code basis. Then, the effective action of the error channel and syndrome measurement

on the logical qubit 1 is

K = σa
1 + imσb

1 , m = ζ(b)− ζ(a) + nb − na , (C.7)

where ζ(a) and ζ(b) account for the fact that σa and σb can put different phases on the states

corresponding to our syndrome s.1 This action K is (proportional to a) unitary if m is odd and
1Consider for example N = 2 with (non-commuting) errors σa = xx and σb = xy. These give the same
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[σa, σb] = 0, or m is even and {σa, σb} ≠ 0. Otherwise K is a projector. We expect this will

happen with probability 1/2. If we average over syndromes, the result is a channel

Ek=1(ρ) =
1

2
PρP +

1

2
UρU † (C.8)

where P is a projector onto some stabilizer state and U is a unitary deducible from the syndrome

and the coding circuit C.

C.3.1.2 Away from the Clifford point

Now move slightly away from the clifford point—take α ̸= π/2. The action on the logical

space (C.7) becomes

K ∝
[
σa

1 + im(tanα/2)nb−naσb
1

]
. (C.9)

Once again this is unitary for m odd and [σa, σb] = 0, or m even and {σa, σb} ≠ 0, and once

again these case arises with probability p ≈ 1
2
. In the other cases, K is (unitarily equivalent to) a

weak projection

K = P ′ ∼

1 0

0 1
2
[1− (tanα/2)nb−na ]

 ≈

1 0

0 nb−na

2
ϵ

 . (C.10)

C.3.2 Magic

To see how far away from the set of stabilizer states the error and measurement take us, let

us apply K to an initial stabilizer state |0⟩ on the logical qubit. (We can check |0⟩ without loss of

syndrome with different phases; the ζ term encodes those phases.
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generality, because other initial stabilizer states correspond to different elements of the ensemble

of encoding circuits.) If K acts as a weak projector, the result is again a stabilizer state.

But now suppose K acts as a unitary. If [σa, σb] = 0 then (up to a Clifford operator)

K |0⟩ = 1√
2
(1 + im) |0⟩ : (C.11)

(with m odd): K maps |0⟩ to another stabilizer state. If on the other hand {σa, σb} = 0, then up

to a Clifford unitary

K |0⟩ = 1√
2

[
|0⟩+ im(tanα/2)nb−na |1⟩

]
. (C.12)

For ϵ = π/2− α ≪ 1, taking m = 0, this is

K |0⟩ ≈ 1√
2
ei(nb−na)ϵσx

[
|0⟩+ |1⟩

]
. (C.13)

(If m ̸= 0 then σx becomes −σx or ±σy.) This is an (nb −na)ϵ rotation away from the stabilizer

state |0⟩ + |1⟩. The second Rényi entropy of magic is M2 = [nb − na]
2ϵ2. Fig. 3.2A shows the

magic for individual syndromes, together with this prediction. The average over measurement

outcomes and circuits is therefore ⟨M2⟩ = punitary × (1/2)ϵ2 ⟨nb − na⟩ = (1/4)Nϵ2.

For (nb − na)ϵ ̸≪ 1 the Taylor series approximation of C.13 still breaks down, but the

characteristic scale is still (nb − na)ϵ ∼
√
Nϵ , so one expects a scaling collapse when we plot

M2 against ϵ
√
N . Fig. 3.2B shows this scaling collapse.
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A B C

Figure C.2: Numerical Simulations for circuits with depth d = N/2. A: SSRE for vanishing-rate
code. Like with d = N circuits, this exhibits a

√
N scaling near the critical point at α = π/2. B:

Finite size scaling of the conditional entropy and its collapse (inset) computed numerically using
simulations at code rate r = 1/2. The error bars are omitted in the scaling collapse (inset) which
has critical parameters αc = 0.943(5) and ν = 1.41(6). These critical parameters are used in
the collapse of experimental data in Fig. 3.3E. C: Finite size scaling of the Rényi-approximation
of the conditional entropy and its collapse (inset) computed numerically using simulations at
code rate r = 1/2. The error bars are omitted in the scaling collapse (inset) which has critical
parameters αc = 1.102(3) and ν = 1.24(4). These critical parameters are used in the collapse of
experimental data in Fig. 3.3F.

C.4 Numerics for d = N/2 and d = 2N

While the numerical data presented in the main text (Fig. 3.1C , Fig. 3.2AB and Fig. 3.3ABCE)

used simulations of circuits of depth d = N , the experiments were performed with circuits

of depth d = N/2 to reduce the effects of noise. In Fig. C.2, we present numerics using

simulations with circuits of depth d = N/2 for quantities we experimentally probe, namely magic

in vanishing rate codes and conditional entropies in constant rate codes. The critical exponents

so obtained are used for scaling collapse for the experimental data presented in the maintext.

Note that the critical exponents of conditional entropies in Fig. C.2(B,C) are different than

the critical exponents for circuits with d = N . We expect the critical exponents to converge for

sufficiently deep encoding circuits – that is once the circuits start forming good error correcting
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Figure C.3: Numerical Simulations for circuits with depth d = 2N . A: Finite size scaling of the
conditional entropy and its collapse (inset) computed numerically using simulations at code rate
r = 1/2. The scaling collapse (inset) has critical parameters αc = 0.94(1) and ν = 2.9(4). B:
Finite size scaling of the Rényi-approximation of the conditional entropy and its collapse (inset)
computed numerically using simulations at code rate r = 1/2. The scaling collapse (inset) has
critical parameters αc = 1.093(1) and ν = 2.8(4).

codes. In Fig. C.3, we present numerics on d = 2N circuits, which results in critical exponents

close to d = N circuits. This suggests that the d = N circuits can adequately capture ensemble-

average properties.

C.5 Finite Size Scaling

To obtain the critical parameters of the scaling collapse, we assume that the quality of

interest f(α,N) is a function of error rate α and the code size N and can be expanded as

f(α,N) ≈ A+Bx+ Cx2 x = (α− αc)N
1/ν (C.14)
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Using data collected using numerical simulations yα,N , we minimize the following mean squared

error to obtain the estimate for the critical parameters αc and ν:

α̂c, ν̂ = argminαc,ν
min
A,B,C

∑
yα,N

(A+Bx+ Cx2 − yα,N)
2 with x = (α− αc)N

1/ν (C.15)

To obtain the error in the estimate of critical parameters, we introduce a new estimate α̂yα,N
c

obtained by removing the datapoint yα,N from the dataset (whose size we denote byD). Denoting

the number of datapoints by D, the variance in the estimate is taken to be

Var(αc) =
D − 1

D

∑
yα,N

(
αc − α̂yα,N

c

)2 where αc =
1

D

∑
yα,N

α̂yα,N
c , (C.16)

The error in ν is obtained similarly.

C.6 Bootstrap Estimate of Error

The bootstrap resampling technique is commonly used to estimate errorbars and confidence

intervals when straightforward error propagation is difficult. We use this procedure to estimate

the errorbars for experimental data. Given an sample of sizeN , we generate 1000 new samples of

size 20. This is done by uniformly picking elements from the original sample with replacement.

We take the standard deviation of the means of the new samples to be the boostrap error.

C.7 Basis-minimized Measurement Entropy and Decoder Breakdown

The basis-minimized measurement entropy is a direct probe of the breakdown of the optimal

Clifford decoder. To see why, imagine storing a classical bit string as a computational basis
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state, encoding it using the Clifford circuit of our model, subjecting it to error, performing the

conjugate of the the encoding circuit and error measurements, and attempting to recover it by

measuring the logical state in the computational basis. Without error, there will be exactly one

possible syndrome and one possible logical measurement outcome. With error, there may be

many: approximately Zs,comp. = expS[ps,comp] possible bitstrings correspond to syndrome s,

where ps,comp is the Born probability distribution of outcomes of measuring the logical state

corresponding to syndrome s in the computational basis, and S is the entropy. If Zs,comp is

not small, measuring in the computational basis may produce any of number of outcomes—not

just the initial stored bitstring.

If the noise is coherent, the net effect of the channel is to apply a unitary or weak projection

to the logical state. In this case measuring in a different basis may recover the information; the

basis change is known as a decoder. The best Clifford decoder gives Zs = minB expS[ps,B]

possible logical measurement outcomes, where now ps,B is the Born probability distribution

of outcomes of measuring the logical state corresponding to syndrome s in the basis given by

Clifford circuit B. Across syndromes, the typical number of possible logical measurements is

given by the average over syndromes

Zl,typical = exp ⟨lnZl;s⟩s = exp
〈
min
B
S[ps,B]

〉
s

(C.17)

When this quantity is materially greater than 1, i.e.

ε <
〈
min
B
S[ps,B]

〉
s

(C.18)
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for some small ε, the code has broken down and cannot even store classical information: it has

probability ∼ eε of irrecoverably muddling the input bitstring.

Storing classical information in this way is a weaker condition than storing quantum information.

Moreover, while a large measurement entropy indicates that classical information is irrecoverable,

small measurement entropy does not indicate that classical information is recoverable, because

syndrome measurement may project the logical state to a pure stabilizer state different from the

initial state.

The condition (C.18) implicitly allows the choice of measurement basis for the logical

space to vary with syndrome. An intelligent decoder will use the syndrome to pick an optimal

basis. A more primitive decoder will pick a fixed basis, and use that for all syndromes. Such a

decoder will fail if ε < minB ⟨S[ps,B]⟩s. The simplest decoder of all leaves the logical state in

the computational basis; it fails if ε < ⟨S[ps,B]⟩s. This is the quantity we treat in the main text.

C.8 Analytics on Rényi-approximation to Conditional Entropy

In this section, we use Schur-Weyl duality to analytically approximate the Rényi analogue

of the conditional entropy, S(2)
ℓ|s = S

(2)
ℓ,s − S

(2)
s , with S

(2)
X = − log

∑
x∈X p

2
x being the Rényi

entropy. As a reminder, ℓ is the distribution of measurements of the K logical qubits, and s is the

distribution of measurements of the N − K syndrome qubits, both in the computational basis.

We would like to compute the Rényi, analogue of the conditional entropy, averaged over Clifford

encoders.
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The circuit-averaged measure we are interested in is therefore,

ECS
(2)
ℓ|s = ECS

(2)
ℓ,s − ECS

(2)
s = −(EC logMN − EC logMN−K) with Mk =

∑
x∈{0,1}k

p2x

(C.19)

where we have introduced the notationMk to denote the collision probability over the distribution

of measurements of k qubits.

Crucially, if the circuit-to-circuit variability of the collision probability is negligible, we can

take the expectation over Clifford circuits inside the logarithm. We observe that such a typicality

assumption is indeed valid for sufficiently large system, but breaks down for small N and large

error-rate α → π/2. Here, we proceed with the typicality assumption to get

ECS
(2)
ℓ|s ≈ −(logECMN − logECMN−K) (C.20)

Consider the circuit-averaged collision probability in our model model where we begin

with qubits in a |0⟩⊗N state, followed by a Clifford unitary C, followed by a noise operation

N(α) =
∏N

i=1 exp(iσzα/2), followed by C†. We finally measure all N − K qubits at the end.
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distribution induced by measurements of N −K qubits out of a N qubit system |ψ⟩:

ECMN−K =
∑

x∈{0,1}N−K

p2x

=
∑

x∈{0,1}N−K

tr (I2K ⊗ |x⟩ ⟨x| |ψ⟩ ⟨ψ|)2

=
∑

x∈{0,1}N−K

EC tr
(
(I2K ⊗ |x⟩ ⟨x|)C†N(α)C |0⟩ ⟨0|C†N(α)†C

)2
=

∑
x∈{0,1}N−K

EC tr
(
(I2K ⊗ |x⟩ ⟨x|)⊗ (I2K ⊗ |x⟩ ⟨x|))

(
C†)⊗2

N(α)⊗2C⊗2 |0, 0⟩ ⟨0, 0|
(
C†)⊗2 (

N(α)†
)⊗2

C⊗2
)
,

where we define I2K to be the identity operator on K logical qubits. Substituting the basis-

decomposed representation of I2k =
∑

i∈{0,1}K |i⟩ ⟨i| above, we get

ECMN−K

=
∑

x∈{0,1}N−K

i,j∈{0,1}K

EC tr ((|i, x⟩ ⟨i, x|)⊗ (|j, x⟩ ⟨j, x|))

(
C†
)⊗2

N(α)⊗2C⊗2 |0N , 0N ⟩ ⟨0N , 0N |
(
C†
)⊗2 (

N(α)†
)⊗2

C⊗2

)
=

∑
x∈{0,1}N−K

i,j∈{0,1}K

EC

[
⟨(i, x), (j, x)|

(
C†
)⊗2

N (α)⊗2C⊗2 |0n, 0n⟩

⟨0N , 0N |
(
C†
)⊗2 (

N (α)†
)⊗2

C⊗2 |(i, x), (j, x)⟩
]

=
∑

x∈{0,1}N−K

i,j∈{0,1}K

EC ⟨(i, x), (j, x), 0n, 0n|
(
C†
)⊗4 (

N (α)⊗2 ⊗ (N (α)†)⊗2
)
C⊗4|0n, 0n, (i, x), (j, x)⟩

=
∑

x∈{0,1}N−K

i,j∈{0,1}K

⟨(i, x), (j, x), 0N , 0N |EC

[(
C†
)⊗4 (

N (α)⊗2 ⊗ (N (α)†)⊗2
)
C⊗4

]
|0N , 0N , (i, x), (j, x)⟩
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In the second line, we have used the relation tr(|x⟩ ⟨x|A |0⟩ ⟨0|B) = ⟨x|A|0⟩ ⟨0|B|x⟩. In the

third line, we combine the two inner products ⟨x|A|0⟩ ⟨0|B|x⟩ = ⟨x, 0|(A⊗B)|0, x⟩. In the

fourth line, we have moved the expectation inside the inner-product.

The Schur-Weyl duality gives a decomposition of a Clifford-averaged operator as a linear

sum of representation of a semigroup Σ4 which consists of 30 elements.

EC

[(
C†)⊗4 (

N(α)⊗2 ⊗ (N(α)†)⊗2
)
C⊗4

]
=
∑
T∈Σ4

aTR(T ) (C.21)

R(T ) is the representation for T ∈ Σ4 operator which acts on four copies of the N -qubit state.

Knowing all the representations R(T ), it is possible to calculate the coefficients aT for each

error-rate α. Substituting the decomposition into our expression for ECM , we get,

ECMN−K =
∑

x∈{0,1}N−K

i,j∈{0,1}K

∑
T∈Σ4

aT ⟨(i, x), (j, x), 0n, 0n|R(T )|0n, 0n, (i, x), (j, x)⟩ (C.22)

Note that R(T ) is a qubit-wise representation, that is R(T ) = r(T )n for some r(T ) acting on

four copies of a single-qubit state. We can then re-write the expression above, distributing the

representation to the ”syndrome” register and the ”logical qubit” register.

ECMN−K =
∑

x∈{0,1}N−K

i,j∈{0,1}K

∑
T∈Σ4

aT ⟨i, j, 0k, 0k|r(T )k|0k, 0k, i, j⟩ ⟨x, x, 0n, 0n|r(T )n−k|0n, 0n, x, x⟩

(C.23)

We would like to evaluate this expression. First, consider the case where x = 0. The second

inner-product resolves to 1 for all T when x = 0. The first inner product also resolves to 1 for

all T if i = j = 0. If i = 0 but j ̸= 0, a certain subset of Σ4 resolve to one (the rest evaluate

98



to zero). Let’s call this set S0,x). Similarly, if j = 0 and i ̸= 0, denote the subset that resolves

to 1 by Sx,0). Similarly, let the set Sx,x denote elements that evaluate to 1 whenever i = j ̸= 0.

Finally, let Sx,y be the set of elements that resolves ⟨i, j, 0, 0|r(T )K |0, 0, i, j⟩ to one whenenver

i ̸= 0, j ̸= 0, i ̸= j. The total contribution of the x = 0 term is given by

∑
T∈Σ4

aT

i=0,j=0

+
∑

i∈{0,1}K

∑
T∈Sx,0

aT︸ ︷︷ ︸
i ̸=0,j=0

+
∑

j∈{0,1}K
j ̸=0

∑
T∈S0,x

aT

︸ ︷︷ ︸
i=0,j ̸=0

+
∑

j∈{0,1}K
j ̸=0

∑
T∈Sx,x

aT

︸ ︷︷ ︸
i=j ̸=0

+
∑

i,j∈{0,1}K
i ̸=j

i ̸=0,j ̸=0

∑
T∈Sx,x

aT

=
∑
T∈Σ4

aT + (2K − 1)
∑

T∈Sx,0

aT + (2K − 1)
∑

T∈S0,K

aT

+ (2K − 1)
∑

T∈Sx,x

aT + (2K − 1)(2K − 2)
∑

T∈Sx,y

aT

(C.24)

Second, whenever x ̸= 0, the second inner product resolves to 1 only for the set Sx,x, otherwise it

evaluates to 0. The condition that T ∈ Sx,x also necessitates that i = j in the first inner product.

The set {x ̸= 0} has size 2N−K − 1. Therefore, the total contribution from the x ̸= 0 terms is

simply

(2N−K − 1)

2K
∑

T∈Sx,x

aT + 2K(2K − 1)
∑

T∈Sx,y

aT

 (C.25)

Adding (C.24) and (C.25), we get the expected MK .

Finally, we approximate the the circuit-averaged Renyi-analogue of the conditional entropy

using (C.20).

99



Chapter D: Supplementary Material: Error Mitigation Threshold in Random

Circuits

D.1 Mean-Field Theory in Brownian Circuits

Here, we develop a mean-field theory for the error mitigation threshold in the noisy-

mitigated Brownian circuit model.

The unitary dynamics in the Brownian quantum circuit model is described by a stochastic

Hamiltonian

H(t) =
∑

i<j,µ,ν

Jijµν(t)σ
µ
i σ

ν
j , (D.1)

where σµ
i are Pauli operators µ ∈ {X, Y, Z} for site i of N qubits and Jijµν(t) is a white-noise

correlated coupling with variance [128, 129]

⟨Jijµν(t)Jkℓγδ(t′)⟩ =
J

2N
δikδjℓδµγδνδδ(t− t′). (D.2)

The noise and antinoise are treated using a Lindblad master equation

ρ̇ = −i[H(t), ρ] +
∑
i

γi − γa
4

(
− 3ρ+

∑
µ

σµ
i ρσ

µ
i

)
, (D.3)

where γi is the local random noise rate and γa is the antinoise rate.
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To analyze the dynamics we derive an effective master equation that describes the replicated

system

Mk(ρ) = E[U⊗kρU †⊗k], (D.4)

where U = T e−i
∫ t
0 dt′H(t′) is the time evolution operator under the Hamiltonian. Expanding

to second order in an infinitesimal time-step, we arrive at the equation Mk(ρ) = eLkt for a

Lindbladian Lk given by

Lk(ρ) =
J

2N

∑
i ̸=j,µ,ν,r,s

σµ
irσ

ν
jrρσ

µ
isσ

ν
js −

1

2
{σµ

irσ
µ
isσ

ν
jrσ

ν
js, ρ}, (D.5)

where r and s are replica indices that run over 1, . . . , k. Thus, we arrive at a master equation

describing the average dynamics of the replicated density matrices

ρ̇ = Lk(ρ) +
∑
i

γi − γa
4

(
− 3kρ+

∑
r,µ

σµ
irρσ

µ
ir

)
. (D.6)

To develop the mean field theory, we study the two-replica problem k = 2. Similar to a

Haar random circuit, the Lindbladian L2 has two steady states I⊗N and S⊗N . As our mean-field

ansatz, we therefore use a product state of the form ρ =
⊗N

i=1 ρi. A further simplification arises

from the nature of the dynamics that has an effective SU(2) symmetry in the average-replica

dynamics. As a result, we can express

ρi = (1/4 + δi)|s⟩⟨s|+ (1/4− δi/3)PT , (D.7)

where δi is the deviation from an infinite temperature state, |s⟩ is a two-qubit singlet state across
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the two replicas, and PT is the projector onto the two-qubit triplet subspace of the two replicas.

The mean-field equations for δi take the form

δ̇i = −4
[
∆i +

J

N

∑
j ̸=i

(3 + 4δj)
]
δi, (D.8)

where ∆i = γi − γa. This equation has the two steady-state solutions δi = 0 and δi = −3/4,

corresponding to the I⊗N and S⊗N solutions, respectively. In the case of binary disorder, we

define two populations of sites A1/2 such that ∆i = γ1/2−γa, respectively, for i ∈ A1/2. We have

the zero-mean field condition p∆1 + (1− p)∆2 = 0. Defining G± = 1
N

(∑
i∈A2

δi ±
∑

i∈A1
δi

)
,

we arrive at simple closed set of equations in the large-N limit

Ġ+ = −4J(3 + 4G+)G+ +
4|∆1|

2(1− p)
[G− − (2p− 1)G+],

Ġ− = −4J(3 + 4G+)G− +
4|∆1|

2(1− p)
[G+ − (2p− 1)G−].

Setting p = 1/2, these equations reduce to the particularly simple form

Ġ+ = −4J(3 + 4G+)G+ + 4|∆1|G−, (D.9)

Ġ− = −4J(3 + 4G+)G− + 4|∆1|G+, (D.10)

For general p, the steady state solutions are G+ = 0,−(3− |∆1|/J)/4,−(3 + ∆2/J)/4. The all

identity solution G+ = G− = 0 only becomes an unstable fixed point for |∆1|/J ≥ 3, whereas

it remains stable for weaker disorder. As a result, the phase transition in the mean-field theory

occurs at the disorder strength |∆1| = 3J . Beyond this value of disorder, the mean-field steady-
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state solution flows to an unphysical state; however, for weaker disorder, the physical mean-field

solution remains stable.

D.2 Statistical Mechanics Mapping Formalism

Here, we review the statistical mechanics for the model with noise and antinoise, generalizing

the mappings studied in Ref. [51,125,130–132]. In this paper, we focus our attention to calculating

second-moment quantities of a quantum state, which includes measures like fidelity, collision

probability, and linear cross entropy. The circuit-averaged calculations of such quantities lends

itself to a statistical mechanical mapping to an Ising spin model.

Consider a second moment measure M , averaged over circuits from ensemble U . For a

state a state ρC of dimension 22n × 22n, generated using a circuit C from an ensemble U , a

circuit-averaged second moment measure M for can be written as a two-copy expectation of a

linear operator OM of dimension 24n × 24n.

EC∈U [M [ρC ]] = EC∈U [tr (OMρC ⊗ ρC)] = tr (OMEC∈U [ρC ⊗ ρC ]) (D.11)

The circuit-averaged two-copy state EC∈U [ρC ⊗ ρC ], therefore, enables us to calculated second-

moment measures.

We consider circuit models that can be decomposed into a series of elementary two-qubit

gates (noisy or noiseless), each drawn independently from the two-qubit Haar ensemble U2. The

action of the circuit map on two-copies of an initial input state is, thus, given by

ρ⊗2
C = Cs ◦ Cs−1 ◦ · · · ◦ C1[ρ0 ⊗ ρ0], (D.12)
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where the elementary single-qubit or two-qubit channels are indexed using integers [1, s]. For

noiseless gates, Ci[ρ0 ⊗ ρ0] = (Ci ⊗ Ci)ρ(C
†
i ⊗ C†

i ). We can model a noisy circuit by adding

error channel E after each noiseless gate:

ρ⊗2
C = Es ◦ Cs−1 ◦ Es−1Cs−1 ◦ · · · ◦ E1 ◦ C1[ρ0 ⊗ ρ0]. (D.13)

In general, the error channel may act on any set of qubits. For our purposes, we assume that the

error channel Ei acts on the qubit or the pair of qubits acted on by the noiseless gate Ci. Since

we draw each gate from the random one-qubit or two-qubit Haar ensemble, we can replace the

noiseless maps Ci[ρ] with the gate-averaged map Ci[σ] = EC∈U1/2
C[σ],

EC∈U [ρC ⊗ ρC ] = Es ◦ Cs−1 ◦ Es−1Cs−1 ◦ · · · ◦ E1 ◦ C1[ρ0 ⊗ ρ0]. (D.14)

The action of a random single-qubit gate C, on a state residing in the two-copy Hilbert space is

given by

C
(1)
[σ] =

tr((1− S/2)σ)

3
I +

tr((S − 1/2)σ)

3
S, (D.15)

where I and S are the 4 × 4 identity matrix and SWAP matrices, respectively. Similarly, the

action of a random two-qubit gate on two copies of a qubit-pair is given by

C
(2)
[σ] =

tr((1− SS/4)σ)

15
II +

tr((SS − 1/4)σ)

15
SS, (D.16)

where we use the shorthand SS = S ⊗ S and II = I ⊗ I . If two copies of a quantum state can

be represented by a string of ρ⊗2 ∈ {I, S}n, a single-qubit gate acts on qubit k by modifying the
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jth bit of the I − S string using the transition rules

I → I S → S, (D.17)

while leaving the rest of the bits in the string unchanged. Similarly, a two-qubit gate acting on

qubits j and k modifies the jth and kth bits according to the transition rules:

II → II IS, SI → 2

5
(II + SS) SS.→ SS. (D.18)

A noiseless random circuit, therefore, can be represented as a linear operator acting on the

reduced space spanned by basis elements in {I, S}n, with each noiseless single-qubit gate given

an identity map, and a two-qubit gate given by the transition matrix

T [C
(2)
] =



1 2/5 2/5 0

0 0 0 0

0 0 0 0

0 2/5 2/5 1


. (D.19)

We can similarly, find the transition matrices corresponding to the noise and antinoise

channel. The single-qubit depolarization channel with error rate q, given by the following map

E (1)(ρ) = (1− q)ρ+ q tr(ρ)
⊮
2
, (D.20)
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acts on two copies of a qubit such that

E [I] = E [I2 ⊗ I2] = E (1)[I2]⊗ E (1)[I2] = I2 ⊗ I2 = I, (D.21)

where I2 is a 2× 2 identity matrix. Similarly,

E [S]

= (E (1) ⊗ E)[I2 ⊗ I2 +X ⊗X + Y ⊗ Y + Z ⊗ Z]/2

=
[
I2 ⊗ I2 + (1− q)2 (X ⊗X + Y ⊗ Y + Z ⊗ Z)

]
/2

=
[
(1− (1− q)2)/2I + (1− q)2S

]

where we have used the fact that S = (I2 ⊗ I2 +X ⊗X + Y ⊗ Y + Z ⊗ Z)/2. The transition

matrix corresponding to a depolarizing noise, in the statistical mechanical picture is given by,

T [Eq] =

1 (1− (1− q)2)/2

0 (1− q)2

 (D.22)

Likewise, the antinoise channel of strength qa, given by

A(1)(ρ) =
1

1− qa

(
ρ− qa tr(ρ)

⊮
2

)
, (D.23)
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acts on two-copies of a qubit such that

A[I] = (A(1) ⊗A(1))[I2 ⊗ I2] = I, and (D.24)

A[S] =

[(
1− 1

(1− qa)2

)
I

2
+

1

(1− qa)2
S

]
, (D.25)

giving a transition matrix

T [Aqa ] =

1 (1− (1− qa)
−2) /2

0 (1− qa)
−2.

 (D.26)

Concatenating the transition matrix for the noise channel and the antinoise channel gives

the transition matrix for the composite channel. T [Aqa ◦ Eq] = T [Aqa ].T [Eq].

In our simulations, we start with an initial state drawn from the Haar ensemble or a random

product state. A Haar random state is proportional to I⊗n+S⊗n in the two-copy descrpition, while

a random product state is proportional to (I + S)⊗n. We can then use the statistical mechanical

formalism discussed above to evolve this state using the respective transition matrices for two-

qubit gates, noise and antinoise channels.

D.3 Local Probe

In Fig. 4.2, we presented different correlation metrics between two qubits in the system as

a probe of the phase transition. Here, we present an alternative metric based on the entropy of a

single qubit in the system.

Deep in the below threshold phase, this single-qubit entropy quantity saturates to one bit,
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while above threshold it diverges to large negative values due to the unphysical density matrix.

As a result, we expect a crossing to occur at the phase transition. Numerical simulations of the

two-replica stat-mech model for the all-to-all circuit model illustrate this behavior. In Fig. D.1(a),

we show the unscaled behavior of the entropy for different system sizes, which shows a crossing

near σc/q̄ = 0.65(5). Collapsing the data with this value of σc fixed, we estimate a critical

exponent µ = 1.0(2). In Fig. 4.2(c-d), we fixed µ = 1 in collapsing the mutual information data

based on these scaling results. This single-qubit quantity also has advantages for experimental

probes of the transition as it requires minimal tomographic overhead to estimate.
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Figure D.1: Local probe of the error mitigation threshold: (a) Entanglement entropy of a single-
site in the system for different system sizes. The larger sizes begin to develop a crossing,
indicative of the phase transition. (b) Scaling collapse for σc/q̄ = 0.65(5) and µ = 1.0(2).

D.4 Error Mitigated Fidelity Benchmarks

Here, we introduce mitigated fidelity benchmarks and demonstrate an exponential improvement

in a mitigated verison of the linear cross-entropy benchmark below the error mitigation threshold.
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The task of sampling from the output distribution of a noiseless random circuit is widely

conjectured to be intractable with classical computers [9,12,139,146]. This conjecture forms the

basis for claims of achievement of quantum computational advantage in recent experiments [138,

141, 142]. The experimental claims remain controversial, however, partly because of the effects

of noise on the output that render the signal classically simulatable at high depth [144, 147, 148].

To provide evidence that the output signal still remains close to the ideal case, one can estimate

fidelity benchmarks using the samples from the experiment. Verifying the claim of computational

advantage in the case of noisy circuits then reduces to the task of achieving a sufficiently high

“score” on the benchmark [143].

Recall that the linear XEB is given by the formula [12, 138]

FXEB = 2n
∑
x

pn(x)p0(x)− 1, (D.27)

where p0(x) = |⟨x|Ud · · ·U1|0⟩|2 is the probability of measuring outcome x for the noiseless

circuit of depth d and pn(x) = ⟨x|Ed ◦ Ud ◦ · · · E1 ◦ U1(|0⟩⟨0|)|x⟩ is the analogous probability for

the noisy circuit.

We now introduce the mitigated linear XEB, which is instead given by the formula

FXEBM
= 2n

∑
x

pn(x)pa(x)− 1, (D.28)

where pa(x) = ⟨x|A◦Ud◦· · · A◦U1(|0⟩⟨0|)|x⟩ is a quasi-probability for the circuit with antinoise

inserted in place of noise. The quantity pa(x) can be computed on a classical computer, which
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Figure D.2: Dynamics of fidelity benchmarks above and below threshold: (a) Disorder-averaged
mean value of the logarithm of the circuit averaged mitigated fidelity −⟨log F̄M⟩/N and cross-
entropy benchmarking mitigated fidelity −⟨logFXEBM

⟩/N above and below the error mitigation
threshold in the all-to-all model. (b) Dynamics of the standard deviation over the noise of the
log-circuit-averaged mitigated fidelities below threshold showing the improved scaling of the
typical log-fidelity as ±O(

√
Nd). In both plots, we took a pure product initial state with noise

parameters q̄ = 0.1 and p = 0.9.

leads to a sampling formula for FXEBM
using M samples xi obtained from pn(x)

FXEBM
=

2n

M

M∑
i=1

pa(xi)− 1. (D.29)

This formula illustrates that the mitigated fidelity can be obtained without directly implementing

PEC except in purely classical post-processing. After circuit averaging, one can quickly show

that for depolarizing noise and its antinoise partner, the mitigated fidelity is equivalent to the

formula

F̄XEBM
= 2nEU

∑
x

p0(x)pan(x)− 1, (D.30)

where pan(x) = ⟨x|A ◦ Ed ◦ Ud ◦ · · · A ◦ E1 ◦ U1(|0⟩⟨0|)|x⟩ implements the antinoise on the same
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copy as the noise. This identity follows because the noise and antinoise on one copy have the

identical effect on the I and S operators after averaging over circuits. From this expression, we

see that, in the case of perfect mitigation, F̄XEBM
reduces to its ideal value.

We can also define a mitigated fidelity that takes the form

FM = tr[A ◦ Ud ◦ · · · ◦ A ◦ U1(|0⟩⟨0|)

× Ed ◦ Ud ◦ · · · ◦ E1 ◦ U1(|0⟩⟨0|)].

In the case where Ei = A−1 for every i, we can see that FM = 1.

In Fig. D.2], we show that the log-fidelity at low noise rates and d grows as O(Nd), whereas

using error mitigation this scaling can be improved to O(
√
Nd), representing an exponential

improvement in the score that brings it closer to the O(d) scaling of the log-total variation

distance [133]. Moreover, as explained above, the cross-entropy benchmark fidelity can be

mitigated entirely in classical post-processing. As a result, the mitigated XEB fidelity can be

estimated with existing experimental data from random circuit sampling experiments.
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