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The dominant noise in an “erasure qubit” is an erasure—a type of error whose occurrence and
location can be detected. Erasure qubits have potential to reduce the overhead associated with fault
tolerance. To date, research on erasure qubits has primarily focused on quantum computing and
quantum networking applications. Here, we consider the applicability of erasure qubits to quantum
sensing and metrology. We show theoretically that, for the same level of noise, an erasure qubit
acts as a more precise sensor or clock compared to its non-erasure counterpart. We experimentally
demonstrate this by artificially injecting either erasure errors (in the form of atom loss) or dephasing
errors into a differential optical lattice clock comparison, and observe enhanced precision in the case
of erasure errors for the same injected error rate. Similar benefits of erasure qubits to sensing can
be realized in other quantum platforms like Rydberg atoms and superconducting qubits.

Noise, i.e., environment-induced decoherence, presents
a fundamental challenge in quantum sensing. While
noiseless sensing can exhibit so-called Heisenberg scaling
in precision when using appropriately optimized probe
states [1–4], noise typically leads to a worse scaling [5–
7]. Given certain assumptions on noise, we can regain
Heisenberg scaling using an appropriate error correcting
code [8–10], but such schemes require a costly overhead
in the ancilla and/or the operations necessary for error
detection and correction. This places practical limits on
how well such schemes can improve metrological per-
formance [11]; furthermore, finding a noise-appropriate
error-correction code can itself be a challenge.

A complementary approach to noise resilience is to
engineer “erasure qubits” where the dominant noise is
an erasure error—a type of error that takes the qubit
out of the computational space and whose occurrence
and location can be detected [12]. A simple example
of an erasure qubit is a photon encoded in the polar-
ization basis (i.e., H/V), where the absence of a photon
can be used to detect photon loss [13, 14]. Recent work
has extended this concept to design qubit encodings in
other platforms that result in the conversion of the dom-
inant errors into erasures [15]. This has been proposed
and demonstrated for neutral-atom [15–18] and super-
conducting [19–21] qubits, and also proposed for trapped
ions [22].

Erasures are easier to protect against than errors with
unknown location. An error correcting code of distance
d can correct only ⌊(d− 1)/2⌋ errors with unknown loca-
tions, but can correct d− 1 erasures [23]. Consequently,
the two-qubit gate error-rate threshold is higher for era-
sure qubits than for general qubits, sometimes allowing

Depolarization Erasure

FIG. 1. Illustration of Ramsey interrogation of an ensemble
of two-level sensors undergoing depolarizing (left) and erasure
(right) noise. Time evolution of the quantum sensors is repre-
sented by black lines inside the Bloch spheres. Erasure errors
are shaded out in the right ensemble. Bottom plots show re-
spective fringe contrasts.

a lower overhead in implementing correction schemes.

In this work, we show that, similarly to the case of
a quantum computer, not all noise processes degrade
the performance of a quantum sensor in the same way
and that using erasure qubits can improve sensor per-
formance. The corresponding performance gain can be
quantified as an increase in Fisher information. In partic-
ular, we show that the uncertainty bounds for noisy sens-
ing, given by the single-parameter Cramér-Rao bound,
can be made tighter with erasure qubits. Importantly,
while fault-tolerant error correction demands continuous
monitoring of the system to control the growth of errors,
in quantum sensing, it is often sufficient to isolate the
erroneous data, preventing it from contributing to the
signal used for parameter estimation. We also use an op-
tical lattice clock to confirm experimentally that erasure
errors have a fundamentally different effect on sensing
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precision than other sources of decoherence (see Fig. 1
for illustration).

Noisy Sensing.—While our arguments extend to general,
multi-qubit sensing, we focus on a single-qubit sensor
coupled to an unknown parameter ϕ ∈ [0, 2π) via the
generator σz/2 and subject to a noise process. An input
sensor state evolves under the unitary exp(−iϕσz/2) but
can undergo a noise process E with a certain probability,
q, leading to the channel: ρ0 → (1−q)e−iϕσz/2ρ0e

iϕσz/2+
qEϕ(ρ0).

Measurements are performed on the final state to ob-
tain an estimate ϕ̂. For noiseless sensing, the opti-
mal sensing protocol involves initializing the sensor as
|+⟩ = (|0⟩+|1⟩)/

√
2, letting it accumulate relative phase,

and measuring it in the |±⟩ basis [3]. We note that, when
multiple entangled probes are used or the encoding uni-
tary is applied many times, a “phase wrapping” issue
arises where one can lose track of which 2π interval the
relative phase is in [24, 25], requiring more involved mea-
surement schemes [26–28].

Assuming that the sensing is unbiased, that is E[ϕ̂] =
ϕ, the uncertainty in ϕ̂ is lower-bounded by the quantum
Cramér-Rao bound: (δϕ)2 = E(ϕ − ϕ̂)2 ≥ (µF(ϕ; ρ))−1,
where F(ϕ; ρ) is the quantum Fisher information and µ
is the number of measurements. This single-parameter
estimation bound is known to be saturable asymptoti-
cally in µ. In this work, we focus on the limit where the
number of measurements is large enough for asymptotic
arguments to hold.

The single-parameter quantum Fisher information is
a convex quantity; that is, for a density matrix ρ =
αρ1 + βρ2, we have F(αρ1 + βρ2) ≤ αF(ρ1) + βF(ρ2).
If we assume that the error state Eϕ(ρ0) does not carry
any information about ϕ, i.e., F(Eϕ(ρ0)) = 0, we get an
upper-bound on the noisy sensor F((1−q)ρϕ+qEϕ(ρ0)) ≤
(1 − q)F(ρϕ). However, as we show below, while this
bound is not attainable using the straightforward sens-
ing scheme mentioned above, it is attainable using sen-
sors based on erasure qubits.

Depolarizing and Dephasing Noise.—Consider the sim-
plest form of noise where random Pauli operators act on
the sensor with equal probability. This gives rise to a
depolarizing noise of strength q with Eϕ(ρ0) = 1/2. In
the Supplemental Material, we show that the optimal in-
put state for sensing under depolarizing noise is the same
as for sensing without noise, that is, ρ0 = |+⟩ ⟨+|. For
generality, we measure the final state in the basis given
by |±θ⟩ = (|0⟩ ± eiθ |1⟩)/

√
2. The two outcomes have

probabilities p± = (1± (1− q) cos(ϕ− θ))/2 and the cor-
responding Fisher information is given by

F =
〈
(∂ϕ log px)

2
〉
x=±

=
(1− q)2 sin2 (ϕ− θ)

1− (1− q)2 cos2 (ϕ− θ)
. (1)

Choosing a ϕ-dependent basis achieves the maximum
Fisher information of (1− q)2 [7]. It is, however, not al-

ways possible to have prior information about ϕ. There-
fore, the achievable Fisher information is usually lower
than the maximal value of (1− q)2.
If we instead consider a purely dephasing channel, with

σz operator acting with probability q, the Fisher infor-
mation is still Eq. (1), but with a modified strength 2q.
Dephasing and depolarizing noise are often used to model
realistic quantum devices [29, 30]. In both of these cases,
the Fisher information scales quadratically in (1 − q),
meaning we fail to saturate the bound dictated by the
convexity [7].

Erasure.—Now, consider a noise process that takes the
sensor to a third state |−1⟩ ⟨−1| that can be detected us-
ing non-demolition measurements without perturbing the
coherence between the computational states |0⟩ and |1⟩
used in sensing, i.e, Eϕ(ρ0) = |−1⟩ ⟨−1|. When the sen-
sor is equipped with erasure conversion, we add an era-
sure detection step to the usual measurement protocol;
if we detect the erasure state |−1⟩ ⟨−1|, we do nothing
(record “null”). Otherwise, we measure in the |±⟩ basis
as before. While in quantum computing applications, it
is important to have mid-circuit measurement of erasure
errors with no back-action onto the qubit levels [17, 20],
the measurements in the quantum sensing protocols con-
sidered here are terminal measurements. Therefore, it
suffices to merely distinguish |±⟩ from erasure in the fi-
nal measurement.
The erasure detection step prevents experimental er-

rors from creeping into the measurements used to derive
the estimator ϕ̂. The three outcomes of this sensing pro-
tocol are |−1⟩ , |+⟩ and |−⟩, with measurement probabil-
ities p−1 = q and p± = (1 − q)(1 ± cos(ϕ))/2, and the
Fisher information associated with these three outcomes
is Ferasure = (1− q), attaining the maximal linear scaling
in (1− q).

Erasure Errors in Atomic Clocks.—Today, atomic clocks
can achieve a precision corresponding to an uncertainty
of less than 1 second over the lifetime of the universe
[31–33]. This precision has enabled tests of founda-
tional physical theories such as special and general rel-
ativity [34–37]. Continuing advances in atomic clocks’
performance promise to make them prime platforms for
tests of fundamental physics.
Atomic clocks work by measuring the deviation of the

frequency of a local oscillator fLO from a narrow tran-
sition line. In an optical atomic clock, a laser serves as
the local oscillator, and is used to drive a stable transi-
tion with reference frequency f0 . The laser frequency is
stabilized by measuring the shift ∆f = fLO −f0 with re-
spect to the clock frequency using Ramsey spectroscopy.
After each Ramsey interrogation, the clock applies an
electronic correction to the laser source to compensate
for frequency drifts.

Measuring a frequency shift using Ramsey spec-
troscopy amounts to phase estimation and has the same
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structure of the sensing problem outlined above. The rel-
evant figure of merit for an atomic clock is the “fractional
instability” σ = δfLO/f0, where δfLO is the uncertainty
in the measurement of the local oscillator frequency.

Historically, the performance of optical atomic clocks
has been limited not by the reference atoms, but rather
by noise from the laser probe. However, recent experi-
ments used correlated differential spectroscopy to bypass
the limitations of the local oscillator and achieve differ-
ential clock comparisons that are limited by Quantum
Projection Noise (QPN) of the atoms [34, 38]. This pro-
vides an opportunity to explore and reduce instability
arising from errors acting on the atoms.

A Ramsey-like protocol is used to measure the phase ϕ
accumulated over the measurement time Tc. ϕ is related
to the frequency difference between the oscillator and the
atom as ϕ = 2πTc(∆f); the local oscillator frequency is
thus inferred as fLO = f0 + ϕ/(2πTc). The fractional
instability is then expressed in terms of the uncertainty
in the estimate of ϕ, which can, in turn, be bounded by
Fisher information using the Cramér-Rao bound,

σ =
δfLO

f0
=

1

2πTc

δϕ

f0
, δϕ ≥ 1

F1/2
, (2)

where F is the single-parameter Fisher information asso-
ciated with measurement of the phase shift ϕ. Ramsey
interrogation of the clock state is similar to the single-
parameter sensing problem of calculating the unknown
parameter λ in the Hamiltonian H = λσz/2 driving a
two-level system. The optimal measurement protocol, in
both cases, is to start in state |+⟩, evolve freely under
the Hamiltonian, and measure the resulting state in the
|±⟩ basis. The quantum information associated with a
single measurement of the parameter is F = 1 (assuming
no noise).

In an optical lattice clock, on each interrogation, we
measure the ensemble of N atoms, and we repeat this
τ/Tc times, where τ is the total measurement time and Tc

is the time of each measurement cycle. For independent
sensors, Fisher information increases additively, giving a
lower bound on the fractional instability:

σ =
1

2πTc

δϕ

f0
≥ 1

2π

1

f0

√
1

N

1

Tcτ
. (3)

We can now consider how the bounds on fractional
instability change in the case of i) noise that keeps the
sensor state within the sensing subspace and cannot be
detected, and ii) erasure noise that takes the quantum
state out of the sensing subspace.

For the former case, consider a dephasing noise model
that decoheres a state at a fixed rate. Dephasing noise
in an atomic clock can arise from inhomogeneous light
shifts from the lattice, line-broadening from atomic col-
lisions, or a magnetic field gradient [38]. During Ramsey
spectroscopy, dephasing noise has the same effect as a

fully depolarizing channel [see discussion following Eq.
(1)]; after interrogation time Tc, the clock state is as-
sumed to be in a depolarized state 1/2 with probability
q = 1 − e−ΓTc . With probability 1 − q, the clock state
stays intact. Succinctly, the noise channel is modeled as
ρ(t) = (1− q)ρϕ + q1/2, with q = 1− e−ΓTc .
The error rate q is obtained by measuring the Ramsey

fringe contrast C, which decays as ∝ e−Γct. Using this
rate in Eq. (1), the Fisher information of this noisy sensor
is Fdepol ≤ (1− q)2, giving the lower bound on fractional
instability

σdepol ≥
1

1− q

1

2π

1

f0

√
1

N

1

Tcτ
=

σ

1− q
, (4)

where the depolarization strength q is determined by the
interrogation time Tc.
For erasure noise models, similar to dual-rail photonic

qubits for which photon loss is an erasure error, we can
consider errors due to loss of the atoms from the lattice
during the measurement, or equivalently due to imper-
fect initialization of the atoms at the start of the mea-
surement. Assume that each atom is lost during clock
interrogation (or is incorrectly initialized) with probabil-
ity q. In contrast to a bit-flip or a depolarizing noise,
such a noise takes the sensor out of the computational
subspace, and can be accounted for in subsequent data
processing. Consequently, lost or incorrectly initialized
atoms do not contribute to the signal used to estimate
the accumulated phase, leading to a better signal-to-noise
ratio. The Fisher information in this case is F = (1− q),
giving a lower bound

σatom−loss ≥
1√
1− q

1

2π

1

f0

√
1

N

1

Tcτ
=

σ√
1− q

. (5)

The two noise processes therefore contribute differently
to the fractional instability.
We study the response of fractional stability to error

rates for the two types of errors using a differential clock
comparison experiment in a multiplexed optical lattice
clock [34, 38] as illustrated in Fig. 2(a). Two spatially-
resolved ensembles of 87Sr atoms are used, and their rel-
ative frequency shift is measured through synchronous
Ramsey interrogation with the same clock laser as shown
in Fig. 2(b). Details regarding this technique and the
experimental apparatus are discussed in Ref. [38]. The
differential frequency between the ensembles can be de-
termined by parametrically plotting the measured exci-
tation fractions from each experiment and fitting to the
resulting ellipse, as shown in Fig. 2(c). The synchronous
measurement overcomes the limitation placed on inter-
rogation time by the frequency instabilities (line-width)
of the laser. Denoting the frequency shifts of the ensem-
bles by ϕa and ϕb, the fractional instability in Eq. (2)
thus becomes δ(ϕa − ϕb). Assuming the ensembles have
the same number of atoms and the same coherence, the
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FIG. 2. (a) Diagram of two ensembles of 87Sr loaded into the same 1-D optical lattice trap. The ensembles, separated vertically
by 1 cm, can be interrogated simultaneously with a laser directed along the axis of the trap. A camera image of the ensembles
is shown on the right. (b) Experimental sequence (timing not to scale) used for differential comparisons of the ensembles. The
atoms are initialized in the ground state, then synchronously probed with a Ramsey interrogation technique. We choose a
Ramsey dark time, τ , of 8.0 seconds. The populations in the ground and excited states are then measured. The total sequence
time is 9.67 seconds. (c) The excitation fraction of each ensemble is plotted parametrically, tracing out an ellipse corresponding
to the differential phase between the ensembles. (d) The atom number, N , in this experiment is decreased relative to the ellipse
in (c) while keeping the contrast, C, constant. This ellipse corresponds to an increase in erasure error. (e) The contrast, C,
is decreased in this experiment relative to the ellipse in (c), while keeping atom number, N , approximately the same. This
ellipse corresponds to an increase in depolarization error. (f) Extracted stabilities from ellipses shown in (d) and (e). Even with
similar error rates, the erasure error leads to lower instability than depolarization error. (g) Measured fractional instability
against error rate q for erasure error and depolarization error. For the depolarizing noise, the error rate q is derived from
the differential Ramsey fringe contrast as q = 1 − C. For atom loss, the error rate is taken to be q = 1 − N/N0, where N0

is the average number of atoms initialized in both ensembles, and N is the average number of atoms remaining after each
Ramsey interrogation. The solid lines are obtained using a least-square fit to both data sets with the expected scaling of Fisher
information given by Eqs. (5) and (4), respectively, with the fractional instability at q = 0 as the only free parameter.

variance in the relative shift is the sum of individual vari-
ances, Var(ϕa − ϕb) = Var (ϕa) + Var (ϕb) = 2Var (ϕb).
This contributes a factor of

√
2 to Eq. (3). The scal-

ing of instability with noise in Eqs. (4) and (5) remains
unchanged.

In one set of experiments, an example of which is shown
in Fig. 2(d), we tune the erasure error rate while keeping
the coherence time of the atoms fixed. In order to con-
trollably vary the erasure loss rate, we can intentionally
introduce an error in our atom initialization, which is
equivalent to a noise model where atoms are lost during
the experiment. Any atoms not initialized in the cor-
rect hyperfine ground state are removed from the optical
lattice and do not contribute to the estimate of the ac-
cumulated phase difference. On average N0 atoms are
loaded in each experiment before initialization. The av-

erage number of atoms participating in phase estimation
is used to derive the probability of an erasure error, i.e,
q = ⟨N⟩/⟨N0⟩.
In another set of experiments, an example of which is

shown in Fig. 2(e), we intentionally induce decoherence
of the atomic superposition while holding the erasure rate
steady. This is achieved by detuning the wavelength of
the optical lattice away from the “magic wavelength” [31]
to induce an inhomogenous lattice light shift as the atoms
experience different lattice trap depths due to their finite
radial temperature, resulting in a dephasing of the en-
sembles. The strength of effective decoherence is then
measured using Ramsey fringe contrast, i.e., q = 1− C.

In Fig. 2(f), we plot the Allan deviation, experimen-
tally calculated using a jackknifing technique [39, 40],
from the ellipses in Figs. 2(d) and (e). In Fig. 2(g),
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we plot the extracted differential instability of the clock
comparison against the error rates for dephasing and era-
sure errors. We observe that the measured instabilities
are consistent with the scalings predicted by the lower
bounds on Fisher information given by Eqs. (4) and (5).

Several recent optical lattice clock experiments have
already implicitly taken advantage of erasure errors by
demonstrating atom-atom coherence times significantly
exceeding the lifetime of atoms [34, 38]. Future experi-
ments could benefit by engineering erasure conversion of
errors due to lattice Raman scattering and spontaneous
emission. While Fig. 2(g) appears to promise dramatic
improvements in fractional instability by converting de-
polarizing errors into erasure errors for high error rates
q > 0.5, it is important to note that this high error regime
is not where clocks typically operate, and furthermore
that the bounds shown in the figure and given by Eqs. (4)
and (5) are for a fixed interrogation time Tc. In reality,
Tc should always be adjusted to minimize the clock in-
stability for a given type of error and error rate. For a
QPN-limited, zero-dead-time differential clock compari-
son subject to depolarization errors with an exponential
decay in contrast C with rate Γd, C = Coe

−TcΓd , it can be
shown that converting all depolarizing errors into erasure
errors and re-optimizing the interrogation time results in
at most a factor of

√
2 reduction in instability. For finite

dead times, the improvement in instability can be larger,
as erasure errors enable longer interrogation times with-
out significant degradation in instability. For a QPN-
limited clock comparison in the limit of long dead times
Td ≫ 1/Γd, the reduction in instability from complete
erasure conversion for optimized coherent interrogation
times asymptotically approaches 2.

Discussion.—In this work, we discuss erasure errors in
the context of quantum sensing. We relate the metrolog-
ical gain for erasure qubits with the saturation of Fisher
information. We also discuss erasure errors in atomic
clocks and experimentally demonstrate the different ways
by which general errors and erasure errors affect the clock
stability.

Similar benefit may be realized in sensing with other
multi-level quantum systems. An erasure qubit com-
posed of a 3P0 state and a Rydberg state in an alkaline-
earth(-like) atom [15–18] can be used to measure electric
fields. A dual-rail superconducting erasure qubit [19–21]
can be used to measure the coupling strength between
the two constituent qubits. Finally, an erasure qubit
based on the ground and the second excited state of a
transmon [19] can be used to measure the transmon fre-
quency (and potentially a magnetic field oscillating at a
frequency larger than the frequency that dominates qubit
dephasing) or a two-photon Rabi frequency coupling the
two states.

Additionally, quantum sensors may be used as spec-
tator qubits, where they are embedded into a quantum

computer among ‘data qubits’, which perform the actual
quantum computation, to sense noise, drifts, and fluctua-
tions [41]; this allows for feedback-based error-mitigation.
Improving the performance of such sensors, by engineer-
ing erasure conversion, is a promising approach towards
near-term error resilience.
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SUPPLEMENTAL MATERIAL

Optimal Input States for Noisy Sensing

In this section, we show that the optimal input state
for noisy sensing of a single parameter under depolarizing
noise is the same as that for noiseless sensing.
Consider a single-qubit input state, ρ0, which evolves

under the sensing unitary Uϕ = exp(iϕH), with ϕ being
the sensing parameter and H being the generator Hamil-
tonian. The quantum Fisher information, as a function
of the input state ρ0, with respect to the parameter ϕ, is
given by [42]

F(ρ0) = 4(2 tr(ρ20)− 1)| ⟨η0|H|η1⟩ |2, (6)

where η0 and η1 are the eigenvectors of ρ0. Since the
depolarizing channel and the unitary channel commute,
for noisy sensing, we let the unitary act noiselessly on a
depolarized input state, which is given by

ρ̃0 = (1− q)ρ0 + q
1
2
, (7)

where q is the depolarization strength. Noting that the
eigenstates of ρ̃0 and ρ0 are the same, Eq. (6) evaluates
to

F(ρ̃0) = (1− q)2F(ρ0). (8)

Note that the above expression is generically true for all
input states ρ0, meaning that the effect of noise is to
simply scale the Fisher information by (1−q)2, regardless
of the input state. Therefore, the optimal state to use for
noisy sensing is same as that for noiseless sensing.
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