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Topological photonics is emerging as a new paradigm for the development of both classical and quantum
photonic architectures. What makes topological photonics remarkably intriguing is the built-in protection as well
as intrinsic unidirectionality of light propagation, which originates from the robustness of global topological
invariants. In this Perspective, we present an intuitive and concise pedagogical overview of fundamental
concepts in topological photonics. Then we review the recent developments of the main activity areas of this
field, categorized into linear, nonlinear, and quantum regimes. For each section, we discuss both current and
potential future directions, as well as remaining challenges and elusive questions regarding the implementation

of topological ideas in photonics systems.
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I. INTRODUCTION

A. Key demonstrations in developments of topological photonics

The entry of topology into physics started with the dis-
covery of the quantum Hall effect in 1980 [1], in which the
Hall conductance was demonstrated to be robustly quantized
in a 2D electron gas. Subsequently, it was realized that such
robustness is due to the topological properties of the system’s
energy bands [2]. The idea of band structure topology was
later extended to a wider class of systems known as topo-
logical insulators [3,4]. Meanwhile, it was realized that such
phenomena are not limited to electronic systems and they
can also be realized in any bosonic system. This was initially
considered in the context of ultracold atoms, in both rotating
Bose-Einstein condensates and optical lattices with synthetic
gauge fields [5] and followed up by other bosonic systems
such as photonics [6,7], acoustics [8], phononics [9], elec-
tronic circuits [10], and mechanics [11,12]. Specifically, in the
photonic context, an analog of the quantum Hall model was
proposed to realize a one-way edge state for the propagation
of electromagnetic fields in gyromagnetic photonic crystals
[13,14] and subsequently demonstrated [15,16]. However, to
break time-reversal symmetry (TRS) this scheme relies on
the presence of external magnetic fields, while the magneto-
optical response of materials is weak.

To address this issue, several theoretical proposals were put
forward to synthesize magnetic fields for photons [17-20].
This was followed by two experimental demonstrations of
topological edge states in optical systems without external
fields [21,22]. To bring these ideas to photonic crystals, the
realization of spin [23] and valley [24] quantum Hall models
were theoretically proposed. Subsequently, the spin Hall [25]
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and valley Hall [26] topological photonic crystals were exper-
imentally demonstrated.

However, topological invariants are not directly accessible
in photonic systems. Specifically, photons are bosons, and
quantization of conductance does not apply in this context.
Nevertheless, quantum Hall physics can be manifested in
the form of a spectral flow [27], which was experimentally
observed in 2016 [28]. Moreover, it has been proposed that
for a two-band model, the Berry curvature can be probed
by spatially resolved polarization measurements [29], and
this scheme has been subsequently implemented in experi-
ments [30,31]. To expand the field of topological photonics
into the nonlinear regime, several types of topological lasers
were demonstrated [32-37]. However, the nature and degree
of robustness of these lasers are still subject to investiga-
tion. Extending to the quantum regime, topological quantum
sources of light were demonstrated around the same time
[38,39]. Another intriguing direction is to explore strong
light-matter coupling to induce strong interaction between
photons. To achieve this, integration of quantum dots [25] and
exciton-polariton were demonstrated in microcavities [40,41]
and transition metal dichalcogenides [42]. Remarkably, the
Laughlin state of two photons was realized [43] as a major
step towards few-body interacting topological systems. Some
other key developments include topological antennas [44,45],
four-dimensional quantum Hall effect [46], higher-order topo-
logical insulators [47-51], simulation of Landau levels for
photons in a cavity [52], and topological solitons [53,54]. Fi-
nally, three recent demonstrations showed robust topological
funneling of light in a lattice geometry [55], photonic quantum
Hall effect and generation of large orbital angular momenta
[56], and topological beaming of light [57].

In order to have a broader perspective of the above-
mentioned developments, one can classify the observed
phenomena based on the involved photon number and the
strength of photon-photon interaction. This classification can
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FIG. 1. Selection of emerging topological photonic systems categorized based on photon number and photon-photon-interaction strength,
focused on the optical and infrared domain. Reproduced here taken from Refs. [21,22,25,33,38,40,43,44,53,54].

be seen in Fig. 1. In the regime of weak optical nonlin-
earity, classical photonic topological phenomena are shown
along the vertical axis with increasing photon number, starting
from low photon number cases such as silicon photonic cou-
pled ring resonators [21,22], to topological antennas [44,45],
spatial and temporal topological solitons [53,54], and lasers
[32-34]. Moving along the horizontal axis, strong light-matter
interaction enables one to induce photon-photon interac-
tion: Starting from the weak interaction regime (topological
quantum light generation [38] and quantum optics interface
between single emitters and photonic crystals [25]) one goes
to the strong interaction limit, enabling the generation of
two-photon Laughlin states [43]. An example of the inter-
mediate regime of interaction and large photon number is
topological polaritons in micropillar semiconductor systems
[40,58].

B. Scope and aims

The scope of this Perspective is to introduce basic con-
cepts and discuss recent developments and potential future
directions in the field of topological photonics. We hope that
this Perspective is useful for researchers with no background
in topological physics who are interested in exploring this
exciting field.

This Perspective is structured in four sections consist-
ing of linear, nonlinear, and quantum photonic topological
systems. The linear three sections will include a concise
pedagogical section to introduce the minimum intuitive and
mathematical descriptions of the key concepts required to
study topological photonics. Then linear photonic implemen-
tations such as topological photonic crystals and passive
waveguides and routers are reviewed in this section. The
nonlinear section focuses on nonlinear effects in topological
systems such as spatial and temporal solitons and frequency
combs. The quantum section will review the topological
quantum sources of light, topological protection for the prop-
agation of quantum states, chip-integrated quantum emitters,
and systems of strongly interacting electron-photons. The last
section includes detailed remarks on current challenges and
more specific potential future directions as well.

It is not possible to discuss all the developments in the
field of topological photonics in all platforms and frequency
domains. The focus of this Perspective is on the optical and
infrared domains. In particular, we do not focus on the mi-
crowave regime, for which a comprehensive recent review
is available elsewhere [215]. While we provide basic simple
ideas behind linear topological photonics, we do not provide
a pedagogical review of nonlinear and quantum topological
photonics. We refer the reader to a comprehensive review
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that summarizes the developments up to 2020 for nonlinear
photonics [59] and the quantum domain [60,61]. Moreover,
we refer the reader to a review of non-Hermitian topolog-
ical photonics [62], which is another emerging direction.
Higher-dimension and higher-order topological photonics are
reviewed in Ref. [63]. A review of topological lasers can
be found in Ref. [64]. Topological photonics in synthetic
dimensions and other developments can be found in a recent
exhaustive roadmap [7].

In this Perspective, we highlight challenges for specific
topological platforms, some of which are fundamental and
some are more technical, as potential directions for future
research. These challenges will be separately discussed under
linear, nonlinear, and quantum topological photonics.

Before proceeding, we make a clarifying remark. While the
term “topological insulator” has been extensively used in the
literature of topological photonics, we refrain from its usage in
this Perspective to avoid confusion. Strictly speaking, almost
all photonic states studied so far are not insulating states, due
to their bosonic nature. In electronic systems, either because
of Pauli exclusion (fermionic nature) or interaction, such as
band or Mott insulators, the system can be in an insulating
state if it is probed at the corresponding Fermi levels. In the
context of photons, there is no concept of the Fermi level, as
bosonic states can be occupied without limit in the absence of
interactions. Instead, one can have a photonic band gap and
the transmission of light can be zero if photons are injected
into the system within the frequency bandwidth of this band
gap.

Moreover, it is important to distinguish between general
topological states and fopologically ordered states. We use
the former as a general term for any state with classical
or quantum topological properties, such as vortex states and
Chern band insulators. We reserve the latter term for strongly
interacting systems, where the order is a consequence of
interaction and entanglement and, therefore, can be defined
and classified accordingly. This field is an active area of
research, mainly theoretical due to the lack of clean and un-
ambiguous experimental platforms (see Ref. [65] for a recent
review). With this definition, topological states encompass
topologically ordered states. In this Perspective, we mainly
focus on only topological states, primarily in the single-
particle—classical physics regime, and only briefly discuss
topologically ordered states.

II. LINEAR TOPOLOGICAL PHOTONICS

In the following sections, we start with a very broad intro-
duction to the role of topology in photonic systems, and then
we introduce models and relevant photonic implementations
of these concepts.

A. Concept of topological invariants

Topology is a branch of mathematics that studies the gen-
eral or global characteristics of a system. For example, when
studying a system of geometrical objects, instead of the spe-
cific shapes, topology primarily deals with how objects are
connected. In other words, topology is concerned with the
global geometrical characteristics of a system, rather than

(®)

FIG. 2. Number of laps when starting from a point (marked by
the red cross) and going around an (a) island is a positive or a
negative integer, while it is zero for (b) a peninsula. Note that this
integer number is invariant regarding the island’s shape, swimming
direction, or path taken.

the specifics of its building blocks. As an intuitive example,
one can consider the case of swimming around an island
versus a peninsula [66]. Note that regardless of the shape
of an island, we call it an island, but once its topology is
changed, we use a different object (Fig. 2). Starting from a
point and coming back to the same location, a swimmer can
swim around the island, a process that does not depend on the
shape of the island or the path taken. However, the number of
laps around the island, which is an integer number (from Z) is
topologically robust, and that number can be considered as a
topological invariant. We associate the sign of the integer with
the clockwise (CW) or the counterclockwise (CCW) direction
of the swimmer. Note that this number is always zero for a
peninsula since a complete round trip is not possible. The
robustness here means that under small perturbations of the is-
land’s shape or the swimming path (specific “local” features of
the swimmer’s path and the island’s shape), the integer num-
ber (global topological property of the system) will remain
invariant. If one relates a physical observable (conductance,
transmission, resistance, etc.) to such integer numbers, then
that observable will be similarly topologically robust. This
is one of the central motivations for the implementation of
topology in physics.

The case of the island and peninsula is a classical example,
without any notion of phase. A classical wave or quantum-
mechanical analog of such an example can be realized by
considering how an electron (or photon) wave function winds
around a certain point. An example is a vortex state in two
dimensions, where the phase of the wave function can wind an
integer number of times. Considering a polar coordinate (r, 6),
in the presence of rotational symmetry, the wave function can
be of the form v (r, 8) = p(r)e™”, where the phase winds m
times, where m is an integer number, and the radial part of
the wave function p(r) has a singularity at the center. More
generally, in the absence of rotational symmetry, the wave
function can be described as ¥ (r, 8) = |¥ (r, 0))e?"?, where
¢(r, 0) is the local phase. Therefore, in the context of photons,
these states can be thought of as a solution to Maxwell’s equa-
tions, where weak spatial variation in the dielectric constant
can deform the spatial form of this wave function but cannot
change the winding number m, i.e., ¢ Vo(r,0)-dl = 2wm.
This is already an example of the topological robustness of a
photonic wave function in space.
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FIG. 3. (a) Periodic (honeycomb) photonic crystal with sublat-
tices A and B. (b) Band structure of the photonic crystal, with
an energy band gap separating the valence (blue) and conduction
(yellow) bands. (c) Eigenvectors of the system in a unit sphere.

How can we generalize this idea? Consider a typical pe-
riodic photonic system such as a photonic crystal, e.g., a
bipartite lattice as shown in Fig. 3(a). Solving Maxwell’s
equations in such a periodic setting can provide several in-
formative properties of the system, including the band gaps,
group velocity, dispersion, etc. Most physical properties are
indeed a local function of the band structure &, (l;), where &,
is the energy and k is the wave vector in the corresponding
Brillouin zone. Remarkably, there are other properties that
depend on global properties of the band structure. For ex-
ample, let us take a two-band system, with wave functions
denoted as ¥y (E) and ¥ (E), as shown in Fig. 3(b). In par-
ticular, for such a two-band model, the state of the system
can be represented by a unit vector in a Bloch sphere. Then
let us consider how the wave function varies as we move in
the Brillouin zone [Fig. 3(c)]. If the system is topologically
nontrivial, the wave function should accumulate a nonzero
phase, when the unit vector is swept around a closed loop.
Loosely speaking, there is an associated integer similar to the
island and peninsula example. The latter case takes place in
real space, while the former does so in momentum space.
Nevertheless, the robustness of certain global properties of the
system remains warranted. More specifically, as long as the
spatial variation in the susceptibility and the dielectric func-
tion is weak, this global integer remains invariant. Therefore,
the associated photonic observable (such as a transmission)
to this invariant remains robust against certain disorders. We
briefly clarify this connection in the photonic context in the
following section.

For a survey of band topological models and a step-by-step
derivation, the reader can consult Ref. [67]. An introduction
to quantum Hall physics can be found in Refs. [68,69].

B. Toy model: Charged particles in strong magnetic field

In the following, we study a simple model of a charged
particle in two dimensions, under a uniform magnetic field.
While this model describes the topological physics behind
the electronic quantum Hall effect, we later find it useful to
synthesize similar physics in two-dimensional (2D) photonic
systems. The key concepts, such as the role of gauge field,
topological robustness, and topological edge state, can be
understood using this simple model.

1. Classical picture

In the classical picture, the electrons with charge e and
mass m undergo a cyclotron motion in the presence of an
external magnetic field B. Considering the Lorentz force, the
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FIG. 4. (a) Cyclotron motion of electrons with a radius of R
in a 2D electron gas under a perpendicular magnetic field which
generates a quantum of flux due to each electron orbit. (b) Energy
levels of the system, with Ny-fold degeneracy. Note that the adjacent
levels are separated by hw.. (c) Wave-function concentric orbits.
(d) Accumulated phase for a particle looping on the sites of a lattice.

-

dynamics of the velocity v in two dimensions is given by
dv B

m%; = —ev X B. Assuming a circular motion with radius R,
and angular velocity w, we have mw?R = ewRB. One imme-

diately observes that the angular velocity w. = % is radius

independent. This angular velocity w, is called the cyclotron
frequency. Note that the center and the radius of this orbit are
not constrained.

2. Semiclassical picture

For a semiclassical description, we can use the Bohr-
Sommerfield quantization:§ pdg = nli to realize such orbits
should be quantized. In fact, the integer n is the phase-winding
number introduced earlier in our island analogy. In particular,
one can set n = 1 to find an orbit with the smallest possible
radius.

Alternatively, we can use a simple Heisenberg-limited pic-
ture, which gives us a lower limit on how small the radius
of the orbits can be. Specifically, assuming Ap and Ax to
be the uncertainty in momentum and position, respectively,
we have AxAp ~ Fi/2, where for a circular motion, Ax >~ R
and Ap >~ mw.R. Apart from a factor of two, this means the
smallest orbit radius is set by

h [ h
s = \ mao. “VeB %

From now on, we call this smallest radius /g the magnetic
length of the system. Based on the Pauli exclusion principle,
we can have only a single electron in each state. Therefore,
we evaluate how many of these orbits one can fit in an area
of A = L.L,, as shown in Fig. 4(a). The total number of orbits
that can fit in the system is

_LL, AB
o= 277.'113 - CDO’

2
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where @ is the quantum of magnetic flux, AB is the total
magnetic flux, and Ny is the total number of flux quanta. This
suggests that the lowest-energy state of the system is N-fold
degenerate.

Therefore, this shows that as long as the number of elec-
trons is less than Ny, they can be easily fitted into the system,
if we ignore the interactions between them. However, if N, >
Ny, we have to pay some energy price fiw.. We can revisit this
argument more precisely in the quantum picture.

Moreover, in the presence of a confining potential at the
boundary of the system, the degeneracy is lifted for the state
at the edge of the system. These edge states are robust against
a certain amount of disorder. In other words, the states form
skipping orbits to avoid disorder, instead of reversing their di-
rections [70]. See the next section for a more detailed quantum
description of the edge states.

3. Quantum picture: Landau quantization

To write the Hamiltonian of a particle with a charge (—e) in
the presence of a classical electromagnetic field, characterized
by the vector potential A = (A, A,), we should simply replace

all momenta by p — p+ eA. Then the Hamiltonian can be
written as

PO I,
H = —(p+eh)
2m
1
= 3-[(px + €A + (py + eA))’) 3)

It is more common to choose the Landau gauge, A = —yBX,
and obtain the N, degeneracy by applying the boundary con-
ditions. Instead, we can choose the symmetric gauge, A=

—y—B?c +3 B3 since the derivation is more elegant and easily

generahzable Defining mechanical momenta as
M, = p. + €A,,
f[y = py + egy, “)
for any magnetic field, we have
[11,, I1,] = —iehB. (5)

Therefore, if the magnetic field is uniform, by properly
rescaling these momenta operators, we can consider them as
position X and momentum p operators. More interestingly, the
Hamiltonian is that of a harmonic oscillator H = ﬁ(ﬁi +

f[i). The ladder operators can be defined as

a= (T1, —ifl,), (6)
2¢hB !
1 . .

at = (I, + iI1y). (7

~ J2ehB

Consequently, [a,a'] =1 and H = ho.(a"a + ) as shown
in Fig. 4(b). This tells us that the energy levels are evenly
spaced by 7w, known as Landau levels. In order to get the
Landau level degeneracy, we can similarly identify another
pair of operators that commute with A

1

—
Il
kl

X — €Ay,
M, = j, — A, (8)

and similarly,
[[1,, [1,] = iehB, 9)

and all the other commutators are Zero if we choose
the symmetric gauge: [I1,, [1,] = [II y]—[nx, n,]=
[Ty, [1,] = 0. This gives us another harmonic oscilla-

h— L (fl. —ifL). b" =
tor, where ladder operators are b = M(Hx illy), b =

m(l’[ + il y), and [b ,BT] = 1. As shown in Fig. 4(b), the

eigenstates are simply number states corresponding to these
two harmonic oscillators:

aT2b|2
Jalm!

The explicit form of the lowest Landau level wave function
can be found in [68,69]. Here we make a few remarks on the
properties of these wave functions:

(1) The wave functions are concentric orbits with average
radius r = +/2ml and a width proportional to %, as shown
in Fig. 4(c). Therefore, as m increases, the orbits become more
packed, until the radius hits the system size. The maximum
value of m is m,, = %( %)2, assuming the system to be of a
disk shape with radius d. The expression is simply the area
in units of the magnetic length, which is basically the total
number of magnetic flux Ny. Therefore, we recovered the
Landau level degeneracy to be Ng. More precisely, m runs
from zero to Ng — 1.

(2) The physical meaning of I, and ﬁy, in the symmetric

n, m) = |O 0). (10)

gauge, is simply the center of orbits. Specifically X = —%,
Y = . Using Eq. (9), we find that [X,Y]=il, which
means we can localize the orbits both in x and y coordinates.
This is essentially the same argument we had in the semiclas-
sical picture.

(3) Unfortunately, this model so far cannot explain the
integer quantum Hall effect, and one needs to add both a
confining potential and disorder to the model. The introduc-
tion of these two ingredients leads to the confinement of the
state in the bulk of the system and the emergence of the edge
states at the system boundary [71-73]. In fact, this concept is
more general and is known as bulk-boundary correspondence,
where the bulk properties dictate the properties of the edge
and vice versa. An intuitive understanding of this concept is
based on gauge invariance, through either Laughlin’s argu-
ment [27] (see Refs. [68,69] for a pedagogical presentation) or
the Chern-Simons response theory [74] (see Ref. [75] supple-
mentary material for a derivation of this concept in photonic
systems).

(4) The above orbits are also eigenstates of angular mo-
mentum: I:Z = lh(xav — yax), with I:Z\IJLLL(m) = mh\IJL,_L(m).
In other words, these states have a well-defined nonzero phase
winding, similar to our island analogy. In the presence of weak
disorder, the orbits can deform but keep their phase winding.
In the strong disorder limit, the states are completely washed
out.

C. Hofstadter butterfly

So far we have assumed that the considered system is a 2D
continuum. Let us now consider that the charged particles are
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FIG. 5. (a), (b) The spectrum of Eq. (11) on a 10 x 10 lattice,
for a closed and open boundary condition, respectively. The lower
panel illustrates light intensity on the lattice corresponding to three
typical states. Apart from the localized bulk states in the middle, in
the open boundary case, edge states can form, while propagating in
a clockwise (red) and counterclockwise (blue) fashion.

confined to move on a square lattice, with lattice spacing I, in
the presence of a uniform magnetic field. We then investigate
to see in what regimes these two models are equivalent.

Inspired by the Aharanov-Bohm phenomena, the essence
of the magnetic field is a nonzero 2w« that the particle
acquires on each plaquette. Formally, one needs to mod-
ify each hopping term by the corresponding gauge field
on that link. This is known as Peierls substitution J —
J exp[% flink A - dr], where J is the hopping rate. So naturally,
different gauge conventions correspond to spreading the total
phase 2w along each link of a plaquette [Fig. 4(d)]. Using
the Landau gauge, (A, A,) = (—Byl,, 0) where (x,y) € Z,
and are simply locations on a (N,, Ny) square lattice. The
Hamiltonian describing the dynamics is

T _ go2imay 4 At A2iTay
H = ‘IZ x+ly X,y +ax,yax+l.y
+ ax’erlax,y + ax_yax,y+l ’ (1 1)

where &, , is the annihilation operator of particle at site (x, y).
So far, we are considering a single particle so the statistics of
particles are not important. But in the following sections, we
assume the operators obey the bosonic commutation relations.
One can verify that the total accumulated phase for a coun-
terclockwise propagation on a single plaquette is —2way +
04 2ra(y 4+ 1) + 0 = 2. The number of magnetic flux in
each plaquette is
®  eBI?
o h
In other words, « is the fraction of a flux in a plaquette.
Note that the essence is the presence of this phase, and the
charge e, h, etc., drops out. Therefore, one can generalize this
model to neutral particles (atoms or photons) by synthesizing
the phase. This is the key insight in Ref. [19].
The spectrum of this Hamiltonian is periodic when o —
o + 1 and is known as the Hofstadter butterfly [76], with
many interesting fractal properties, as shown in Fig. 5(a). One

12)
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(4m +3)2 + 27r(,y

FIG. 6. (a) Pair of coupled ring resonators described by Eq. (14).
(b) Ring resonator coupled to a waveguide that can be described by
the input-out formalism described in the text. (c) Two resonators cou-
pled to each other using another resonator that is antiresonant with
the side resonators. By positioning the middle resonator and creating
a differential optical path one gets Eq. (17). (d) Clockwise (left) and
counterclockwise (right) propagation under opposite magnetic fields,
as illustrated by the blue arrows.

key point is the presence of band gaps when the system is
considered with periodic boundary conditions, i.e., on a torus.
Let us recall that a tight-binding 2D square lattice [« = 0 in
Eq. (11)] of the size (N,, Ny) has a single band with NN,
states with energies

E(n, m) = —2J[cos(k.a) + cos(k,a)l, (13)

where k. [;N, = 2mn, kyl;N, = 2rm. In this model, the trans-
lational symmetry is clearly broken, but if ¢ = §, and we go
around g plaquettes, we get 27 p phase, which is like having
no phase and a zero « (in the 2D tight-binding model). This
suggests that at o = 5
states, as shown in Fig. 5(a).

When an open boundary condition is considered, in-gap
states appear, as shown in Fig. 5(b). Such states are localized
at the boundary and propagate in a chiral fashion.

Now we can investigate the effect of the disorder. Imagine
a disorder in the form of an onsite potential a;y&x,y~ When
the chiral edge state encounters such an obstacle, it is en-
ergetically preferred to go around the disorder site, instead
of reversing the propagation path. Recall that CW and CCW
edge states have different energies. Loosely speaking, this is
similar to a “quantum swimmer,” where, in the presence of an
obstacle, the path is modified to make sure the wave function
remains single-valued, instead of reversing the path.

D. Photonic lattice

Can we engineer a 2D array of optical resonators to sim-
ulate the previous Hamiltonian? As we observed above, the
essence is the extra phase in hopping. Let’s start with two
coupled resonators:

H = —Jajag — Jajay, (14)

where a;,ag are the annihilation operators of a photon in
left and right resonators, respectively, as shown in Fig. 6(a).
J is the coupling strength and depends on the overlap of
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electromagnetic modes in the left and right resonators. The
sign of J here depends on the definition of @; x modes. Recall
that phases usually do not have a meaning until they are
evaluated for a closed loop. More importantly, two coupled
resonators cannot have a complex hopping phase, and our goal
is to engineer one [see below Eq. (15)].

The form is simply that of the coupled mode theory. In fact,
in the absence of nonlinearity and single photon and coherent
state dynamics are the same (@ — (a)), and we remove the
hats going forward.

For example, the Heisenberg picture dynamics is equiv-
alent to two coupled mode equations of motions, a; =
i[H, a;] = iJag and agr = iJa;. Now we want to consider two
resonators coupled with a waveguide in between, for which
one can use the transfer matrix formalism (see supplemen-
tary material of [22]). Here we use the quantum input-output
formalism [77] that is shorter and provides insight, following
Ref. [22]. For a resonator mode a coupled to a waveguide,
as shown in Fig. 6(b), decay and input can be described by
a = —ka — /2kE™, where E" and E® are the input and
output fields, respectively. The boundary condition is written
as E™ = E" 4+ \/2ka. We want to engineer a situation where

H = —Jeid’a'};aR — Je_""’a;aL. (15)
Note that we cannot put arbitrary coefficients in front of the
two terms; the Hamiltonian should be Hermitian. Consider the
scheme in Fig. 6(c), where two resonators are coupled through
an “antiresonant” resonator in an asymmetric way.

The total optical length of the middle ring is chosen such
that photons resonant with left and right resonators do not
interfere constructively in the middle and therefore circulate
only once on the above or below arm. The total optical path
is (4m + 3)m, where m is a positive integer. Under this con-
dition, photons spend most of their time on the left or right
resonator, and we can find an effective Hamiltonian with a;
and ag, without the middle ring. The equations of motion take
the following form:

Ein _ Eout€2inm+i%’72nia
R — *L

—iEzute_ZNIa,
in __ .-out +2mic
E' = —iEg"e ,
out in /
ER,L :ER,L+ 2I(aR,L,

dR,L = —Kap — V2KaRYLE}€L. (16)

By eliminating E},";", we find the effective Hamiltonian:

21

H = —kag'ae ™™ — ka; "age®™ ™. (17)

By choosing the length of the resonators accordingly, e.g., by
increasing the « linearly in row number y, we can implement
the Hofstader Hamiltonian.

If the system is driven with photons corresponding to
the frequencies of the edge band (see Fig. 5), they circulate
around the system either in CW or CCW direction. In other
words, photons experience an effective magnetic field B, and
orbiting around the system in the CW and CCW fashion leads
to opposite energies, in direct analogy to the —L x B term,
where L is the angular momentum.

We have not applied any external magnetic field that breaks
the time-reversal symmetry (for example, this is needed in
an optical isolator). However, we have a magnetic fieldlike
Hamiltonian for a passive system. How is that possible? In
fact, we have two pseudospins % corresponding to CW-CCW
circulating photons, inside each resonator, each experienc-
ing an opposite magnetic field. Therefore, a more accurate
analogy is spin-orbit interaction, where each spin orientation
experiences an opposite magnetic field § x L, where § is the
pseudospin of photons. In other words, the TRS is preserved
for the entire system, but we can selectively drive the system
in a “spin-polarized” way, for example, by pumping the CW
mode of the resonator. As long as photons do not get scat-
tered from CW to CCW mode, each experiences an opposite
magnetic field.

Since the word chiral is preserved for edge states with bro-
ken time-reversal symmetry, here we use helical edge states.

In any physical realization, such scattering processes are
nevertheless present; however, if the rate of such backscatter-
ing processes is slower than the hopping rate, then we can
ignore such processes. In the optics language, we need to
operate in an unresolved mode coupling regime.

Until now, we treated the left and right rings as single-mode
resonators, while the middle ring was treated as a waveguide.
Is that correct? Yes, but this is valid only for photons close to
the resonance of left and right rings. For a rigorous derivation,
one needs to use transfer matrix theory.

We again emphasize that the Hamiltonian and the sec-
ond quantization formalism are not necessary for this part.
However, this formalism allows one to understand its physics
without getting lost in the details of transfer matrix theory.

E. Various topological photonic models
and their implementations

The model discussed in the previous section was imple-
mented in arrays of coupled ring resonators fabricated on SiO,
operating at 1550 nm wavelength [22]. Generally, it is crucial
to study how the topological invariants are manifested in such
systems and what are the physical observables compared to
electronic systems. For electrons, the system is filled up to the
Fermi level, and then the electrical conductance is measured
as the main physical observable. If the system has a nonzero
integer topological invariant, the conductance is quantized,
generally with the same integer. Filling up the Fermi sea is
simply a consequence of the Pauli exclusion principle that is
absent for photons. In these photonic systems, however, one
can probe the system with an incoming laser field with a given
frequency. If the field is resonant with any of the system’s
modes, the photons enter (couple into) the lattice. Otherwise,
the light is completely reflected [22]. This state spectroscopy
can be used to measure topological invariants as a spectral
flow when the system is subject to an extra magnetic flux
[28,78], in an analogy to Laughlin’s flux insertion argument
[27].

From a more general point of view, during the development
of topological photonics, several models have been developed
and subject to intense research, starting from integer quantum
Hall, followed by anomalous quantum Hall (also known as
the Haldane model) and, subsequently, spin and valley-Hall
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effects. Other topological models have been also implemented
in rings, for example, the Su-Schrieffer-Heeger (SSH) model
[59], and topological laser arrays [79]. Other models have
been also implemented in helical Floquet waveguides [21].
A broad overview of these models, their characteristics, and
implementations can be found in Ref. [59].

It is also important to highlight here that, different from its
electronic counterpart, topological photonics can offer an op-
portunity to harness several unique degrees of freedom that are
either in part or completely unavailable in electronic systems.
For example, various polarization [25] and orbital angular
momentum [56] degrees of freedom of light can offer pow-
erful design flexibility and novel functionalities. For example,
synthetic modal dimensions have been recently implemented
to synthetic hybrid spatial-modal lattice configurations be-
yond conventional lattice geometries [80]. A review of the
relevant concepts and recent implementations can be found
in Ref. [81].

F. Topological photonic crystals

A simple and useful topological model can be formalized
for photonic crystals based on band inversion and the forma-
tion of bound states. A useful way to think about this is to
use continuum models, in particular the ones that led to the
emergence of the topological insulators. The essence of these
models is captured in the Jackiw-Rebbi (JR) model and the
concept of band inversion. Consider a 2D system with the
following dispersion:

[—ihv(—o0y0; + 0,0y) +mo ]V = EW,

where W(x, y) is a spinor, and v and m are the magnitudes of
velocities and the effective mass, respectively. In contrast to
the electron’s spin states, here the spinor represents a pseu-
dospin, e.g., two modes of the electric field. We assume the
mass changes sign at the crossing point y = 0, specifically,
m(x,y) = m(y), and m(0) = 0, and fi—’;’ < 0. There is a bound
state solution at y = O that propagates along the x axis, de-
scribed by

1 Iy . T m@y)dy' ikex
\Ij(x’y) = E(l)em f() 0" dy et
which is schematically shown in Fig. 7. Note that if TRS is
not broken, e.g., in the valley and spin-Hall effects, we get
two copies of the above Hamiltonian that are connected by
TRS. Therefore, we have helical states (instead of chiral) that
propagate in opposite directions with opposite spins (polariza-
tion for photons) [63]. Here, for one of the polarization states,
m(y) goes from a negative to a positive sign, while it changes
sign in an opposite manner for the other polarization. A
more detailed investigation of these concepts can be found in
Ref. [82].

An exciting implementation of the JR model is engineering
topologically distinct photonic crystals (TPCs). Specifically,
by changing the photonic structure, one can engineer a band
inversion between two topologically distinct photonic crystals
to form propagating states at the interface, as first proposed
in Ref. [23] and demonstrated in Ref. [25]. These states
have three main characteristics: They are unidirectional (pho-
tons with opposite polarization travel in opposite directions),
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FIG. 7. Illustration of formation of in-gap edge states at the inter-
face between two topologically distinct mediums with inverted band
structure. Adapted from Refs. [83,84].

spatially confined (in y for an interface along the x axis) at the
boundary, and robust against certain disorders. In the spin-
Hall TPCs, as described in Ref. [23,85], the opposite circular
polarization of the two edge modes can be described by the
in-plane electric field profiles of the TPC’s hexagonal unit
cell. The in-plane electric field is highly circularly polarized,
with opposite handedness for these two Jackiw-Rebbi solu-
tions. The in-plane electric field circular polarization of oL
can be considered as pseudospins for this topological photonic
crystal.

Similarly, one can exploit the valley degree of freedom
and engineer a band inversion. This leads to valley-Hall TPCs
as first proposed in Ref. [24] and demonstrated in Ref. [26].
Similar to spin-Hall TPCs, the in-plane electric field of the
TPC’s unit cell has two circular polarizations that propa-
gate in opposite directions and form two helical topological
edge states. Topological edge states in TPCs were imaged
directly in a lattice of silicon Mie resonators [86], where
the opening of photonic gaps around a double degenerate
Dirac cone as well as the formation of topological edge states
was demonstrated using high-resolution optical microscopy.
Another development was recently reported in which valley
and spin degrees of freedom were shown to be presented
simultaneously in a topological crystal [82]. Next, we will
discuss some of the recent implementations of these types
of TPCs in a variety of passive linear systems. Examples of
experimental demonstrations of linear topological photonic
platforms are shown in Fig. 8. These systems include robust
photonic waveguides and ring resonators in both all-pass and
add-drop filter configurations. These devices use valley-Hall
edge states. The quantum photonic section will cover the first
demonstration of the spin-Hall type photonic crystal waveg-
uide [25]. Recently, it was proposed that adiabatic tuning
of the topological band gap in a valley-Hall-type photonic
crystal can be utilized to form a topological mode taper
[87]. Moreover, a similar approach has been implemented
to realize topological rainbow trapping in photonic crystals
[88,89].
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FIG. 8. Implementation of topological photonic edge states in the linear regime. (a) Passive suspended valley-Hall photonic crystal
waveguide. (Image reproduced from Ref. [26].) (b) Topological photonic mode taper [87]. (c) Valley-Hall topological ring resonator with
access bus waveguide, forming an all-pass filter. (Image reproduced from Ref. [90].) (d) Topological add-drop filter, comprising a valley-Hall

resonator and access waveguides. (Image reproduced from Ref. [157].)

III. NONLINEAR TOPOLOGICAL PHOTONICS

Until very recently photonic systems (as well as other sys-
tems like acoustics, electrical circuits, etc.) have been largely
used to emulate single-particle electronic topological Hamil-
tonians, that is, systems where interactions between particles
are negligible. This includes topological Hamiltonians such as
the SSH model, the integer and anomalous quantum Hall ef-
fect, the spin and valley-Hall effects, higher-order topological
insulators, Floquet topological insulators, and others. Nev-
ertheless, electronic topological systems also include effects
such as the fractional quantum Hall effect where interac-
tions between particles lead to a very rich physics. It is,
therefore, natural to ask if one can use photonic topological
systems to emulate inferacting topological systems. Though
single-photon interactions are very weak, we can still achieve
mean-field nonlinear interactions between photons, at high
enough photon flux, by using a nonlinear medium (whose
polarization is a nonlinear function of the applied electric
field). Examples of such nonlinear interactions include self-
phase modulation, cross-phase modulation, sum, difference
and harmonic-frequency generation, optical parametric os-
cillation, lasing, etc. Along these lines, one of the research
directions explores if such nonlinear interactions affect the
topology of the system: Can they induce topological phase
transitions, or are the topological edge states stable in the pres-
ence of such nonlinear interactions? On a more fundamental
level, such nonlinear topological photonic systems have no

counterparts in fermionic systems and can lead to the emer-
gence of topological models that are unique to photons. In
parallel, another research direction explores the applications
of topological phenomena, like edge states, to engineer non-
linear processes in a medium, for example, for efficient and
robust lasers, generation of quantum states of light, optical
frequency conversion, etc. Even more so, one can also achieve
true single-photon-level nonlinearities mediated by atoms or
artificial atoms like quantum dots, superconducting qubits, or
excitons in semiconductors. Such systems can then realize a
photonic analog of interacting topological systems such as
the fractional quantum Hall effect. In the following, we will
review advances in these subfields of nonlinear topological
photonics. We will limit our discussion to parametric nonlin-
earities like the Kerr effect.

A. Nonlinearity-induced topological phase transitions

Optical nonlinearities, like the Kerr effect, change the
refractive index of a medium as a function of the optical
intensity [91]. This refractive index change can lead to a
change in the on-site potential or the coupling strength be-
tween waveguides or resonators and subsequently be used to
induce topological phase transitions. One of the first demon-
strations of such a topological phase transition was carried out
in topo-electric circuits that realized the one-dimensional (1D)
SSH model [92]. Here the nonlinearity modified the couplings
between alternate lattice sites and a topologically trivial phase
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at low intensities transitioned to a topological phase at high
enough intensities.

At optical frequencies, a nonlinearity-induced topological
phase transition was proposed by Leykam et al. in a 2D cou-
pled ring resonator system that implemented the Haldane-like
anomalous quantum Hall model in a bipartite lattice [93]. In
this model, a topological phase transition can be introduced
by adding unequal on-site potentials M (mass terms) to the
two sets of lattice sites such that M > 2J. Leykam et al.
considered a system with built-in (during fabrication) on-site
potentials just below the transition threshold. A broadband
high-intensity pump pulse was then injected into the link rings
of the lattice such that their resonance frequency would red-
shift compared to the site rings. This relative frequency shift
would reduce the effective coupling between the site rings and
thereby induce the topological phase transition.

An experimental realization of the nonlinearity-induced
topological phase transition was demonstrated recently by
Maczewsky et al. in a 2D coupled waveguide array imple-
menting an anomalous Floquet topological model [94]. The
array is fabricated such that alternating waveguides have
a nonzero on-site potential (introduced by alternating the
waveguide width), and the system is topological only at each
coupling region between the waveguides, the power transfer
t > 50%. In the linear regime, the presence of on-site potential
ensures that this power transfer ratio is less than 50% and the
system is topologically trivial. Nevertheless, on injecting high
enough power into the waveguide with a thinner core (lower
effective refractive index), the Kerr nonlinearity reduces the
on-site potential difference between the waveguides and in-
creases the coupling ratio such that the system transitions
to a topological phase. Note that this pump is injected only
into a single waveguide and this topological phase transition
is local, which means injecting a weaker beam elsewhere
in the lattice would still experience a topologically trivial
phase.

B. Spatial solitons

An optical beam propagating through a medium with
optical nonlinearities, like the Kerr effect, can experience self-
focusing wherein the central high-intensity region of the beam
sees a higher refractive index compared to its low-intensity
tails. At specific beam intensities, the self-focusing effect
can exactly balance the diffraction of light and lead to the
formation of spatial solitons [95-98]. Optical spatial solitons
have been observed in many platforms, including coupled
waveguide arrays, very similar to those used for the realiza-
tion of photonic topological insulators [99]. This immediately
leads to the question: Can such photonic topological systems
host spatial solitons? Will these solitons live on the edge or
in the bulk of the system? Are these solitons robust against
disorders?

Very recently, spatial solitons were observed in topological
waveguide arrays, in both bulk and edge states. Specifically,
Mukherjee et al. observed bulk solitons in a 2D anomalous
Floquet topological insulator [54], as shown in Fig. 9. The
system consisted of a 2D array of waveguides with periodic
or cyclic couplings to their nearest neighbors. By exciting the
bulk waveguides at high enough input optical power, Mukher-

jee et al. observed solitons that undergo cyclotron motion
while hopping between neighboring waveguides. Because of
this cyclotron motion, the intensity distribution of the soli-
ton would repeat only after propagating through a complete
period (along the waveguide) of the lattice. Nevertheless, as
expected, the soliton would not diffract into the bulk of the
lattice. Furthermore, the quasienergies of the solitons were
observed to be in the band gap and the extent of localization
of the solitons was observed to increase (decrease) with the
increasing (decreasing) separation between the quasienergies
of the soliton and the linear band. In another related article,
Mukherjee et al. also observed a soliton-like solution on the
edge states of the anomalous Floquet topological waveguide
array [54]. As before, the input light is coupled to a single
waveguide but now on the edge of the array. Because the input
is confined to a single waveguide, it can excite all the edge
modes with different quasienergies (in this case quasienergy
is constant along the waveguides). The finite curvature of the
edge band dispersion can then lead to the broadening of the
edge excitation. Note that, even in linear topological systems,
the excitations on the edge states stay localized to edge states.
As such, the broadening here refers to the increase in the
number of waveguides on the edge that are occupied by the
beam as it propagates along the edge of the array. In the
presence of nonlinearity, Mukherjee et al. observed minimal
broadening, an indication of balancing the broadening of the
beam against nonlinearity-induced self-focusing. Neverthe-
less, these soliton-like features on the edge were observed to
scatter some power into the bulk of the lattice.

Following these observations of bulk and edge spatial
solitons, another fascinating observation by Jurgensen et al.
has been the demonstration of Thouless pumping of solitons
[100-102]. For this experiment, they used a 1D array of
coupled waveguides that simulates the off-diagonal Aubry-
Andre-Harper (AAH) model for photons. In this array, the
coupling strength (off-diagonal elements of the Hamiltonian
matrix) between the waveguides varies periodically as a func-
tion of position along the waveguide length. This 1D model is
related to the 2D Chern insulator model and exhibits an identi-
cal band structure. At the input of this array, a soliton, which is
an eigenstate of the nonlinear Hamiltonian, was injected. Then
the Thouless pumping manifested as a quantized displacement
of the soliton to neighboring waveguides by one unit cell
after propagating one period of coupling-strength modulation.
Even more, by choosing a soliton solution that bifurcated
from a different band (with Chern number +2), the authors
also observed quantized displacement by two unit cells in one
period of propagation length. Evidently, the displacement of
the soliton corresponded to the Chern number of the band
from which the soliton bifurcated. Using this same platform
the authors have also recently demonstrated the nonlinear
pumping of solitons by fractional numbers that are quantized
[103].

In another very different platform, that of cavity polaritons,
Pernet et al. also observed spatial solitons [104]. Their system
consisted of a 1D array of micropillars, each of which hosts
a cavity polariton. The coupling between the neighboring
micropillars was staggered to realize the 1D SSH model.
The nonlinearity in this system originates from the Coulomb
repulsion between the excitonic part of the cavity polaritons.
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FIG. 9. (a)—(c) Schematic of the 2D array of coupled waveguides and variation of their coupling strengths, used to observe spatial
topological bulk solitons. (e)—(h) Intensity profile in the array showing soliton behavior. (i) Schematic of the 1D array of coupled waveguides
used for pumping of topological solitons and the variation of the coupling strength between the waveguides. (j) Topological pumping in the
linear regime. (k) Topological pumping of solitons at higher pump powers, and (1) trapping of solitons at very high pump powers. Taken from

Refs. [54,103].

When the topological edge state at the interface between
topologically trivial and nontrivial regions was strongly
pumped, a topological gap soliton was observed to be local-
ized at the same interface state. Evidently, this topological
soliton bifurcates from the midgap topological edge state and
exhibits a spatial intensity distribution (localized on a single
sublattice) that is similar to the linear case. More interestingly,
when a dimer in the bulk of the array was pumped, with pump
frequency in the topological band gap, the authors observed
the formation of topological bulk solitons. Furthermore, the
pump power threshold for the formation of topological bulk
solitons was found to be robust against defects (introduced
by another laser) only in one sublattice and not in the other
sublattice. Going further, the authors demonstrated that by
controlling the phase of the pump excitation over two mi-
cropillars of the dimer, they could achieve sublattice-polarized
topological solitons such that the soliton wave function was
predominantly localized to only the sublattices, and this

polarization could be controlled by controlling the relative
phase of the two pump beams.

C. Dissipative Kerr temporal solitons and frequency combs

The presence of optical Kerr nonlinearity in optical
resonators with multiple free spectral ranges (FSRs) can
lead to the fascinating physics of temporal dissipative Kerr
solitons and optical frequency combs [105-112]. Because
of the spontaneous four-wave mixing process mediated
by the Kerr nonlinearity, a continuous-wave pump beam
with a frequency near one of the resonances leads to the
generation of new frequencies in the resonator. The en-
ergy and momentum conservation dictates that the newly
generated frequencies are also close to the resonator fre-
quencies at other FSRs. In the limit of a weak pump, this
process is spontaneous and, as we discussed earlier, is used to
generate energy-time entangled photon pairs. With increasing
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spectrum in the regime of phase-locked Turing rolls showing oscillation of a single edge mode in each FSR. (e) Comb spectrum in the regime
of nested solitons showing the oscillation of multiple edge modes in each FSR. Taken from Ref. [53].

pump power, the newly generated frequencies beat with the
pump and also with other frequencies, ultimately leading to a
stimulated four-wave mixing process. Because the generated
frequencies are almost aligned with the ring resonances, they
constitute an optical frequency comb with frequency sepa-
ration almost equal to the FSR of the resonator. However,
the comb lines are, in general, not phase-locked, and the
frequency comb is chaotic. In this regime, the field profile
inside the resonator is also chaotic.

By appropriately designing the dispersion of the resonator,
mostly to be in the anomalous regime, and by tuning the
pump frequency and power, it is indeed possible to get to
a regime where the linear dispersion of the ring is exactly
canceled by the dispersion introduced by the Kerr nonlinearity
and the resonator loss is balanced by the four-wave mixing
(FWM) gain. This dual balance leads to the generation of a
coherent optical frequency comb where all the comb lines
are phase-locked and precisely equally spaced by the FSR
of the resonator. The corresponding field profile inside the
resonator corresponds to one or more soliton pulses in time,
called dissipative Kerr solitons (DKSs), that propagate with-
out dispersion. Such DKSs have been observed in a variety
of resonator geometries, including whispering gallery mode,
bottle, integrated ring, and Fabry-Perot resonators, and also
in a number of material platforms, including silica, silicon,
silicon-nitride, aluminum-nitride, silicon-carbide, and others.
From an application perspective, coherent optical frequency
combs find a number of applications, for example, in preci-
sion time keeping, spectroscopy, waveguide demultiplexing
(WDMs) transceivers, LiDARs, etc.

Recently, there has been growing interest in using coupled-
resonator systems to engineer novel DKS solutions and comb
spectra that are not accessible using single resonator ge-
ometries [104,113,114]. On a more fundamental level, these
systems also explore the self-synchronization of coupled res-
onators. Some of the early demonstrations in this regard used

resonators made of fiber loops or a fiber loop coupled to an
integrated ring resonator [115,116]. More recently, the field
of frequency combs has seen an influx of ideas from the field
of topological photonics.

Specifically, Mittal et al. theoretically studied the gen-
eration of DKSs and optical frequency combs in 2D ring
resonator arrays that, as we discussed earlier, create a syn-
thetic magnetic field for photons and thereby simulate the
integer or the anomalous quantum Hall physics for pho-
tons [117]. Given that this system realizes one copy of the
anomalous Hall model near each of the single-ring resonance
frequencies, it is effectively a three-dimensional (3D) system
with two real and one synthetic dimension in frequency. For a
linear system, the different copies at different ring resonance
frequencies are uncoupled. However, the introduction of a
four-wave mixing process (Kerr nonlinearity) couples these
copies by mediating the hopping of photons between them.
This demonstration is summarized in Fig. 10.

As we discussed earlier, the linear dispersion and the spa-
tial confinement of topological edge states lead to efficient
phase matching of the spontaneous four-wave mixing process
for the generation of entangled photon pairs. A similar phe-
nomenon was observed for the generation of optical frequency
combs in topological ring resonator arrays. The comb genera-
tion was efficient only when the pump beam was close to one
of the edge mode resonances. This can be easily understood
considering that the topological edge states circulate around
the complete periphery of the lattice and, hence, realize a
super-ring resonator composed of smaller rings. The edge
state resonances then simply are the longitudinal modes of
this super-ring resonator. So when the pump beam is close to
an edge-state resonance, in addition to the linear dispersion,
the FWM process is resonantly enhanced by the edge-state
super-ring resonator.

By tuning the pump frequency and pump power, Mittal
et al. observed two very distinctive regimes, namely, that of
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phase-locked Turing rolls and nested solitons. In the regime
of Turing rolls, all resonators that lie on the edge of the lattice
show the presence of multiple equidistant peaks in the rings
and only a single edge mode resonance oscillates. Remark-
ably, the phase of the Turing rolls in all the edge rings was
locked. At higher pump powers, a regime of nested solitons
was observed. In this regime, there was a single pulse in the
ring on the edge of the lattice, and also a single super-pulse
in the super-ring resonator formed by the edge states. Once
again, the pulse positions in the rings were phase-locked. This
nested-soliton pulse would circulate around the edge of the
lattice, and around defects, without losing its phase locking.
The comb spectrum in this regime showed oscillation of mul-
tiple edge modes resonances in each FSR [each copy of the
quantum anomalous Hall effect (QAHE)], and the underly-
ing dispersion was canceled by that introduced by the Kerr
nonlinearity. It is worth noting that merely exciting the edge
state resonances of the lattice did not lead to the formation
of nested solitons, it also required tuning the pump frequency
around the edge state resonance and the pump power. As with
single-ring resonators, the phase diagram (pump frequency vs
pump power) of the topological frequency comb was largely
dominated by a chaotic regime. Only in very narrow regimes
of pump frequency and power were these phase-locked pat-
terns observed. It is expected that similar physics could be
explored in similar coupled-resonator systems [118] or other
platforms, for example, topological circuits, where it is also
possible to introduce nonlinearities. Nevertheless, an experi-
mental realization of the topological frequency comb is yet to
be realized in any platform.

IV. QUANTUM TOPOLOGICAL PHOTONICS

Due to their built-in robustness against decoherence, pho-
tonic systems are poised to play a central role in the
development of quantum technologies. In addition to being
the natural choice for quantum communications, photonic
systems also offer a versatile platform for quantum simu-
lations, for example, of random walks, molecular quantum
dynamics, quantum-enhanced sensing, and full-scale quantum
computation using measurement-based computing [119-123].
This is facilitated by the many photonic degrees of freedom,
for example, polarization, orbital angular momentum, tem-
poral and spectral modes, etc., onto which quantum states
can be encoded, manipulated, and measured. However, the
key challenge in harnessing the full potential of quantum
photonic systems and further diversifying their functionalities
is to achieve a scalable route for quantum engineering of the
various photonic degrees of freedom via large-scale integra-
tion of photonic elements on a single chip. This large-scale
photonic integration is mainly hindered by the unavoidable
fabrication disorder that leads to random variations in the
photonic mode structure and manifests as device-to-device
variations in behavior. Following the various demonstrations
of topological robustness for classical photonic systems, it is
then natural to investigate if topological protection could also
be used to design robust quantum photonic devices. A number
of recent theoretical and experimental works have explored
such quantum topological photonic systems in various con-
texts [25,28,38,39,53,124-128]. One broad category of these

systems has explored the extent of topological robustness in
the propagation of photons carrying quantum information,
for example, encoded in temporal or spatial entanglement
[28,124,125,127]. Propagation of entangled photons through a
disordered system can, in general, lead to the loss of quantum
information. In contrast, using numerical simulations, Mittal
et al. [28] and Rechtsman et al. [124] proposed that the
topological edge states can reliably carry entangled photons.
We note that the quantum information in these systems is
generated outside of the topological device.

The second category of quantum topological photonic sys-
tems has explored the generation of quantum states of light
[38,39]. These systems use the second- or third-order opti-
cal nonlinearities of the medium and implement spontaneous
parametric processes that naturally lead to the creation of
photon pairs correlated in energy time, and space momentum.
The presence of topological edge states is then exploited as a
novel and robust route to engineer the spectral or spatial corre-
lations in generated photon pairs. The third category seeks to
interface solid-state quantum emitters, for example, quantum
dots with topological photonic systems [25,126]. The inherent
directionality and the robustness of topological edge states in
these systems lead to chiral light-matter interactions. In the
following, we review some of the experimental demonstra-
tions of topological robustness in quantum photonic systems.

A. Topological sources of quantum light

Sources of quantum light, in particular, correlated and en-
tangled photon pairs, have relied on spontaneous processes
such as spontaneous parametric down-conversion (SPDC)
and spontaneous four-wave mixing (SFWM), in optical me-
dia with x® or x® nonlinearity, respectively [91,129]. In
these processes, one (SPDC) or two (SFWM) photons from a
strong, classical pump beam annihilate and create two daugh-
ter photons, called signal and idler photons. The parametric
nature of these processes indicates that no energy or mo-
mentum is transferred between the photons and the nonlinear
medium, and therefore, the pump and the generated pho-
tons conserve both energy and momentum. For example, in
SFWM, 2w, = w; + w;, and 2]2,, = lzs + E[, where w and ¥ are
the frequencies and the momenta of the pump (p), signal (s),
or idler (i) photons. The underlying dispersion relation w(k)
of the photonic mode structure couples these two relations
together and eventually leads to nonclassical energy-time
and position-momentum correlations in the generated photon
pairs such that they are described by a two-photon wave
function.

Implementing SFWM and SPDC on a photonic chip offers
a scalable and versatile platform to generate photon pairs
with engineered spectral or spatial correlations [130-134].
In particular, on-chip quantum light sources, using SPDC
or SFWM, have now been realized on a variety of mate-
rial platforms, such as silicon, silicon-nitride, lithium-niobate,
aluminum nitride, etc. [134—136]. A common feature of these
sources is the use of a ring resonator that can resonantly en-
hance the strength of nonlinear interactions and lead to higher
generation rates [131-133].

With the aim of further enhancing the generation of pho-
ton pairs, and simultaneously, engineering their spectral and
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FIG. 11. (a) 2D ring resonator array used to realize a topological source of correlated photon pairs generated via SFWM. Because of the
synthetic magnetic field, photons acquire a nonzero, direction-dependent phase ¢ when they circulate around a closed path of four site rings
(cyan) and four links (yellow) rings. The clockwise (CW) and the counterclockwise (CCW) edge states are highlighted in color. (b) Measured
transmission spectrum showing edge and bulk bands. (c)—(f) Measured spectral correlations, that is, the number of photons generated as a
function of the pump and signal frequencies. The dashed lines indicate the edge band region. The spectral correlations for 2D topological
devices are very similar in the edge band region. (g)—(j) Measured spectral correlations for 1D devices. The correlations differ significantly
across devices because of disorder. Taken from Ref. [38]. (k) Schematic of the SSH waveguide array used to generate correlated photon pairs.
The waveguide array supports an edge state at the interface between two SSH domains. Spatial correlations between generated photons for
(I)—(n) a topological array and a topologically trivial array (0)—(q), in the absence and presence of disorder. The zeros of the spatial correlation
function for a topological source are robust against disorder in coupling strengths. Taken from Ref. [39].

temporal correlations in a topologically robust way, Mittal
et al. [38] used the system of coupled silicon ring resonators
to implement SFWM. As we discussed earlier, this system
realizes a synthetic magnetic field and thereby simulates the
integer quantum Hall effect for photons [19,22,28]. They
chose the synthetic magnetic field flux ¢ = 7 /2 such that the
transmission spectrum of the device exhibits two edge bands,
with edge states circulating around the lattice in clockwise
and counterclockwise directions. Using transmission and de-
lay measurements made over a number of devices, the edge
states in this system have been shown to be quantitatively
robust against common fabrication disorders, for example, a
mismatch in the ring resonance frequencies [137].

While the topological robustness of transmission through
photonic edge states has been extensively explored for appli-
cations in integrated photonic devices, Mittal et al. exploited
the linear dispersion of the edge states to engineer the spectral
correlations of generated photons. In particular, the spectral
correlations between generated photon pairs as well as their

generation rate is dictated mainly by the phase matching
between the pump, the signal, and the idler photons, that
is, 2/2,,(w,,) = %S(ws) + ﬁi(wi). To understand these spectral
correlations, they measured the generation rate of photons as
a function of the input pump frequency and the spectra of
generated signal and idler photons [Figs. 11(c)-11(f)]. They
showed that the maximum number of photons is generated
when the pump frequency is in the edge band of the device
(highlighted by the white box). Furthermore, this also limits
the spectra of generated photon pairs to the same edge band.
This spectrally confined and enhanced generation of photon
pairs is because of the linear dispersion of the edge states,
which naturally satisfies the phase-matching condition when
all the photon fields are in the edge band of the device. Fur-
thermore, their confinement at the edge of the lattice ensures
that they also have an excellent spatial overlap and enhance
the generation of photon pairs. In contrast to the edge modes,
the bulk modes show a much weaker generation of photon
pairs with no spectral confinement.
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To test the robustness of spectral correlations between
photons generated by their topological source, Mittal et al.
made measurements over a number of devices and also
compared their results against a similar source implemented
using a topologically trivial 1D array of ring resonators
[Fig. 11(a)] [138,139]. Although these devices were fabricated
at state-of-the-art commercial silicon foundries, they had a
significant disorder in the ring resonance frequencies and hop-
ping strengths, as well as hopping phases [137]. Nevertheless,
as expected, they observed that for topological sources, the
maximum number of photons was always generated when
the pump, the signal, and the idler fields constituted the edge
modes of the device, and therefore, the spectral correlations
in the edge band were very similar across different devices.
In contrast, the topologically trivial 1D sources showed very
significant variations in their correlations, with a much lower
similarity across devices. Using second-order cross- and self-
correlation measurements between generated photons, they
confirmed that their source was operating in the quantum
regime. More recently, topological ring resonator arrays that
implement a Haldane-like anomalous quantum Hall model
have also been used to generate indistinguishable photon
pairs using dual-pump SFWM [53]. Furthermore, this scheme
generated path-entanglement between the photon pairs by
exciting counterpropagating edge states associated with the
two pseudospins [140,141], and also demonstrated tuning of
the spectral-temporal correlations of photon pairs leading to a
tunability in their quantum interference. In another effort, Dai
et al. [128] used a strongly coupled topological ring-resonator
platform, implementing an anomalous Floquet topological in-
sulator model [142-144], to generate two pairs of photons
(a total of four photons) that were path entangled by excit-
ing counterpropagating edge states. Furthermore, the authors
demonstrated the quantum interference of the generated four
photons using a beamsplitter that was integrated along with
the topological quantum light source. These results bode well
for the use of topological sources to achieve quantum interfer-
ence between photons generated by independent sources.

In another similar experiment, Blanco er al. [39] investi-
gated the generation of correlated photon pairs in a 1D lattice
of coupled waveguides. The coupling strength between the
waveguides is modulated by alternating the gap (small or
large) between the waveguides, such that the lattice simulates
the SSH model [6], and the edge states appear at the physical
boundary between the two topological phases. Furthermore,
the edge state wave function vanishes at lattice sites imme-
diately neighboring the edge site and alternating waveguides
thereafter.

The waveguides were fabricated using silicon, which al-
lowed for the generation of correlated photon pairs via
SFWM. In particular, the edge state of the lattice was pumped
using a pulsed laser that generated signal and idler photon
pairs as it propagated through the lattice. At the output of
the lattice, Blanco et al. measured the spatial correlations
in the generated signal and idler photons. They observed
that similar to the classical (single-particle) edge state wave
function in the SSH model, the spatial correlations in the
two-photon wave function also showed zero amplitude at
alternating waveguides. Furthermore, they showed that these
zeros of the wave function were robust against disorder in

the coupling strength between the waveguides.Wang et al.
[145] extended this scheme to generate path-entangled photon
pairs by realizing two topological interfaces in a single array
of 1D waveguides. The two edge waveguides (one at each
interface) were pumped by a single laser via a beamsplitter
such that there would be an equal probability of generating
photon pairs from either edge state, and the output would
be a two-photon state that is path entangled. Using numeri-
cal simulations, the authors showed that the entanglement is
robust against disorders that preserve the chiral symmetry of
the underlying SSH lattice. Nevertheless, any disorder in the
waveguide width or thickness, for example, originating from
fabrication imperfections or thickness variations of the wafer,
would reduce the visibility of quantum interference between
the path-entangled photons. Along similar lines, Doyle et al.
[146] experimentally demonstrated a scheme to generate path-
entangled photons using two topologically distinct, trivial, and
nontrivial modes that are colocalized. As expected, because of
the presence of a topologically trivial mode, the entanglement
generated in this scheme is not robust against off-diagonal
disorder. Nevertheless, this scheme could be extended to em-
ploy two distinct but topologically protected modes that could
arise, for example, in multiband topological lattices [147].

B. Topological robustness for propagating quantum
states of light

While photons do not interact with one another, they do
exhibit quantum interference, which forms the basis of many
algorithms used in quantum communications, quantum simu-
lations, and quantum computation using photons [120-122].
This is best exemplified by the Hong-Ou-Mandel interference
where two indistinguishable photons arriving in two different
input ports of a beamsplitter tend to bunch at either of the
output ports [148]. This interference phenomenon has led
to the observation of quantum walks of correlated photons
and the realization of boson sampling in spatial networks of
integrated beamsplitters [123,149].

However, scaling this multiphoton quantum interference
and boson sampling schemes to a larger number of photons
requires a significant reduction in the variations of the splitting
ratio of the on-chip beamsplitters. It is therefore natural to
investigate if topological protection can be used to design
robust beam splitters.

Along these lines, Tambasco et al. [125] realized a beam-
splitter using the topological edge modes. Their system
consists of 1D arrays of coupled waveguides, such that the
coupling strength between them is modulated both along the
lattice and along the length of the waveguides. This system
simulates the off-diagonal Harper model and hosts a pair of
edge states at its boundaries, similar to the SSH model. How-
ever, modulation of the coupling strength along the length of
the waveguides allows them to adiabatically delocalize the
edge states from the boundary to the bulk of the lattice such
that the photons traveling in the edge states can now interfere.
The edge modes are then again localized at the boundaries of
the lattice. This setup then realizes an integrated beamsplitter
for photons but uses edge modes for guiding photons.

At the input of this topological beamsplitter, Tambasco
et al. injected two indistinguishable photons generated via

040101-15



JALALI MEHRABAD, MITTAL, AND HAFEZI

PHYSICAL REVIEW A 108, 040101 (2023)

Wavelength (nm)

Quantum Dot

Wavelength (nm)

Left

B (Tesla)

927 927.2 927.4 927.6
Wavelength (nm)

Zeeman
Splitting

0
927.8 927 927.2 9274 9276 9278

(d)3 Middle Left

& 06
o~
S04

2 (8

-50 -40 30 20 -10 0 10 20 30 40 50
T (ns)
Right Right

B (Tesla)

=)

927

927.2 9274 9276 9278

Wavelength (nm)

~
Naj

w

N

B (Tesla)

1

nl ()

0—0 -40 -30 20 -10 0 10 20 30 40 50
T (ns)

Wavelength (nm)

FIG. 12. (a), (b) SEM image, and the band structure of the shrunken and expanded honeycomb lattice used to realize a topological interface
between quantum dots and helical edge states. (c) An applied magnetic field introduces a Zeeman splitting between the pseudospin (right and
left-circular) polarized photons. (d)—(f) The pseudospin polarized edge states propagate along the interface in opposite directions, where they
are collected using grating couplers. (g), (h) The measured second-order correlation function g,(z) shows the operation of quantum dots as

single photon sources. Taken from Ref. [150].

off-chip SPDC. By tuning the relative delay between the input
photons and using coincidence measurements at the output,
they observed a high visibility HOM interference dip, which
confirmed the intended operation of their topological beam-
splitter. However, the robustness of the beamsplitting ratio of
this topological beamsplitter against fabrication disorder is yet
to be studied.

In another experiment using similar 1D arrays of waveg-
uides that simulates the off-diagonal Harper model, Wang
etal. [127] investigated the robustness of intensity correlations
between indistinguishable photon pairs as they propagate
through the lattice. Similar to the experiment of Tambasco
et al., the correlated photon pairs were generated off-chip
using SPDC. Wang et al. showed that when both the photons
are injected in the edge mode of the array, they maintain
the intensity correlations. In contrast, when the photon pairs
propagate through bulk modes, there is a suppression in their
correlations.

In a similar context, Mittal ez al. [28] numerically studied
the propagation of time-bin entangled photons through their
2D topological system of coupled ring resonators. Similarly,
Rechtsman et al. [124] investigated the propagation of spa-
tially entangled photon pairs through their Floquet topological
system of coupled helical waveguides. These investigations
are similar in essence to quantum walks of photon pairs
through networks of beamsplitters or coupled waveguides.
They observed that propagation through edge states preserves
the temporal and spatial correlation between photon pairs,
respectively, even in the presence of disorder.

C. Topological photonic systems coupled to quantum emitters

Coupling light to matter degrees of freedom, such as quan-
tum dots, can mediate the interaction between photons and
lead to novel quantum states of light [151]. In turn, the pho-
tonic mode structure can significantly alter the properties of
solid-state systems. For example, photonic cavities can be
used to manipulate the emission spectra and the excitation
lifetimes in quantum dots [151,152]. Coupling quantum dots

and other solid-state emitters to topological photonic edge
states is, therefore, an exciting avenue to investigate chiral
light-matter interactions that could lead to many-body states
[153].

Barik et al. [25] realized such a quantum optics interface
between quantum dots and photonic edge states. Their topo-
logical photonic system was designed using a 2D photonic
crystal with triangular holes in a GaAs membrane Fig. 12(b).
When the holes are arranged in a honeycomb lattice, the band
structure of the photonic crystal exhibits a Dirac point, very
similar to that of graphene [23,85]. Nevertheless, a deforma-
tion of the unit cell of the lattice leads to the appearance of
a band gap. More specifically, expanding the unit cell of the
lattice, that is, increasing the distance between the holes in
the unit cell while keeping the boundaries of the unit cell
constant, resulted in a band gap that was topological in nature.
In contrast, shrinking the unit cell also opened a band gap,
but a trivial one. Therefore, an interface between the shrunken
and the expanded domains hosts topological edge states. This
model realizes the quantum spin Hall effect where the in-
plane circular polarization of the electric field constitutes two
pseudospins of the system. The edge states corresponding to
the two pseudospins propagate along the interface in opposite
directions.

The GaAs membrane used in Ref. [25] was embedded with
InAs quantum dots, with their emission spectra well aligned
to the band gap of the photonic crystal structure [25]. To
couple the quantum dots to the in-plane circularly polarized
photonic edge states, they used an out-of-plane magnetic field
that induced a Zeeman splitting in the excited state energies
of the quantum dots [Fig. 12(d)]. In this configuration, the
two Zeeman-split energy levels were selectively coupled to
the two circularly polarized photonic edge states propagating
along opposite directions. In this work, [25], Barik et al.
excited a single quantum dot in the middle (M) of the interface
[see Fig. 12(b)] and measured the spectra of photons collected
from either side (L or R) of the interface, as a function of
the magnetic field strength. Because of the pseudospin se-
lective coupling of the excited states to counterpropagating

040101-16



TOPOLOGICAL PHOTONICS: FUNDAMENTAL CONCEPTS, ...

PHYSICAL REVIEW A 108, 040101 (2023)

edge states, they observed that the lower wavelength (higher
energy) photons were primarily guided by the edge states
to the right end of the interface, whereas the higher wave-
length (lower energy) photons were guided towards the left
end of the interface. To demonstrate the robustness of this
topological quantum-optics interface, they showed that the
chiral propagation of photons is robust against any disorders
that do not flip the two pseudospins, for example, bends in
the interface. Furthermore, they used second-order correlation
measurements to observe the antibunching of photons, which
ensured that they were indeed single photons.

In another experiment, Ota et al. [126] explored the cou-
pling of quantum dots to nanophotonic cavities realized using
corner states of light in higher-order topological systems.
Similar to Barik ef al., their system comprised a GaAs pho-
tonic crystal membrane, with embedded InAs quantum dots.
The photonic crystal was designed by etching two sets of
square holes, with different lengths of their sides, in the GaAs
membrane. This difference in the hole dimensions opened up
a band gap. More importantly, a 90° interface between two
photonic crystal regions with swapped hole dimensions led
to the emergence of corner states in the band gap, physically
located at the bend in the interface. This system is analogous
to a 2D SSH model with alternating coupling strengths in both
dimensions. To probe the existence of corner states in their
photonic crystal, Ota et al. used the photoluminescence from
the ensemble of quantum dots as a broadband light source
(pumped by a laser). As an indication of the corner states, they
observed a sharp peak in the photoluminescence spectrum,
in the region expected to host corner states. They confirmed
their observation of the corner states by showing that this
peak in the photoluminescence spectrum originated from a
narrow spatial region at the 90° bend in the interface between
topological and trivial domains of the photonic crystal. We
note that unlike Barik et al., who coupled a single quantum
dot to the topological edge states, Ota et al. used an ensemble
of quantum dots.

V. REMAINING CHALLENGES
AND FUTURE DIRECTIONS

Here we highlight some of the challenges and potential
future directions in topological photonics in linear, nonlinear,
and quantum regimes, as well as coupled electron-photon sys-
tems, ranging from fundamental to application perspectives.
For the latter, it is essential to go beyond proof-of-principle
experiments, and a side-by-side comparison of the efficiency
and yield of a topological design compared to trivial counter-
parts (with the same fabrication process and material) should
be established. Such side-by-side comparisons and yield esti-
mates remain scarce in the literature [137,154].

A. Linear topological photonics

In spin-Hall photonic crystals (PhCs) waveguides [25] and
ring resonators [155] propagation length and Q factors are
low since the edge states are above the light cone and there-
fore are radiative. Moreover, practical edge state bandwidths
in spin-Hall PhC waveguides in strong perturbation (shrink-
ing and expanding) regimes [25] are limited. One intriguing

improvement can be the realization of broadband spin-Hall
TPC waveguides and high-Q photonic cavities with below-
light cone edge dispersion. Another remaining challenge is the
efficiency of mode conversion at the topological-conventional
waveguide interfaces [26,156,157]. Further optimization of
such mode conversion is essential for the efficient integration
of these optical components for scalable photonic circuitry.
One recent approach to address this challenge can be found
in Ref. [158]. More promising approaches may be using the
recently demonstrated topological funneling of light and edge
mode tapering, although it should be noted that topological
funneling of light in these studies is based on non-Hermitian
physics [55,87]. Moreover, so far many valley-Hall PhC
waveguides [24,26,156] have been proposed and studied. In
addition to a recent investigation of the nature and degree of
backscattering against sharp bends and fabrication imperfec-
tions [154], further studies are required to confirm if there
is any protection against real-world defects and classify and
quantify the strength of such protection rigorously. A recent
study can be found in Ref. [159].

While helical topological waveguides have been experi-
mentally realized [124], their photonic applications have not
been explored yet. This is in contrast to coupled rings used for
solitons and lasers, and TPCs used for routing and quantum
dots. It would be desirable to explore whether similar or other
exclusive applications such as chip-integrated photonic cir-
cuits are realizable using the topological helical waveguides.

One exciting direction can be the design and realization
of reconfigurable topological devices with phase-changing
materials. Such a reconfigurable platform can be inspired by
recently demonstrated reconfigurable non-Hermitian topolog-
ical photonic routing [160]. In particular, it is intriguing to be
able to imprint a wide variety of optical components such as
waveguides, ring resonators, and beam splitters all within the
same device with a compact footprint. A recent proposal has
explored the possibility of such systems in spin-Hall TPCs
[161].

Another potential direction in either topological ring res-
onator arrays or TPCs can be the realization of topological
bandpass and notch filters, enabled by the robustness propaga-
tion of the edge states in larger device sizes. In particular, the
realization of robust topological delay lines has been proposed
in such devices [19]. One can investigate what other devices
are possible to realize that can benefit from topological pro-
tection. For example, the realization of topological photonic
taper [87] and application of topological photonic beaming
[57] has not been reported yet. Moreover, the scalability and
application of topological antennas have not yet been fully
investigated [44,45].

Despite decades of theoretical and experimental work on
the electronic integer quantum Hall effect, the plateau transi-
tion remains an active area of debate [162,163]. It is intriguing
to explore whether photonic systems can shed light on the na-
ture of extended states and transition between plateaus [164].
This might require strong interaction between photons.

The nature and degree of topological robustness in TPCs
remains an active area of research. For example, recent in-
vestigations have explored the band representation of TPCs
and the emergence of fragile topological states [165-167]. In
terms of the robustness of electronic topological insulators
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(TIs), while theory predicts perfect conductance quantization,
the observed conductance remains poorly quantized [168].
This contrasts with the highly accurate quantization observed
in integer quantum Hall systems. The observed discrepancy
appears to be linked to the presence of charge puddles [169],
and recent microwave experiments have provided an in situ
approach to better understand this physics [170]. Similarly,
in photonic systems, experiments can yield new insights by
either falling short of or surpassing theoretical predictions.
These efforts can contribute to a deeper understanding of
the fundamental and technical limits of topological protection
for device engineering. Specifically, quantitative theoretical
analyses and experimental implementations involving various
designs and materials can identify the relevant types of disor-
der. Examples of such efforts include the early work on ring
resonators [137] and more recent theoretical analyses of TPCs
along with experimental benchmarking [171,172]. The lat-
ter investigates the backscattering in valley-Hall waveguides
compared to conventional W1 line defect counterparts, and in
particular, the degree of backscattering for single and multiple
sharp bents. Such experimental and quantitative analyses play
a pivotal role in assessing the comparative scalability and
utility of topological waveguides.

Spin flip in topological photonic resonators and photonic
crystal waveguides is an undesirable feature. Using inverse de-
sign or more generally machine learning techniques to address
these issues and design practical topological photonic systems
can be an intriguing avenue to improve device functionality
and scalability [173]. In this approach, topology can be hard
coded in the optimization process. For example, a nonzero
Berry phase can be encoded as a loss function.

With recent remarkable advances in machine learning, it is
interesting to investigate its implication in physics [174], and
more specifically in topological photonic systems. This can
be in diagnosing and classifying topological states and even
finding new band structures with topological phases [175]. In
addition to designing topological photonics devices, exploring
the connection between topological data analysis (TDA) and
machine learning and their potential implications in photonic
systems may also be another emerging avenue in this field
[176].

Another novel direction can be the realization of recon-
figurable topological photonic devices using phase-changing
materials. In particular, the demonstration of multifunctional
operation within the same photonic device footprint can be
intriguing. A recent example of such a study can be found
here [177].

Another recent development involves proposals for topo-
logical sensors, in which topological photonic states of light
are utilized to form robust and novel detectors. One example
includes a photonic crystal ring resonator hosting topological
edge states [178]. In this work, they use the near field of the
high-Q topological ring cavity modes for biological sensing.
Another example includes a 1D topological photonic crystal
mirror hosting a resonance with robust optical localization
at the topological boundary with high sensor sensitivity, sta-
bility, and tunability [179,180]. In the non-Hermitian regime,
recently a novel sensing device was introduced based on the
energy shift in the topological edge states in response to small
variations in the boundary of the system [181]. Intriguingly,

this non-Hermitian sensor approach promises an enhance-
ment in sensitivity that grows exponentially with the system
size. While the topological robustness naively means that the
relevant physical observables are insensitive to perturbation,
and therefore topological systems are poor sensors, recently
a proposal for a quantum non-Hermitian topological sen-
sor was developed, offering potential sensing improvements
[182]. These proposals and developments indicate that the
application of the non-Hermitian topological phases for sens-
ing may potentially increase the optical detection sensitivity.
However, the experimental demonstration of the advantages
of topological sensors versus conventional counterparts is still
in its infancy. More theoretical and experimental efforts are
required to verify their performances.

B. Nonlinear topological photonics

One of the most exciting areas of nonlinear topological
photonics is topological lasers. During the last few years,
several types of topological lasers have been proposed and
realized based on the quantum Hall effect [32], non-Hermitian
topology [33], SSH model [34], valley Hall effect [37],
photonic quantum spin Hall effect [35,36], and high-order
topological state [183]. Recent theoretical studies suggest a
rich set of phenomena to occur in topological lasers [184,185].
Several detailed reviews on these topological lasers can be
found in the literature [7,59,64], due to which we focus only
on other potential future directions of such nonlinear sys-
tems. Experimental exploration of such ideas can significantly
expand the use of topological edge states in real-world ap-
plications in novel lasers. Experimentally, an unambiguous
demonstration of topological robustness in topological lasers
and a comparison of their efficiency compared to trivial 1D
counterparts in a side-by-side comparison remains an active
area of research. Another direction includes Dirac-point lasers
in 2D geometries [35,36,186]. In particular, it is useful to
optimize the stability and laser emission in broader chip areas
without multimode operations in these devices. Moreover,
Weyl points in 3D photonic crystals are novel candidates for
expanding topological lasers to more than 2D configurations
[187]. Polaritons, which are hybrid photon-exciton particles,
and either photon, excitons, or their coupling form can also be
engineered to have topological properties. In these topological
exciton-polaritons, which were demonstrated recently [40],
the band gap is very small, which makes their broadband
application and spectrally resolved demonstration challeng-
ing. It would also be intriguing to explore concepts such as
spin-selective strong light-matter interaction in topological
exciton-polariton systems [188].

Recently topological frequency combs and nested temporal
solitons have been theoretically proposed [53]. Nevertheless,
the experimental realization of topological optical frequency
combs using coupled ring resonators is expected to be chal-
lenging. In particular, the currently estimated pump power
requirement for topological frequency combs is high, more
than 10 W. This is mainly set by the disorder in ring resonance
frequencies, which, even for state-of-the-art photonic integra-
tion, is of the order of a few tens of GHz. This sets a lower
limit on the coupling strength J between the rings and limits
the loaded quality factor of the rings. While the generation
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of frequency comb has been demonstrated for two coupled
rings [113,189,190], going beyond that seems to be challeng-
ing. Furthermore, lowering pump power requirements will
also reduce the deleterious thermal effects, which are prob-
lematic even for single-ring combs. Another area of concern
for ring-resonator-based topological combs will be the mode
mixing between transverse modes of the ring waveguides.
To lower losses, single-ring resonator frequency combs often
employ waveguides that support multiple transverse modes.
However, for coupled ring resonators, mixing between dif-
ferent transverse modes can be a significant challenge. For
proof-of-principle demonstration, many of these issues could
be mitigated by designing rings with lower coupling strengths
(higher loaded quality factors and lower topological edge
bandwidth) and coarse tuning the ring resonator frequencies
(e.g., using heaters) such that the disorder falls within the
reduced topological edge bandwidth. Nevertheless, it will be
interesting to investigate other topological photonic designs
that could lead to lower pump power requirements and make
them more appealing for practical applications. From a the-
oretical perspective, the topological frequency combs could
host a much more diverse range of nonlinear solutions, such
as breathing solitons, dark solitons, platicons, etc.; these so-
lutions have not yet been explored. The development of an
analytical approach to describe these multiresonator systems
might be very helpful, but again, it is expected to be challeng-
ing.

While the nature of the linear and quantum many-body
topological states has been heavily studied and understood,
the nature of topological invariants in the nonlinear topolog-
ical photonic systems remains elusive. Recent works have
shown that in the nonlinear regime, the topological character
of the linear regime is inherited in some form [102,191,192].
It is interesting to see whether there are genuinely nonlinear
topological states. Moreover, is it possible to have a bulk-edge
correspondence for the nonlinear topological states?

Inspired by the above examples, are there other photonic
phenomena without electronic counterparts? An example can
be using topological confinement for more efficient lasers
[193]. In particular, it is useful to answer whether there are
other implications for using the same confinement, such as
optical sensing. Moreover, further investigation of the topo-
logical amplifier which was recently reported [194] is also
another potential future direction.

C. Quantum topological photonics

For pair generation in a topological lattice, the key advan-
tage is the robust phase-matching compared to conventional
counterparts [38]. It would be intriguing to find more ap-
plications of this robust phase-matching advantage for the
realization of nonlinear quantum optical effects. Moreover,
the device footprint in a topological quantum light generation
device is considerably large since it is comprised of rings with
several hundreds of microns.

Position dependence of chiral coupling in QD-coupled
topological waveguides is a significant limitation in these
quantum optics interfaces. Moreover, chirality and high cou-
pling efficiency areas are mostly present in the holes of crystal
rather than the material [156,195,196], which is detrimental

for coupling to solid-state quantum emitters. Also, low Pur-
cell factor (currently only up to less than 5 is reported
[150]) is another limitation in QD-coupled TPCs. In topo-
logical waveguides, the emitter’s coupling efficiency, as well
as emission enhancement, may be improved with either the
slow-light effect [197] or smaller mode volume (for exam-
ple harnessing topological mode tapering [87]). Moreover, in
whispering-galley mode ring resonators [150,156], possibili-
ties for achieving higher Q factors (for example using surface
passivation for suppression of the out-of-plane scattering) can
be investigated. Similar to [198], coupling multiple quantum
dots to edge states can be a very interesting direction to ex-
plore, and in particular of interest is the collective dynamics
between distance emitters [199]; however, this is currently
challenging due to the coupling efficiency being position de-
pendent in current TPC waveguides. Chiral coupling is also
position dependent in these systems, therefore, the direc-
tional sub- and superradiance effects from embedded quantum
emitters in topological waveguides are challenging (see, for
example, [200] for a recent trivial chiral cavity formed by
atomically thin mirrors that host such chiral collective dy-
namics). One avenue to explore can be using inverse design
to address this issue and, in turn, investigate if such a platform
can be utilized to address the spatial inhomogeneity challenge
in chip-integrated solid-state quantum emitters. Finally, the
realization of on-chip quantum interference of single photons
in add-drop filter photonic crystal configurations, in which
chiral coupling between emitters and several modes of the
resonator was shown recently [157], would be another in-
triguing possibility to explore. In particular, combining recent
demonstrations of broadband slow-light enhancement in a
topological photonic ring resonator with an integrated add-
drop filter configuration may be studied [157,201].

Another interesting development is the possibility of
coupling emitters to topological photonic structures. This
includes coupling emitters to 1D structures [202-204], and
2D systems [205,206] with novel forms of light-matter hy-
brids. Moreover, the chiral light-matter interaction dynamics
in the bulk of quantum Hall photonic systems were recently
explored [207], interestingly without relying on any time-
dependent control. Generalization of this flexible scheme
towards the realization of arbitrary chiral connectivity can be
another exciting avenue.

An extremely exciting avenue is the realization of Laughlin
states with a photon number greater than two [52], and more
broadly, other topologically ordered states and potentially
braiding them [208,209]. Specifically, the excitations above
the ground states of such models can have anyonic statistics;
this is neither fermionic nor bosonic [65]. The non-Abelian
anyons have been proposed as a robust scheme for topological
quantum computation [210]. Note that one can simulate such
exotic statistics even with noninteracting photons [211-213].
However, the many-body features such as the topological
robustness for quantum computation are absent in such non-
interacting systems.

D. Strong photon-photon interaction and coupled
electron-photon systems

If the interaction between cavity photons is so strong that
a single photon can prevent the transmission of another one
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(photon blockade), one can expect even more exotic topo-
logical states, such as the photonic counterpart of fractional
quantum Hall states. In particular, there is a whole class
of topological states, known as topologically ordered states,
which are distinct from the states covered in the introduction.
In these states, entanglement and strong interaction play a
central role, for which a brief review can be found here [65].
In fact, once photons strongly interact with each other, they
can be considered as spin-1/2 particles, and therefore many of
the topologically ordered models will be directly applicable.
For the case of photonic fractional quantum Hall states, the
essential ingredients are gauge fields (discussed earlier) and
strong photon-photon interaction. The important parameter in
such systems is the magnetic filling factor: The number of
particles divided by the number of magnetic flux (introduced
in Sec. I B 1). The simplest case for bosons is v = 1/2, where
the ground state is a Laughlin state, and it is both unique
and gapped. For a pedagogical review of electric and boson
fractional quantum Hall refer to [68,214], respectively.

Generically in such systems, the ground state on a torus
(periodic boundary condition) has a finite degeneracy. There-
fore, a Chern number can not be associated with a single state,
and indeed it is shared among the degenerate states, and thus,
it can be fractional.

The strong interaction could be achieved in various ways
such as Rydberg atoms or superconducting qubits [215]. Re-
markably, in the Rydberg systems, fractional quantum Hall
states (Laughlin states) of a few photons have been observed
[43]. Scaling such a system to a larger number of particles re-
mains a challenge. In fact, one may ask how small of a system
one can call a topologically ordered matter. In other words,
given a wave function on finite system size, is it possible to
identify whether a system is topologically ordered or not? Can
one extract the Chern number without prior knowledge of the
Hamiltonian and application of any field? The answer to these
questions seems to be positive based on recent analytical and
numerical works [216-218]; however, there is no experimen-
tal demonstration to this date.

So far we considered purely photonic models, whereby en-
gineering a Hamiltonian with topological properties, directly
for photons, one can observe various topological phenomena.
An interesting direction is to consider light-matter coupling
where either the photonic or matter part has some topo-
logical properties, and therefore the coupled system inherits
those topological features. In other words, the matter part
is not integrated out and the light-matter interplay is the
essence.

We note that the above categorization might sometimes
seem artificial since the underlying microscopic theory for
all the cases in this Perspective is quantum electrodynamic.
Specifically, what is purely photonic or matter is a matter of
length scale over which we integrate out microscopic degrees
of freedom to write an effective Hamiltonian for the system.
For example, one can call quantum Hall states coupled to op-
tical cavities also a topopolariton since the optical excitations
in the cavity-quantum Hall system can be considered excitons
that are coupled to the cavities. Below we highlight several
directions.

Light-matter interaction in electronic quantum Hall sys-
tems: As we mentioned at the beginning of this Perspective,

electronic quantum Hall systems are the first physical systems
to manifest topological properties in transport measurements.
However, from early on optical measurements were also
performed on such systems [219], for example, to probe
electronic incompressibility. More recently, there have been
interacting experiments to couple such states to cavities, either
in the THz [220,221] or optical domain [222], to probe and
manipulate intra- and interband states, respectively.

Regardless of being in the cavity or free space, it is intrigu-
ing to ask whether light-matter coupling could be exploited to
create and manipulate electronic topological states (for a re-
cent example in Corbino graphene see [223], where electronic
quantum Hall states were manipulated using vortex light) and
eventually perform braiding.

Moreover, it has been theoretically argued that the light-
matter interaction is dramatically modified in quantum Hall
states, since the chirality and topological robustness of the
electronic states may lead to the spatially large wave func-
tions, which could be comparable to the corresponding optical
transitions [224]. In particular, the dipole approximation can
be violated and the system could be sensitive to the gradient of
the electric field and the phase of an optical vortex beam. The
latter is possible only if the electron is phase coherent around
the optical vortex and experiences the phase winding of the
optical beam. It has been proposed that such light-matter
coupling could lead to radial current in quantum Hall systems
in the absence of any electric field bias [225,226]. Such optical
vortex beams could be used to optically create topological
excitation in fractional quantum Hall systems [227]. A recent
experiment demonstrated that photocurrent could be sensitive
to the beam phase winding [228]. In the context of this section,
these systems are particularly interesting because both the
electronic and photonic states have topological properties, and
such topological interplay is an interesting direction of future
research.

Topological photonic crystals: In the linear section, we
discussed photonic crystals that can have topological prop-
erties, manifested in the presence of helical waveguides and
their coupling to pointlike emitters, like QDs [196]. One can
also couple extended exciton states, such as the ones in 2D
materials with optical transition, to such helical states. Since
layered 2D materials are essentially one or a few atomic layers
thick, they can strongly couple to the confined electromag-
netic modes of the topological photonic crystals. Particularly
interesting are recent studies on the hybridization of topologi-
cal photonic states with condensed matter systems, where 2D
transition metal dichalcogenides were shown to be strongly
coupled to topological photonic crystal metasurfaces, forming
a polaritonic metasurface [42].

Similar to the case of quantum QDs [196], the chiral light-
matter coupling is sensitive to the location of the emitter with
respect to the transverse position of the waveguide. In fact,
one would naively expect that chiral light-matter coupling
for 2D material excitons would be absent in such systems,
because excitons, with the same polarization, are present all
along the transverse direction of the waveguide, half coupled
to the left-propagating modes and half to the right-propagating
modes. However, experimental observation does not agree
with this argument, and this subject remains an active area of
research.
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