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One of the most striking many-body phenomena in nature is the sudden change of macroscopic properties
as the temperature or energy reaches a critical value. Such equilibrium transitions have been predicted and
observed in two and three spatial dimensions, but have long been thought not to exist in one-dimensional (1D)
systems. Fifty years ago, Dyson and Thouless pointed out that a phase transition in 1D can occur in the presence
of long-range interactions, but an experimental realization has so far not been achieved due to the requirement
to both prepare equilibrium states and realize sufficiently long-range interactions. Here we report on the first
experimental demonstration of a finite-energy phase transition in 1D. We use the simple observation that finite-
energy states can be prepared by time-evolving product initial states and letting them thermalize under the
dynamics of a many-body Hamiltonian. By preparing initial states with different energies in a 1D trapped-
ion quantum simulator, we study the finite-energy phase diagram of a long-range interacting quantum system.
We observe a ferromagnetic equilibrium phase transition as well as a crossover from a low-energy polarized
paramagnet to a high-energy unpolarized paramagnet in a system of up to 23 spins, in excellent agreement with
numerical simulations. Our work demonstrates the ability of quantum simulators to realize and study previously
inaccessible phases at finite energy density.

Equilibrium phase transitions underlie many quantum phe-
nomena in nature, from the creation of primordial fluctuations
in the early universe [1, 2] to the melting of confined hadrons
into the quark-gluon plasma [3] and the emergence of a su-
perconducting state at high temperatures in the cuprates [4].
Equilibrium phase transitions require the presence of both or-
dered and disordered phases, which have been observed in
two and three spatial dimensions. In one-dimensional (1D)
systems, disordered phases often have a lower free energy
than ordered ones, leading to the absence of phase transitions.
This is because the entropy gained by destroying the order
is larger than the energy cost [5, 6]. More than half a cen-
tury ago, Dyson and Thouless argued that this energy cost can
outweigh the entropy gain if the interactions are sufficiently
long-ranged [7, 8]. However, despite the extensive theoreti-
cal work on phase transitions in 1D long-range systems since
these seminal works [9], an experimental realization of this
prediction has so far not been achieved. Recently, the ad-
vent of quantum simulators has enabled the study of highly
controlled long-range interacting systems. This has lead to
the discovery of many exotic quantum phenomena, including
non-local spreading of quasiparticles [10], dynamical quan-
tum phase transitions [11, 12], time crystals [13, 14], con-
tinuous symmetry breaking [15, 16], supersolidity [17, 18],
and superdiffusive spin transport [19]. Of the experimental
platforms used in those studies, only trapped ions have in-
teractions that are in principle long-range enough to observe
an equilibrium phase transition in 1D. However, preparing
equilibrium states in spin-system quantum simulators such as
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trapped ions and even digital quantum computers has been
challenging [20–29].

Here, we use the intrinsic many-body equilibration within
sub-systems of isolated quantum systems to prepare equi-
librium states in a long-range interacting quantum system
realized by trapped ions. Our method relies on the foun-
dational understanding of quantum thermalization offered
by the eigenstate thermalization hypothesis (ETH) [30, 31],
whose validity and limitations have been studied both nu-
merically [31] and experimentally [32, 33]. We first prepare
non-equilibrium states at a range of different energies, and let
these states thermalize under the dynamics of a 1D many-body
Hamiltonian with programmable long-range interactions. We
then use these thermalized states to measure the order param-
eters of ferromagnetic and paramagnetic phases as a function
of energy density. This enables us to study the existence of a
possible equilibrium phase transition in a 1D spin system.

REALIZING A LONG-RANGE INTERACTING
MANY-BODY SYSTEM

In our experiment, we encode a pseudo-spin 1/2 in the
electronic ground-state levels |↑⟩ = |F = 1,M = 0⟩ and |↓⟩ =
|F = 0,M = 0⟩ of 171Yb+ ions confined in a linear Paul trap
on a chip [35], as illustrated in Fig. 1A. We apply a tighly fo-
cussed individual addressing beam on each ion and a globally-
addressing wide beam on all ions to drive the transition be-
tween the spin levels via a stimulated Raman process. These
transitions couple off-resonantly to the phonon modes of the
ion chain, driving simultaneously and nearly symmetrically
the red- and blue-sideband transitions, resulting in effective
Ising interactions between the spins. We realize interac-
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FIG. 1. Observing an equilibrium phase transition in a one-dimensional chain of ions. (A) Ions are confined in a chain using a chip trap
(yellow). Individual Raman laser beams (blue) couple an internal spin-1/2 degree of freedom of the ions to the lowest-energy motional mode of
the ion crystal (gray), mediating exponentially decaying interactions between the spins (red). (B) Calculated experimental interaction strengths
(colored dots), averaged over the center-of-mass coordinate J̄(l) = 1

L−l

∑
i Ji,i+l, along with the target interactions in Eq. (1), see SM [34], section

I for how we calculate the Ji j. (C) Equilibrium phase boundary of the model in Eq. (1) (solid line), as well as the squared magnetization (blue
shading) and transverse magnetization (red shading, dashed line indicates where transverse magnetization is equal to 0.75). We extrapolated to
the infinite-system-size limit from finite-size matrix-product-state simulations. Gray area indicates energies with no states. The gold frame is
the regime experimentally probed in this work. (D) The time-averaged expectation value of a time-evolved local observable at late times gives
an estimate for the equilibrium expectation value at the energy of the initial state. Repeating this experiment for initial states with different
energy results in an estimate for the value of the observable in equilibrium as a function of energy.

tions that decay exponentially with ion separation distance by
choosing a Raman beat-note frequency which has a detuning
from the carrier frequency that is close to the lowest radial
phonon-mode frequency. We then remove the alternating sign
of the interactions by spatially staggering the phases of the
Raman beams, see supplementary materials (SM) [34], sec-
tion I. Control over the optical frequencies of the individual
beams sets an effective magnetic field in the transverse direc-
tion [36, 37]. In total, this approximately realizes the many-
body spin Hamiltonian

Ĥ = − J
2N
∑

i< j

exp (−γ̃|i − j|) σ̂x
i σ̂

x
j − g

∑

i

σ̂z
i , (1)

where σ̂αi are the Pauli matrices, g is the transverse-field
strength, and i, j run over integers from 1 to L for an ion chain
of length L. In order to enable the possibility of a phase tran-
sition in a system with exponentially decaying interactions,
we decrease the decay rate of the interactions with increas-
ing system size by choosing γ̃ = γ/L with γ = 10.8, see
Fig. 1B. This effectively gives our system the characteristics
of a long-range interacting model. To render the energy exten-
sive [38], we rescale the overall prefactor of the Hamiltonian
by N = 1

L−1
∑

i< j exp (−γ̃|i − j|).
To confirm that the Hamiltonian in Eq. (1) exhibits an equi-

librium phase transition, we use matrix product state simula-

tions, see SM [34], section II. Indeed, for g ≤ J, we find a
low-energy ferromagnetic phase, characterized by a non-zero
squared magnetization ⟨Ŝ 2

x⟩ ≡
∑

i j ⟨σ̂x
i σ̂

x
j⟩ /L2 (Fig. 1C). The

paramagnet outside this ordered phase consists of two regions
that are connected by a crossover: at low energies, the system
is polarized along the transverse field, while at high energies
both the transverse magnetization ⟨Ŝ z⟩ ≡ ∑i ⟨σ̂z

i ⟩ /L and the
squared magnetization vanish, and the system is effectively in
an unpolarized mixed state. While we expect the universality
class to be given by the all-to-all connected model γ = 0, we
numerically found that the critical temperature depends on γ,
see SM [34], section II.

PROBING FINITE-ENERGY STATES IN A QUANTUM
SIMULATOR OF SPINS

Our goal is to study the equilibrium phase diagram in
Fig. 1C in a trapped-ion simulator. However, the prepara-
tion of equilibrium states by thermalization with an external
bath is challenging in spin-system simulators such as trapped
ions. This is due to the existence of noise sources whose effect
can be modelled as a coupling to an infinite temperature bath,
which leads to a trivial non-equilibrium steady state. Instead,
we use the fact that subsystems of a many-body quantum sys-
tem thermalize under the system’s own dynamics due to the
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FIG. 2. Verification of equilibration. (A) Time-evolved squared magnetization in the experiment (dots) and numerical simulations (dashed
lines). (B) Time-average (up to time T ) of the time-evolved squared magnetization using the data from (A) (dots) and the corresponding
numerical data (dashed lines), evaluated according to Eq. (2). The color bar indicates the energy density of the initial states. (C) Comparison
of the latest-time experimental data points from (B) (dots), numerical data evolved until the experimental time (crosses) and to infinite time,
i.e. the diagonal ensemble (stars, evaluated according to the RHS in Eq. (2)). The expectation from the canonical ensemble is shown as a solid
line. The numerics use the experimentally realized interactions, see SM [34], section I. L = 13, g = 0.31J. Error bars for the experimental
data are quantum projection noise and are smaller than the point size.

eigenstate thermalization hypothesis [30]: the expectation val-
ues of local observables ⟨n|Ô|n⟩ with respect to eigenstates |n⟩
of chaotic many-body Hamiltonians coincide with their value
in the microcanonical ensemble O(En), evaluated at the corre-
sponding eigenenergy En. When starting from an initial state
|ψ⟩ with an average energy E = ⟨ψ|Ĥ|ψ⟩, the time-averaged
observable until time T ,

⟨ψ|Ô(t)|ψ⟩ ≡
∫ T

0
dt ⟨ψ|Ô(t)|ψ⟩ T→∞→

∑

n

| ⟨n|ψ⟩ |2 ⟨n|Ô|n⟩ ,
(2)

therefore coincides with the microcanonical ensemble O(E)
if the energy-density variance of the initial state (⟨ψ|Ĥ2|ψ⟩ −
⟨ψ|Ĥ|ψ⟩2)/L2 vanishes as L → ∞, i.e. if it fulfills the con-
dition for a proper thermodynamic ensemble. This condition
is fulfilled for most physical initial states [31] and, in these
cases, | ⟨n|ψ⟩ |2 is called the diagonal ensemble. The eigenstate
thermalization hypothesis therefore motivates the following
simple prescription to evaluating equilibrium observables (see
Fig. 1D): we prepare initial states with different energies E
and evolve them to sufficiently late times while measuring the
observable Ô. Finally, we record the time-averaged late-time
observables on the left-hand side of Eq. (2) as a function of E
as the resulting estimate for O(E).

The energy range that can be probed in this scheme de-
pends on the initial states |ψ⟩. We use product states in the
σ̂x basis. They are the eigenstates of the Hamiltonian for van-
ishing transverse field g = 0. The lowest-energy state is the
maximally polarized state, and the energy density is mainly
controlled by the number of spin flips. We refer the reader
to the SM [34], section I, for the specific states we choose.
These product states cover a large range of energies even for
non-vanishing g/J, indicated by the horizontal edges of the
gold frame in Fig. 1C. The energy density variance of these
product states is given by g2/L, therefore also fulfilling the
requirement on | ⟨n|ψ⟩ |2 imposed by the eigenstate thermal-
ization hypothesis.

To test the practical operation of our scheme, we measure
the squared magnetization as a function of time for several
product initial states for a chain of L = 13 spins (Fig. 2A,
dots). We find excellent agreement with the exact numerical
solution (dashed lines), which does not include experimental
imperfections except the inhomogeneity of the interactions.
Evaluating the time average in Eq. (2), we find an approx-
imate convergence with the averaging time T for JT ≳ 8.
Finally, we show the latest-time values of the time-averaged
squared magnetization in Fig. 2C, along with the numerical
results from time evolving to the same time as the experiment
(crosses) and to infinite time (diagonal ensemble, stars). The
canonical ensemble is shown as a solid line. We find good
agreement between the equilibrium diagonal and canonical
ensembles and the experimental data, see SM [34], section
III, for a more in-depth comparison. This confirms that this
scheme enables the evaluation of equilibrium observables in
our model on timescales accessible to the experiment.

OBSERVING A FINITE-ENERGY PHASE TRANSITION

Having validated our scheme to prepare equilibrium states,
we now use it as a tool to probe the phase diagram in Fig. 1C
by repeating the procedure for many values of the magnetic
field g/J. We display the result for the squared magnetiza-
tion in Fig. 3A along with the numerical result, which was
obtained by time evolving the initial states to the same time
as the experiment. We find good agreement between the two.
At low energy densities and small transverse fields, a large
squared magnetization is observed. Conversely, at high en-
ergy densities and large transverse fields, the squared mag-
netization is small. This is consistent with a phase transition
between a ferromagnet and an unmagnetized state. In par-
ticular, we find a good qualitative match between our finite-
size experiment and the infinite-system-size extrapolation dis-
played in the gold frame in Fig. 1C, including in particular
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FIG. 3. Equilibrium phase diagram. The probed region corresponds to the gold frame in Fig. 1C. (A and B) Squared magnetization and (C
and D) transverse magnetization from (A and C) the experiment and (B and D) numerics. Numerics are obtained by evolving to the same time
as the experiment. L = 13. The transverse fields are g/J = 0.04, 0.10, 0.21, 0.31, 0.41, 0.62. The black line is the phase transition line from
Fig. 1C.

FIG. 4. Correlations. Experimentally measured correlations at late times (not time averaged) at (A-C) low energy (ϵ/J ≈ −0.43,−0.46,−0.48)
and (D-F) high energy (ϵ/J ≈ 0,−0.04, 0.04) for L = 7, g/J = 0.24 (left column), L = 13, g/J = 0.31 (middle column), L = 23, g/J = 0.18
(right column). Times are Jt ≈ 6.3, 10.2, 8.2 for L = 7, 13, 23. For the corresponding numerical result, see SM [34], section II.

the phase transition line (black line in Fig. 3B). This indicates
weak finite-size effects. More specifically, we also measured
the squared magnetization for varying system sizes, indeed
finding a qualitative match between them, with some residual
finite-size dependence due to the slightly differing transverse
field g/J and the inhomogeneity of the experimentally real-
ized interactions, see SM [34], section III.

To probe this transition further, we also measure the trans-
verse magnetization, shown in Fig. 3C and D, again finding
reasonable agreement between numerics and experiment. Im-
portantly, we find a large transverse magnetization for large
transverse fields and low energies, indicating a polarized state
along the transverse field. This polarization is destroyed as we
move to higher energy densities, which is indicative of a finite-

energy crossover from a polarized paramagnet in the ground
state at large transverse fields to an unpolarized state at high
energies. The presence of this crossover results from the fact
that, for large transverse field g/J, the energy density is pro-
portional to the transverse magnetization such that ⟨Ŝ z⟩ → 0
for (ϵ/J)→ 0. In other words, the single-site reduced density
matrix crosses over from a pure product state at low energies
to an effective completely mixed state at high energies.

Counterintuitively, for intermediate energy scales around
ϵ/J ≈ −0.3, the transverse magnetization displays a maxi-
mum as the field is increased, and then decreases again as the
field is increased further. This is due to the fact that our initial
states have energy densities ϵ/J ≲ 1/2 (gold frame in Fig. 1C)
while the ground state energy decreases with g. This means
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that, as the transverse field is increased, we probe higher en-
ergy densities relative to the ground state energy (c.f. the gold
frame in Fig.1C), explaining the decrease of the transverse
magnetization.

Ordered phases are accompanied by long-range correla-
tions throughout the system. We measured ⟨σ̂x

i σ̂
x
j⟩ for three

different system sizes at the lowest and highest energy densi-
ties, see Fig. 4. We again find good agreement with numerical
simulations, see SM [34], section II. We find large positive
correlations in the bulk of the system for low energies, con-
firming the presence of a ferromagnetically ordered state. At
high energies, the correlations approximately vanish through-
out the system, showing that the high-energy state is disor-
dered.

DISCUSSION AND OUTLOOK

In this work, we have for the first time observed a finite-
energy phase transition in one spatial dimension. To do so,
we prepared equilibrium states in a trapped-ion quantum sim-
ulator using a scheme based on the intrinsic thermalization of
closed quantum many-body systems. This required time evo-
lution to relatively late times, and our experiment agreed well
with numerical calculations. For large systems, this method
would be challenging to simulate numerically. Similarly, trot-
terized digital time evolution would be difficult in this long-
range model due to the necessity to apply L2 entangling gates
per Trotter step.

In the future, this scheme can be immediately applied in
a variety of analog and digital spin-simulator platforms in-
cluding Rydberg atoms, quantum dots, and ultracold polar
molecules to probe equilibrium states. For instance, equilib-
rium phases with continuous symmetry breaking [15, 16, 39]
and other phases of various spin models [40, 41] could be
studied. While we focused on finite-energy measurements,
the effective temperature of the late-time state can in principle
be extracted using fluctuation-dissipation relations [42, 43] to
enable direct comparison with solid-state experiments at finite
temperature. This way, long-standing questions in condensed
matter physics such as the nature of the excitations above spin-
liquid ground states [44, 45] could be studied in quantum sim-
ulators.
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doon Ghanem, Kévin Hémery, Mikhail D. Lukin and Torsten
V. Zache.

Funding. This work is supported by the NSF STAQ Pro-
gram (PHY-1818914), the DOE Quantum Systems Accel-
erator (DE-FOA-0002253), the AFOSR MURI on Dissipa-
tive Quantum Control (FA9550-19-1-0399). A.S., E.C., and
A.V.G. were also supported in part by the NSF QLCI (award
No. OMA-2120757), the DoE ASCR Quantum Testbed

Pathfinder program (awards No. DE-SC0019040 and No. DE-
SC0024220), DoE ASCR Accelerated Research in Quantum
Computing program (award No. DE-SC0020312), AFOSR,
ARO MURI, AFOSR MURI, and the DARPA SAVaNT AD-
VENT program.

Author contributions. A.S. and O.K. devised the research.
O.K., L.F., A.D., C.M. contributed to the experimental setup.
O.K., L.F. performed experiments. A.S. performed numerical
simulations. A.S., O.K., L.F. analyzed the experimental data.
A.S., E.C., M.H., A.G. contributed to the theoretical analysis.
A.G. and C.M. supervised the research. A.S. wrote the initial
manuscript, and all authors contributed revisions.

Competing interests. C.M. is a founder of IonQ, Inc. and
has a personal financial interest in the company. All other
authors declare no competing interests.

Data and materials availability. All data and codes are
available from the corresponding authors upon reasonable re-
quest.

[1] T W B Kibble, “Topology of cosmic domains and strings,”
Journal of Physics A: Mathematical and General 9, 1387–1398
(1976).

[2] W. H. Zurek, “Cosmological experiments in superfluid he-
lium?” Nature 317, 505–508 (1985).

[3] Kenji Fukushima and Tetsuo Hatsuda, “The phase diagram
of dense QCD,” Reports on Progress in Physics 74, 014001
(2010).

[4] B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Za-
anen, “From quantum matter to high-temperature superconduc-
tivity in copper oxides,” Nature 518, 179–186 (2015).
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[17] L. Tanzi, E. Lucioni, F. Famà, J. Catani, A. Fioretti, C. Gabban-
ini, R. N. Bisset, L. Santos, and G. Modugno, “Observation of a
Dipolar Quantum Gas with Metastable Supersolid Properties,”
Phys. Rev. Lett. 122, 130405 (2019).
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I. EXPERIMENTAL DETAILS

In this section, we introduce the trapped ion experiment in
more detail, specifically emphasizing how we prepare the in-
teractions in Eq. (1) of the main text and how we choose the
initial states.

A. Generating spin-spin interactions between ions

We induce spin-spin interactions among trapped ions
through Raman transitions that virtually excite the collective
motion of the ions. These Raman transitions are generated us-
ing pairs of beams: one that globally addresses the ion chain
and another that individually targets each ion. The global
addressing beam passes through an acousto-optical modula-
tor (AOM) concurrently driven by two radio-frequency (RF)
signals. This process splits the optical beam into two com-
ponents, each with a distinct tone and nearly equal power,

* These authors contributed equally to this work.
† Corresponding authors: aschu@umd.edu, or.katz@duke.edu

A B

C

FIG. S1. Interaction matrices. Normalised experimentally realized
interaction matrices Ji j/N calculated from the mode spectrum and
the beam parameters. (A) L=7, (B) L=13, (C) L=23.

which are then projected onto the ion crystal. Simultaneously,
a perpendicular array of tightly focused beams is directed to-
ward the ion positions. Precise control of the trapping poten-
tial ensures a high degree of overlap between each ion and
these beams. We achieve simultaneous and independent con-
trol over the amplitudes and frequencies of these beams us-
ing a multi-channel AOM. This configuration drives both the
first red- and blue-sideband transitions within the dispersive
regime. The beatnote frequencies for these transitions are de-
tuned by ±(ωN + ∆±) from the carrier transition, where ωN is
the lowest frequency of the phonon mode along the radial di-
rection. The detunings are nearly symmetric |∆+−∆−| ≪ |∆±|.

This configuration generates the Hamiltonian in Eq. (1) for
a chain of N ions. The asymmetry in the detunings between
the two tones leads to an effective transverse magnetic field
with an amplitude g = (∆+ −∆−)/4 in the frame that rotates at
the carrier frequency. The symmetric part, ∆ = (∆+ − ∆−)/2,
corresponds to the average detuning of the effective spin-
dependent force. This, in turn, generates the Ising Hamilto-
nian with an interaction matrix [1, 2]

Ji j =
∑

k

ηikη jkΩiΩ j

2(∆ − ωN − ωk)
. (S1)

Here, ηik = 0.08bik are the Lamb-Dicke parameters, with bik
as the mode participation matrix elements describing the cou-
pling between spin i and motional mode k [3]. Ωi denotes the
equivalent resonant carrier Rabi frequency at ion 1 ≤ i ≤ N for
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A B

FIG. S2. Dynamics of the transverse magnetization
∑

i ⟨σ̂z
i ⟩ /L.

(A) Numerical simulations using the same Ji j as the experiment
(solid lines). (B) Numerical simulations using a tilted initial state
(dashed lines, see text for definition). Dots in both subfigures are ex-
perimental data for the same initial states as shown in Fig. 2 of the
main text. g/J = 0.31. L = 13.

each tone, and ωk represents the motional frequencies along
one radial direction (labeled in decreasing order with 1 ≤ k ≤
N). These frequencies are determined by the trapping poten-
tial; we employ a quadratic trapping potential in the radial
direction with center-of-mass frequency of ω1 = 2π × 3.075
MHz and an axial electrostatic potential of V(x) = c4x4+c2x2,
where c2 = 0.11 eV/mm2, c4 = 1.6× 103 eV/mm4 for a 15-ion
chain, and c2 = −0.1 eV/mm2, c4 = 235 eV/mm4 for a 27-ion
chain. Here, x is the coordinate along the chain axis. These
potentials result in a nearly uniform spacing of the central ions
in the crystal, except for the edges, with a spacing of 3.75 µm
to match the centers of the uniformly spaced beams used for
individual addressing. The effective wave-vector of the opti-
cal field is aligned to selectively drive only one specific set of
radial phonon modes.

To estimate the form of the Ji j, we calculate the mode par-
ticipation factors by solving the Laplace equation assuming
harmonic radial potential with a strength measured from ex-
periment and used the electrode voltages, from which we find
the positions of the ions, from which we determine the mode
participation matrix elements and the eigenfrequencies. This
then enables us to calculate the Ji j from the measured individ-
ual Rabi frequencies and the detunings from the modes using
Eq. (S1), see Ref. [2] for more details on our setup.

We detune ∆ to the red side of the mode spectrum (∆ <
0) to primarily couple to phonon modes characterized by
rapidly varying mode participation factors (i.e., near the zig-
zag phonon mode and far from the center-of-mass phonon
mode). For a uniform-spaced ion chain, this choice results
in an interaction matrix Ji j consisting of two terms primarily
dependent on the ion separation distance |i − j|: an inverse
cubic (power-law) term and an exponentially decreasing term
that alternates with the spin distance, appended by a factor
(−1)|i− j|. As we reduce ∆, the exponential term becomes dom-
inant over the power-law term, particularly at short distances.
To generate a non-alternating Ji j matrix, we shift the optical
phase of the individual beam array in a staggered way, shifting
the phase of all odd beams by π.

Individual control over the beam amplitudes provides ad-
ditional flexibility in manipulating the interaction matrix.

Specifically, by turning off the beam targeting ion q, we ef-
fectively eliminate Jqi for all 1 ≤ i ≤ N, rendering its par-
ticipation in the phonon modes independent of its spin. This
capability allows us to simulate the evolution of L ≤ N spins
in an N-ion chain. Utilizing this technique, we realize the in-
teraction of L = 7, 13, 23 spins in chains of N = 15, 15, 27
ions, respectively, with the beams symmetrically turned off
near the crystal’s edges. Not including the edge ions’ spins al-
lows us to achieve chains with more uniform spacing through
the presence of their charge.

For the L = 7, 13 configurations, we employ uniform beam
amplitudes. In the case of the L = 23 configuration, the rela-
tive Rabi frequencies of the 23 beams are chosen as follows:
[1, 1, 0.72, 0.76, 0.6, 0.72, 0.63, 0.81, 0.72, 0.91, 0.78, 0.94,
0.78, 0.9, 0.72, 0.8, 0.62, 0.71, 0.59, 0.75, 0.71, 0.99, 1], alle-
viating the variation of the interaction strength across the
chain due to the spatial dependence of the rapidly varying
mode participation factors. We define J = maxi j(Ji j) and had
J ≈ 1 × 2π kHz in all experiments. The detunings are set at
∆ = 2π × 100 kHz for L = 7, ∆ = 2π × 35 kHz for L = 13,
and ∆ = 2π × 9 kHz for L = 23.

To account for the light shift induced by the beams on the
ions in each configuration, we perform calibration and com-
pensation by applying an opposite shift to the optical frequen-
cies of the individual beams. For the L = 13 configuration,
we additionally employ a variation of a dynamical decoupling
technique [4] that we have found effective in mitigating σz
noise (such as light-shift noise). In particular, we break the
Hamiltonian evolution into two periods, separated by a short
π pulse that is applied to all spins, rotating around the x-axis.
Inverting the sign of g for the second evolution period yields
the same evolution as the original Hamiltonian.

B. Initial-state preparation

The initial states are chosen by selecting target energies
Etarget equally spaced in a window [Emin, Emax], where Emin
is the energy of the totally polarized state (i.e. the ground
state for g = 0) and Emax is some high-energy limit close to
zero. We then find the x-product state |ψ⟩ which minimizes
| ⟨ψ|Ĥ|ψ⟩ − Etarget| for all Etarget, using the experimental Ji j. In
practice, we do this by calculating ⟨ψ|Ĥ|ψ⟩ for all 2L states |ψ⟩,
which is numerically cheap even for L = 23. For much larger
systems, finding states closest to a particular energy could be
done by using an optimisation algorithm. We show the thus
selected initial states in tables S1, S2, S3. Note that states with
the same number of spin flips can have different energies due
to the lack of translational invariance and the inhomogeneities
present in the experimentally realized Ji j, see Fig. S1.

As visible in Fig. 3 of the main text, we found less
good agreement between theory and experiment for the
transverse magnetization than for the squared magnetization.
We attribute at least some of this additional error to over-
underrotation errors in the state preparation. Indeed, we ob-
served that the initial transverse magnetization is not exactly
vanishing, see Fig. S2A. To test this hypothesis further, we
used numerical simulations in which we slightly rotated the
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Energy density ϵ/J State
-0.43 ↓↓↓↓↓↓↓
-0.26 ↓↓↓↓↓↓↑
-0.25 ↓↓↓↓↓↑↓
-0.24 ↓↓↓↓↓↑↑

-0.152 ↓↓↓↓↑↓↓
-0.151 ↓↓↓↓↑↓↑
-0.146 ↓↓↓↓↑↑↓

-0.1 ↓↓↓↓↑↑↑
-0.04 ↓↓↓↑↓↓↓

0.0008 ↓↓↓↑↓↓↑

TABLE S1. Initial states for L = 7. States are eigenstates of σ̂x
i .

Energy density ϵ/J State
-0.46 ↓↓↓↓↓↓↓↓↓↓↓↓↓
-0.41 ↓↓↓↓↓↓↓↓↓↓↓↓↑
-0.31 ↓↓↓↓↓↓↑↓↓↓↓↓↓
-0.27 ↓↓↓↓↓↓↓↓↓↑↓↓↓
-0.22 ↓↑↑↑↑↑↓↑↑↑↑↑↓
-0.19 ↓↓↓↑↑↓↑↑↑↑↑↑↑
-0.13 ↓↓↓↑↑↑↑↑↓↑↑↑↑
-0.09 ↓↓↑↓↑↑↑↑↓↓↓↓↓
-0.04 ↓↑↓↓↑↑↓↓↑↑↑↑↑

TABLE S2. Initial states for L = 13. States are eigenstates of σ̂x
i .

initial product state around the y-axis in order to reproduce
the experimentally measured transverse magnetization, see
Fig. S2B, finding better agreement with the experiment than
with initial states purely along the x direction.

II. EQUILIBRIUM PHASE DIAGRAM

In this section, we determine the finite-temperature phase
diagram of the model in Eq. (1) of the main text and discuss

Energy density ϵ/J State
-0.48 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
-0.36 ↓↓↓↑↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓
-0.28 ↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↓↑↑↓↓↓
-0.25 ↓↓↓↓↓↑↑↓↑↓↓↓↓↓↓↓↓↓↓↓↓↓↓
-0.20 ↓↓↓↓↑↑↓↓↑↑↓↑↓↓↓↓↓↓↓↓↓↓↓
-0.18 ↓↓↓↑↓↓↑↑↓↓↓↑↑↓↓↓↓↓↓↓↓↓↓
-0.169 ↓↓↓↑↓↓↓↑↑↓↓↓↑↑↓↓↓↓↓↓↓↓↓
-0.167 ↓↓↓↑↑↓↓↑↑↓↓↑↑↓↓↓↓↓↓↓↓↓↓
-0.08 ↓↓↓↓↑↑↓↓↑↑↓↓↑↓↓↑↓↓↓↓↓↓↓
-0.05 ↓↓↓↑↓↓↓↓↓↓↓↓↑↑↓↑↓↓↑↑↓↑↓
-0.03 ↓↓↓↓↑↓↓↑↑↓↓↑↓↑↑↓↓↓↓↓↑↑↑
-0.02 ↓↓↓↑↓↓↑↓↓↑↓↑↑↑↑↑↑↑↓↓↑↑↓
0.001 ↓↓↓↓↓↓↑↑↓↓↓↑↑↑↓↑↓↓↑↑↓↓↑
0.02 ↓↓↓↑↓↓↓↓↑↑↓↑↑↑↓↓↑↑↓↓↑↑↓
0.04 ↓↓↓↓↑↓↓↑↑↓↓↑↓↓↑↓↓↑↓↑↓↓↓
0.05 ↓↓↓↓↑↑↓↓↑↑↑↑↓↑↓↑↑↓↓↑↑↓↑

0.0679 ↓↓↓↑↑↓↓↑↑↓↓↑↑↓↓↓↑↑↓↑↑↓↑
0.0683 ↓↓↓↓↑↑↓↓↑↑↓↑↓↓↑↓↓↑↑↓↓↑↑
0.074 ↓↓↓↑↑↓↓↑↑↓↓↑↑↓↓↓↑↑↓↓↑↑↓

TABLE S3. Initial states for L = 23. States are eigenstates of σ̂x
i .

how to probe it in the finite-energy setting of the experiment.

A. Finite-temperature phase diagram

To extract the equilibrium properties of the model presented
in the main text, we use matrix-product-state (MPS) simula-
tions in the canonical ensemble employing the purification al-
gorithm [5, 6] and the WII matrix-product-operator time evo-
lution method [7] implemented in the TeNPy library [8].

We employ the standard procedure of using the Binder cu-
mulant

U4 = 1 − ⟨(Ŝ x)4⟩
3 ⟨(Ŝ x)2⟩2

(S2)

in order to detect the ferromagnetic phase transition.
In this expression, ⟨Ŝ 2

x⟩ ≡ ∑
i j ⟨σ̂x

i σ̂
x
j⟩ /L2, ⟨Ŝ 4

x⟩ ≡∑
i jkl ⟨σ̂x

i σ̂
x
jσ

x
kσ

x
l ⟩ /L4. The Binder cumulant is equal to 2/3

(0) deep in the ferromagnetic (paramagnetic) phase, and the
leading finite-size corrections cancel at the phase transition.
Hence, calculating the Binder cumulant for consecutive sys-
tem sizes, extracting their crossing points and extrapolating
those to infinite system size leads to a precise estimate for the
critical temperature. We show one such procedure in Fig. S3
and a comparison of our MPS simulations with a classical
Monte Carlo simulation for g = 0 in Fig. S4. We estimate
an error of our extrapolation by comparing Tc obtained from
system sizes 16, 32, 64 and 16, 32, 64, 128, finding an error of
0.01 − 0.03J.

We show the thus extracted phase diagram in Fig. S5. For
γ = 0 (infinite-range interactions), we find excellent agree-
ment with the mean-field solution Tc/J = (g/J)/arctanh(g/J).
Interestingly, we find that Tc/J increases as γ/J is increased.
This indicates that the model shows a phase transition even
for large γ/J. For large γ, however, increasingly large system
sizes are needed to capture the phase transition, which limits
the range of our simulations. For g/J = 1, we find Binder
cumulant crossing points which move towards higher temper-
ature as the system size is increased. This indicates that the
model is paramagnetic for g/J > 1 for all γ studied here.

B. Scaling

We also extract one of the critical exponents from the
Binder cumulant by using the method described e.g. in
Ref. [11]: We fit Tc(L) = Tc(1 + a ∗ L−ω−θt ) to the cross-
ing temperatures and U4,c(L) = b + cL−ω to the values of the
Binder cumulant at the crossing temperatures. From this, we
can extract θt, which is connected to the critical exponent ν
and find θt ≈ 0.5, 0.52, 0.54, 0.69 for g = 0.0, 0.25, 0.5, 0.75.
Surprisingly, this indicates a dependence of θt on the trans-
verse field. However, we emphasize that our estimates are
rather low-confidence because of the comparatively small sys-
tem sizes employed here. Moreover, we cannot give error es-
timates for yt because we use three data points to fit three pa-
rameters. Nevertheless, we show that the thus-found θt leads
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A B

FIG. S3. Extraction of the critical temperature from the Binder
cumulant. (A) Binder cumulant from purification-MPS for different
system sizes. (B) Crossing temperature of consecutive system sizes,
where the system size on the x-axis is defined as the smaller of the
two system sizes, e.g. the crossing temperature of system sizes 16
and 32 is the datapoint at 1/L = 0.0625. Bond dimension 16, time
step 0.01/J, γ = 10.8, g/J = 0.25.

FIG. S4. Verification of matrix-product-state simulations using
classical Monte Carlo. Monte Carlo simulations employ a Wolff
cluster update [9] for long-range interactions [10] and 106 Monte
Carlo iterations.

FIG. S5. Phase diagram extracted from matrix-product-state
simulations. System sizes up to L = 128 were used in the finite-
size extrapolation described in the text. Black dots indicate classical
Monte Carlo results for g = 0. Black solid line is the analytical
mean-field result for γ = 0.
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FIG. S6. Scaling collapse of the Binder cumulant. Same data as in
Fig. S3. Tc(L) is chosen such that all system sizes cross at T−Tc(L) =
0.

FIG. S7. MPS results for temperature-dependent observables.
(A) Energy density and (B) squared magnetization. The infinite-
system-size extrapolation is done using the system sizes shown, us-
ing a quadratic fit to the finite size results. g/J = 0.25. Gray
shading is an estimate for the residual finite size error obtained by
comparing the extrapolation result using system sizes 16, 32, 64 and
16, 32, 64, 128.

to a good scaling collapse of the Binder cumulant, see Fig. S6
and compare to Fig. S3A for the uncollapsed data. The expo-
nent θt = 0.5 corresponds to the mean-field exponent which is
exact in the all-to-all connected model γ = 0. We also extract
a slightly different Tc from this procedure, but generally find
agreement with the procedure shown in Fig. S3 within about
3%.

C. Energy phase diagram from canonical simulations

We extract the finite-energy/microcanonical properties of
the model by using the equivalence of ensembles in the
infinite-system-size limit. To do so, we extrapolate the energy
as a function of temperature E(T ) to infinite system size, see
Fig. S7A. Doing the same for observables, see Fig. S7B, en-
ables us to convert all observables to be as a function of energy
instead of temperature by similarly extrapolating the value of
the observables to infinite system size. In particular, we ob-
tain the critical energy line shown in Fig. 1C of the main text
by using the extrapolated numerically obtained E(T ) to obtain
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A B

FIG. S8. Finite-size behaviour of energy-dependent squared
magnetization. Solid lines are obtained from MPS simulations in
the canonical ensemble using the target interactions defined in Eq. (1)
of the main text. Transverse field g/J = 0.25, γ = 10.8, bond dimen-
sion χ = 16. (A) System sizes chosen as powers of two. The vertical
grey line indicates the critical energy Ec/J ≈ −0.08 obtained as de-
scribed in section II C. The thickness of the light grey line indicates
the uncertainty of the critical energy due to residual finite-size ef-
fects, defined as the difference in critical energy obtained from the
infinite-system-size extrapolation using system sizes 16, 32, 64 and
16, 32, 64, 128. Dark grey shading is an independent estimate of the
uncertainty resulting from the uncertainty in the critical temperature
(±0.01J). (B) Experimentally probed system sizes using homoge-
neous interactions (full lines) using the inhomogeneous experimen-
tally realized interactions, shown in Fig. S1.
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FIG. S9. Experimentally measured squared magnetization for
different system sizes. Experimentally measured late-time squared
magnetization (dots) compared to the numerical results in the canon-
ical ensemble for the experimental Ji j (dashed lines, same as dashed
lines in Fig. S8B). g/J = 0.24, 0.21, 0.18 for L = 7, 13, 23, respec-
tively.

the critical energy Ec/J from the critical temperature Tc/J,
which was obtained by the procedure discussed in Sec. II A.

D. Finite-size effects in energy-dependent observables

The finite-size dependence of temperature-dependent ob-
servables in the vicinity of the critical temperature of a
second-order phase transition can be captured by consider-
ing the growth of the correlation length as the system size
increases, leading to the theory of finite-size scaling. How-
ever, much less is known about finite-size scaling in the mi-
crocanonical ensemble [12] and even less in the diagonal en-
semble, which is the one experimentally realized in this work.
To get a rough idea for how strong finite-size effects are on
energy-dependent observables, we display the squared mag-
netization for different system sizes as a function of energy,
evaluated with MPS simulations in the canonical ensemble in
Fig. S8A. We find that the finite-size corrections for L ≳ 32
are almost invisible for this observable and much weaker than,
for instance, the finite-size corrections in the Binder cumulant
as a function of temperature shown in Fig. S3. This is in tune
with the observation that the measured squared magnetization
for L = 13 shown in Fig. 3 of the main text is close to the
infinite-system-size extrapolation shown in Fig. 1C. We found
that finite-size effects become stronger as g/J is increased.
Moreover, we find in Fig. S8 that the squared magnetization
extrapolated to infinite system size does not exactly vanish
at the critical energy extracted from evaluating the infinite-
system-size extrapolated energy at the critical temperature.
We attribute this to the fact that the infinite-system-size ex-
trapolation has not fully converged yet for both the critical
energy (c.f. the grey error bar lines in Fig. S8) and also
the squared magnetization in the vicinity of the critical en-
ergy (c.f. the uncertainty for both the energy density and the
squared magnetization in Fig. S7. We note that this is to be
expected for finite-size extrapolation of the order parameter
in an Ising-like transition as in a finite-size system the order
parameter “rounds off”, leading to a small, but non-vanishing
magnetization even for ϵ/J > ϵc/J in finite systems.

To test how experimental imperfections in the interactions
due to inhomogeneities affect this result, we compare the
canonical result using the calculated experimentally realized
interactions (c.f. Fig S1) with the corresponding result using
the ideal, homogeneous interactions. We find that the inhomo-
geneities in the interactions lead to deviations from the homo-
geneous result, which hampers a systematic finite-size extrap-
olation. Nevertheless, as shown in Fig. S9, the experimental
data, which is data obtained from time evolution, shows little
finite-size effects as expected from our numerical calculations
for homogeneous interactions. Moreover, we note that in prin-
ciple the interactions could be made homogeneous by further
engineering the addressing beams [13].

E. Correlation functions

In Fig. S10 we show numerically calculated correlation
functions at high and low energy with the same parameters
as in Fig. 4 of the main text. We evolved to the same time as
in the experiment and used the calculated experimentally re-
alized interactions shown in Fig. S1. We find in general good
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FIG. S10. Correlation functions from numerics. Same parameters as Fig. 4 in the main text.
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FIG. S11. Correlation function. Matrix-product-state simulations. g/J = 0.5, temperature T/J = 0.25, bond dimension 16, time step 0.01/J.
System size 8, 16, 32, 64 increasing from left to right. In the top row [bottom row] we use the interactions Ji j in the main text [Junnormalized

i j
defined in Eq. (S3)]. We find that the correlations decay faster as system size is increased when the interactions are not normalized, indicating
the absence of long-range order.

agreement. In particular, the remnant of ferromagnetic corre-
lations in the top right corner of Fig. S10E and F is also visible
in the experimental result, showcasing that the measured pat-
terns are indeed physical. Moreover, the slight reduction in
correlations in the centre of Fig. S10C is also visible in the
experiment, albeit is less pronounced.

In order to show the crucial role of normalizing the expo-
nent of the exponential decay of the interactions by 1/L, we
show in Fig. S11 the correlation function ⟨σ̂x

i σ
x
j⟩ for the defi-

nition of the Hamiltonian in the main text (i.e. with perfectly
homogeneous interactions) as well as without the normaliza-
tion, i.e.

Junnormalized
i j = exp

(
− γ

13
|i − j|

)
, (S3)

with γ = 10.8, where we chose the denominator in order
to match the definitions for the relatively small system size
L = 13. We find that, while the correlations become longer
ranged as the system size increases for the definition in the
main text, the correlations decay to zero quickly as the system
size increases when using Junnormalized

i j , showing the absence
of a long-range-ordered phase at this temperature. This is in
agreement with the expectation that purely exponentially de-
caying interactions are in the universality class of the model

with nearest-neighbour interactions.

III. TIME-EVOLUTION METHOD TO EVALUATING
EQUILIBRIUM OBSERVABLES

In this section, we introduce our method in greater detail
and check several underlying assumptions for our specific
case.

A. Overview of the method

Our method to experimentally prepare thermal states is us-
ing a measurement of time-averaged observables Ô

⟨ψ|Ô(t)|ψ⟩ ≡
∫ T

0
dt ⟨ψ|Ô(t)|ψ⟩

T→∞→
∑

n

| ⟨n|ψ⟩ |2 ⟨n|Ô|n⟩ (S4)

with respect to an initial state |ψ⟩ of energy E = ⟨ψ|Ĥ|ψ⟩. In
the second step, we inserted the energy eigenbasis Ĥ |n⟩ =
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FIG. S12. Thermalization of all x-product initial states. Obtained
from exact diagonalization evolved to the experimental latest time
(crosses) and infinite time (orange dots). Blue dots are the latest time
points of the time averaged experimental data. (A) L=13, g/J = 0.1,
(B) L=13, g/J = 0.21, (C) L=7, g/J = 0.12, (D) L=7, g/J = 0.24

En |n⟩ and assumed that the Hamiltonian has a non-extensive
number of degenerate states. The eigenstate thermalization
hypothesis [14] states that the expectation values of a local
observable Ô with respect to eigenstates |n⟩ of the Hamilto-
nian with eigenenergy En are given by

⟨n|Ô|n⟩ = O(En), (S5)

where O(En) is the value of the observable in the microcanon-
ical ensemble at energy En, which is a smooth function of
energy. If the probability distribution | ⟨n|ψ⟩ |2 has a vanish-

ing energy density variance (⟨ψ|Ĥ2|ψ⟩ − ⟨ψ|Ĥ|ψ⟩2)/L2 L→∞→ 0
in the thermodynamic limit, then we can directly follow from
ETH that

∑
n | ⟨n|ψ⟩ |2 ⟨n|Ô|n⟩ = O(E)

∑
n | ⟨n|ψ⟩ |2 = O(E) and

therefore

⟨ψ|Ô(t)|ψ⟩ → O
(
⟨ψ|Ĥ|ψ⟩

)
. (S6)

This motivates the following protocol to evaluate expecta-
tion values of observables in the microcanonical ensemble,
which we follow in the main text:
(1) Prepare initial state |ψ⟩, e.g. a product state, with energy
Eψ = ⟨ψ|Ĥ|ψ⟩.
(2) Evolve under Hamiltonian Ĥ until time t.
(3) Measure Ô at various times t ≤ T .
(4) Evaluate the time average in Eq. (S4).
(5) Converge with respect to T .

B. Finite-size effects of the diagonal ensemble

In order for the diagonal-ensemble expectation values (i.e.
the late-time expectation values of observables) to approach
the microcanonical ensemble, the expectation values of the
observables with respect to the eigenstates ⟨n|Ô|n⟩ should
form a smooth function of the energy En over the width of
the diagonal ensemble | ⟨n|ψ⟩ |2. In a finite system, both of
these conditions can be and often are violated. This means that
the long-time expectation value of an observable evolved from
two initial states that are close in energy can be very different.
We show this observation for our system in Fig. S12, where
we show the diagonal ensemble expectation values along with
the time-averaged expectation value of the observable evolved
to the latest time available in the experiment for all 2L x-
product states, as well as the canonical ensemble and the ex-
perimental data. We find that, for small transverse fields, the
scatter around the canonical ensemble is larger, which we at-
tribute to the interplay between the weak breaking of integra-
bility at g = 0 and finite-size effects. We also find that the
time we evolved to in the experiment is largely long enough
to reproduce the overall behaviour as a function of energy,
with some finite-time differences visible for g/J = 0.21 and
L = 13.

We also note that the states we chose in the experiment by
the procedure described in section I B are roughly representa-
tive of all states, i.e. their scatter around the canonical ensem-
ble is similar to the scatter of all product states.

C. Verification of thermalization

In Fig. S13, we show the analogue of Fig. 2 in the main
text across all transverse fields shown in Fig. 3 of the main
text, with the same initial states for all fields, tabulated in ta-
ble S2. We find a similarly good match for all fields, with the
agreement becoming better for larger fields. For the numerical
calculations, we employed the interactions shown in Fig. S1B.

To test thermalization more rigorously, we perform matrix-
product-state simulations for larger systems, starting from the
totally polarized initial state |↑ · · · ↑⟩, defined along the x-
axis (i.e., the lowest-energy product initial state for g = 0).
We show the relative deviation from the thermal expectation
value (obtained from purification-MPS simulations, as intro-
duced in section II, at the same system size) in Fig. S14. We
find that, for small fields, the relative error reaches a plateau
as a function of time, with the value of the plateau decreas-
ing for increasing system size, which is an indication that, in
the infinite-time and infinite-system-size limit, the long-time
value and the thermal value approach each other. In general,
the relative error increases with transverse field. At around
g/J ≈ 0.625, we find an approximately power-law decay of
the relative error instead of a plateau, before erratic oscilla-
tions set in that depend heavily on the time step and bond
dimension. For even larger fields, a plateau is again reached
which however now tends to larger error as the system size
is increased. This is to be expected as, for large transverse
fields, this model shows prethermalization: instead of a ther-
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FIG. S13. Verification of equilibration. Same plot as Fig. 2 of main text for all transverse fields shown in Fig. 3 of the main text. The
transverse field is fixed for each row and increases from top to bottom: g/J = 0.04, 0.10, 0.21, 0.31, 0.41, 0.62. g/J = 0.31J corresponds to
Fig. 2 of the main text, which we repeat here for completeness. System size L = 13. First column: time-evolved squared magnetization in
the experiment (dots) and numerical simulations (dashed lines). Second column: time-average (up to time T ) of the time-evolved squared
magnetization using the data from the first row (dots) and the corresponding numerical data (dashed lines), evaluated according to Eq. 2 of
the main text. Third column: comparison of the latest-time experimental data points from the second column (dots), numerical data evolved
until the experimental time (crosses) and to infinite time, i.e. the diagonal ensemble (stars, evaluated according to the RHS in Eq. (S4)).
The expectation from the canonical ensemble is shown as a solid line. The numerics use the experimentally realized interactions. L = 13,
g = 0.31J. Error bars for the experimental data are quantum projection noise and are smaller than the point size.

malization to the transverse-field Ising model, the system ther-
malizes to the XY model due to the quasi-conservation of the
transverse field. Indeed, at large transverse field, the long-
time value of the squared magnetization approaches 1/2 as
expected from the XY model instead of 0 as expected from

the transverse field Ising model. Moreover, at intermediately
large field, this deviation from thermal behaviour has been as-
sociated to a dynamical quantum phase transition [15], but the
exact relation to prethermalization is unresolved. In any case,
these effects constrain the applicability range of our method
to small values of the transverse field.
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