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Abstract

Trigonometric cubature rules of degree 𝑡 are sets of points on the torus over which sums reproduce
integrals of degree 𝑡 monomials over the full torus. They can be thought of as 𝑡-designs on the torus.
Motivated by the projective structure of quantum mechanics, we develop the notion of 𝑡-designs on the
projective torus, which, surprisingly, have a much more restricted structure than their counterparts on
full tori. We provide various constructions of these projective toric designs and prove some bounds
on their size and characterizations of their structure. We draw connections between projective toric
designs and a diverse set of mathematical objects, including difference and Sidon sets from the field of
additive combinatorics, symmetric, informationally complete positive operator valued measures (SIC-
POVMs) and complete sets of mutually unbiased bases (MUBs) (which are conjectured to relate to finite
projective geometry) from quantum information theory, and crystal ball sequences of certain root lattices.
Using these connections, we prove bounds on the maximal size of dense 𝐵𝑡 mod 𝑚 sets. We also use
projective toric designs to construct families of quantum state designs. Finally, we discuss many open
questions about the properties of these projective toric designs and how they relate to other questions in
number theory, geometry, and quantum information.
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1 Introduction
Given a measure space (𝑀,𝜇) and a set of polynomials on 𝑀 , a 𝑡-design on 𝑀 is a measure space (𝑋 ⊂𝑀,𝜈)
satisfying

∫︀
𝑋
𝑓 d𝜈 =

∫︀
𝑀
𝑓 d𝜇 for all polynomials 𝑓 of degree ≤ 𝑡 [1–13]. Classic examples are Gaussian

quadrature rules [1] and spherical designs [2,3], where the measure space𝑀 is the hypercube and hypersphere,
respectively. Typically, one is interested in finding designs where 𝑋 is a discrete measure space such that
the integral over 𝑋 with respect to 𝜈 reduces to a weighted sum that is often simpler to compute. However,
this is not always possible; in the case of rigged designs (defined below), it is often crucial that 𝑋 be a
non-discrete measure space [14].

Specific forms of 𝑡-designs for particular choices of measure spaces 𝑀 have found a plethora of uses in
the field of quantum information theory [15–48]. In particular, complex projective space CP𝑑−1 describes
the space of 𝑑-dimensional quantum states [49], so 𝑡-designs on 𝑀 = CP𝑑−1 are called complex-projective
or quantum state 𝑡-designs. These quantum state designs also relate to other mathematical objects such
as symmetric, informationally complete positive operator valued measures (SIC-POVMs) and complete sets
of mutually unbiased bases (MUBs), which themselves are conjectured to relate to finite projective geom-
etry. Finite-dimensional quantum state designs can be generalized to designs on infinite-dimensional, or
continuous-variable, quantum systems by defining rigged quantum state 𝑡-designs, which are designs on the
space of tempered distributions 𝑀 = 𝑆(R)′ [14]. Finally, the (projective) unitary group PU(𝑑) describes
the space of noiseless dynamics of quantum states, and these too admit constructions of unitary 𝑡-designs.
Therefore a better understanding of various kinds of 𝑡-designs can also lead to deep insights about quantum
information.

Consider the complex sphere Ω𝑑; that is, the set of unit vectors in C𝑑. Any vector in Ω𝑑 can be written
(non-uniquely) as |𝑞, 𝜑⟩ :=

∑︀𝑑
𝑛=1

√
𝑞𝑛e

i𝜑𝑛 |𝑛⟩, where {|𝑛⟩}𝑑𝑛=1 forms an orthonormal basis, 𝑞 = (𝑞𝑛)
𝑑
𝑛=1 is a

discrete probability distribution (
∑︀

𝑛 𝑞𝑛 = 1), and 𝜑 = (𝜑𝑛)
𝑑
𝑛=1 is a set of phases. Therefore, 𝑞 belongs to the

(𝑑− 1)-simplex ∆𝑑−1 and 𝜑 to the 𝑑-torus 𝑇 𝑑. Via this mapping ∆𝑑−1×𝑇 𝑑 → Ω𝑑, one can combine simplex
designs and toric designs to form complex spherical designs [10]. Identifying CP𝑑−1 with Ω𝑑/U(1) (that
is, quantum states are complex unit vectors with a global phase redundancy), we have a similar mapping
∆𝑑−1 × 𝑃 (𝑇 𝑑) → CP𝑑−1 defined as (𝑞, [𝜑]) ↦→ [|𝑞, 𝜑⟩], where 𝑃 (𝑇 𝑑) = 𝑇 𝑑/U(1) is the projective torus (see
Definition 3) and [·] denotes equivalence classes in the respective quotient spaces. In a similar way as before,
via this mapping one can combine simplex designs and projective toric designs (see Definition 4) to form
quantum state designs [11,14].

In what follows, we flesh out and formalize this argument. Specifically, we formalize the notion of pro-
jective toric designs—both finite- and infinite-dimensional—and provide various constructions thereof. We
discuss the connection between projective toric designs and difference sets [50–52], and use this correspon-
dence to construct more projective toric designs, including some minimal ones. We illustrate the connection
to quantum state designs and various other mathematical objects. Using minimal projective toric 2-designs,
we construct an infinite family of almost-minimal complex-projective 2-designs. Finally, we discuss many
exciting open questions regarding projective toric designs, some of which are deeply connected to long-
outstanding conjectures in mathematics, such as some conjectures relating to finite affine and projective
spaces.

Relation to prior work. Toric designs have been considered before. Trigonometric cubature rules are such
designs on the torus [5–7]. Ref. [10] generalized the idea of trigonometric cubature to more general algebraic
tori. Ref. [14] studied designs on projective tori and showed an equivalence to a specific case of Ref. [10],
and further showed that such projective toric designs are related to complete sets of MUBs [53]. However
we believe the presentation given in Section 2 gives new clarity and focus on the subject. Furthermore,
Section 2.1 compiles, to the best of our knowledge, all previously known constructions of projective toric
𝑡-designs1, and indeed generalizes some of these constructions.

The main novel contributions of our work lie in Sections 2.2, 3 and 4. In Section 2.2, we prove a general
lower bound on the size of projective toric 𝑡-designs for all dimensions and all 𝑡 by relating these designs to
the crystal ball sequence corresponding to the root lattice 𝐴𝑛−1 [54, 55]. In Section 3, we related difference
sets to minimal projective toric designs. We show how the former can be used to construct the latter. Using
the connection of difference sets to projective toric designs, we furthermore relate dense difference sets to

1Of course, many toric designs are known, and these always project to projective toric designs. Such constructions are not
compiled in this manuscript.
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the crystal ball sequence mentioned above, and derive new (to the best of our knowledge) bounds on the
size of 𝐵𝑡 mod 𝑚 sets (cf. Corollary 18). In Section 4, we describe the relationship between projective toric
designs and quantum state designs. This relationship was first noted in Refs. [10,14], though we believe that
Section 4 greatly clarifies the details of this connection. In Section 4, we also construct an infinite family
of almost-minimal quantum state 2-designs—that is, quantum state 2-designs of size exactly one more than
minimal. While these specific almost-minimal designs have been noted before in Ref. [56], we arrive at the
construction via an entirely different route that utilizes projective toric designs. We believe that this route
has a much better hope of generalizing to other infinite families and 𝑡 > 2.

Finally, Section 5 compiles a number of new interesting open problems involving projective toric designs,
highlighting their connection to a number of other open problems in mathematics.

2 Theory of projective toric designs
We begin with some basic definitions that we will use for the rest of the paper.

Definition 1 (Torus). Let 𝑇 := R/2𝜋Z. When 𝑛 ∈ N, let 𝐼𝑛 := {1, 2, . . . 𝑛}; when 𝑛 = ∞, let 𝐼𝑛 = 𝐼∞ := N.
For such 𝑛, let 𝑇𝑛 :=

∏︀
𝑖∈𝐼𝑛

𝑇 with the product topology. Define the projection maps 𝑝𝑖 : 𝑇
𝑛 → 𝑇 as

(𝜑𝑗)𝑗∈𝐼𝑛 ↦→ 𝜑𝑖. For all 𝑛 ∈ N ∪ {∞}, let 𝜇𝑛 denote 𝑇𝑛’s unit-normalized Haar measure.

Note that by Tychonoff’s theorem, 𝑇∞ is compact. For all 𝑛, 𝑇𝑛 is therefore a compact abelian group
and thus has a unique unit-normalized Haar measure.

By definition, the product topology on 𝑇∞ is the coarsest topology such that the projection maps 𝑝𝑖 are
continuous. Similarly, we endow 𝑇∞ with the smallest 𝜎-algebra such that the projections 𝑝𝑖 are measurable.
This 𝜎-algebra is generated by sets of the form 𝐴 =

∏︀
𝑖∈N𝐴𝑖, where each 𝐴𝑖 is a measurable subset of 𝑇

and all but finitely many 𝐴𝑖 are equal to 𝑇 . Define a measure 𝜇′ on 𝑇∞ by 𝜇′(𝐴) =
∏︀

𝑖∈N 𝜇1(𝐴𝑖). From
Ref. [57, Thm. 10.6.1] (or Ref. [58] for a shorter proof), this definition of 𝜇′ on such subsets uniquely
determines 𝜇′ on the whole space. Clearly 𝜇′ is transitionally-invariant and unit-normalized, and therefore
𝜇′ = 𝜇∞.

We now define trigonometric cubature rules [5–7], which are designs on the torus. To match the general
terminology of this paper, we prefer to use the term toric design.

Definition 2 (Toric design). A 𝑇𝑛 𝑡-design (or trigonometric cubature rule of dimension 𝑛 and degree
𝑡 [5–7]) is a measure space (𝑋 ⊂ 𝑇𝑛,Σ, 𝜈) such that∫︁

𝑋

exp

⎛⎝i

𝑛∑︁
𝑗=1

𝛼𝑗𝜑𝑗

⎞⎠ d𝜈(𝜑) =

∫︁
𝑇𝑛

exp

⎛⎝i

𝑛∑︁
𝑗=1

𝛼𝑗𝜑𝑗

⎞⎠ d𝜇𝑛(𝜑) (1)

for all 𝛼 ∈ Z𝑛 satisfying
∑︀𝑛

𝑗=1 |𝛼𝑗 | ≤ 𝑡.

We now consider the projective torus, an important object in the study of quantum mechanics because
it removes a global phase redundancy (see Section 4).

Definition 3 (Projective torus). Let 𝑃 (𝑇𝑛) denote the projective torus 𝑃 (𝑇𝑛) := 𝑇𝑛/𝑇 , where here 𝑇
denotes the inclusion 𝑇 →˓ 𝑇𝑛 by 𝑇 ∋ 𝜃 ↦→ (𝜃, 𝜃, . . . ) ∈ 𝑇𝑛.

In other words, 𝑃 (𝑇𝑛) is the set points in 𝑇𝑛 identified up to a constant additive factor. Clearly, for any
𝑓 : 𝑇𝑛 → C to descend to a well-defined function on 𝑃 (𝑇𝑛) it must be constant on the cosets of the diagonal
subgroup; in other words, it must satisfy 𝑓(ei𝜑1+i𝜃, ei𝜑2+i𝜃, . . . ) = 𝑓(ei𝜑1 , ei𝜑2 , . . . ) for all 𝜃 ∈ 𝑇 . Hence, when
studying designs on 𝑃 (𝑇𝑛), we need only consider monomials on 𝑇𝑛 where the degree and conjugate degree
are equal. A degree 𝑡 monomial on 𝑃 (𝑇𝑛) therefore lifts to exp

(︁
i
∑︀𝑡

𝑘=1(𝜑𝑎𝑘
− 𝜑𝑏𝑘)

)︁
for 𝑎, 𝑏 ∈ 𝐼𝑡𝑛. We are

thus now in a position to define a 𝑃 (𝑇𝑛) 𝑡-design.

Definition 4 (Projective toric design). Fix an 𝑛 ∈ N ∪ {∞} and 𝑡 ∈ N. Let 𝑋 ⊂ 𝑃 (𝑇𝑛) and (𝑋,Σ, 𝜈) be a
measure space. 𝑋 is called a 𝑃 (𝑇𝑛) 𝑡-design if for all 𝑎, 𝑏 ∈ 𝐼𝑡𝑛,∫︁

𝑋

exp

⎛⎝i

𝑡∑︁
𝑗=1

(𝜑𝑎𝑗
− 𝜑𝑏𝑗 )

⎞⎠ d𝜈(𝜑) =

∫︁
𝑃 (𝑇𝑛)

exp

⎛⎝i

𝑡∑︁
𝑗=1

(𝜑𝑎𝑗
− 𝜑𝑏𝑗 )

⎞⎠ d𝜇𝑛−1(𝜑). (2)
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Here we denote the unit-normalized Haar measure on 𝑃 (𝑇𝑛) as simply 𝜇𝑛−1 since 𝑃 (𝑇𝑛) ∼= 𝑇𝑛−1. 𝑋 is
called discrete if 𝜈 is a counting measure, and is called finite if it is discrete and |𝑋| < ∞. If 𝑋 is finite,
then |𝑋| is called the size of 𝑋.

Clearly a 𝑃 (𝑇𝑛) 𝑡-design is also a (𝑡− 1)-design, since we can let 𝑎𝑡 = 𝑏𝑡 and have the integrand become
an arbitrary degree (𝑡− 1) monomial. Additionally, a 𝑃 (𝑇𝑛) 𝑡-design is also a 𝑃 (𝑇𝑛−1) 𝑡-design, as can be
seen by picking a subset of indices. We note that in the language of Ref. [10], a 𝑃 (𝑇𝑛) designs is a design
on the algebraic torus 𝑇 (PSU(𝑛)). It was shown in Ref. [14] that the two notions coincide2.

Throughout this work, we will use double braces to denote multisets, whereas single braces will denote
sets as usual; that is, {{1, 2, 2}} = {{2, 1, 2}} ̸= {{1, 2}}, whereas {1, 2, 2} = {1, 2} = {2, 1}. Since the integrand
in Eq. (2) contains only a finite number of projection maps, we can use Fubini’s theorem to compute the
integral on the right-hand side. By choosing a set of representatives of 𝑃 (𝑇𝑛) to be those phases 𝜑 for which
𝑝1(𝜑) = 𝜑1 = 0, we can think of 𝑃 (𝑇𝑛) as {0} × 𝑇𝑛−1. In this way, we have that 𝑝1(𝜑) = 0 for all 𝜑. It
follows that 𝑋 ⊂ {0} × 𝑇𝑛−1 is a 𝑃 (𝑇𝑛) 𝑡-design if∫︁

𝑋

exp

⎛⎝i

𝑡∑︁
𝑗=1

(𝜑𝑎𝑗
− 𝜑𝑏𝑗 )

⎞⎠d𝜈(𝜑) =

∫︁
{0}×𝑇𝑛−1

exp

⎛⎝i

𝑡∑︁
𝑗=1

(𝜑𝑎𝑗
− 𝜑𝑏𝑗 )

⎞⎠ d𝜇𝑛−1(𝜑) (3a)

=

{︃
1 if {{𝑎𝑖 | 𝑖 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑖 | 𝑖 ∈ {1, . . . , 𝑡}}}
0 otherwise

. (3b)

Suppose that we set each 𝑏𝑗 = 1. It follows that 𝑋 must match integration of polynomials on 𝑇𝑛−1 of
degree 𝑡 and conjugate degree 0 (because 𝜑𝑏𝑗 = 0). Similarly, we can set each 𝑎𝑗 = 1, and thus 𝑋 must match
integration of degree 0 and conjugate degree 𝑡. More generally, we see that it must match on monomials on
𝑇𝑛−1 of degree (𝑡1, 𝑡2) whenever 𝑡1 ≤ 𝑡 and 𝑡2 ≤ 𝑡. It follows that a 𝑇𝑛−1 (2𝑡)-design is a 𝑃 (𝑇𝑛) 𝑡-design,
and a 𝑃 (𝑇𝑛) 𝑡-design is a 𝑇𝑛−1 𝑡-design. The reverse implications, however do not hold in general.

By linearity, a 𝑃 (𝑇𝑛) 𝑡-design exactly integrates all polynomials on 𝑃 (𝑇𝑛) of degree 𝑡 or less. It is the
projective nature of the polynomials that we are integrating that give projective toric designs their interesting
structure that is quite different than the structure of toric designs. For example, as we will see, for finite
𝑛, 𝑃 (𝑇𝑛) 2-designs must be of size at least 𝑛(𝑛 − 1) + 1, and indeed this can be saturated for many 𝑛;
in contrast, it is known that a 𝑇𝑛 4-design requires size at least 2𝑛2, 3-design requires at least 4𝑛 points
(which can often be achieved), and 2-design requires at least 2𝑛 points (and 2𝑛+1 can often be achieved) [6].
Indeed, the difference between toric designs (i.e. trigonometric cubature rules) and projective toric designs
is analogous to the difference between (complex) spherical designs and (complex) projective designs.

2.1 Constructions of projective toric designs
In this section, we will present a few simpler constructions in order to get a handle on projective toric designs.
Later, in Section 3, we will construct more (and smaller) projective toric 𝑡-designs by utilizing difference sets
and Sidon sets from additive combinatorics [50]. Throughout this section, we will write points in 𝑃 (𝑇𝑛) as
representatives in 𝑇𝑛 with the first entry set to 0.

Our first example is a 𝑃 (𝑇𝑛) 2-design of size 𝑛2 whenever 𝑛 is prime, and slightly larger when 𝑛 is not
prime. Note that this construction can be generalized to be size 𝑛2 whenever 𝑛 is a prime power, but we
do not do this here. The generalized construction can be seen in the phases in the complete set of MUBs in
prime-power dimensions given in Ref. [18].

Theorem 5 (Thm. C.9 of [14]). Let 𝑛 ∈ N. Define 𝑝 to be the smallest prime number strictly larger than
max(2, 𝑛) (by the prime number theorem, 𝑝 ∈ 𝒪(𝑛+ log 𝑛)). Let 𝑋 ⊂ 𝑇𝑛 be the set

𝑋 =
{︀(︀

0, 2𝜋(𝑞1 + 𝑞2)/𝑝, 2𝜋(2𝑞1 + 4𝑞2)/𝑝, . . . , 2𝜋((𝑛− 1)𝑞1 + (𝑛− 1)2𝑞2)/𝑝
)︀
| 𝑞1 ∈ Z𝑝, 𝑞2 ∈ Z𝑝

}︀
(4)

and 𝑣 the constant map3 𝑣(𝜑) = 1/ |𝑋|. Then 𝑋 with the counting measure weighted by 𝑣 is a 𝑃 (𝑇𝑛)
2-design.

2We note that Ref. [14] refers to 𝑃 (𝑇𝑛) designs as 𝑇𝑛 designs.
3We corrected a minor error in Thm. C.9 of [14]. Namely, the map 𝑣 was stated as 𝑣(𝜑) = 1/𝑝2. This is correct for all 𝑛 > 2,

as |𝑋| = 𝑝2. However, when 𝑛 = 2, |𝑋| = 𝑝 = 3.
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Figure 1: The construction of the 2-design in Theorem 5 for (left) 𝑛 = 2 with 𝑝 = 3 and (right) 𝑛 = 3 with
𝑝 = 5. Note we are representing points in 𝑃 (𝑇𝑛) here as points in 𝑇𝑛−1 by discarding the first coordinate
which we fix to 0. The number of points in the design for (left) 𝑛 = 2 is 𝑝 and for (right) 𝑛 = 3 is 𝑝2 = 25.

We can easily write out the construction for 𝑛 = 2, where we have 𝑝 = 3, and therefore 𝑋 = {(0, 0) ,
(0, 2𝜋/3) , (0, 4𝜋/3)} with weight 𝑣(𝜑) = 1/3 is a 𝑃 (𝑇 2) 2-design. We show the construction in Fig. 1 for this
example of 𝑛 = 2 with 𝑝 = 3 as well as for 𝑛 = 3 with 𝑝 = 5.

We can extend this construction to the case when 𝑛 = ∞.

Theorem 6. Let 𝑋 ⊂ 𝑇∞ be the set

𝑋 =
{︀(︀

0, 𝜗+ 𝜙, 2𝜗+ 4𝜙, . . . , 𝑗𝜗+ 𝑗2𝜙, . . .
)︀
| 𝜗, 𝜙 ∈ [0, 2𝜋]

}︀
(5)

and 𝜈 the unit normalized Lebesgue measure on [0, 2𝜋]2 (i.e. d𝜈 = d𝜗 d𝜙/(2𝜋)2). Then 𝑋 is a 𝑇∞ 2-design.

Proof. For any 𝑎, 𝑏, 𝑐, 𝑑 ∈ N,∫︁
𝑋

exp(i(𝜑𝑎 + 𝜑𝑏 − 𝜑𝑐 − 𝜑𝑑)) d𝜈(𝜑) =

∫︁
[0,2𝜋]2

exp
(︀
i𝜗(𝑎+ 𝑏− 𝑐− 𝑑) + i𝜙(𝑎2 + 𝑏2 − 𝑐2 − 𝑑2)

)︀ d𝜗d𝜙
(2𝜋)2

(6a)

=

{︃
1 if 𝑎+ 𝑏 = 𝑐+ 𝑑 ∧ 𝑎2 + 𝑏2 = 𝑐2 + 𝑑2

0 otherwise
(6b)

=

{︃
1 if {{𝑎, 𝑏}} = {{𝑐, 𝑑}}
0 otherwise

, (6c)

where in the last line we used [14, Lem. C.10].

We now consider a construction for arbitrary 𝑡.

Theorem 7 (Thm. C.8 of [14]). Let 𝑛 ∈ N, 𝑡 ∈ N, 𝑋 ⊂ 𝑇𝑛 be the set

𝑋 =
{︀
(0, 2𝜋𝑑1/(𝑡+ 1), 2𝜋𝑑2/(𝑡+ 1), . . . , 2𝜋𝑑𝑛−1/(𝑡+ 1)) | 𝑑 ∈ Z𝑛−1

𝑡+1

}︀
, (7)

and 𝑣 be the constant map 𝑣(𝜑) = (𝑡+1)−(𝑛−1). Then 𝑋 with the counting measure weighted by 𝑣 is a 𝑃 (𝑇𝑛)
𝑡-design.

Example 8 (𝑛 = 2, 𝑡 = 3). We have

𝑋 =

{︃
(0, 0, 0) ,

(︂
0, 0, 2𝜋

1

3

)︂
,

(︂
0, 2𝜋

1

3
, 0

)︂
,

(︂
0, 0, 2𝜋

2

3

)︂
,

(︂
0, 2𝜋

2

3
, 0

)︂
,

(︂
0, 2𝜋

1

3
, 2𝜋

2

3

)︂
,

(︂
0, 2𝜋

2

3
, 2𝜋

1

3

)︂
,

(︂
0, 2𝜋

1

3
, 2𝜋

1

3

)︂
,

(︂
0, 2𝜋

2

3
, 2𝜋

2

3

)︂}︃
,

(8)

with 𝑣(𝜑) = 1/9, is a 𝑃 (𝑇 3) 2-design. ◇
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We now extend this construction to 𝑛 = ∞.

Theorem 9. Let 𝑡 ∈ N and 𝑋1 ⊂ 𝑇 be the discrete probability space 𝑋1 = {2𝜋𝑑/(𝑡+ 1) | 𝑑 ∈ Z𝑡+1}. Let
𝑋 =

∏︀
𝑖∈N𝑋1 and its 𝜎-algebra be generated by sets of the form

∏︀
𝑖∈N𝐴𝑖 where each 𝐴𝑖 in the power set

𝐴𝑖 ∈ 𝒫(𝑋1) and for all but finitely many 𝑖 we have 𝐴𝑖 = 𝑋1. Define 𝜈 by its action 𝜈(𝐴) =
∏︀

𝑖∈N(|𝐴𝑖| / |𝑋1|),
and note that 𝜈 uniquely extends to a measure on 𝑋 [57, Thm. 10.6.1]. Then 𝑋 is a 𝑇∞ 𝑡-design.

Proof. Let 𝑚 = max(max𝑗 𝑎𝑗 ,max𝑗 𝑏𝑗). Since 𝑡 is finite, we are only ever dealing with a finite number of
projection maps 𝑝𝑖 in the integrand. Therefore, we can apply Fubini’s theorem to separate the integral

∫︀
𝑋

into a product of an integral over 𝑋𝑚
1 and an integral over the rest of the space. Hence,

∫︁
𝑋

exp

⎛⎝i

𝑡∑︁
𝑗=1

(𝜑𝑎𝑗
− 𝜑𝑏𝑗 )

⎞⎠ d𝜈(𝜑) =
1⃒⃒

Z𝑚
𝑡+1

⃒⃒ ∑︁
𝑑∈Z𝑚

𝑡+1

exp

⎛⎝ 2𝜋i

𝑡+ 1

𝑡∑︁
𝑗=1

(𝑑𝑎𝑗
− 𝑑𝑏𝑗 )

⎞⎠ (9a)

=

{︃
1 if {{𝑎𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}}
0 otherwise

. (9b)

Finally, for completeness, we note the asymptotic existence theorem proven in Ref. [10].

Theorem 10 (Thm. 3.3 and Cor. 5.4 of [10]). Asymptotically in 𝑛→ ∞ but for finite 𝑛, a 𝑃 (𝑇𝑛) 𝑡-design
must have size at least 𝑛𝑡(1−𝑜(1))

⌈𝑡/2⌉!⌊𝑡/2⌋! and there exists 𝑡-designs of size 𝑛𝑡(1 + 𝑜(1)).

2.2 Minimal projective toric designs
A very natural question that one can ask is what is the size of the smallest projective toric 𝑡-design? We call
such designs minimal. Ref. [14, Prop. C.11] proved a lower bound on the size of minimial projective toric
2-designs. In Section 3, we will show that this bound can be saturated in many dimensions. In this section,
we generalize the bound and prove a lower bound on the size of minimal projective toric 𝑡-designs. In the
case when 𝑡 is even, we conjecture that this bound is tight.

We begin by defining the set

𝑃 (𝑛)
𝑠 :=

{︃
q− r

⃒⃒⃒⃒
q, r ∈ N𝑛

0 ,

𝑛∑︁
𝑖=1

𝑞𝑖 =

𝑛∑︁
𝑖=1

𝑟𝑖 = 𝑠

}︃
. (10)

We show that |𝑃 (𝑛)
𝑠 | is the 𝑠th element of the crystal ball sequence corresponding to the root lattice 𝐴𝑛−1

[54, 55], and therefore arrive at the explicit formula for |𝑃 (𝑛)
𝑡 | given in Eq. (11). We begin by defining the

crystal ball sequence of 𝐴𝑛−1. Let 𝑆𝑛−1(𝑡) denote the number of vertices of 𝐴𝑛−1 a distance 𝑡 away from some
fixed vertex, where we define distance for the lattice 𝐴𝑛−1 as follows: letting ℛ := {e𝑖−e𝑗 | 𝑖, 𝑗 ∈ {1, . . . , 𝑛}}
be the roots of 𝐴𝑛−1, the distance between x,y ∈ 𝐴𝑛−1 is the smallest 𝑑 such that x − y ∈ 𝑑ℛ, where
𝑑ℛ := ℛ+ℛ+ · · ·+ℛ is the 𝑑-fold set sum of ℛ. The sequence (𝑆𝑛−1(𝑡))𝑡∈N0

is the coordination sequence
of 𝐴𝑛−1 [54]. The crystal ball numbers are the partial sums 𝐺𝑛−1(𝑠) =

∑︀𝑠
𝑥=0 𝑆𝑛−1(𝑥) [54]. The explicit

formula for 𝐺𝑛−1(𝑡) is [54, 55]

𝐺𝑛−1(𝑡) = 3𝐹2(1− 𝑛,−𝑡, 𝑛; 1, 1; 1) =
𝑡∑︁

𝑖=0

(︂
𝑛− 1

𝑖

)︂2(︂
𝑛− 𝑖+ 𝑡− 1

𝑡− 𝑖

)︂
, (11)

where 3𝐹2 denotes the generalized hypergeometric function [59–62].

Lemma 11. |𝑃 (𝑛)
𝑠 | = 𝐺𝑛−1(𝑠).

Proof. Let {e𝑗}𝑛𝑗=1, and ℛ be as above. Now, let ℛ𝑗 := {e𝑖 − e𝑗 | 𝑖 ∈ {1, . . . , 𝑛}}. Let q, r ∈ N𝑛
0 be defined

as in Eq. (10). Note that q, r ∈ 𝑠e1 + 𝑠ℛ1. Further, note that ℛ1 −ℛ1 = ℛ. Thus,

q− r ∈ 𝑠e1 + 𝑠ℛ1 − (𝑠e1 + 𝑠ℛ1) = 𝑠ℛ1 − 𝑠ℛ1 = 𝑠 (ℛ1 −ℛ1) = 𝑠ℛ. (12)
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Thus, we have an injection from 𝑃
(𝑛)
𝑠 into 𝑠ℛ. Note also that 𝐺𝑛−1(𝑠) = |𝑠ℛ|, since |𝑠ℛ| is precisely the

set of all points that are reachable within a path of at most 𝑠 edges. Thus, we now need only show that this
map is actually also a surjection.

To do this, note that for any x =
∑︀𝑠

𝑙=1(e𝑖𝑙 − e𝑗𝑙) ∈ 𝑠ℛ, we can easily reverse this chain by letting
q = 𝑠e1 +

∑︀𝑠
𝑙=1(e𝑖𝑙 − e1) and r = 𝑠e1 +

∑︀𝑠
𝑙=1(e𝑗𝑙 − e1). Thus, all x ∈ 𝑠ℛ also satisfy x ∈ 𝑃

(𝑛)
𝑠 and vice

versa, meaning that the two sets are equal, and thus that their cardinalities are as well.

We recall that Ref. [14] showed the equivalence of 𝑃 (𝑇𝑛) designs and designs on the algebraic torus
𝑇 (PSU(𝑛)) as defined in Ref. [10]. Ref. [10] further explored the connection between such designs and the
root lattice of PSU(𝑛), which is 𝐴𝑛−1. This gives a hint as to why 𝐴𝑛−1 shows up in the analysis of projective
toric designs.

We now prove a lower bound on the size of projective toric designs. We note that this bound is compatible
with the asymptotic bound given in Theorem 10. One can see this by using the asymptotic expansion of the
binomial coefficients in Eq. (11).

Proposition 12. Let 𝑛 ∈ N and (𝑋,Σ, 𝜈) be a finite 𝑃 (𝑇𝑛) 𝑡-design. Then |𝑋| ≥ 𝐺𝑛−1(⌊𝑡/2⌋), where
𝐺𝑛−1(𝑠) is given in Eq. (11).

Proof. We prove the bound for even 𝑡. The bound for odd 𝑡 is then automatically valid since the minimal
size of a (𝑡+1)-design is at least as large as the minimal size of a 𝑡-design. We therefore restrict our attention
to even 𝑡 for the rest of the proof.

Since 𝑋 is a finite, discrete measure space, we can rewrite
∫︀
𝑋
(·) d𝜈 as

∑︀
𝜑∈𝑋 𝑣(𝜑)(·). The projective

toric 𝑡-design condition can be expressed as follows. Let each 𝜑 ∈ 𝑋 label a basis element of 𝑉 := C|𝑋| so
that {|𝜑⟩ | 𝜑 ∈ 𝑋} is an orthonormal basis of 𝑉 . Then for k ∈ 𝑃

(𝑛)
𝑡/2 , define |k⟩ =

∑︀
𝜑∈𝑋

√︀
𝑣(𝜑)eik·𝜑 |𝜑⟩. The

𝑡-design condition is equivalently stated as ⟨k|k′⟩ = 𝛿k,k′ . Hence, {|k⟩ | k ∈ 𝑃
(𝑛)
𝑡/2 } must be orthonormal in

𝑉 , meaning that |𝑃 (𝑛)
𝑡/2 | ≤ dim𝑉 = |𝑋|. The proposition then follows from Lemma 11.

Furthermore, we can prove that a minimal 𝑡-design for even 𝑡 must be uniformly weighted.

Proposition 13. Let 𝑋 ⊂ 𝑃 (𝑇𝑛) and let 𝑣 : 𝑋 → (0,∞) define a weighted discrete measure on 𝑋. Suppose
the measure space defined by 𝑋 and 𝑣 is a minimal 𝑡-design with 𝑡 even. Then 𝑣(𝜃) = 1/ |𝑋|.

Proof. This proof essentially follows that of Ref. [6, Thm. 2.2]. The 𝑃 (𝑇𝑛) 𝑡-design condition is written
as 𝑀𝑀† = I|𝑃 (𝑛)

𝑡/2
|×|𝑃 (𝑛)

𝑡/2
|, where 𝑀k,𝜃 =

√︀
𝑣(𝜃)eik·𝜃. If 𝑋 is minimal—that is, if |𝑋| = |𝑃 (𝑛)

𝑡/2 |—then 𝑀

is a square matrix so that 𝑀𝑀† = I if and only if 𝑀†𝑀 = I. From the latter condition, it follows that
𝛿𝜃,𝜃′ =

√︀
𝑣(𝜃)𝑣(𝜃′)

∑︀
𝑘∈𝑃

(𝑛)

𝑡/2

eik·(𝜃−𝜃′). When 𝜃 = 𝜃′, we therefore find that 𝑣(𝜃) = 1/|𝑃 (𝑛)
𝑡/2 | = 1/ |𝑋|.

Finally, we conjecture that the bound given in Proposition 12 is tight for even 𝑡.

Conjecture 14. When 𝑡 is even, the bound given in Proposition 12 is tight in the sense that there are
infinitely many dimensions 𝑛 for which the bound is saturable.

In Section 3, we show how minimal 𝑡-designs are related to difference sets. Using this connection, we
construct an infinite family of minimal 2-designs that indeed saturate the bound given in Proposition 12,
and we derive a bound on the size of dense difference sets.

3 Relation to difference sets
We say that 𝑋 ⊂ 𝑃 (𝑇𝑛) is a group toric 𝑡-design if 𝑋 is a 𝑡-design and also inherits group structure from
𝑃 (𝑇𝑛). We will consider the case when 𝑋 is a cyclic group for finite 𝑛 and a circle group for 𝑛 = ∞. Here
we will find connections to Sidon sets and difference sets [50].

7



We begin with the infinite case. Suppose that 𝑋 ⊂ 𝑇∞ is a 𝑡-design and isomorphic to the circle group
U(1). Then there is a single element 𝑧 ∈ Z∞ such that 𝑋 = {𝜃𝑧 = (𝜃𝑧1, 𝜃𝑧2, . . . ) | 𝜃 ∈ [0, 2𝜋]}. In order for
𝑋 to be a design, it must be that

∫︁ 2𝜋

0

exp

⎛⎝i𝜃

𝑡∑︁
𝑗=1

(𝑧𝑎𝑗
− 𝑧𝑏𝑗 )

⎞⎠ d𝜃

2𝜋
=

{︃
1 if {{𝑎𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}}
0 otherwise

(13)

for all 𝑎, 𝑏 ∈ N𝑡. It follows that 𝑧 must satisfy⎛⎝ 𝑡∑︁
𝑗=1

𝑧𝑎𝑗
=

𝑡∑︁
𝑗=1

𝑧𝑏𝑗

⎞⎠ ⇐⇒ ({{𝑎𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}}) . (14)

In other words, the sum of any 𝑡 elements of 𝑧 must be unique. If we restrict 𝑧 to be in Z∞
≥0, then Eq. (14)

is exactly the condition for 𝑧 to be a 𝐵𝑡 set4 [50, Def. 4.27]. In the special case of 𝑡 = 2, we need to find a
𝑧 ∈ Z∞

≥0 such that 𝑧𝑎 + 𝑧𝑏 = 𝑧𝑐 + 𝑧𝑑 if and only if {{𝑎, 𝑏}} = {{𝑐, 𝑑}}. Such a 𝑧 is called a Sidon set [50].
We have therefore proven the following proposition.

Proposition 15. Group 𝑇∞ 𝑡-designs isomorphic to the circle group are in one-to-one correspondence with
𝐵𝑡 sets.

We next give a simple example of a 𝐵𝑡 set.

Example 16 (Exponential 𝐵𝑡 set). Let 𝑆 ∈ Z∞ be defined by 𝑧𝑎 = 𝑡𝑎. In this case, 𝑧𝑎 written in base 𝑡 is
100 . . . 0, a 1 followed by 𝑎 0s. It follows easily that every sum is unique up to reordering. ◇

We now discuss finite 𝑛. Suppose that 𝑋 ⊂ 𝑃 (𝑇𝑛) is a 𝑡-design and isomorphic to the cyclic group Z𝑚.
It follows that 𝑋 is a size 𝑚 𝑡-design and is generated by a fixed 𝑧 ∈ Z𝑛

𝑚. In order for 𝑋 to be a design, it
must be that

𝑚−1∑︁
𝑑=0

exp

⎛⎝2𝜋i𝑑

𝑚

𝑡∑︁
𝑗=1

(𝑧𝑎𝑗 − 𝑧𝑏𝑗 )

⎞⎠ =

{︃
1 if {{𝑎𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}}
0 otherwise

(15)

for all 𝑎, 𝑏 ∈ 𝐼𝑡𝑛, where recall that 𝐼𝑛 = {1, 2, . . . , 𝑛}. It follows that 𝑧 must satisfy⎛⎝ 𝑡∑︁
𝑗=1

𝑧𝑎𝑗
≡

𝑡∑︁
𝑗=1

𝑧𝑏𝑗 (mod 𝑚)

⎞⎠ ⇐⇒ ({{𝑎𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}} = {{𝑏𝑗 | 𝑗 ∈ {1, . . . , 𝑡}}}) . (16)

In other words, the sum of any 𝑡 elements of 𝑧 must be unique, or equivalently,⃒⃒⃒⃒{︂ 𝑡∑︁
𝑗=1

𝑧𝑎𝑗
mod 𝑚 | 𝑎 ∈ 𝐼𝑡𝑛

}︂⃒⃒⃒⃒
=

(︂
𝑛+ 𝑡− 1

𝑡

)︂
. (17)

Eq. (16) is precisely the condition for 𝑧 to be a 𝐵𝑡 mod 𝑚 set of size 𝑛 [50]. We have therefore shown the
following proposition.

Proposition 17. Group 𝑃 (𝑇𝑛) 𝑡-designs isomorphic to the cyclic group Z𝑚 are in one-to-one correspondence
with 𝐵𝑡 mod 𝑚 sets of size 𝑛.

Given Proposition 17 and the bound in Proposition 12, we immediately arrive at the following corollary.

Corollary 18. Any 𝐵𝑡 mod 𝑚 set must have size 𝑛 satisfying 𝑚 ≥ 𝐺𝑛−1(⌊𝑡/2⌋), where 𝐺𝑛−1(𝑠) is given
in Eq. (11). Furthermore, if Conjecture 14 is true, then this bound is tight for even 𝑡 in the sense that there
are infinitely many dimensions 𝑛 for which the bound is saturable.

4Note that we are considering 𝑧 to be a tuple and yet calling it a difference “set”. It is understood that we are talking about
the set {𝑧𝑎 | 𝑎 ∈ N}.
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We have been unable to find the bound in Corollary 18 in the existing literature on difference sets. If this
bound is indeed new, it illustrates the utility of studying projective toric designs due to the many interesting
mathematical objects to which they relate.

In the special case of 𝑡 = 2, 𝐵𝑡=2 mod 𝑚 sets are called a Sidon sets of size 𝑛 mod 𝑚. Notably, by a
simple counting argument, any Sidon set of size 𝑛 mod 𝑚 must satisfy 𝑚 ≥ 𝑛(𝑛−1)+1.5 Further, for many
but not all 𝑛, this bound can be saturated, as we will discuss later. When the bound is saturated, we say
the Sidon set is dense. Hence, for every 𝑛 for which there is a Sidon set of size 𝑛 mod 𝑛(𝑛− 1) + 1, there is
a minimal 𝑃 (𝑇𝑛) 2-design—that is, a 𝑃 (𝑇𝑛) 2-design of size 𝑛(𝑛− 1)+1, hence saturating the lower bound
from Proposition 12.

For one example of a dense Sidon set, consider 𝑛 = 6 and 𝑚 = 𝐺𝑛−1(1) = 𝑛(𝑛− 1) + 1 = 31. Then one
can easily check that 𝑧 = (0, 1, 3, 8, 12, 18) is a Sidon set and thus gives rise to a 𝑃 (𝑇 6) 2-design of size 31. A
simple numerical search however reveals that there does not exist a Sidon set of size 7 mod 7(7−1)+1 = 43.
Therefore, we have the following corollary.

Corollary 19. Either there are no 𝑃 (𝑇 7) 2-designs of size saturating the lower bound given in Proposition 12,
or such a saturating design cannot be isomorphic to a cyclic group.

3.1 Explicit families of designs from Singer sets
There is a general construction of dense Sidon sets—called Singer sets—whenever 𝑛−1 is a prime power [63].
Thus, we have constructed minimal 𝑃 (𝑇𝑛) 2-designs whenever 𝑛− 1 is a prime power, and these designs are
isomorphic to the cyclic group Z𝑛(𝑛−1)+1. We review the Singer set construction in Appendix A.

Indeed more generally, we review Singer’s construction in Lemma A.2 of 𝐵𝑡 mod (𝑛−1)𝑡+1−1
𝑛−2 sets of size

𝑛 whenever 𝑛 − 1 is a prime power. Using Proposition 17, we have therefore constructed explicit 𝑃 (𝑇𝑛)

𝑡-designs of size (𝑛−1)𝑡+1−1
𝑛−2 whenever 𝑛− 1 is a prime power, and these designs are isomorphic to the cyclic

group Z (𝑛−1)𝑡+1−1
𝑛−2

.

4 Relation to quantum state designs
Projective toric designs are closely connected to complex-projective designs [15–26], continuous-variable (CV)
rigged designs [14], and complete sets of mutually unbiased bases (MUBs) [53]. These connections arise by
concatenating toric and simplex designs in order to generate elements in complex-projective space, which in
turn satisfy the design condition. We discuss the connection here.

Denote the complex unit sphere by Ω𝑑 = {𝑧 ∈ C𝑑 |
∑︀𝑑

𝑖=1 |𝑧𝑖|
2
= 1}, which can be identified with 𝑆2𝑑−1.

Let CP𝑑−1 be complex-projective space Ω𝑑/U(1). Pick an orthonormal basis {|𝑛⟩ | 𝑛 ∈ {1, . . . , 𝑑}} of C𝑑. A
polynomial 𝑓 on Ω𝑛 descends to a well-defined polynomial on CP𝑑−1 if and only if it is invariant under the
action of U(1)—that is, 𝑓(ei𝜃 |𝜓⟩) = 𝑓(|𝜓⟩) for all 𝜃 and |𝜓⟩ ∈ Ω𝑑. It follows that all degree 𝑡 monomials on
CP𝑑−1 are of the form

∏︀𝑡
𝑖=1 ⟨𝑎𝑖|𝜓⟩⟨𝜓|𝑏𝑖⟩ for 𝑎, 𝑏 ∈ 𝐼𝑡𝑑 (recall that 𝐼𝑑 = {1, 2, . . . , 𝑑}). A CP𝑑−1 𝑡-design is

thus a measure space (𝑋,Σ, 𝜈) such that, for all 𝑎, 𝑏 ∈ 𝐼𝑡𝑑,∫︁
𝑋

(︃
𝑡∏︁

𝑖=1

⟨𝑎𝑖|𝜓⟩⟨𝜓|𝑏𝑖⟩

)︃
d𝜈(𝜓) =

∫︁
CP𝑑−1

(︃
𝑡∏︁

𝑖=1

⟨𝑎𝑖|𝜓⟩⟨𝜓|𝑏𝑖⟩

)︃
d𝜓 =

Π
(𝑑)
𝑡 (𝑎; 𝑏)

TrΠ
(𝑑)
𝑡

, (18)

where Π(𝑑)
𝑡 is the projector onto the symmetric subspace of (C𝑑)⊗𝑡, Π(𝑑)

𝑡 (𝑎; 𝑏) :=
(︁⨂︀𝑡

𝑖=1 ⟨𝑎𝑖|
)︁
Π

(𝑑)
𝑡

(︁⨂︀𝑡
𝑖=1 |𝑏𝑖⟩

)︁
,

and d𝜓 denotes the Fubini-Study volume measure on CP𝑑−1. The last equality is a simple consequence of
Schur’s lemma and the unitary invariance of d𝜓 [22, 24] [14, Ap. C3].

Let ∆𝑑−1 = {𝑝 ∈ [0, 1]𝑑 |
∑︀𝑑

𝑖=1 𝑝𝑖 = 1} denote the (𝑑 − 1)-dimensional simplex. Simplex 𝑡-designs have
analogous definitions to those of toric and complex-projective designs [4,8–11]. Any vector |𝜓⟩ ∈ Ω𝑛 can be
represented as |𝑝, 𝜑⟩ :=

∑︀𝑑
𝑛=1

√
𝑝𝑛e

i𝜑𝑛 |𝑛⟩ for some (not necessarily unique) 𝑝 ∈ ∆𝑑−1 and 𝜑 ∈ 𝑇 𝑑. For a

5The Sidon set condition can be restated as stipulating that 𝑧𝑎 − 𝑧𝑐 ≡ 𝑧𝑑 − 𝑧𝑏 if and only if {{𝑎, 𝑏}} = {{𝑐, 𝑑}}. We therefore
need 𝑧𝑎 − 𝑧𝑐 to be unique for all 𝑎 and 𝑐. First choose an 𝑎 ∈ 𝐼𝑛 and then choose a 𝑐 ∈ 𝐼𝑛 with 𝑐 ̸= 𝑎. This gives us 𝑛(𝑛− 1)
distinct values. Further, we have one more value—namely 0—coming from when 𝑎 = 𝑐.

9



complex unit vector |𝜓⟩ ∈ Ω𝑛, let [|𝜓⟩] denote the equivalence class corresponding to a point in CP𝑑−1. Let
𝜋 : ∆𝑑−1 × 𝑃 (𝑇 𝑑) → CP𝑑−1 be defined by (𝑝, 𝜑) ↦→ [|𝑝, 𝜑⟩], where 𝜑 is any representative of an equivalence
class in 𝑇 𝑑/𝑇 . The pullback of the Fubini-Study volume form along 𝜋 is precisely the Lebesgue measure on
∆𝑑−1 times the Lebesgue measure on 𝑃 (𝑇 𝑑) (see Appendix B). Together, this implies that the concatenation
of a ∆𝑑−1 𝑡-design and a 𝑃 (𝑇 𝑑) 𝑡-design yields a CP𝑑−1 𝑡-design [10,14].

We note that the analogous result holds for the complex sphere Ω𝑑; namely, concatenation of a ∆𝑑−1

𝑡-design and a toric (2𝑡)-design (see Definition 2) yields a Ω𝑑 𝑡-design. The reason that we only need a
projective toric design in the CP𝑑−1 case, as opposed to a full toric design as in the Ω𝑑 case, is because
polynomials on CP𝑑−1 are more restricted than on Ω𝑑. On Ω𝑑, 𝑧1𝑧2𝑧3 is a valid monomial. On the other
hand, this is an invalid monomial on CP𝑑−1 = Ω𝑑/U(1) since it varies under the action of U(1).

One particularly nice simplex 2-design contains the extremal points (1, 0, . . . , 0), . . . , (0, 0, . . . , 1) and the
centroid 𝑐 = (1/𝑑, 1/𝑑, . . . , 1/𝑑) (see e.g. [14, Thm. C4]). When concatenating the extremal points with
a projective toric design, we get the basis vectors [|𝑛⟩] ∈ CP𝑑−1. When concatenating the centroid with
a finite-sized projective toric design 𝑋, we get a collection of points

{︀
[|𝑐, 𝜑⟩] ∈ CP𝑑−1 | 𝜑 ∈ 𝑋

}︀
. Hence,

the total number of points in the resulting complex-projective design is 𝑑 + |𝑋|. Recalling Proposition 12,
we have that |𝑋| ≥ 𝑑(𝑑 − 1) + 1. Furthermore, from Section 3, we found an explicit construction using
Singer sets of these minimal projective toric designs whenever 𝑑 + 1 is a prime power. It follows that the
resulting complex-projective 2-design is of size 𝑑2+1. Interestingly, the smallest possible complex-projective
2-design—also called a SIC-POVM—has size 𝑑2. The existence of SIC-POVM’s in all dimensions 𝑑 is still
an open problem.

These almost-minimal CP𝑑−1 2-designs that we just constructed using Singer sets—CP𝑑−1 2-designs of
size 𝑑2 + 1—were first constructed in Ref. [56]. Notably, however, our utilization of projective toric designs
indicates a possible path toward extending such constructions to higher 𝑡-designs.

Example 20 (𝑑 = 3). We construct the above almost-minimal CP𝑑−1 2-design in the case of 𝑑 = 3. Let
us utilize the minimal 𝑃 (𝑇 3) 2-design given by the mod 7 Sidon set (0, 1, 3). The corresponding projective
toric design is given by the phases {︂(︂

0,
2𝜋𝑘

7
,
2𝜋𝑘

7
× 3

)︂
| 𝑘 ∈ Z7

}︂
, (19)

where we understand (0, 𝜃, 𝜑) ∈ 𝑇 3 to be a representative of an equivalence class in 𝑃 (𝑇 3). Denote by
(𝑝0, 𝑝1, 𝑝2) an element of ∆2. Consider the ∆2 2-design given by the centroid (1/3, 1/3, 1/3) weighted by 3/4
and the extremal points (1, 0, 0), (0, 1, 0), (0, 0, 1) each weighted by 1/12. Finally, denote points in CP2 by
[|𝜓⟩] for |𝜓⟩ a unit vector in C3, and fix an orthonormal basis {|0⟩ , |1⟩ , |2⟩}. Let

𝑋 = {[|0⟩], [|1⟩], [|2⟩]} ∪
{︂
[|𝜓𝑘⟩] :=

[︂
1√
3

(︁
|0⟩+ e2𝜋i𝑘/7 |1⟩+ e2𝜋i𝑘×3/7 |2⟩

)︁]︂
| 𝑘 ∈ Z7

}︂
. (20)

Turn 𝑋 into a discrete measure space by weighting [|0⟩], [|1⟩], and [|2⟩] each by 1/12 and each [|𝜓𝑘⟩] by
3/(4× 7). The resulting measure space is a CP2 2-design of size 10. ◇

In Ref. [14, Ap. F], it was shown that projective toric designs are closely related to complete sets of
MUBs. Let 𝑆 ⊂ 𝑃 (𝑇𝑛) be a set of size |𝑆| = 𝑑2. By concatenating 𝑆 with the simplex 2-design described
above (extremal points and centroid), one finds that the set of phases 𝑆 constitute a complete set of MUBs
if and only if they satisfy an (1) orthonormality condition, and a (2) mutually unbiased condition. It was
shown in Ref. [14, Ap. F] that the second condition (2) can be replaced with the requirement that 𝑆 be a
toric 2-design.

Finally, Ref. [64] introduced the notion of a continuous variable (CV) 𝑡-design. Ref. [14] proved that such
designs do not exist and therefore introduced rigged CV 𝑡-designs. A simplex design can be generalized to the
unnormalized infinite-dimensional simplex. It then follows that the concatenation of an infinite-dimensional
simplex 𝑡-design and a 𝑃 (𝑇∞) 𝑡-design yields a rigged CV 𝑡-design. We therefore see that designs on
the infinite-dimensional projective torus 𝑃 (𝑇∞) are closely related to designs on other infinite-dimensional
spaces.
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5 Conclusion and open questions
In this work, we have developed the theory of projective toric designs and their relation to various other
objects in and areas of mathematics and physics. There is still much unknown and we believe there are
still many exciting connections to be made. We now discuss various future research directions relating to
projective toric designs.

Minimal projective toric designs In this work, we showed that if 𝑋 is a 𝑃 (𝑇𝑛) 2-design, then |𝑋| ≥
𝑛(𝑛 − 1) + 1. Furthermore, using Sidon sets, we showed that the bound can be saturated when 𝑛 − 1 is
a prime power. However, we also showed that the bound cannot always be satisfied using the Sidon set
construction; for example, when 𝑛 = 7, the Sidon set construction does not yield a minimal projective toric
2-design. We thus have the following open question: do projective toric 2-designs saturating the bound exist
for all 𝑛?

We showed that if the 𝑡-design is a cyclic group, then the constructions are in one-to-one correspondence
with 𝐵𝑡 mod |𝑋| sets. In the case of e.g. 𝑛 = 7 and 𝑡 = 2, 𝑛(𝑛− 1) + 1 = 43 is prime so that the only group
design could be a cyclic group. Therefore, if one can prove that a minimal design must be a group, then one
would prove that the 𝑡 = 2 bound cannot be saturated for all 𝑛. Must the minimal design be a group?

We further proved that if 𝑋 is a 𝑃 (𝑇𝑛) 𝑡-design, then |𝑋| ≥ 𝐺𝑛−1(⌊𝑡/2⌋). We conjectured that the bound
is tight when 𝑡 is even. Can this conjecture be proven? Can the bound be tightened for odd 𝑡? Can one
construct saturating designs? As we saw in Proposition 12, the lower bound on the size of projective toric
2-designs matches the lower bound on the size of dense modular Sidon sets. We believe that the analogous
statement holds for all 𝑡. Using the connection between difference sets and projective toric designs, we
related dense 𝐵𝑡 mod 𝑚 sets to the root lattice 𝐴𝑛−1 and proved a bound relating the size 𝑛 of the set and
the value of 𝑚. This connection seems to be a fruitful area to continue exploring.

Connection to affine/projective planes A finite projective plane is a tuple (𝑃,𝐿) of a finite set of
points 𝑃 and lines 𝐿 ⊆ 2𝑃 (where 2𝑃 means the power set of set 𝑃 , i.e. the set of all subsets of 𝑃 ) such that:

1. Any two points are elements of a unique common line

2. Any two lines intersect at a unique point

3. There exist four points in 𝑃 such that no line contains more than two of them.

Affine planes are defined similarly. A tuple (𝑃,𝐿) can only be a finite projective plane if there exists some
𝑑 ∈ N such that |𝑃 | = |𝐿| = 𝑑2 + 𝑑+ 1. However, finite projective planes have only been constructed for 𝑑 a
prime power, and are known to not exist if 𝑑 is both not the sum of two squares and 𝑑 ≡ 1 or 2 mod 4. These
numeric similarities, along with deep connections between combinatorial designs and finite geometry, hint
at a deeper connection between projective toric designs and finite projective planes. In addition, projective
planes appear in the construction of Sidon sets, and are conjectured to correspond to dense ones [65].

Further, a complete set of MUBs yields a finite projective plane, while a SIC-POVM in prime power
dimensions yields a finite affine plane [53,66,67]. As mentioned above, MUBs are closely related to projective
toric designs, while SIC-POVMs are minimal complex-projective designs. All of this circumstantial evidence
begs the question: are there interesting direct connections one can make between projective toric designs
and finite planes, either projective or affine?

Connection to other designs Recall that complex projective designs can be constructed by concatenat-
ing simplex and projective toric designs. Similarly, rigged continuous variable 𝑡-designs can be constructed
in an analogous way by using 𝑃 (𝑇∞) designs. One can ask: how much can this result be generalized? Can
we use similar constructions for toric varieties and flag varieties? Indeed CP𝑛 is a toric variety with moment
map to the associated polytope being the simplex ∆𝑛. The moment map allows us to project CP𝑛 designs
to ∆𝑛 designs. Projective toric designs allow us to pullback along the moment map and build CP𝑛 designs
from ∆𝑛 designs. How much more general can this result be made?
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New families of quantum state designs Using the families of 𝑃 (𝑇𝑛) 𝑡-designs constructed in Sec-
tion 3.1, can we generate new interesting families of quantum state 𝑡-designs? To do this, we need to find
families of simplex 𝑡-designs. In the 𝑡 = 2 case, we used a particularly nice simplex 2-design that allowed us
to construct almost-minimal quantum state 2-designs from minimal projective toric 2-designs. Can we find
similarly nice simplex 𝑡-designs for 𝑡 > 2?

Approximate designs One can consider approximate projective toric 𝑡-design, which are points on the
projective torus that integrate monomials of degree ≤ 𝑡 up to an error of 𝜀. How does the size of the minimal
approximate 𝑡-design depend on 𝑡 and 𝜀? If one takes an 𝜀1-approximate simplex 𝑡-design and 𝜀2-approximate
projective toric design and concatenates them, what is the 𝜀 with which we get an 𝜀-approximate complex-
projective 𝑡-design? In Appendix C, we take the first steps to study such approximate designs. In particular,
we define 𝜀-approximate 𝑃 (𝑇𝑛) 𝑡-designs, and we provide an upper bound on the minimum number of points
drawn uniformly randomly from 𝑃 (𝑇𝑛) needed to form an 𝜀-approximate 𝑃 (𝑇𝑛) 𝑡-design with probability
1−𝛿. We show that the resulting bound depends on the crystal ball sequences of the root lattices 𝐴𝑛−1 [54,55]
given in Eq. (11).
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A Singer sets
In this appendix, we review Singer’s construction of Sidon sets of size 𝑝𝑚 + 1 for cyclic groups of size
(𝑝𝑚)2+(𝑝𝑚)+1 with 𝑝 a prime [63, p. 380-381] [51, Sec. 3.5] [52]. The existence of these Singer sets implies
that there is a projective 𝑛-torus 2-design of size (𝑛 − 1)2 + 𝑛 = 𝑛2 − 𝑛 + 1, i.e., a minimal one, whenever
𝑛− 1 is prime-power. We emphasize that everything in this appendix is review.

The construction of such Sidon sets goes as follows. Let 𝜃 be the generator of F×
(𝑛−1)𝑡+1 , and then let

𝑇𝑡 := {0} ∪ {𝑎 ∈ [(𝑛− 1)𝑡+1 − 1] : (𝜃𝑎 − 𝜃) ∈ F𝑛−1 ⊂ F(𝑛−1)𝑡+1}. (A1)

The inclusion F𝑛−1 →˓ F(𝑛−1)𝑡+1 is done by identifying the generator of F×
(𝑛−1) with 𝜃

(𝑛−1)𝑡+1−1
𝑛−2 , which makes

sense as for any finite field F𝑞, |F×
𝑞 | = 𝑞 − 1, and F×

𝑞 is cyclic.
Further, note that F(𝑛−1)𝑡+1 is a (𝑡 + 1)-dimensional F𝑛−1-vector space. Thus, {𝜃𝑏}𝑡𝑏=0 is a F𝑛−1-basis

of F(𝑛−1)𝑡+1 . This means that all 𝜃𝑎 =
∑︀𝑡

𝑖=0 𝑘𝑖𝜃
𝑖 for some unique 𝑘𝑖 ∈ F(𝑛−1). However, if (𝑛−1)𝑡+1−1

𝑛−2 |𝑎, we
know all 𝑖 ≥ 1 have 𝑘𝑖 = 0.

Then, let

𝑆𝑡((𝑛− 1), 𝜃) :=

{︂
𝑙 ∈ Z (𝑛−1)𝑡+1−1

𝑛−2

: 𝑙 ≡ 𝑎 mod

(︂
(𝑛− 1)𝑡+1 − 1

𝑛− 2

)︂
, 𝑎 ∈ 𝑇𝑡

}︂
(A2)

be the residues of 𝑇𝑡 mod (𝑛−1)𝑡+1−1
𝑛−2 . We now recount proofs of some of 𝑆𝑡((𝑛− 1), 𝜃)’s properties.

Lemma A.1. |𝑆𝑡((𝑛− 1), 𝜃)| = 𝑛.

Proof. First we note there are 𝑛 distinct elements of F(𝑛−1)𝑡+1 of the form 𝜃 + 𝛾𝑎, 𝛾𝑎 ∈ F𝑛−1 by the F𝑛−1-
linear independence of 𝜃 and 1. As all elements of F(𝑛−1)𝑡+1 equal 𝜃𝑎 for some unique 𝑎 ∈ [(𝑛 − 1)𝑡+1 − 1],

we see that |𝑇𝑡| = 𝑛. Now, we must show that every element of 𝑇𝑡 has a different residue modulo (𝑛−1)𝑡+1−1
𝑛−2 .

12



Suppose 𝑎, 𝑎′ := 𝑎+𝑘 (𝑛−1)𝑡+1−1
𝑛−2 ∈ 𝑇, 𝑘 ∈ Z>0. Then 𝑟 := 𝜃𝑎

′
/𝜃𝑎 = 𝜃𝑘

(𝑛−1)𝑡+1−1
𝑛−2 ∈ F𝑛−1. But by definition

of 𝑇𝑡, 𝜃𝑎 = 𝜃 + 𝛾𝑎, 𝜃
𝑎′

= 𝜃 + 𝛾𝑎′ . But
𝜃𝑎

′
= 𝑟𝜃𝑎 = 𝑟𝜃 + 𝑟𝛾𝑎. (A3)

Thus, 𝑟 = 1, meaning (𝑛 − 2)|𝑘, which means that only 𝑎 can be in [(𝑛 − 1)𝑡+1 − 1], and thus that no two
elements of 𝑇𝑡 can have the same residue modulo (𝑛−1)𝑡−1+1

𝑛−2 .

Lemma A.2. 𝑆𝑡((𝑛− 1), 𝜃) is a 𝐵𝑡 (mod (𝑛−1)𝑡+1−1
𝑛−2 ) set.

Proof. Recall that {𝜃𝑖}𝑡𝑖=0 is a F𝑛−1-basis of F(𝑛−1)𝑡+1 . In other words, there exist no non-elementwise-zero
tuples (𝑐𝑖)

𝑡
𝑖=0 ∈ F𝑡+1

𝑛−1 such that
𝑡∑︁

𝑖=0

𝑐𝑖𝜃
𝑖 = 0. (A4)

Equivalently, 𝜃 cannot be the root of any polynomial of degree ≤ 𝑡 with F𝑛−1-coefficients.
Now, consider two multisets 𝐴, 𝐵, |𝐴| = |𝐵| ≤ 𝑡, taking entries from 𝑆𝑡((𝑛−1), 𝜃). Then, by the definition

of 𝑆𝑡((𝑛− 1), 𝜃) and 𝑇𝑡, we see that for all 𝑎 ∈ 𝐴 ∪𝐵

𝜃𝑎 = 𝛼𝑎(𝜃 + 𝛾𝑎) (A5)

for some 𝛼𝑎 ∈ F𝑛−1. Now, consider Π𝐴 :=
∏︀

𝑎∈𝐴 𝜃
𝑎 and Π𝐵 :=

∏︀
𝑏∈𝐵 𝜃

𝑏. It is clear that Π𝐵/Π𝐴 ∈ F𝑛−1 and
only if ∑︁

𝑎∈𝐴

𝑎 ≡
∑︁
𝑏∈𝐵

𝑏 mod
(𝑛− 1)𝑡+1 − 1

𝑛− 2
. (A6)

Thus, Π𝐴 − 𝛽𝐴,𝐵Π𝐵 = 0 for some 𝛽𝐴,𝐵 ∈ F𝑛−1 if and only if Eq. (A6) holds. However, for any 𝛽 ∈ F𝑛−1,
we see that Π𝐴 −𝛽Π𝐵 is a degree-𝑡 polynomial equation in 𝜃 with F𝑛−1 coefficients, meaning it cannot have
any solutions, meaning the 𝐵𝑡 (mod (𝑛−1)𝑡+1−1

𝑛−2 ) condition is satisfied.

A.1 Explicit example of dense modular Sidon set
In this appendix, we work through an explicit example of the construction of the Sidon set 𝑆𝑡=2((𝑛−1), 𝜃) for
𝑛 = 5 = 22+1. We begin by constructing 𝑇𝑡. Consider the field F(𝑛−1)𝑡+1 = F43 = F26 . With the irreducible
polynomial 𝑓(𝑥) = 1 + 𝑥5 + 𝑥6 ∈ F2[𝑥], we work in the polynomial representation F26

∼= F2[𝑥]/(𝑓(𝑥)).
One can check that the generator 𝜃 of the multiplicative group F×

26 is 𝑥 in this representation—in other
words, |{𝑥𝑚 mod 𝑓(𝑥) | 𝑚 ∈ Z63}| = 63. We identify F𝑛−1 = F22 ⊂ F26 via generating F×

22 with

𝑦 = 𝑥
(𝑛−1)𝑡+1−1

𝑛−2 = 𝑥21, (A7)

so that F22 = {0} ∪
{︀
𝑦𝑘 | 𝑘 ∈ Z3

}︀
. Then

𝑇𝑡=2 = {0} ∪ {𝑎 ∈ Z43−1 ∖ {0} | (𝑥𝑎 − 𝑥) (mod 𝑓(𝑥)) ∈ F22} . (A8)

Clearly, 1 ∈ 𝑇𝑡=2. With that out of the way, we can rephrase this as

𝑇𝑡=2 = {0, 1} ∪
{︀
𝑎 ∈ Z43−1 ∖ {0, 1} | ∃𝑘 ∈ Z3 : 𝑥𝑎 − 𝑥 ≡ 𝑦𝑘 (mod 𝑓(𝑥))

}︀
. (A9)

One can straightforwardly numerically verify that 𝑇2 = {0, 1, 14, 25, 58}. To ensure understanding of the
construction, we will work through why 14 ∈ 𝑇2. We need to show that 𝑥14−𝑥 ≡ 𝑦𝑘 (mod 𝑓(𝑥)) for 𝑘 = 0, 1
or 2. It turns out that 𝑘 = 2 satisfies this equation. In particular,

(𝑥14 − 𝑥) (mod 𝑓(𝑥)) = 𝑥3 + 𝑥4 + 𝑥5 = 𝑦2 (mod 𝑓(𝑥)) = 𝑥42 (mod 𝑓(𝑥)), (A10)

where recall we’re working with polynomials over the field F2. Similarly, for 25,

(𝑥25 − 𝑥) (mod 𝑓(𝑥)) = 1 + 𝑥3 + 𝑥4 + 𝑥5 = 𝑦1 (mod 𝑓(𝑥)) = 𝑥21 (mod 𝑓(𝑥)), (A11)
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and for 58,
(𝑥58 − 𝑥) (mod 𝑓(𝑥)) = 1 = 𝑦0 (mod 𝑓(𝑥)). (A12)

Hence, we have found that 𝑇2 = {0, 1, 14, 25, 58}. To get our Sidon set, we compute the residues 𝑆2 =

𝑇2 mod (𝑛−1)𝑡+1−1
𝑛−2 = 𝑇2 mod 21, giving

𝑆2 = {0, 1, 14, 4, 16} = {0, 1, 4, 14, 16} . (A13)

One can easily confirm that this is a Sidon set mod 21. In particular, the set of all sums 𝑎 + 𝑏 mod 21
for 𝑎, 𝑏 ∈ 𝑆2 is {0, 1, 2, 4, 5, 7, 8, 9, 11, 14, 15, 16, 17, 18, 20}, which has size 15 =

(︀
𝑛+𝑡−1

𝑡

)︀
=
(︀
6
2

)︀
, which is the

maximal possible size.

B Pullback of the Fubini-Study volume form
It is shown in Ref. [49, Sec. 4.5, 4.7, 7.6] that the volume measure on complex projective space is the product
of the flat measure on the simplex and the flat measure on the torus. For completeness, in this appendix,
we show the same result via a different method.

Let [𝑍0 : · · · : 𝑍𝑛] be homogeneous coordinates on CP𝑛. Consider the coordinate patches 𝐶0, . . . , 𝐶𝑛 on
CP𝑛, where 𝐶𝑖 = {[𝑍0 : · · · : 𝑍𝑛] | 𝑍𝑖 ̸= 0}. The volume of CP𝑑−1 ∖𝐶0 is zero, and therefore for the purposes
of volume integration we can restrict our attention to 𝐶0. On 𝐶0, we use the coordinates 𝑧𝑖 := 𝑍𝑖/𝑍0 for
𝑖 = 1, . . . , 𝑛. The (unnormalized) Fubini-Study volume form 𝜔 can then be written as

𝜔 =
1

(1 +
∑︀𝑛

𝑖=1|𝑧𝑖|2)𝑛+1
d𝑧1 ∧ d𝑧1 ∧ . . . d𝑧𝑛 ∧ d𝑧𝑛. (B1)

We can write 𝑍𝑖 =
√
𝑝𝑖e

i𝜑𝑖 for 𝑖 = 0, . . . , 𝑛 and
∑︀𝑛

𝑖=0 𝑝𝑖 = 1. In other words, 𝑝 is a point on the simplex
𝑝 ∈ ∆𝑛 := {𝑝 ∈ [0, 1]𝑛 |

∑︀
𝑖 𝑝𝑖 ≤ 1} (with 𝑝0 := 1 −

∑︀𝑛
𝑖=1 𝑝𝑖) and 𝜑 is a point on the projective torus

𝜑 ∈ 𝑃 (𝑇𝑛+1) (e.g. we can choose a representative with 𝜑0 = 0). Therefore, 𝑧𝑖 =
√︁

𝑝𝑖

𝑝0
ei𝜑𝑖−i𝜑0 .

Consider the map 𝜋 : ∆̃𝑛 × 𝑃 (𝑇𝑛+1) → 𝐶0, where ∆̃𝑛 is all 𝑝 ∈ ∆𝑛 satisfying 𝑝0 > 0. The map is
𝜋𝑖(𝑝, 𝜑) =

√︁
𝑝𝑖

𝑝0
ei𝜑𝑖−i𝜑0 .

Proposition B.1. The pullback 𝜋*𝜔 is

𝜋*𝜔 = (−1)𝑛/2 d𝑝1 ∧ . . . d𝑝𝑛 ∧ d𝜑1 ∧ . . . d𝜑𝑛. (B2)

It follows from this proposition that the unit-volume normalized volume measure on CP𝑛 is equal to the
product of the Lebesgue measure on the simplex ∆𝑛 and the Lebesgue measure on 𝑃 (𝑇𝑛+1) (where recall
the latter is equal to the Lebesgue measure on 𝑇𝑛).

Proof of the proposition. We can without loss of generality fix 𝜑0 = 0. We can rewrite

𝜔 = 𝑝𝑛+1
0 d𝑧1 ∧ d𝑧1 ∧ . . . d𝑧𝑛 ∧ d𝑧𝑛. (B3)

Therefore,
𝜋*𝜔 = 𝑝𝑛+1

0 det(𝐽) d𝑝1 ∧ . . . d𝑝𝑛 ∧ d𝜑1 ∧ . . . d𝜑𝑛, (B4)

where
𝐽 =

(︂
𝐴 𝐵
𝐶 𝐷

)︂
(B5)

is the Jacobian with

𝐴𝑖𝑗 =
𝜕𝜋𝑖

𝜕𝜑𝑗
, 𝐵𝑖𝑗 =

𝜕𝜋𝑖

𝜕𝑝𝑗
, 𝐶𝑖𝑗 =

𝜕�̄�𝑖

𝜕𝜑𝑗
, 𝐷𝑖𝑗 =

𝜕�̄�𝑖

𝜕𝑝𝑗
. (B6)

We can check that
𝜕𝜋𝑖

𝜕𝑝𝑗
=

1

2
𝜋𝑖(𝑝, 𝜑)

(︂
𝛿𝑖𝑗
𝑝𝑖

+
1

𝑝0

)︂
,

𝜕𝜋𝑖

𝜕𝜑𝑗
= i𝛿𝑖𝑗𝜋

𝑖(𝑝, 𝜑). (B7)

14



Therefore, 𝐴 and 𝐶 are diagonal and thus commute, meaning that det(𝐽) = det(𝐴𝐷 − 𝐶𝐵). The matrix
elements are (𝐴𝐷 − 𝐶𝐵)𝑖𝑗 =

i
𝑝0

(︁
𝛿𝑖𝑗 +

𝑝𝑖

𝑝0

)︁
.

By the matrix determinant lemma [68], det(𝑀 + 𝑢𝑣𝑇 ) = (1 + 𝑣𝑇𝑀−1𝑢) det(𝑀) with 𝑀 = i
𝑝0
𝛿𝑖𝑗 and

𝑢𝑖 = i/𝑝0 and 𝑣𝑖 = 𝑝𝑖/𝑝0, we find that

det(𝐽) =

(︂
i

𝑝0

)︂𝑛
(︃
1 +

𝑛∑︁
𝑖=1

𝑝𝑖
𝑝0

)︃
=

(︂
𝑖

𝑝0

)︂𝑛
1

𝑝0
=

(−1)𝑛/2

𝑝𝑛+1
0

. (B8)

The proposition follows.

C Approximate projective toric designs
Throughout this appendix, we will be concerned with uniform finite 𝑃 (𝑇𝑛) 𝑡-designs; that is, 𝑃 (𝑇𝑛) 𝑡-designs
𝑋 that are finite and the measure space (𝑋,Σ = 𝒫(𝑋), 𝜈) is such that 𝜈(𝐴) = |𝐴| / |𝑋|. We will restrict
to finite 𝑛. We will define approximate projective toric designs and prove a loose bound on the number
𝑀(𝑡, 𝜀, 𝛿) of uniformly random points needed to form such a design.

For p ∈ N𝑛
0 , let 𝑓p(𝜑) denote the monomial

∏︀𝑛
𝑖=1 e

𝑖𝜑𝑖𝑝𝑖 . Notice that 𝑓p(𝜑) = 𝑓p(−𝜑) = 𝑓−p(𝜑).

Definition C.1. We say that 𝐶 ⊂ 𝑃 (𝑇𝑛) is a (uniform) 𝜀-approximate projective toric 𝑡-design if, for all
p ∈ 𝑃

(𝑛)
𝑡 , ⃒⃒⃒⃒

⃒⃒ 1

|𝐶|
∑︁
𝜑∈𝐶

𝑓p(𝜑)−
∫︁
𝑃 (𝑇𝑛)

𝑓p d𝜇𝑛−1

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒ 1

|𝐶|
∑︁
𝜑∈𝐶

𝑓p(𝜑)− 𝛿p,0

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀. (C1)

Here, 𝑃 (𝑛)
𝑡 is the set defined in Eq. (10),

𝑃
(𝑛)
𝑡 :=

{︃
q− r

⃒⃒⃒⃒
q, r ∈ N𝑛

0 ,

𝑛∑︁
𝑖=1

𝑞𝑖 =

𝑛∑︁
𝑖=1

𝑟𝑖 = 𝑡

}︃
. (C2)

Note of course that with 𝜀 = 0 we recover the definition of an (exact) projective toric design. There
is redundancy in 𝑃

(𝑛)
𝑡 . Indeed, if Eq. (C1) is satisfied for p, then it is automatically satisfied for −p.

Furthermore, Eq. (C1) is trivially satisfied for any 𝐶 when p = 0. Hence, we are in fact interested in the set
𝑆
(𝑛)
𝑡 defined by 𝑆(𝑛)

𝑡 := (𝑃
(𝑛)
𝑡 ∖ {0})/Z2, where Z2 denotes the group action p ↦→ ±p. Therefore, 𝐶 ⊂ 𝑃 (𝑇𝑛)

is an 𝜀-approximate 𝑡-design if and only if, for all p ∈ 𝑆
(𝑛)
𝑡 ,⃒⃒⃒⃒

⃒⃒ 1

|𝐶|
∑︁
𝜑∈𝐶

𝑓p(𝜑)

⃒⃒⃒⃒
⃒⃒ ≤ 𝜀. (C3)

Define the probability space 𝒞𝑀 to be the ensemble over subsets of 𝑃 (𝑇𝑛) of size 𝑀 . Specifically, to
draw a random 𝐶 ⊂ 𝑃 (𝑇𝑛) from 𝒞𝑀 , we simply draw 𝑀 uniformly random points from 𝑃 (𝑇𝑛) with respect
to the Haar measure. We often denote a subset 𝐶 ⊂ 𝑃 (𝑇𝑛) of size 𝑀 by 𝐶 = {𝜑(1), . . . , 𝜑(𝑀)}, where each
𝜑(𝑖) ∈ 𝑃 (𝑇𝑛).

Definition C.2. Let 𝑀(𝑡, 𝜀, 𝛿) denote the minimum 𝑀 such that a random 𝐶 drawn from 𝒞𝑀 is an
𝜀-approximate 𝑃 (𝑇𝑛) 𝑡-design with probability 1− 𝛿. In other words,

𝑀(𝑡, 𝜀, 𝛿) = min
𝑀∈N

𝑀

s.t. Pr
𝐶∈𝒞𝑀

[𝐶 is an 𝜀-approx 𝑡-design on 𝑃 (𝑇𝑛)] ≥ 1− 𝛿.
(C4)

In the following, we will find an upper bound on 𝑀(𝑡, 𝜀, 𝛿). This will tell us that for any 𝑀 ≥𝑀(𝑡, 𝜀, 𝛿),
𝐶 ∈ 𝒞𝑀 will be an 𝜀-approximate 𝑡-design with probability ≥ 1− 𝛿.
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Theorem C.3. 𝑀(𝑡, 𝜀, 𝛿) ≤ 𝐺𝑛−1(𝑡)−1
2𝛿𝜀2 , where 𝐺𝑛−1(𝑡) given in Eq. (11).

Proof. Recall that |𝑃 (𝑛)
𝑡 | = 2|𝑆(𝑛)

𝑡 |+ 1, and from Lemma 11 |𝑃 (𝑛)
𝑡 | = 𝐺𝑛−1(𝑡). We will therefore prove that

𝑀(𝑡, 𝜀, 𝛿) ≤ |𝑆(𝑛)
𝑡 |
𝛿𝜀2 Define the following notation:

E
𝜑∈𝑃 (𝑇𝑛)

𝑓(𝜑) =

∫︁
𝑃 (𝑇𝑛)

𝑓 d𝜇𝑛−1 (C5a)

E
𝜑∈𝐶

𝑓(𝜑) =
1

|𝐶|
∑︁
𝜑∈𝐶

𝑓(𝜑) (C5b)

E
𝐶∈𝒞𝑀

= E
{𝜑(1),...,𝜑(𝑀)}∈𝑃 (𝑇𝑛)𝑀

. (C5c)

For p ∈ 𝑆
(𝑛)
𝑡 , define

∆(𝐶,p) :=

⃒⃒⃒⃒
E

𝜑∈𝐶
𝑓p(𝜑)− E

𝜑∈𝑃 (𝑇𝑛)
𝑓p(𝜑)

⃒⃒⃒⃒2
=

⃒⃒⃒⃒
E

𝜑∈𝐶
𝑓p(𝜑)

⃒⃒⃒⃒2
. (C6)

We compute the mean,

E
𝐶∈𝒞𝑀

∆(𝐶,p) =
1

𝑀2
E

{𝜑(1),...,𝜑(𝑀)}∈𝑃 (𝑇𝑛)𝑀

𝑀∑︁
𝑖,𝑗=1

𝑓p(𝜑
(𝑖))𝑓p(𝜑

(𝑗)) (C7a)

=
1

𝑀2

[︂
𝑀 E

𝜑∈𝑃 (𝑇𝑛)
𝑓p(𝜑)𝑓p(𝜑) +𝑀(𝑀 − 1)

(︂
E

𝜑∈𝑃 (𝑇𝑛)
𝑓p(𝜑)

)︂(︂
E

𝜃∈𝑃 (𝑇𝑛)
𝑓p(𝜃)

)︂]︂
(C7b)

=
1

𝑀
. (C7c)

Meanwhile, we have that

Pr
𝐶∈𝒞𝑀

[︀
𝐶 is an 𝜀-approx 𝑡-design on 𝑃 (𝑇𝑛)

]︀
(C8a)

= Pr
𝐶∈𝒞𝑀

[︁
∀p ∈ 𝑆

(𝑛)
𝑡 : ∆(𝐶,p) ≤ 𝜀2

]︁
(C8b)

= 1− Pr
𝐶∈𝒞𝑀

[︁
∃p ∈ 𝑆

(𝑛)
𝑡 : ∆(𝐶,p) > 𝜀2

]︁
(C8c)

(union bound) ≥ 1−
∑︁

p∈𝑆
(𝑛)
𝑡

Pr
𝐶∈𝒞𝑀

[︀
∆(𝐶,p) > 𝜀2

]︀
(C8d)

(Markov’s inequality) ≥ 1−
∑︁

p∈𝑆
(𝑛)
𝑡

E𝐶∈𝒞𝑀
∆(𝐶,p)

𝜀2
(C8e)

= 1− |𝑆(𝑛)
𝑡 |

𝑀𝜀2
. (C8f)

Thus, we require that

1− 1

𝑀𝜀2
|𝑆(𝑛)

𝑡 | ≥ 1− 𝛿. (C9)

It follows that any 𝑀 ≥ |𝑆(𝑛)
𝑡 |
𝛿𝜀2 satisfies, so that 𝑀(𝑡, 𝜀, 𝛿) ≤ |𝑆(𝑛)

𝑡 |
𝛿𝜀2 .
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