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Interacting lattice Hamiltonians at high temperature generically give rise to energy transport governed by
the classical diffusion equation; however, predicting the rate of diffusion requires numerical simulation of the
microscopic quantum dynamics. For the purpose of predicting such transport properties, computational time
evolution methods must be paired with schemes to control the growth of entanglement to tractably simulate
for sufficiently long times. One such truncation scheme—dissipation-assisted operator evolution (DAOE)—
controls entanglement by damping out components of operators with large Pauli weight. In this paper, we
generalize DAOE to treat fermionic systems. Our method instead damps out components of operators with
large fermionic weight. We investigate the performance of DAOE, the new fermionic DAOE (FDAOE), and
another simulation method, density matrix truncation (DMT), in simulating energy transport in an interacting
one-dimensional Majorana chain. The chain is found to have a diffusion coefficient scaling like interaction
strength to the fourth power, contrary to naive expectations based on Fermi’s Golden rule—but consistent with
recent predictions based on the theory of weak integrability breaking. In the weak interaction regime where the
fermionic nature of the system is most relevant, FDAOE is found to simulate the system more efficiently than
DAOE.

I. INTRODUCTION

Simulating transport in strongly interacting systems is a
core challenge in quantum many-body physics, with im-
plications from strange metal physics in cuprates and iron
pnictides1–7 to heavy-ion collisions.8–12 Because complete nu-
merical solution of a particular Hamiltonian is generally fea-
sible only for small systems, transport simulations rely on
approximate numerical methods. But transport is under-
stood in terms of two largely separate languages, depend-
ing on the degree of interaction: nearly free fermion13 (and
nearly Bethe ansatz integrable14–20) systems can be under-
stood in terms of Boltzmann theory while strongly interact-
ing systems are understood in terms of an increasingly de-
tailed theoretical understanding of how thermalization and hy-
drodynamics emerge from unitary microscopic dynamics.21–25

Cold atom experiments highlight this gap: they can tune
from free-fermion to strongly interacting by tuning a Fes-
chbach resonance26,27 or changing the geometry of a quasi-
1D ladder geometry.28 At the same time, progress in analyti-
cal and numerical treatment of systems showing Bethe ansatz
integrability,29 weakly broken Bethe ansatz integrability,14–20

and strong integrability-breaking interactions22–25,30,31 sug-
gest that quantum simulation may not be necessary, at least
for one-dimensional systems. But classical methods have not
been shown to work in the crossover regime between weak
interaction, tractable with Boltzmann methods, and strong in-
teraction, tractable with recent methods. We present a ma-
trix product operator method for simulating transport in one
dimensional high-temperature quantum systems that is suit-
able for that regime; it can treat both nearly-free-fermion and
strongly interacting Hamiltonians.

Existing methods for strongly interacting systems become
impractical at weak interaction, lack a perturbatively small
simulation parameter controlling deviation from the exact dy-
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FIG. 1. Top: dissipation-assisted operator evolution (DAOE)
compared with fermionic dissipation-assisted operator evolu-
tion (FDAOE). Where DAOE reduces widely-separated quadratic
fermion operators almost to zero, FDAOE leaves them untouched;
FDAOE depolarizes operators with fermion weight greater than some
cutoff w∗. Bottom left: energy density as a function of position x
and time t in the nearly-free Majorana model (2) at U = 0.3, sim-
ulated in FDAOE. Bottom right: finite-time estimates of the diffu-
sion coefficient D. At small U , these estimates are consistent with
D ∝ U−4, but not D ∝ U−2; the power is due to weak integrability
breaking.

namics, or both. Density matrix truncation (DMT)30 works in
all ranges of integrability,32–35 but it is nontrivial to implement
and difficult to analyze. It is also uncontrolled: like many
matrix product operator methods, one checks the accuracy of
DMT simulations by looking for convergence in bond dimen-
sion, but for large systems, practical bond dimensions cannot
approach the bond dimensions required to exactly simulate
the state. Indeed the premise of DMT, applied to systems that
thermalize, is that most of the operator can be discarded, be-
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cause it consists of physically-irrelevant correlations.
Dissipation-assisted operator evolution (DAOE)31 offers a

controllable approximation to a system’s dynamics with a
straightforward matrix product operator implementation—but
it is not suitable for systems near free-fermion integrability.
DAOE modifies the Heisenberg dynamics to include an artifi-
cial dissipation-like superoperator with a parametrically small
rate γ. Just as depolarizing noise with rate γ reduces the am-
plitude of operators with Pauli weight (number of nontrivial
Pauli strings) l at a rate γl, the artificial dissipation reduces
the amplitude of operators with Pauli weight l > l∗ at a rate
γ(l − l∗). Fig. 1 top shows a cartoon of this process. It there-
fore reduces the state’s complexity by decreasing the ampli-
tude of long operators, without changing local operators. Be-
cause the long operators on which DAOE acts most strongly
are—for chaotic, strongly interacting systems—unimportant
to the finite-time dynamics23, one can think of the DAOE dis-
sipation superoperator as perturbatively modifying the local
dynamics. DAOE results at small but finite γ can therefore be
extrapolated to the unitary γ = 0 dynamics of interest, in a
manner similar to zero-noise extrapolation.36,37

But when the system is not strongly interacting, the high-
weight operators affected by DAOE can be important to lo-
cal dynamics, and the dissipation is not a small perturbation.
In such a system momentum occupation numbers like c†kck
(where ck is a fermion momentum mode annihilation opera-
tor) are nearly conserved quantities, so modifying them ren-
ders any description of the system’s hydrodynamics unfaith-
ful. But simple long-range fermion operators like c†kck have
large weight when written in Pauli matrices, due to Jordan-
Wigner strings, so the artificial dissipation causes them to de-
cay rapidly; this artificial decay will dominate the system’s
apparent transport properties.

We modify DAOE to respect the fermionic structure un-
derlying weakly interacting 1D systems; we call the result-
ing method fermionic DAOE (FDAOE). FDAOE preserves
quadratic fermion operators like c†kck while dissipating op-
erator components consisting of products of large numbers of
fermion operators. Like DAOE it is efficient and easy to im-
plement due to its compact matrix product operator represen-
tation. This allows us to study both strongly and weakly non-
integrable fermionic models using the same controlled and in-
tuitive method.

We test FDAOE and a prior method, DMT, on a model
displaying weak integrability breaking.38 In such models an
integrability-breaking perturbation is added to an integrable
(in our case free fermion) model. At leading order, the per-
turbation dresses the integrable system’s conserved quanti-
ties, giving ballistic transport; beyond leading order it scatters
those quantities, giving diffusive transport. Ref. 38 predicts
relaxation times ∼ U2+2ν , where ν is a positive integer for
perturbations that exhibit weak integrability breaking and 0
for perturbations that do not.

We find that both FDAOE and DMT capture infinite-
temperature dynamical correlation functions of energy density
in such a system on short and intermediate timescales. Both
methods are limited by rapid growth of the patch of the sys-
tem they must simulate: on timescales short compared with

the scattering time, which is itself not short, energy density
spreads nearly ballistically and one must simulate systems of
diameter ∝ vt. Although FDAOE and DMT both allow sim-
ulation at bond dimensions ∼ 64− 128, this spread still gives
cost per timestep ∼ vt and total simulation cost ∼ t2. FDAOE
is additionally limited by SVD error.

Both methods give finite-time energy density diffusion co-
efficients consistent with D ∼ U−4 but not the simple Fermi
golden rule D ∼ U−2 expected from ordinary integrability
breaking. This U4 scaling confirms that weak integrability
breaking governs the system’s dynamics not only at times
short compared to interaction and hopping, where 38 worked,
but on long times as well.

The paper is organized as follows. In Sec. II we discuss the
model used for benchmarking, give a brief overview of weak
integrability breaking, and discuss the quantities of interest.
In Sec. III we review DAOE, and present our new method
FDAOE and describe simulations and simulation costs. In
Sec. IV we present the results and discuss the performance
of FDAOE compared to DAOE, and in Sec. V we conclude.

II. MODEL AND QUANTITIES OF INTEREST

A. Model

We study the infinite-temperature energy transport of an in-
teracting Majorana chain

H =
∑
n

iηnηn+1 − U
∑
n

ηn−1ηnηn+1ηn+2 . (1)

We work in the units where the quadratic “hopping” term
has been set to one. We chose this model by starting with
the simplest example of a 1D free-fermion model with en-
ergy conservation but without particle number conservation
and adding the most natural fermion parity-conserving inter-
action. (The low-energy properties of this Hamiltonian were
previously studied in Ref. 39.)

This Hamiltonian is equivalent to the spin-1/2 Hamiltonian

H =
∑
n

σx
nσ

x
n+1 + σz

n + U
(
σx
nσ

x
n+2 + σz

nσ
z
n+1

)
. (2)

by Jordan-Wigner transformation. We work with the spin-
language Hamiltonian (2).

We choose a model (1) with only a single conserved quan-
tity, the energy density, so we can study transport in the sim-
plest possible setting. We analyze our simulations through the
lens of a single-component diffusion equation.22,24,31,35,40,41

We do not expect our simulation methods to break down
in systems with multiple conserved quantities. But when a
system has multiple conserved quantities, non-linear interac-
tions between the conserved quantities can contribute signifi-
cantly to transport properties, so going beyond the linear dif-
fusion equation is necessary to analyze such systems42. Non-
linear effects can also appear in systems with a single con-
served quantity,42–44 but previous numerical simulations in
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spin chains with only energy conservation have not detected
significant non-linear contributions to energy transport.35 In
this work we also do not detect significant non-linear contri-
butions.

We have chosen an interaction that is not integrable using
the Bethe ansatz. Bethe ansatz integrable systems have an in-
finite hierarchy of additional conserved quantities beyond en-
ergy density. The methods we use throughout this paper are
designed to truncate irrelevant information while preserving
the behavior of densities of conserved quantities, which are
short-range or few-fermion operators like the energy density.
So we would not expect them to be appropriate for Bethe-
ansatz integrable systems which have conserved quantities
with arbitrarily large operator size: see Ref. 31 App. B and
Ref. 45 for more discussion of this point.

While the Hamiltonian we study in this paper has no addi-
tional conserved quantities for non-zero U , we wish to study
transport in a regime of small U , in the neighborhood of the
free-fermion point. At this free point, the model has many ad-
ditional conserved quantities that are quadratic in the fermion
operators. Such quantities are almost conserved when U is
small but non-zero, and thus may contribute significantly to
long-time dynamics. Prior studies using tensor network algo-
rithms have not attempted to predict transport properties in the
nearly free-fermion regime of 1D chains, and it is not clear
whether such methods would succeed for this purpose. On
the other hand, FDAOE is designed specifically to preserve
information about the low-fermion weight quantities that are
almost conserved in the small U regime.

B. Weak integrability breaking

In the regime of weak interactions, transport can sometimes
be studied using simpler means, with the transport coefficients
computed perturbatively in linear response using the Kubo
formula, avoiding the need for simulations of operator dynam-
ics.

However, we expect that the model studied in this paper
evades a

simple perturbative analysis, as it exhibits weak integra-
bility breaking.46 The core prediction of weak integrability
breaking for this model is that scattering times do not scale
as predicted by Fermi’s golden rule, with the square of the
perturbation strength U , but with a different power-law scal-
ing. This is due to a hidden non-local map that approximately
transforms the Hamiltonian into a free fermion Hamiltonian,
which we describe below. This implies that the in the pertur-
bative calculation current-current correlators need to be com-
puted to a higher order than expected to obtain a finite result
(in this case fourth order rather than second order in U ). The
simulation methods in this paper are able to recover the un-
usual scaling with U without any explicit knowledge of the
weak integrability breaking.

Weak integrability breaking starts from the elementary ob-
servation that if n(0)

α is a conserved quantity of some Hamil-
tonian H0,

then

n′
α = eiλXn(0)

α e−iλX , (3)

where X is an Hermitian operator, is a conserved quantity of

H ′ = eiλXH0e
−iλX . (4)

But for small λ, this H ′ is not so far from

H = H0 + iλ[X,H0] = H ′ +O(λ2) . (5)

When the initial Hamiltonian H0 is chosen to be an integrable
Hamiltonian with conserved quantities {n(0)

α }, the perturbed
quantities

nα = n(0)
α + iλ[X,n(0)

α ] = n′
α +O(λ2) (6)

are nearly conserved. That is,

[H,nα] ∝ λ2 , (7)

in contrast to a generic perturbation which leads to matrix ele-
ments [H0+V, n

(0)
α ] ∝ λ . Indeed by keeping higher commu-

tators in (5), (6), one can engineer nearly conserved quantities
with arbitrarily slow decays [H,nα] ∝ λ2k.

The challenge is to find generators X which produce a lo-
cal perturbation V of interest via V = i[X,H0], which is
only possible for select perturbations V . Ref. 46 systemati-
cally constructs a family of non-local generators X that pro-
duce local perturbations when the unperturbed Hamiltonian
H0 is free-fermion or Bethe ansatz integrable. Specifically,
the examples of generators X that they construct are bi-local
combinations of conserved densities n(0)

α of H0 and their cor-
responding current operators.

For our purposes, we only need to consider one such gener-
ator X for a free Majorana chain that produces the interaction
term of Eq. (1). The appropriate generator is constructed from
a non-local combination of the energy density and energy cur-
rent density operators of the unperturbed Hamiltonian:

X =
∑
m<n

{ε(0)m , j(0)n }+ 1

2

∑
n

{ε(0)n , j(0)n }

ε(0)n = σx
nσ

x
n+1 +

1

2
(σz

n + σz
n+1)

j(0)n = σx
nσ

y
n+1 − σy

nσ
x
n+1 .

(8)

One can check (with some purely mechanical effort) that the
interacting Hamiltonian in Eq. (1) satisfies

H = H0 + iλ[X,H0] (9)

with

H0 =
∑
j

iηjηj+1 (10a)

(10b)

and λ = U/4.
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C. Quantities of interest

If a system thermalizes, it approaches local thermal equi-
librium: after a short time, it can be described by a density
matrix

ρ(t) ∝ exp

[
−
∑
x

βx(t)εx

]
, (11)

where βx(t) is a smoothly varying space- and time-dependent
inverse temperature and εx is the energy density. (We consider
systems with only one conserved quantity, the energy density;
a discussion of systems with more than one conserved quan-
tity would proceed analogously.) This state is specified en-
tirely by the energy expectation values trρ(t)εx. For times
longer than the initial thermalization time the energy density
correlation function

C(x, t) = ⟨εx(t)ε0(t)⟩ (12)

therefore captures the whole dynamics in this long-time
regime, and the extent to which it deviates from a gradient-
expansion prediction from (11) diagnoses the local thermal-
ization process.

On timescales long compared with the local thermalization
time, the system’s dynamics are given by the continuity equa-
tion and a gradient expansion of the state (11); the result is

∂tε = ∂xj

∂tj = D∂xε+ . . . .
(13)

To the extent that the system is described by the leading-order
term in the gradient expansion (13), the energy density corre-
lation function is the Gaussian C(x, t) ∝ exp

[
−x2/4Dt

]
.

But real systems are only described by (13) on timescales
long compared to the microscopic thermalization timescale.
To characterize the correlation function C(x, t) at short or in-
termediate timescales, we can measure the degree to which it
spreads away from the initial point x = 0 to introduce a time-
dependent diffusion coefficient. The degree of spread is the
mean squared displacement

V (t) =
1

ν

∑
x

x2C(x, t)−
(∑

x

xC(x, t)

)2
 (14)

where ν is a (time-independent) normalization

ν =
∑
x

C(x, t) =
∑
x

C(x, 0) =
〈
ε2L/2

〉
. (15)

The time-dependent diffusion coefficient is

D(t) =
1

2

d

dt
V (t). (16)

If the system is diffusive, then in the long-time limit its dy-
namics approach the diffusion equation (13) with

D = lim
t→∞

D(t) . (17)

We estimate D(t) by a numerical derivative of the mean
squared displacement V (t).

III. METHOD: FERMION DISSIPATION-ASSISTED
OPERATOR EVOLUTION

A. Intuition and superoperator

Dissipation-assisted operator evolution31 intersperses uni-
tary time evolution with a dissipation superoperator that re-
duces the amplitude on high-weight Pauli strings. That dissi-
pation superoperator is

Dl∗,γ [S] =
{ S if lS ≤ l∗

e−γ(lS−l∗)S lS > l∗

}
, (18)

where S is a Pauli string and lS is the Pauli weight of S, or
the number of nontrivial Pauli operators in S. In the l∗ = 0
limit, this reduces to a depolarizing channel, hence the name
“dissipation superoperator”; from the point of view of DMT30

or operator size truncated dynamics,24,35 it is a soft truncation
on long operators. When the dynamics of long operators is
chaotic, the details of the dynamics of long operators does
not affect local dynamical correlation functions23,24, and for
l∗ ≫ 1 the superoperator (18) modifies the local dynamics
only by modifying the rate at which amplitude escapes from
short operators to long operators. Heuristically, the DAOE
superoperator projects out operators with weight lS ≳ l∗ +
γ−1.

But for many models of interest the dynamics of long oper-
ators is not chaotic, and the DAOE dissipation superoperator
(18) dramatically changes operators of interest. In a system of
weakly interacting fermions like (1), a momentum mode such
as

n
(0)
k =

1

L

∑
m<n

ηmηn sin(n−m)k (19)

is a conserved quantity of the non-interacting part, and the
system’s evolution is governed by the dynamics of these mo-
mentum modes, together with scattering between them. Af-
ter Jordan-Wigner transformation the term ηmηn picks up a
Jordan-Wigner string between m and n, so it has Pauli weight
lηmηn

= m − n + 1. The DAOE superoperator projects out
operators with Pauli weight lS ≳ l∗ + γ−1, so it truncates the
momentum occupation number to range l∗ + γ−1. Because
it changes the conserved quantities of the free model, one ex-
pects it to drastically change the transport properties of the
interacting model.

In fermonic dissipation assisted operator evolution
(FDAOE) we replace the Pauli weight lS in the DAOE dissi-
pation superoperator (18) by a fermion weight superoperator.
To write the fermion weight superoperator, first represent each
Pauli matrix by two Majorana fermion operators

σx
n = η2n+1

 ∏
m≥n+1

iη2mη2m+1


σy
n = η2n

 ∏
m≥n+1

iη2mη2m+1


σz
n = −iη2nη2n+1 .

(20)
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These Majorana operators form a Hermitian, orthogonal ba-
sis for the space of operators, so we can define our Majorana
dissipation superoperator by its action on them: if ηJ is a
product of Majorana operators on the sites J

ηJ =
∏
j∈J

ηj , (21)

then

Mw∗,γ [ηJ ] =

{
ηJ wηJ

≤ w∗

e−γ(wηJ
−w∗)ηJ wηJ

> w∗
(22)

with

wηJ
= |J | . (23)

All of the terms in the momentum mode n
(0)
k of (19) have

Majorana weight 2, so for w∗ ≥ 2 and any γ

Mw∗,γ(n
(0)
k ) = n

(0)
k . (24)

Unlike DAOE, then, FDAOE preserves the conserved quanti-
ties of the non-interacting Hamiltonian.

The FDAOE superoperator (22) has an MPO representa-
tion with bond dimension w∗ + 2 when represented by its
action on the Pauli basis related to the Majorana operators
by the Jordan-Wigner transformation, Eq. (20). We give the
MPO explicitly in Appendix A, but outline the construction
here. As in the case of the DAOE superoperator described
in Ref. 31, the MPO representation utilizes a constant rank-4
tensor which we denote as Wnn′

ab , with the upper indices n, n′

taking values in the local Pauli operator basis {I,X, Y, Z}.
As the FDAOE superoperator is diagonal in the basis of op-
erators that consist of products of Majorana operators, it is
also diagonal in the basis of Pauli strings; thus, the only
non-zero matrix elements occur in the form W II

ab , WXX
ab ,

WY Y
ab , or WZZ

ab . The virtual indices a, b take values in the
set {0, 1, . . . w∗ − 1} ∪ {(w∗,+), (w∗,−)}, which track the
total fermionic operator weight as measured from the left end
of the chain to the bond in question until it reaches w∗, and the
fermion parity afterwards. Within each Pauli string, the addi-
tional fermionic weight represented by the presence of an X
or Y is always 1 and always flips the fermion parity, which is
tracked by the virtual index. Consequently, WXX

ab and WY Y
ab

are zero unless a < w∗ and b = a + 1 or a = (w∗,±) and
b = (w∗,∓). The weight associated with I and Z however
are context dependent; alone, they correspond to weights 0
and 2 respectively but within a Jordan-Wigner string they cor-
respond to weights 2 and 0, swapping roles. The presence of
a Jordan-Wigner string is locally accessible as the parity of
the MPO virtual index a. In addition to tracking the fermion
weight, the MPO tensor applies a decay factor of e−γ for each
unit of additional fermion weight beyond w∗. Finally, the ten-
sors are contracted on the left and right ends with the vectors
vL = (1, 0, . . . , 0) and vR = (1, 1, . . . , 1); this ensures the
virtual index starts tracking the fermion weight from weight 0
on the left end of the chain and allows all values of fermion
weight on the right end. Explicit expressions for the MPO
tensors that meet these conditions are given in Appendix A.

B. Computing dynamical correlation functions

We seek to measure dynamical correlation functions

⟨εx(t)ε0(0)⟩ = tr
(
εxe

−iLt[ε0]
)
, (25)

where L is the Liouvillian generated by L[·] = −i[H, ·] and
where εx is the energy density, chosen as a parity symmetric
operator that produces H when summed over sites. Explicitly,
we represent εx as

εx =
1

3

(
σz
x + σz

x+1 + σz
x+2

)
+
1

2

(
σx
xσ

x
x+1 + σx

x+1σ
x
x+2

)
+
U

2

(
σz
xσ

z
x+1 + σz

x+1σ
z
x+2

)
+U

(
σx
xσ

x
x+2

)
.

(26)

To measure ⟨εx(t)ε0(0)⟩, we time-evolve the initial operator
ε0 by the Trotterization of that Liouvillian, interspersed with
applications of the FDAOE MPO.

In the limit of large bond dimension, the dominant cost is
truncation after MPO application. Since the FDAOE MPO has
bond dimension w∗ + 2, an exact truncation has cost

∼
[
d2χ · (w∗ + 2)

]3
(27)

per bond, where d = 2 is the physical on-site Hilbert space
dimension. This cost comes about because the exact trunca-
tion requires two sweeps, the first to put Mw∗,γ ◦ e−iLt[ε0] in
canonical form and the second to do the truncation. Switching
to a so-called “zip-up” truncation, in which one truncates at
each site immediately after applying the MPO tensor, reduces
the cost to

∼ (w∗ + 2)
[
d2χ

]3
(28)

per bond at the cost of some imprecision.47,48

The cost of the whole calculation can further be reduced by
noting that e−iLt[ε0] acts as the identity outside a lightcone
of diameter ∼ 2vt for some speed v. Both the unitary dy-
namics and the FDAOE MPO Mw∗ act trivially outside that
lightcone. So the cost of an MPO application at simulation
time t generically grows with t: it is

∼ (w∗ + 2)d6
∑
x

χ(x, t)3 ∼ d6(w∗ + 2)χ(t)3 · 2vt , (29)

where we write χ(x, t) for the bond dimension at site x and
some site t, and χ(t) for a typical magnitude at time t. The
memory requirements are

∼ (2vt) · d6χ(t)2 . (30)

C. Simulation parameters

We use a fourth-order Trotter decomposition; specifically,
we use the three term formula recommended by Ref. 49, that
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FIG. 2. Diffusion coefficient D(t) as a function of time for the
nearly free Majorana model of Sec. II at interaction U = 0.3. D(t) is
estimated via Eq. 16 using FDAOE at w∗ = 5 and a range of artificial
dissipations γ (colored lines), and DMT at bond dimension 256 and
Trotter step 0.125 (black line). (See App. D for DMT convergence
data.) The noise in the FDAOE D(t) is due to an SVD cutoff ϵ =
10−8 (see App. C). For plots of other U , see Fig. 7.)

consists of 21 layers of three site gates for each time step. The
size of the time steps is of size dt = 0.1 throughout the paper.
The FDAOE MPO is applied after each time step.

After each Trotter gate and during zip-up MPO application
we discard the smallest singular values sα such that50

∑
α discarded

s2α < ϵ

∑
β

s2β

 , (31)

where ϵ is the SVD truncation error.
In App. C we discuss convergence in the cutoff ϵ and the

magnitude of the noise in the numerical derivative D(t) (cf
Fig. 2). We empirically find that truncating singular values
causes noise in D(t) of magnitude

∆tpred ∼ √
ϵ V (t) , (32)

and give a heuristic argument for why the noise should have
that form. We also empirically find that the magnitude of the
noise gives a reasonable estimate of the convergence error in
ϵ.

The DMT simulations are run at Trotter step dt = 0.125
and a fixed bond dimension cap χ = 256; we discuss con-
vergence in bond dimension (and other details of the DMT
simulations) in App. D.

IV. RESULTS

Fig. 2 shows D(t) in the nearly free Majorana model of
Sec. II at interaction U = 0.3, estimated by taking the numer-
ical derivative of FDAOE simulations of ⟨εx(t)ε0(0)⟩. The
simulations are limited to times t ≲ 200 by the computa-
tional cost, which grows with time as the lightcone of εx(t)
grows. Each D(t) shows high-frequency noise; this is noise

FIG. 3. Diffusion coefficients extracted from D(t) via fit to expo-
nential form (33) in FDAOE (blue lines, labeled “F” in legend) and
DAOE (yellow-red lines, labeled “D” in legend). DAOE does not
give consistent results across l∗, even when extrapolated to γ = 0,
indicating that it cannot capture the crossover from free-fermion to
diffusive dynamics. FDAOE gives consistent results across w∗; the
diffusion coefficients extrapolated to γ = 0 are Dw∗=4 = 95,
Dw∗=5 = 89, against a DMT value DDMT = 102. Error bars in-
dicate uncertainty resulting from choice of fit window; they do not
include uncertainty due to Trotter or truncation error.

is controlled by the SVD truncation cutoff, here ϵ = 10−8 (cf
App. C.)

After an initial transient behavior, D(t) is described by ex-
ponential decay to a long-time limit

D(t) = D −Ae−t/τ . (33)

Fig. 2 inset shows |D(t) −D| in FDAOE simulations, where
D is extracted by fitting FDAOE D(t) to the form (33). The
result appears exponential over the range of our simulations,
although that range is small (covering only a factor of about
3 in decay of |D(t) − D| for U = 0.3). Fig. 4 shows the
current-current correlator

1

L
⟨J(t)J(0)⟩ ∝ d

dt
D(t) (34)

in DMT simulations for U = 0.3, 0.4, 0.5. (See App. D for de-
tails of the DMT simulations, including convergence testing,
Trotterization, and the definition of the current operator. Note
that that current operator corresponds to a different definition
of energy density, for reasons of convenience in analytical cal-
culations; this explains the difference in transient early-time
behavior.) For each U the current-current correlator displays
an early-time transient decay followed by a long-time expo-
nential decay. For U = 0.5 this decay covers approximately
two orders of magnitude, but for U = 0.3 it covers less than
a decade. As in Ref. 35 we cannot rule out that the system
displays long-time tails, but we expect that if they exist their
coefficients are small.

To characterize how the system’s long but finite-time be-
havior depends on U we fit to the form (33) for U -dependent
time windows and consider the “asymptotic” diffusion coeffi-
cient D; if the long-time tails are small or non-existent, this
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FIG. 4. Current-current correlator in DMT simulations across in-
teraction strengths U (solid lines), together with a single-exponential
fit to the t > 25 data. In each case the correlator displays a long-time
exponential decay, supporting our choice of fit form (33) for the dif-
fusion coefficient. (We cannot rule out power-law behavior at longer
times, especially for U = 0.3, which displays less than a decade of
decay over the time simulated.

D will match the system’s true diffusion coefficient. We fit on
time windows 15/U = tmin ≤ t ≤ tmax = 30/U ; this form
is chosen by eye to avoid both the early-time non-exponential
behavior and late-time noise. The window choice is fairly ar-
bitrary. To characterize how the window choice affects the fit,
we take end times tmax = 30/U−10, 30/U, 30/U+10, fit for
each window, compute the standard deviation of the three re-
sulting diffusion coefficients, and plot the result as error bars.

Fig. 3 shows the resulting diffusion coefficients for U = 0.3
as a function of the artificial decay γ. We show both FDAOE
and DAOE at a variety of l∗, w∗. In each case we linearly
extrapolate the smallest two points (γ = 0.05, γ = 0.1) to γ =
0. We extrapolate each fit window separately; the point and
error bar in the FDAOE extrapolation, like the point and error
bar in each of the finite-γ points, show the mean and standard
deviation across the three fit windows. The DAOE diffusion
coefficients are not converged in l∗, in the sense that different
l∗ give different extrapolations to γ = 0; this indicates that
DAOE is not in the perturbative small-γ regime.

The FDAOE diffusion coefficients are converged in w∗ in
the sense that the error bars in the extrapolation to γ = 0 over-
lap: the difference between w∗ = 4 and w∗ = 5 is less than
the fit uncertainty. In judging convergence it is important to
note that in simulations of εx(t), FDAOE with these two w∗
in fact leave the same operator Hilbert space untouched. Be-
cause the Hamiltonian and the energy density are both fermion
parity even, εx(t) is also fermion parity even, and the lowest-
weight operators that suffer dissipation have weight w = 6,
regardless of whether w∗ = 4 or w∗ = 5. (w∗ = 6 simula-
tions were prohibitively time consuming.)

The FDAOE diffusion coefficients also broadly agree with
the DMT simulations (black dots in Fig. 3) and in Fig. 1.)
The error bars do not all overlap, meaning the difference be-
tween DMT, FDAOE at w∗ = 4, and FDAOE at w∗ = 5 is
not within fit uncertainty. But the fit is not the only source of
uncertainty; DMT also has some error due to bond dimension

FIG. 5. Bond dimension saturation plot with w∗ = 5 and U = 0.4
for various γ. We can see the bond dimension hits the peak and falls
down. Here we pick the truncation error to be 10−8.

convergence, FDAOE has some error due to SVD cutoff, and
both methods have uncertainty due to (different) Trotter de-
compositions. (See App. B for other interaction strengths and
some convergence data, and App. C and D for discussions of
convergence.) The fit to D(t) seems to be more more sensitive
to convergence error than D(t) itself.

Fig. 3 shows that the diffusion coefficient is approximately
linear in γ for γ ≲ 0.15. This, together with (broad)
agreement between the different w∗ and agreement between
FDAOE and DMT, suggest that we can treat the FDAOE su-
peroperator perturbatively, although a rigorous justification
for such a perturbative treatment is lacking.

The premise of FDAOE is that a weak projection on many-
fermion operators will reduce simulation complexity, while
changing transport properties in a controlled way, which can
safely be extrapolated to the limit of zero projection. Fig. 3 es-
tablishes that the change in transport properties is controlled,
but not that simulation complexity is decreased.

Simulation complexity is controlled by bond dimension;
Fig. 5 shows the maximum bond dimension as a function of
time for U = 0.4, w∗ = 5. The bond dimension displays a fast
initial rise followed by a slow decay, as occurs in other exam-
ples of dissipative operator evolution.31,51 The initial rise oc-
curs as the operator εx(t) spreads ballistically. The long-time
decay results from a split into conserved and non-conserved
operators; the non-conserved operators are destroyed by the
FDAOE projection.21 Concretely, FDAOE turns the Heisen-
berg dynamics into an effective Liouvillian LFDAOE. This
effective Liouvillian has slow eigenoperators given by the
Fourier transform of the energy density and the energy cur-
rent:

LFDAOE[ε̃k] = −iDk2ε̃k , (35)
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with

ε̃k = εk + ikDajk + . . .

εk =
∑
x

eikxεx

jk =
∑
x

eikxjx .

(36)

Here a is a constant related to the normalization of εk and
jk. At long times, then, εx(t) becomes a sum of these Fourier
modes; performing an inverse Fourier transform it becomes

ε0(t) =
∑
x

[
β(x, t)εx + η(x, t)jx + . . .

]
, (37)

with in fact η(x, t) ∝ D∂xβ(x, t). (This β(x, t) is not iden-
tical to the inverse temperature of (11), but it plays a similar
role.) At finite times this has small, decaying bond dimension;
in the long time limit limt→∞ ∂xβ(x, t) = 0, so the bond di-
mension will decay to that of the Hamiltonian.

We can rephrase the argument in the picture of 21. In
that picture the initial energy density ε0 develops weight
on other energy densities εx as it evolves, but it also emits
non-conserved, ballistically spreading operators. In the exact
unitary dynamics, these non-conserved operators would give
large bond dimension. But these operators not only spread
spatially but also develop large fermion weight, so FDAOE
destroys them, leaving the energy density and its current.

To measure performance in a hardware- and algorithm-
agnostic way, we use the time complexity of SVD truncation
after application of the superoperator MPO; we call this time
complexity the SVD cost. Truncation dominates the time com-
plexity of both DAOE and FDAOE, so the SVD cost crudely
estimates the number of floating point operations needed for
the simulation. Asymptotically, the time complexity of the
SVD52 at bond i is ∼ Dχ3

i , where D is the bond dimen-
sion of the superoperator MPO: D = l∗ + 1 for DAOE, and
D = w∗+2 for FDAOE. For each method we sum over bonds
at each time, and maximize over times:

SVD cost = max
t

∑
i

Dχi(t)
3 . (38)

Fig. 6 shows the SVD cost for DAOE and FDAOE for U = 0.3
and cutoff ϵ = 0.3. Fig. 6 top plots SVD cost against the
artificial dissipation rate γ; it shows that—at any fixed γ—
DAOE is one to two orders of magnitude cheaper.

But DAOE is not accurate: recall that DAOE gave inconsis-
tent diffusion coefficients between lengths l∗, and that none
of those diffusion coefficients agreed with DMT. FDAOE, by
contrast, can be improved (at some cost in SVD time) by de-
creasing the artificial dissipation rate γ. Fig. 6 bottom shows
the error in the diffusion coefficient, compared to extrapolated
FDAOE simulations, as a function of SVD cost. Where DAOE
plateaus at some large, l∗-dependent error, FDAOE error de-
creases as the SVD cost increases.

FIG. 6. (a) SVD cost with various γ for fixed U = 0.3 and truncation
error 10−8 (b) Relative error in the diffusion coefficient as a function
of SVD cost. We can see that given a fixed cost, the FDAOE method
has a faster convergence rate compared to DAOE.

V. DISCUSSION

We have presented a new method, fermionic dissipation
assisted operator evolution (FDAOE), for dynamics of in-
teracting fermions in 1+1 dimensions at high temperature.
FDAOE modifies a previous method, dissipation assisted op-
erator evolution (DAOE)31, to perform a soft truncation of
operators with large fermionic weight. We tested FDAOE,
DAOE, and another prior method, density matrix truncation
(DMT), on an interacting Majorana model displaying weak
integrability breaking. In weak integrability breaking, inter-
actions dress the conserved quantities of the free model, lead-
ing to slow scattering and large diffusion coefficients. We find
that FDAOE and DMT agree and give diffusion coefficients
consistent with the D ∼ U4 scaling (U is the interaction
strength), as expected from scattering of dressed fermions. We
further found that FDAOE decreases the bond dimension of
the MPO representation of the Heisenberg picture energy den-
sity, when combined with SVD truncation with a small error
cutoff, but we also found that that small error cutoff induces
noise in the time-dependent diffusion coefficient D(t).

That SVD cutoff indirectly controlles the uncertainties in
our diffusion coefficient estimates. These uncertainties were
controlled by uncertainty in the fit to the exponential form
D(t) = D − Ae−t/τ . This fit uncertainty was driven in turn
by truncation error, because we stopped the fit where trunca-
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tion error (estimated by noise in D(t)) became appreciable.
With less truncation error, we could measure D(t) deeper into
the exponential-decay regime, improving our estimates of the
asymptotic D = limt→∞ D(t). But most strategies for de-
creasing truncation error would impose substantial run-time
and memory costs. Reducing the SVD cutoff, e.g. from 10−8

to 10−9, would directly increase the bond dimension through-
out the simulation, and replacing the SVD cutoff with a bond
dimension cap would prevent the simulation from taking ad-
vantage of the decay of the bond dimension (Fig. 5).

But two strategies, measuring a current-current correlator
and using a variable SVD cutoff—may reduce truncation er-
ror without imposing an appreciable runtime or memory cost.
Estimating D(t) as we do, via the mean square displacement
V (t), is costly because it requires measuring ε(x, t) precisely
at large x. Indeed, the truncation error in D(t) is ∝ √

ϵ V (t).
Measuring a current-current correlator would avoid this prob-
lem, because the requisite spatial integral has no x2 (unlike
the integral giving V (t)). Alternatively, one could use a time-
varying SVD cutoff ϵ(t) = ϵ0/V (t)2. This would allow
coarse simulations at early times, e.g. around the bond di-
mension peak in Fig. 5, and fine simulations at later times.
Because the runtime cost contains large contributions from the
bond dimension peak, this might in fact decrease runtime cost
on net.

While DMT is difficult to analyze, FDAOE can be under-
stood as a perturbative modification to the system’s dynamics.
This is consistent with our observation that the FDAOE dif-
fusion coefficient is linear in the artificial dissipation γ. And
the intuition is clear: at small γ FDAOE acts weakly on few-
fermion operators, and in systems that eventually thermalize,
many-fermion operators are not important to transport. But
establishing this formally will be nontrivial; to do so will re-
quire modifying arguments like those of 23 to work away from
the strongly-interacting, chaotic limit.

In one-dimensional fermion chains, the Jordan-Wigner
transformation produces an equivalent local Hamiltonian that
takes the form of a spin chain; a fermionic description of the
transport is unnecessary in the generic case. For this reason,
we have focused on weakly-interacting systems, where trans-
port receives important contributions from the nearly con-
served quadratic fermion operators of all sizes. While the
Hamiltonian can be written as a local operator in the spin
language, these nearly conserved operators cannot. By con-
trast, in higher dimensional fermionic systems, the energy
density has no local spin representation. The dynamics of
such systems can be computed using MPS by picking a one-

dimensional ordering of the sites and using the Jordan-Wigner
representation to convert to a spin Hamiltonian, with some
terms involving non-local Jordan-Wigner strings. In this sce-
nario, the DAOE superoperator will cause the energy density
to decay rapidly, while the FDAOE superoperator will not.
Thus, we expect that FDAOE is the appropriate choice for
fermionic systems of all interaction strengths in higher dimen-
sions.

While we focused in this paper on infinite-temperature
transport, extending the methods to allow for finite-
temperature calculations is needed for many physical scenar-
ios of interest. In scenarios where the equilibrium state is
dominated by quadratic fermionic operators — particularly at
high temperatures with weak interactions — the FDAOE op-
erator will only weakly perturb the equilibrium. Thus, it may
still be possible in these cases to recover the correct dynamics
using FDAOE with the extrapolation to zero dissipation rate.
We leave this question to future studies.

Note added. – We would like to bring the reader’s attention
to a related independent work 53.
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Appendix A: Matrix product operator representation of
fermionic DAOE

In this appendix, we give more details on the construction
of the MPO representation of the fermionic DAOE superop-
erator Mw∗,γ . As explained in Sec. III A, this construction
relies on the Jordan-Wigner embedding of fermionic opera-
tors into the space of operators of qubits. This mapping maps
each Pauli string – a single product of Pauli operators or the
identity operator on each site – to a corresponding product
of Majorana operators with 0, 1, or 2 Majorana factors at each
site, up to a phase factor. Similarly, every product of Majorana
operators maps to a Pauli string. As the MPO representation
of the superoperator is by construction a linear superoperator,
and because the Pauli string operators form a basis for the full
space of operators, it is sufficient to confirm that the MPO
representation has the correct action on each Pauli string.

The MPO is constructed with a constant rank-4 tensor
Wnn′

ab , where n, n′ ∈ {I,X, Y, Z}. To use a convenient no-
tation, we will allow the virtual indices to take values of
the form as ∈ {0+, 0−, 1+, 1−, . . . w∗

+, w
∗
−}, where the in-

teger part of the label a is used to track a fermion weight
and the subscript s is used to track a fermion parity. There
are 2(w∗ + 1) such labels — however, we will find that we
only use the labels 0+, 1−, 2+, 3−, . . . and w∗

+, w
∗
−, where for

a < w∗ the parity label s matches the parity of a as an integer.
This results in a set of w∗ + 2 total labels, and thus the bond
dimension of our MPO representation is w∗ + 2.

The non-zero matrix elements of our MPO tensor Wnn′

ab are
as follows:

W II
a+,b+ = WZZ

a−,b− = δa,b (A1)

WXX
a+,b− = WY Y

a+,b− = δa+1,b + e−γδa,w∗δb,w∗

WXX
a−,b+ = WY Y

a−,b+ = δa+1,b + e−γδa,w∗δb,w∗

W II
a−,b− = WZZ

a+,b+ = δa+2,b + e−2γδa,w∗δb,w∗

+ e−γδa,w∗−1δb,w∗

The left and right most tensor in the MPO representation are
to be contracted with vectors vLa = δa,0+ and vRb = 1 on the
left and right virtual bond, respectively.

To understand this implementation of the MPO, we first
note that the non-zero elements listed guarantee a consistent
tracking of fermion parity. In more exact terms, the only con-
tributions to Mw∗,γ [O] for a Pauli string O =

∏
i Oi occur

when the parity index of the bond between site j and j + 1
matches the fermion parity of

∏
i≤j Oi for all j. This is con-

venient, as matching the fermion parity allow us to determine
whether the basis operator O has an even or odd number of
Jordan-Wigner string factors from Eq. (20) that cross the bond
j → j + 1.

Similarly, we can see that at all bonds the fermion weight
of the virtual index must match either the fermion weight of∏

i≤j Oi or w∗, whichever is smaller. When there are an even
number of Jordan-Wigner string factors, the presence of an
I in a Pauli string corresponds to a Majorana product with 0
Majorana operators on that site; if instead there are an odd
number, the presence of Z does instead. This gives the first
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FIG. 7. Analogues of 2 and 3 for U = 0.4 and U = 0.5. The left
panel is U = 0.5 and the right one is U = 0.4. All data comes from
Trotter step dt = 0.1, and cutoff ϵ = 10−8.

line of Eq. (C1). The second line corresponds to fermion
weight 1 operators, which either increases the fermion weight
counter by 1 or keeps it constant if it has reached the maxi-
mum w∗. The e−γ factor dissipates Pauli strings for each ad-
ditional unit of fermion weight beyond w∗. Finally, in the last
line of Eq. (C1), we have Pauli string factors that correspond
to fermion weight 2 operators, which requires increasing the
fermion weight counter twice or increasing it to w∗ and dissi-
pating the operator by a factor of e−γ or e−2γ , depending on
whether the fermion weight goes 1 or 2 units beyond w∗.

Appendix B: D(t) and extrapolation for other interaction
strengths

Fig. 7 shows analogues of Fig’s 2 and 3 for U = 0.4 and
U = 0.5. Fig. 7 top shows D(t), together with fits and (in the
inset) a logarithmic difference from the D = limt→∞ D(t)
resulting from the fit, across γ. Fig. 7 bottom shows D from
fit as a function of γ, together with the extrapolation from the
last two points. Table

U δt χmax D (mean) D (std)
0.3 0.0625 128 96.8 5.7
0.3 0.125 128 106.238 14.6
0.3 0.125 256 102.367 2.38278
0.4 0.0625 128 39.4765 2.01023
0.4 0.0625 256 38.2516 0.703325
0.4 0.125 128 36.3361 0.853394
0.4 0.125 256 37.9766 0.126748
0.5 0.0625 128 21.1115 1.213
0.5 0.0625 256 21.3559 0.333348
0.5 0.125 128 20.1833 0.896041
0.5 0.125 256 20.6832 0.359822

TABLE I. Diffusion coefficients from fit to DMT D(t). Mean and
standard deviation are across three different fit-window end times.

FIG. 8. We compared D(t) with two truncation errors 10−8 and
10−9 with U = 0.55, w∗ = 4, γ = 0.2. We also do the exponential
extrapolation and see that D only differs less than 5 percent.

U w∗ D (mean) D (std)
0.3 4.0 94.9121 4.37422
0.3 5.0 89.4662 2.67036
0.35 4.0 59.2131 3.09694
0.35 5.0 51.6491 1.63505
0.4 4.0 36.2878 1.60103
0.4 5.0 35.2506 4.91012
0.45 4.0 24.3317 1.3542
0.45 5.0 25.2716 1.03157
0.5 4.0 19.8595 2.73888
0.5 5.0 20.9656 0.495984
0.55 4.0 16.4897 0.502595
0.55 5.0 15.1526 0.807459
0.6 4.0 14.0067 0.270231
0.6 5.0 13.8689 0.562507

TABLE II. Diffusion coefficients from fit to FDAOE D(t). Mean and
standard deviation are across three different fit-window end times.

Appendix C: Convergence in SVD cutoff ϵ

In simulating dynamics with FDAOE we apply Trotter
gates and the FDAOE MPO; after each application we discard
small singular values

∑
α discarded

s2α < ϵ

∑
β

s2β

 . (C1)

Fig. 8 shows D(t) for ϵ = 10−8, 10−9 at U = 0.55, γ = 0.2.
The noise in each D(t) worsens with time, and it is smaller for
ϵ = 10−9 than for ϵ = 10−8. Fig. 9 top shows the RMS noise
as a function of time for U = 0.3, γ = 0.05, ϵ = 10−8; there
we see that it is in fact roughly proportional to the mean square
displacement V (t). (We describe how we calculate the noise
in App. C 2 below.) A heuristic a priori argument (App. C 1
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FIG. 9. Top: Noise magnitude at U = 0.3, γ = 0.05, ϵ = 10−8

compared to the prediction ∆Dpred(t) = α
√
ϵ V (t) (C2), with the

fit parameter α chosen by eye. Bottom: noise at a variety of U, γ,
and ϵ normalized by the prediction ∆Dpred with α = 1.

below) predicts a noise magnitude

∆Dpred(t) = α
√
ϵ V (t) , (C2)

where α is a fit parameter depending (in part) on the timestep
δt.

Fig. 9 shows the ratio of the measured noise magnitude
∆Dmeas to the prediction ∆Dpred of (C2) for a variety of
U, γ, and ϵ. For short times (t ≲ 25) the ratio is large. This
is in part because the prediction ∆Dmeas is initially small,
because the mean square displacement V (t) is small. Addi-
tionally the measured noise displays a small peak at t = 0,
already visible in Fig. 9 top, resulting from the details of our
noise measurement procedure. For t ≳ 25, the noise magni-
tude is reasonably well-predicted by (C2).

1. Heuristic a priori estimate of noise in D(t) due to SVD
truncation

Heuristically, the truncation applies a random perturbation
of magnitude

√
ϵ to the operator truncated. When the operator

truncated is the Heisenberg operator εL/2(t), truncation maps

εL/2(t) 7→ (1 +
√
ϵW )[εL/2(t)] , (C3)

where V is some (not necessarily unitary) superoperator; this
changes the correlation function to

Cεε(x, t) = tr
(
εx(1 +

√
ϵW )[εL/2(t)]

)
= Cεε(x, t) +

√
ϵ tr
(
εxW [εL/2(t)]

)
.

(C4)

The superoperator W acts locally. To understand this, recall
that εL/2(t) is a low-bond dimension MPO, so it has a cor-
relation length set by the leading nontrivial eigenvalue of the
transfer matrix. Perturbations like truncation heal within that
correlation length, so the superoperator W acts with a range
given by that correlation length.

Since W acts locally, estimate

tr[εxWεL/2(t)] = ξ(x, t)tr[εxεL/2(t)]

≡ ξ(x, t)Cεε(x, t)
(C5)

where ξ(x, t) is a random variable with

⟨ξ(x, t)ξ(x′, t′)⟩ = α2δxx′δ(t− t′) , (C6)

α some constant. Truncation then takes

Cεε 7→ [1 +
√
ϵ ξ(x, t)]Cεε(x, t) . (C7)

and the mean squared displacement

V (t) 7→ V ′(t) =
∑
x

x2[1 +
√
ϵ ξ(x, t)]Cεε(x, t)

= V (t) + ∆Vtrunc(t) ,

(C8)

with

∆Vtrunc(t) =
√
ϵ
∑
x

x2Cεε(x, t)ξ(x, t) . (C9)

This truncation appears as noise in the time-dependent diffu-
sion coefficient: the numerical derivative leading to the diffu-
sion coefficient is

D(t) =
1

2
δt−1[V ′(t+ δt)− V (δt)] (C10)

= Dphys +
1

2
δt−1∆Vtrunc(t) (C11)

where Dphys is the “physical” contribution to the numerical
derivative, coming from the pre-truncation timestep, and the
second term ∝ ∆Vtrunc(t) is the noise coming from the trun-
cation. We can then estimate the magnitude of the noise by
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treating ξ(x, t), hence ∆Vtrunc, as random variables and esti-
mating the variance:

〈
∆Vtrunc(t)

2
〉
= ϵ

〈[∑
x

x2Cεε(x, t)ξ(x, t)

]2〉
= ϵ

∑
x

x4Cεε(x, t)

= αϵV (t)2

(C12)

using ⟨ξ(x, t)ξ(x′, t′)⟩ = αδxx′δ(t − t′) and sweeping some
dimensionless factors into α. The standard deviation of the
noise in D(t) is therefore

α
√

δt−1ϵ/2 V (t) . (C13)

This expression includes a dependence on Trotter step δt com-
ing from the numerical derivative. But the numerical deriva-
tive is not the only source of δt dependence. Consider, for
example, the limit of small δt. In that limit a Trotter step in-
troduces only small Schmidt values, which are all discarded
by truncation: that is, the truncation can undo the effect of
time evolution. We do not claim to consider all sources of δt-
dependence, so we sweep it into the constant α. The predicted
standard deviation of the noise is then

∆Dpred = α
√

ϵ/2 V (t) . (C14)

Fig. 9 shows the noise compared to the prediction; we see
reasonable agreement.

2. Estimating the noise magnitude

We seek to estimate the noise magnitude without reference
to a global fit like the exponential fit of (IV), In brief, we
estimate noise by binning in time, averaging D(t) in each
bin, constructing a linear interpolant between averages, mand
measuring the RMS deviation from the interpolant. In more
detail, we

1. compute variances Vj at timesteps (j− 1)δt, j = 1 . . . .
(Throughout this section δt = 0.1.)

2. compute time-dependent diffusion coefficients

Dj = δt−1[Vj+1 − Vj ] ; (C15)

assign them to times

tj = (j − 1/2)δt . (C16)

3. Bin and average D(t) over bins of width n = 30, cor-
responding to a time window 3: that is, compute

D̄k =
1

n

nk∑
j=n(k−1)+1

Dj

= (nδt)−1[Vnk+1 − Vn(k−1)+1] .

(C17)

Assign D̄k to a time

t̄k = (nk − 1− n/2)δt . (C18)

4. Form a linear interpolant T (t) between the points
(t̄k, D̄k). (For t < t̄1 we linearly extrapolate.)

5. Form errors

Ej = Dj − T (tj) (C19)

with Dj , tj from step 2.

6. Take the RMS of Ej over windows of 30 points, corre-
sponding to time windows of size 3, for ∆Dmeas

Appendix D: DMT simulations

1. DMT

In TEBD54–56 one truncates an MPO with a single SVD,
resulting in a local approximation that is optimal with respect
to the Frobenius norm. But the Frobenius norm is blind to
the fact that some operators—especially local operators like
energy density—are more important than others.

Density matrix truncation30 replaces the SVD truncation
with a truncation that exactly preserves operators with sup-
port up to some preservation diameter lpres, and truncates
longer operators via SVD; it has been successfully applied to
thermalizing and integrable systems.

We implement DMT as modified in 35 for Heisenberg dy-
namics; for simplicity of implementation, we take a preserva-
tion diameter Lpres = 3. We use a second-order boustrophe-
don (sweeping, DMRG-like) Trotter decomposition, rather
than the usual brickwork Trotter decomposition; this seems
to give better convergence in Trotter step.

2. Current decay

a. Diffusion coefficients and the current-current correlator

In the main text we extract the diffusion coefficient from
the variance of the energy density correlator. That correlator
is

Cεε(x, t) = ⟨εx(t)εx(L/2)⟩ . (D1)

To extract a time-dependent diffusion coefficient we first com-
pute the mean squared displacement

V (t) =
1

ν

∑
x

x2Cεε(x, t)−
(∑

x

xC(x, t)

)2

(D2)

where ν is a normalization

ν =
∑
x

C(x, t) =
∑
x

C(x, 0) =
〈
ε2L/2

〉
. (D3)

The time-dependent diffusion coefficient is

D(t) =
1

2

d

dt
V (t) ; (D4)
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FIG. 10. Top row: current-current correlator ⟨J(t)J(0) of Eq. D7 computed with DMT for U = 0.3 (left), U = 0.4 (center), U = 0.5 (right).
After a fast initial oscillation, the correlator displays a slow decay well approximated by a two-exponential fit (blue line; Eq. D9). Bottom
row: convergence in bond dimension. All curves are at Trotter step dt = 0.125

we estimate this via a numerical derivative. We then estimate
the physical diffusion coefficient

D = lim
t→∞

D(t) (D5)

by fitting D(t) to the functional form

D(t) = D −Be−t/τ , t > t0 (D6)

after some initial time t0.
It is useful to check the functional form (D6) by comput-

ing directly computing the derivative d
dtD(t). We can write

d
dtD(t) as a correlator by repeatedly applying the conserva-
tion law ∂tεx = jx−1 − jx, summation by parts, time transla-
tion invariance, and spatial translation invariance to the corre-
lator C(x, t); the result is

d

dt
D(t) =

1

ν
⟨J(t)J(0)⟩ (D7)

where

J(t) =
∑
x

jx(t) , (D8)

jx(t) the local energy current operator, and ν is the same nor-
malization (D3).

b. Results and convergence

Fig. 10 shows the current-current correlator ⟨J(t)J(0)⟩ as
a function of time for U = 0.3, 0.4, 0.5. In each case the
correlator shows fast early oscillations, followed by a slow
decay. The fast oscillations result from the definition of the
current (see App. D 2 c). The slow decay is well-approximated
by a phenomenological functional form

⟨J(t)J(0)⟩ = Ae−t/τ1 +Be−t/τ2 . (D9)

We fit to the t ≥ 5 data to avoid the initial oscillations, and
give the resulting time constants τ in Table III.

Fig. 10 bottom row shows convergence of the DMT current-
current correlator in bond dimension for U = 0.3, 0.4, 0.5.
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FIG. 12. Trotter step convergence of the current-current correlator in
DMT simulations. Each curve is at bond dimension χ = 256.

U τ1 τ2
0.3 15.3 133
0.4 6.22 44.7
0.5 4.38 21.45

TABLE III. Time constants for the phenomenological two-
exponential fit (Eq. D9) to the current-current correlation function
(D7) plotted in Fig. 10

We plot

⟨J(t)J(0)⟩ [χ]
⟨J(t)J(0)⟩ [χ = 256]

. (D10)

In each case we find that CJJ
χ=256(t) is within 10% of CJJ

χ=512.
This 10% difference understates convergence error, because

CJJ
χ (t) trends upward as the bond dimension χ increases.

(The trend is unambiguous for U = 0.3, 0.5; for U = 0.4
it is less clear, but arguably still present.) It appears that DMT
systematically underestimates CJJ

χ (t). We believe this un-
derestimate results from our choice of preservation diameter
We use DMT with preservation diameter 3, meaning it exactly
preserves only those operators with support on up to 3 sites,
but the energy current is a 4-site operator. We believe that
simulations with preservation diameter ≥ 4 would converge
more quickly.

Fig. 12 shows convergence of the DMT current-current cor-
relator in Trotter step dt. We plot

⟨J(t)J(0)⟩ [dt = 0.125]

⟨J(t)J(0)⟩ [dt = 0.0625]
(D11)

for U = 0.3, 0.4, 0.5; in each case Trotter step dt = 0.125 is
within 10% of Trotter step dt = 0.0625.

c. Definitions of energy density and energy current

In this appendix we have used definitions of energy den-
sity and energy density current that are natural in fermion lan-
guage, rather than in spin language, because the requisite ana-
lytical calculations (especially of the current itself) were more
convenient in fermion language. In Majorana language the
energy density is

ε
(M)
ξ = iηξηξ+1 − Uηξ−1ηξηξ+1ηξ+2 . (D12)

ε
(M)
ξ is symmetric under reflection about the bond (ξ, ξ + 1).

The current of this energy density ε(M) can be written

j
(M)
ξ = −2i

[
Pξ − iU(Aξ−2 +Aξ−1 +Bξ−1 +Bξ)

+ U2(Dξ−1 − Cξ−3 − Cξ−2 − Cξ−1)
]

Pξ = ηξηξ+2

Aξ = ηξηξ+1ηξ+2ηξ+4

Bξ = ηξηξ+2ηξ+3ηξ+4

Cξ = ηξηξ+1ηξ+2ηξ+4ηξ+5ηξ+6

Dξ = ηξηξ+4

(D13)

where we label the Majorana sites ξ = 2, . . . , 2L.
In preparation for Jordan-Wigner transformation it is help-

ful to group sites: one grouped site x corresponds to two Ma-
jorana sites (2x, 2x+ 1). The energy density (D12) is then

εx = ε
(M)
2x + ε

(M)
2x+1

= iη2xη2x+1 − Uη2x−1η2xη2x+1η2x+2

+ iη2x+1η2x+2 − Uη2xη2x+1η2x+2η2x+3 ;

(D14)

the current of this energy density can be written

jx = j
(M)
2x . (D15)

Note that the total currents are not the same:

J :=
∑
x

jx =
∑
x

j
(M)
2x (D16a)

J (M) :=
∑
ξ

j
(M)
ξ =

∑
x

[j
(M)
2x + j

(M)
2x+1] (D16b)

̸= J .

The difference between J and J (M) explains the early-time
oscillations of the energy current in Fig. 10. Take U = 0, for
simplicity. In that case one can check

dtJ
(M) = 0 . (D17)

If we decompose

J (M) = J + J ′ , (D18)
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FIG. 13. Top row time-dependent diffusion coefficients D(t) extracted from DMT simulations of the mean square displacement V (t) for
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and bond dimension χ = 256 by less than 5%. DMT simulations use Trotter step dt = 0.125
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FIG. 14. MSD Trotter

J the total current of (D16a) consisting only of even terms and

J ′ =
∑
x

j
(M)
2x+1 (D19)

consisting of odd terms, then dtJ
(M) = 0 implies

dtJ = −dtJ
′ (D20)

leading to oscillations.
This is a lattice-scale phenomenon. If U ̸= 0, for any but

the shortest times ε
(M)
2x ≈ ε

(M)
2x+1 and j

(M)
2x ≈ j

(M)
2x+1, so the

decay of J broadly matches that of J (M).

3. Mean square displacement in DMT simulations

The DMT diffusion coefficients in the main text come from
the mean square displacement V (t), analyzed in the same
way asthe FDAOE data. Fig. 13 top shows the diffusion
coefficient extracted from the mean square displacement for
U = 0.3, 0.4, 0.5; Fig. 13 bottom shows convergence in bond
dimension, and Fig. 14 shows convergence in Trotter step.
Bond dimension convergence error is ≲ 3% for χ = 128
compared to χ = 256 (with better convergence for larger U ).
Trotter error is also ≲ 3% for times t ≲ 90, but growing.
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