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Experimental systems with power-law interactions have recently garnered interest as promising
platforms for quantum information processing. Such systems are capable of spreading entanglement
superballistically and achieving an asymptotic speed-up over locally interacting systems. Recently,
protocols developed by Eldredge et al. [Phys. Rev. Lett. 119, 170503 (2017)] and Tran et al. [Phys.
Rev. X 11, 031016 (2021)] for the task of transferring a quantum state between distant particles
quickly were shown to be optimal and saturate theoretical bounds. However, the implementation
of these protocols in physical systems with long-range interactions remains to be fully realized. In
this work, we provide an experimental roadmap towards realizing fast state-transfer protocols in
three classes of atomic and molecular systems with dipolar interactions: polar molecules composed
of alkali-metal dimers, neutral atoms in excited Rydberg states, and atoms with strong magnetic
moments (e.g. dysprosium). As a guide to near-term experimental implementation, we numerically
evaluate the tradeoffs between the two protocols for small system sizes and develop methods to
address potential crosstalk errors that may arise during the execution of the protocols.

Ultracold quantum systems have recently attracted at-
tention for their potential for quantum information pro-
cessing, and innovations in the individual control of ul-
tracold atoms [1–11] and molecules [12–19] have led to
the realization of high-fidelity quantum gates [20–28].
Many atomic and molecular systems also have access
to long-range interactions, which can generate entangle-
ment quickly between qubits at large distances. Com-
pared to finite-range couplings, long-range interactions
allow for increased connectivity between qubits, which
can lead to speed-ups for performing general computa-
tional tasks [29].

In particular, it was recently shown that systems with
power-law interactions—i.e. those that decay as 1/rα

in the distance between qubits—can achieve an asymp-
totic speed-up forquantum state transfer, a task wherein
a quantum state must be transferred quickly between
two distant qubits [30–32]. Performance on the state
transfer task provides a benchmark for a system’s abil-
ity to execute nonlocal quantum gates quickly, and also
serves as a computational primitive for more complicated
circuit operations, such as quantum routing [33]. Ad-
ditionally, many state-transfer protocols often generate
many-body entanglement as an intermediate step. The
generation of such many-body entangled states as the
Greenberger-Horne-Zeilinger (GHZ) and W states can
be an important computational resource in itself for ap-
plications such as sensing at the Heisenberg limit [34, 35]
and performing multi-qubit quantum gates [36].
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In addition to their usefulness in generating entangle-
ment quickly, state-transfer protocols have also attracted
significant theoretical interest due to their ability to sat-
urate fundamental Lieb-Robinson bounds on the rate at
which information can propagate in quantum systems
[29, 37–41]. In particular, the state-transfer protocols
in Refs. [30] and [31] have been shown to saturate the
best Lieb-Robinson bounds for power-law interactions
[41]. In addition to being asymptotically optimal, these
fast entangling protocols imply that power-law interac-
tions are qualitatively stronger than previously under-
stood; indeed, while state transfer in faster-than-linear
time has been shown before using interactions with rel-
atively small power-law exponents (e.g. α ≈ 1 in one-
dimensional [1D] systems [42]), realizing the same state
transfer times using interactions with more rapid power-
law decays (e.g. van der Waals interactions with α = 6
in 3D) would be the first demonstration of fast informa-
tion transfer using interactions previously thought to be
effectively short-range.

In this work, we present a roadmap for the experimen-
tal implementation of fast quantum state transfer pro-
tocols using long-range interactions. We first review the
power-law interacting protocols developed by Eldredge
et al. [30] and Tran et al. [31] in Section I, and analyze
both their asymptotic runtimes as well as their numerical
performance for finite system sizes. Then, in Section II,
we provide schemes for realizing these protocols in three
model power-law interacting systems: polar molecules,
Rydberg atoms, and atoms with large magnetic moments
(dysprosium in particular). Our approach utilizes only
global power-law interactions and single-qubit control.
In Section III, we analyze the contribution of certain
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Figure 1. Schematic for the Eldredge state-transfer protocol. (a) Interactions from H(t) fan out the state from the initial qubit
X (black) to the rest of the lattice. (b) Once the CNot gate has been completed on a “target” qubit, it becomes a “control”
qubit and part of the GHZ-like state (purple shaded region). The remaining, “target” qubits are shaded gray according to
the phase that has accumulated due to the interacting Hamiltonian and will be added to the GHZ state in future steps of the
protocol. Afterwards, the GHZ-state creation is reversed and the state is transferred to the final qubit, Y .

forms of crosstalk errors that may arise in the course of
the state transfer and propose a few methods to mitigate
those errors.

I. FAST STATE-TRANSFER PROTOCOLS FOR
POWER-LAW INTERACTIONS

In this section, we will review the two protocols for
performing fast quantum state transfer using power-law
interactions developed by Eldredge et al. [30] and Tran et
al. [31]. We will summarize the protocols briefly, present
the asymptotic scaling of their state transfer times, and
compare their relative advantages in finite-size systems.

The state transfer task is given as follows. Given a
system of N qubits, we wish to transfer an unknown
input state |ψ⟩ = a |0⟩ + b |1⟩ initially located on qubit
X to qubit Y . We assume that the intermediate qubits
(as well as qubit Y ) are initialized in state |0⟩. Then the
state transfer task is to realize the following unitary U :

U
(
|ψ⟩X |0⟩N−2 |0⟩Y

)
7→ |0⟩X |0⟩N−2 |ψ⟩Y . (1)

For the rest of this paper, we will assume that the system
is arranged in a d-dimensional grid of qubits of linear size
L ≡ d

√
N , although other lattice configurations are pos-

sible. The state transfer will take place over a distance
r = dist(X,Y ), which can be as large as rmax = L

√
d.

The Eldredge protocol achieves state transfer by first
encoding the qubit state into a many-body entan-
gled state that includes the initial and target qubits
(cf. Fig. 1). It does so by performing a sequence of cas-
caded controlled-Not (CNot) gates, which realize the
operation

CNot (a |0⟩+ b |1⟩) |0⟩ = a |00⟩+ b |11⟩ . (2)

The CNot gate from qubit i to qubit j can be imple-
mented by a Hamiltonian Hij = hij |1⟩⟨1|i ⊗ Xj act-
ing for time t = π/(2hij), up to a local unitary term.

In Ref. [30], a Hamiltonian H(t) =
∑

ij Hij(t) is ap-

plied that progressively turns on/off the interactions
between pairs of qubits at different times and enables
the encoding of the state |ψ⟩ into a GHZ-like state

|GHZ(a, b)⟩ = a |0⟩⊗N
+ b |1⟩⊗N

. The protocol starts
by acting on all qubits in the lattice using a single con-
trol qubit storing the initial state. At each time step,
once the CNot is fully complete on a target qubit, then
it is added to the list of controls. At each point in time,
multiple controls may act on a single target. This pro-
cess continues until all of the qubits have been added to
the GHZ state. The time required to create the full GHZ
state is the sum of these time steps. At the end of the
process, the protocol is reversed, interchanging the roles
of qubits X and Y , to implement the full state transfer.
By using a long-range interacting Hamiltonian, the

protocol developed by Eldredge et al. is able to achieve a
sublinear state transfer time. Assuming that hij = 1/rαij ,
where rij is the distance between qubits i and j, the time
required to complete the CNot on qubit j being acted
on by controls indexed by i is equal to

t =
π

2
∑

i hij
=

π

2
∑

i r
−α
ij

. (3)

The scaling of the state transfer time tST using the pro-
tocol derived in Ref. [30] is given by

tST =


O(1) α < d

O(log r) α = d

O
(
rmin(α−d,1)

)
α > d.

(4)

The intuition for the various scalings are as follows: for
α < d, the extreme non-locality of the interactions causes
the state transfer velocity to diverge in the thermody-
namic limit, which implies that the state can be trans-
ferred over arbitrary distances in constant time, so the
scaling of tST is independent of r.
For α ∈ [d, d + 1], take a block of qubits of lin-

ear size r and suppose we wish to double r. Then
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the qubit at the corner of the next block is acted on
by controlled rotations of total strength proportional to
{# of controls acting on the qubit}/rα ∝ rd−α. Thus,
for α ∈ (d, d+1), the state-transfer time is proportional
to rα−d, which is sublinear.

For α = d, the time it takes to double the linear block
size is constant, so it takes overall log r time to imple-
ment the state transfer protocol. Lastly, for α = d + 1,
the state-transfer time is linear in r, thus recovering the
nearest-neighbor-interaction limit.

For α > d + 1, the doubling approach thus leads to
worse scaling than nearest-neighbor interactions. In-
stead, the incremental approach which immediately con-
verts targets into controls must be used, and there is at
most a constant speedup from the power-law interac-
tions. This incremental approach realizes the same scal-
ing as the doubling approach for d ≤ α ≤ d + 1 and is
the optimal form of the Eldredge protocol for isotropic
power-law interactions. In conclusion, the Eldredge
protocol yields an asymptotic speed-up over nearest-
neighbor interactions for all α < d+ 1.
The protocol discovered by Tran et al. is able to

achieve an even faster speed-up for the state transfer
task (see Fig. 2). As with the Eldredge protocol, it uses
a GHZ state as an intermediate and performs the state
transfer recursively by encoding the qubit state |ψ⟩ into
progressively larger GHZ-like states until the state in-
cludes the whole sublattice of sites between site X and
site Y [31]. Then the protocol reverses the GHZ-state
encoding procedure to map the state of the original qubit
on site X onto the qubit at site Y . In the process, small
GHZ-like states are merged together into larger GHZ-like
states. The merge subroutine is performed using diago-
nal interactions of the form Hij = hij |1⟩⟨1|i ⊗ |1⟩⟨1|j ,
which serve to perform a controlled-PHASE gate be-
tween qubits i and j.

The scaling of the state transfer time tST of the Tran
protocol is given as follows:

tST =


O(logκα r) α ∈ (d, 2d)

O
(
eγ

√
d log r

)
α = 2d

O
(
rmin(α−2d,1)

)
α > 2d.

(5)

Due to the protocol’s recursive nature, it can transfer
a state in time that scales faster than any polynomial
in r for all α < 2d. For α = 2d, the state-transfer
time is superlogarithmic—but still subpolynomial—and
for α ∈ (2d, 2d + 1), the time is sublinear and pro-
portional to rα−2d. The intuition for the latter scal-
ing is as follows: consider two blocks of GHZ-like states
of linear size r situated a distance r apart. The time
required to merge the two blocks scales inversely with
the combined interaction strength, which is proportional
to {# of interacting pairs of qubits}/rα ∝ r2d−α. For
more details on the implementation of the protocol, see
Appendix A.

Thus, for all α < 2d+ 1, the Tran protocol allows for
even more significant speed-ups over nearest-neighbor
systems than the Eldredge protocol. This regime of α

Figure 2. Outline of the Tran protocol. We start with qubit
X in an unknown state |ψ⟩ = a |0⟩+b |1⟩, while the rest of the
qubits start in state (|0⟩+ |1⟩)/

√
2. In step 1, either nearest-

neighbor interactions or the Eldredge protocol are used to
create a GHZ state on neighboring qubits. Then, in step
2, controlled-phase interactions are used to merge together
neighboring GHZ states. The last three steps (steps 3-5)
serve to transform the state into the desired GHZ-like state
by moving the entanglement into a single qubit, performing a
single-qubit rotation, and then reentangling the qubits. This
final GHZ-like state is fed back into the protocol recursively,
after which the protocol is implemented in “reverse” in order
to implement the state transfer from qubit X onto qubit Y .

includes dipolar interactions in 2D and 3D and van der
Waals interactions in 3D. For dipolar interactions in 3D,
both the Eldredge and Tran protocols realize exponen-
tial speedups. However, since the Eldredge protocol still
retains a polynomial speedup over the Tran protocol for
α = d, in the rest of the paper, we shall focus on dipolar
interactions only in 2D.

A. Comparison of state-transfer protocols

While the state-transfer protocol developed by Tran
et al. in Ref. [31] is asymptotically faster than the one
presented by Eldredge et al. in Ref. [30] for all α > d,
it is less efficient to implement for small system sizes.
This is due to the recursive step needing to call a sub-
routine that creates smaller GHZ states a total of three
times. Instead of using the Tran protocol for small r,
it would be faster to use the Eldredge protocol for r up
to a fixed size, and then utilize the recursive step of the
former protocol to achieve larger GHZ states. In the
rest of this subsection, we numerically determine the op-
timal crossover point when a hybrid protocol consisting
of performing the Eldredge protocol followed by a single
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Figure 3. (a) Comparison of the scaling of the state-transfer times for the two protocols described in Section IA as a function
of the characteristic length r, using dipolar interactions in 2D (α = 3 and d = 2). The hybrid protocol consists of a single
layer of the recursive Tran protocol on top of the base Eldredge protocol, and the crossover point where it improves over the
pure Eldredge protocol occurs at a characteristic length of r∗ = 244. (b) The scaling of the optimal values of m = r/r1 for the
hybrid protocol as a function of r, as determined numerically using a dynamic programming algorithm. The curve begins at
the characteristic length r∗ = 244, when the first layer of the Tran protocol is applied. The stepwise transition for r ≈ 3700
indicates the transition from a single recursive step to two. The jaggedness in the curve arises due to the fact that the m
values scale inversely with r1, which can only take on discrete values by assumption.

step of the Tran protocol surpasses the pure Eldredge
protocol for dipole-dipole interactions on a 2D lattice.

To implement the Eldredge protocol described in Sec-
tion I, specifically the incremental approach which im-
mediately converts target qubits into control qubits, we
numerically calculate the state transfer times for system
sizes up to r ≤ 110, and then use a linear fit to extrap-
olate to larger values of r (since the asymptotic runtime
of the protocol was shown to obey the scaling t ∝ r for
α ≥ d + 1). We use these state transfer times as the
benchmark to compare the hybrid protocol.

To implement the hybrid protocol, we apply a recur-
sive approach known as bottom-up dynamic program-
ming : first, we choose a fixed value of r = r0 below
which we will use the Eldredge protocol to create a GHZ
state of that size. Then, for all larger r, we recursively
calculate the time t(r; r1) required to create a GHZ state
of size r by assembling it from smaller GHZ states of size
r1 < r. By minimizing t(r; r1) over all values of r1, we
obtain the optimal creation time t(r) for a GHZ state of
size r using a single step of the Tran protocol to get from
r1 to r. We note that this protocol could require mul-
tiple recursive steps, since creating a GHZ-state of size
r1 could itself potentially require recursive steps, thus
leading to the need to apply multiple layers of the Tran
protocol.

In Fig. 3(a), we show the transition point above which
a single step of the hybrid protocol can create a GHZ
state faster than the pure Eldredge protocol. For α = 3
on a 2D lattice, this critical point occurs at r∗ = 244,
which corresponds to a lattice size of N = r2∗ = 59, 538.
We note that this is an estimate of the true crossover
point, since we did not exactly calculate the exact state
transfer time for the pure Eldredge protocol beyond r =
110 due to the numerical cost of the algorithm (with

runtime scaling as O
(
r6
)
).

In Fig. 3(b), we show the scaling of the optimal choice
of the ratio of the sizes of the GHZ states in the recursive
step of the protocol, which we define to be equal to m ≡
r/r1 for a given choice of r. For one step of the hybrid
protocol, m ranges from 5 to 13. Asymptotically, the
analysis of the runtime of the protocol predicts that m
will scale as m ∝ r2d/α−1 = r1/3 [31].

In order to recover the optimal asymptotic scaling of
the state-transfer time for the hybrid protocol, it will
in general be necessary to use the recursive step of the
hybrid protocol multiple times. For a fixed r0, the num-
ber of times the recursive step is called will scale as
n = O(log log(r)), as one can show by applying the re-
lation r1 = r/m = r2/3 recursively n times to get the
equation (r2/3)n = r0 and solving for n.

In summary, using a hybrid of both the Tran and El-
dredge protocols to create an intermediate GHZ state
allows for faster state-transfer times than using either
of those protocols alone. Our estimate of the crossover
point suggests that the performance of the hybrid pro-
tocol surpasses that of the Eldredge protocol for sys-
tem sizes exceeding roughly 60,000 qubits. As such, the
speed-up for the hybrid protocol could be potentially be
realized in larger-scale quantum devices.

II. PROPOSAL FOR EXPERIMENTAL
REALIZATION OF STATE-TRANSFER

PROTOCOLS

Before explaining the details of how to implement the
state-transfer protocol for particular systems, we will
first discuss the features that apply to all of the following
systems.



5

In the state-transfer protocol, one generically has three
types of qubits: control qubits, target qubits, and un-
involved qubits. The uninvolved qubits can generally
be prepared by storing them in states (e.g., two hyper-
fine ground states for neutral atoms) that do not in-
teract with the other two types of qubit or each other,
which we discuss in further detail below. For the control
and target qubits, we must engineer a Hamiltonian with
long-range Ising interactions between control and target
qubits. However, the control qubits must not interact
with themselves, and similarly the target qubits must
not interact with themselves, neither of which occurs
generically, so these interactions must be engineered.

To do so, we adopt the spin-echo-like approach from
Ref. [30]. This approach relies on the ability to realize a
Hamiltonian of the form

Hint =
1

2

∑
i ̸=j

JijZiZj , (6)

as well as its negative H ′
int ≡ −aHint, where Zi denotes

the Pauli-Z matrix for the ith qubit and a > 0. By evolv-
ing under Hint for a time t, applying a Pauli-X gate to
either the control qubits or the target qubits, and evolv-
ing under −aHint for a time t/a, followed by another
Pauli-X gate on the same set of qubits, the evolution
from the control-control and target-target interactions
is undone while the control-target interactions remain,
as desired. In light of this, most of the following discus-
sion will be centered around how to realize both signs of
the Ising interaction. Often, the engineered interactions
include an inhomogeneous longitudinal field term. The
corresponding evolution due to this term can be easily
corrected via single-qubit gates.

The necessary local control can be achieved in tweezer
arrays of Rydberg atoms [1–4], polar molecules [12–15],
and very recently dysprosium [5] or by using quantum
gas microscopes for polar molecules [16–19] and dyspro-
sium [6–8]. As far as magnetic atoms go, we will focus
on dysprosium in this paper, but similar advances have
been made for quantum gas microscopes of erbium [9]
as well as for mixtures of dysprosium and erbium [10].
Additionally, when utilizing 1/r3 dipole-dipole interac-
tions to realize the desired Ising interactions, they will
be proportional to 1 − 3 cos2 θij , where θij is the polar
angle of ri− rj for particles i and j relative to the quan-
tization axis. Since the protocol relies on all interactions
having the same sign, for dipole-dipole interactions we
shall restrict our focus to 2D with θ = π/2. Moreover,
the Eldredge protocol can already be utilized with an ex-
ponential speedup in 3D. In the case of Rydberg atoms,
isotropic vdW interactions can emerge, so we also discuss
how to realize the desired positive and negative interac-
tions for this case in 3D.

Finally, we note that it is important to be able to turn
off the interactions for individual qubits as necessary.
There are two main ways that this can be done. First,
the qubit states can be transferred to non-interacting
states. For example, when considering Rydberg sys-
tems, the Rydberg states can be coherently transferred

to non-interacting ground states via an optical drive. In
some cases, there may not be any fully non-interacting
states which can be utilized during the protocol. In these
cases, one can utilize similar spin-echo techniques as dis-
cussed above in order to remove the unwanted interac-
tions. This can be achieved as follows. First, during the
positive interaction evolution, each target qubit requires
an interaction time ti. However, without non-interacting
shelving states, each control qubit will interact with the
target qubits for a time tmax ≡ maxi ti. To remove the
excess interactions felt by an individual target qubit, a π
pulse is applied to the corresponding target qubit after
time ti+(tmax− ti)/2, and the remaining evolution time
of (tmax−ti)/2 reverses the interactions, leading to an ef-
fective interaction time of ti. The same approach is used
for the negative interaction evolution, thus removing all
unwanted interactions.

A. Polar molecules

In the following subsections, we provide further de-
tails regarding the experimental implementation of the
state-transfer procedures described in Section I. First,
we will describe how to perform state transfer using
dipole-dipole interactions in a system of polar alkali-
metal dimers.

We will assume the molecules are arrayed in a 2D lat-
tice with a single molecule per lattice site and negligible
tunneling of molecules. The single molecule Hamiltonian
is

H0 = B0N
2 − d0E, (7)

where B0 is the rotational constant of the electronic and
vibrational ground state of the molecule, E is the electric
field strength, and dp = êp · d = d

√
4π/3Y 1

p (θ, ϕ) (p =
0,±1) is a component of the dipole operator d where

ê0 = ẑ, ê±1 = ∓(x̂± iŷ)/
√
2, d is the permanent dipole

moment of the molecule, and Y 1
p are spherical harmonics.

We will encode the computational states in the states
|N,M⟩, which are eigenstates of the angular momentum
operator N2 and its projection Nz on the quantization
axis in the electronic and vibrational ground state of
the molecule. Defining |ϕN,M ⟩ as the states which are
adiabatically connected (as we turn on E) to |N,M⟩, we
consider in scheme (a) (see Fig. 4) dressing the |ϕ0,0⟩ and
|ϕ1,0⟩ states to engineer the |0⟩ state and use |ϕ2,−2⟩ as
the |1⟩ state. The |ϕ0,0⟩ and |ϕ1,0⟩ states will be dressed
via a resonant microwave drive with π polarization and
Rabi frequency Ωπ, defining |0⟩ = (|ϕ0,0⟩ + |ϕ1,0⟩)/

√
2.

Although our method can be generalized to off-resonant
drives, we will focus on a resonant drive since it provides
the strongest interactions in the absence of an electric
field, but we discuss the case of off-resonant drive in
Appendix C. Since the electric field does not generate a
transition dipole moment between |0⟩ and |1⟩, no flip-
flop interactions are introduced. We note that, although
our formalism will consider a nonzero electric field, our
method works without issue in the absence of an electric
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Figure 4. Schemes for realizing dipole-dipole Ising interac-
tions using polar molecules, where Jz denotes the strength
of the Ising interactions. The polarization of the drive deter-
mines whether (a) positive Jz or (b) negative Jz is realized.
Each approach works both in the presence or absence of a DC
electric field, although the interactions realized in (b) exhibit
positive Jz > 0 if d|E|/B0 ≳ 1.7.

field as well. Additionally, throughout, we will assume
that the drive strength is always sufficiently strong that
the hyperfine structure of the states being dressed can
be neglected.

The relevant dipole moments of interest are µ0 =
⟨ϕ0,0|d0|ϕ0,0⟩, µ1 = ⟨ϕ1,0|d0|ϕ1,0⟩, µ2 = ⟨ϕ2,−2|d0|ϕ2,−2⟩,
and µ01 = ⟨ϕ0,0|d0|ϕ1,0⟩. In units of (4πε0)

−1, the corre-
sponding dipole-dipole interactions between |0⟩ and |1⟩
are (see Appendix C)

Hint =
1

2

∑
i̸=j

1

r3ij
[(V0 + V1 − 2V01)ZiZj +

(V0 − V1)(Zi + Zj) + (V0 + V1 − 2V01)]

(8a)

V0 =
(µ0 + µ1)

2 + 2µ2
01

16
, V1 =

µ2
2

4
, (8b)

V01 =
(µ0 + µ1)µ2

8
, (8c)

which has an Ising interaction proportional to V0 +V1 −
2V01 > 0 for all d|E|/B0. There are two considerations
to avoid leakage to other states. First, there are the
resonant flip-flop interactions present in the absence of
an electric field. As long as Ωπ ≫ Hdd, these will be
made off-resonant through the dressed energies. Second,
when the electric field is turned on, additional potentially
near-resonant interactions emerge due to the induced
dipole moments, such as flip-flop interactions between
the |ϕ1,0⟩, |ϕ1,1⟩ states. Here, the dressed energies will
typically keep these interactions off-resonant, although
care has to be taken when d|E| ≈ |Ωπ|, as the energy
shifts due to the electric field could induce resonances in
combination with the dressed energies.

In scheme (b), see Fig. 4, to realize negative in-
teractions, we instead consider dressing the |ϕ0,0⟩ and
|ϕ1,1⟩ states to engineer the |0′⟩ state and continue
to use |ϕ2,−2⟩ as the |1⟩ state. The |ϕ0,0⟩ and |ϕ1,1⟩
states will be dressed via a resonant microwave drive

with σ+ polarization and Rabi frequency Ωσ, defining
|0′⟩ = (|ϕ0,0⟩ + |ϕ1,1⟩)/

√
2. Again, we will focus on the

case of a resonant drive, which realizes the strongest in-
teractions in the absence of an electric field. Like with
scheme (a), although our formalism assumes a nonzero
electric field, scheme (b) also works in the absence of
an electric field. However, we note that at sufficiently
strong electric fields, the sign of the interactions can be-
come positive.

The additional relevant dipole moments of interest are
µ′
1 = ⟨ϕ1,1|d0|ϕ1,1⟩ and µ′

0,1 = ⟨ϕ0,0|d−|ϕ1,1⟩. Once

again, in units of (4πε0)
−1, the corresponding dipole-

dipole interactions between |0′⟩ and |1⟩ are

Hint =
1

2

∑
i ̸=j

1

r3ij
[(V ′

0 + V1 − 2V ′
01)ZiZj +

(V ′
0 − V1)(Zi + Zj) + (V ′

0 + V1 − 2V ′
01)]

(9a)

V ′
0 =

(µ0 + µ′
1)

2 − µ′2
01

16
, V1 =

µ2
2

4
, (9b)

V ′
01 =

(µ0 + µ′
1)µ2

8
, (9c)

which has an Ising interaction proportional to V ′
0 +V1−

2V ′
01, which is less than 0 for for d|E|/B0 ≲ 1.7. This

value is modified by off-resonant drives, increasing or de-
creasing its value depending on the relative superposition
of the two states being dressed (see Appendix C). Like
for scheme (a), leakage to other states can be avoided
with sufficiently strong Ωσ compared to Hdd and by en-
suring the energy shifts due to the electric field do not
induce any new resonances.

Thus, by switching between the two schemes and si-
multaneously transferring the |0⟩ population to the |0′⟩
state, it is possible to implement the state-transfer pro-
tocols, although it is important to avoid unwanted inter-
actions when switching between the schemes and states.
Provided the relevant time-scales are fast enough rela-
tive to the interactions, one can transfer the states by
adiabatically turning Ωπ off while adiabatically turning
Ωσ on in a STIRAP-like process, which simultaneously
changes between the two schemes and changes the sign
of the interactions as long as d|E|/B0 ≲ 1.7.
At the end of the state-transfer protocol, it is impor-

tant to shelve the qubits in non-interacting states. A nat-
ural approach is to adiabatically turn off the DC electric
and microwave dressing fields. By adiabatically detun-
ing the dressing field simultaneously, this ensures that
the |0⟩ or |0′⟩ state will be transferred to either of the
two states which are dressed, while |1⟩ becomes |2,−2⟩.
Alternatively, one can keep the fields on by storing the
qubits in pairs of states which possess the same electric
dipole moment, and the resulting interactions will only
generate a global phase on each individual qubit. In this
case, all qubit states must be transferred simultaneously.
For example, this might be achieved by storing the qubit
in |ϕN,±M ⟩ pairs of states. Nuclear spin states provide
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another natural means of realizing this while utilizing
a single |ϕN,M ⟩ state. Although we refer to these as
non-interacting states, in reality they are states which
exhibit state-insensitive, identity interactions both with
each other and with the states |0⟩ and |1⟩ (or |0′⟩ and
|1⟩) used in the protocol, although the strength of the
identity interactions may be different.

Non-interacting states can in principle be prepared for
use during the protocols. For example, in the absence of
an electric field, any states without a transition dipole
moment with the dressed states can be utilized as long
as the two chosen states have identity interaction with
each other, like nuclear spin states as above. This is more
difficult in the presence of an electric field, as the per-
manent dipole moments will typically cause interactions
with the |0⟩, |0′⟩, and |1⟩ states. By choosing parameters
such that the induced dipole moments of |0⟩ and |1⟩ (or
|0′⟩ and |1⟩) are the same, while the two non-interacting
states have the same induced dipole moment and identity
interactions with each other, the interactions with the
non-interacting qubits become state-insensitive, leading
only to a global phase. When the induced dipole mo-
ment of |0⟩ and |1⟩ are not the same, the interactions
with the non-interacting states lead to Z rotations in |0⟩
and |1⟩, which must be corrected (likewise for |0′⟩ and
|1⟩).
Now, we determine when these single qubit corrections

can be avoided for the two schemes. When E ̸= 0, for
scheme (a), this requires µ2 be between µ0 and µ1 while
for scheme (b), this requires µ2 be between µ0 and µ′

1.
While this is possible for scheme (a) with the proper
choice of drive and detuning (changing the relative con-
tributions of µ0, µ1 to the induced dipole moment of |0⟩),
it is not possible for scheme (b). However, if E = 0, this
is automatically satisfied in both cases. Hence there are
no single qubit corrections needed when there is no elec-
tric field.

Asymmetric blockade

In this section, we discuss the realization of microwave-
dressed asymmetric blockade for polar molecules, which
was developed for Rydberg atoms in Ref. [43]. This
provides a means of realizing the desired control-target
interactions without needing to engineer both signs of
interactions to eliminate the control-control and target-
target interactions. Here, we discuss how this approach
can be extended to polar molecules. Aside from a few
subtleties which we discuss further below, the original
analysis for the Rydberg atoms is largely the same, so
we leave several of these details to Appendix C.

In contrast to the microwave-dressing approaches
above, we consider dressing three states with two dif-
ferent drives, one which is π-polarized and one which is
σ±-polarized, with no electric field. We denote two of
the three resulting dressed states |c⟩, |t⟩, which are used
as controls or targets, respectively. Through proper tun-
ing of the drives, these states exhibit asymmetric block-

Figure 5. (a) Example of dressing scheme used to realize
asymmetric blockade in polar molecules. The dressed |0⟩, |1⟩
states are composed of the molecular states denoted by solid
lines. The remaining dashed levels contribute to the vdW
interactions. (b) Dipolar c-t interaction coefficient (C3, solid

blue line), vdW c-c interaction coefficient (C
(c)
6 , dashed green

line), and vdW t-t interaction coefficent (C
(t)
6 , dashed orange

line) as functions of C. Values of C3 are in units of d2/(4πε0)
and C6 in units of d4/[Ωπ(4πε0)

2].

ade: no control-control or target-target interactions but
strong diagonal dipolar control-target interactions. This
is achieved by counterbalancing the respective dipolar
interactions associated with the two driven transitions,
which differ in their overall sign due to the polariza-
tion of the transition, as utilized in the previous dressing
schemes to realize both signs of interactions. The combi-
nation here eliminates the necessity to realize both posi-
tive and negative interactions because the unwanted in-
teractions between controls and targets are already zero.
Thus if we use the |c⟩ (|t⟩) state to encode the |0⟩ state
for the control (target) molecules and an additional non-
interacting state (e.g., from N = 4) to encode |1⟩ for
both, we realize the interactions

Hint =
∑

i∈{C},j∈{T}

C3

4r3ij
(1− Zi)(1− Zj), (10)

where C3 is the coefficient describing the strength of the
dipolar c-t interactions and {C}, {T} define the sets of
control and target atoms, respectively.

Here, we consider the particular example of Fig. 5(a),
dressing states |0, 0⟩, |1, 0⟩, and |2, 1⟩ with the rotating-
frame Hamiltonian

Hmw = Ωπ(|0, 0⟩⟨1, 0|+ |1, 0⟩⟨0, 0|) +
Ωσ(|2, 1⟩⟨1, 0|+ |1, 0⟩⟨2, 1|)+
−∆π|0, 0⟩⟨0, 0| −∆σ|2, 1⟩⟨2, 1|,

(11)

where Ω,∆ denote the Rabi frequencies and detunings
of the corresponding drives. The resulting dressed states
take the form

|c⟩ ∝ cπ|0, 0⟩+ |1, 0⟩+ cσ|2, 1⟩, (12a)

|t⟩ ∝ tπ|0, 0⟩+ |1, 0⟩+ tσ|2, 1⟩, (12b)

in addition to a third dressed state which we will not use.
For this choice of states, the maximal dipolar interaction
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coefficient between |c⟩ and |t⟩ is C3 = 0.07 d2

4πε0r3
, which

has an associated cmax
π coefficient that uniquely defines

the other coefficients. However, |c⟩, |t⟩ are degenerate
in the rotating frame of the drives when this maximal
interaction is realized, which can lead to additional un-
wanted dipolar interactions (e.g., |cc⟩⟨tt|). By working
with cπ close to cmax

π but not equal to it, which we quan-
tify via C ≡ cπ/c

max
π , this degeneracy can be lifted while

still realizing asymmetric blockade with a comparable
interaction strength, see Fig. 5(b).

An important consideration is the emergence of
1/r6 vdW |cc⟩⟨cc|, |tt⟩⟨tt| interactions with coefficients

C
(c)
6 , C

(t)
6 , respectively, which can lead to errors. For

Rydberg atoms, there were two degrees of freedom that
could be utilized to tune the vdW interactions: C and the
overall scale of Hmw. The former modifies the dressed
states while the latter modifies the dressed state ener-
gies. However, for polar molecules the overall scale of
Hmw only determines the overall scale of the resulting
vdW interactions. This is because unlike Rydberg atoms
which have many internal Rydberg states contributing
to the vdW interactions, for polar molecules the transi-
tion energies involved differ on the order of GHz, several
orders of magnitude larger than feasible dipolar interac-
tions and microwave dressing fields. Hence, the only
contributions to the vdW interactions arise from the
typically resonant dipole-dipole interactions (in the ab-
sence of external fields) that are made off-resonant by
the dressing field, which thus defines the overall scale of
the vdW interactions. In the example we consider here,
these involve all of the N = 0, 1, 2 states.

In Fig. 5(b), we plot both the dipolar coefficient C3

and the vdW coefficients C
(c/t)
6 as a function of C in units

of d2/(4πε0) and d
4/[Ωπ(4πε0)

2], respectively. First, we
note that there are several divergences in the C6 coeffi-
cients. These are a consequence of pair states composed
of |0⟩ or |1⟩ becoming degenerate with other dressed pair
states. Since this leads to leakage outside of the compu-
tational states, these parameters must be avoided. Ad-
ditionally, we see that, for the example considered, while
one of the C6 passes through zero for certain values of
C, the other does not. Nevertheless, we remark that the
overall scale that relates the strength of the vdW interac-
tions to dipolar interactions is given by d2/(Ωπ4πε0r

3),
i.e., the ratio of the dipolar interactions to the dressing
fields. As before, our dressing scheme already requires
Ωmw ≫ Hdd, so this is already small to begin with, but
we wish to minimize it as much as possible. If we assume
Ωπ to be on the order of MHz and d2/(4πε0r

3) to be on
the order of kHz, this ensures that any vdW interactions
are at least 1000 times smaller. Furthermore, we remark
that, if an additional dressing field were included, this
would likely provide sufficient tunability to fully elimi-
nate both vdW interactions, but we leave this direction
to future work.

Figure 6. Dressing scheme for realizing (left) Hint and (right)
H ′

int via microwave dressing of Rydberg states, with |1⟩ =
(|s⟩+ |pπ⟩)/

√
2 and |1′⟩ = (|s⟩+ |pσ⟩)/

√
2. In each case, we

require Ω0/+ ≫ Hdd so that we may work in the microwave-
dressed basis and make additional flip-flop interactions (e.g.
those between |s⟩ and the dashed-line states) off-resonant.

B. Rydberg atoms

In this section, we consider the implementation of the
state-transfer protocol using Rydberg atoms, which will
share several similarities with the implementation in po-
lar molecules. In order to do so, as shown in Fig. 6, we
will consider encoding |0⟩, |1⟩ in linear combinations of
four different states |g⟩, |s⟩, |pπ⟩, and |pσ⟩, corresponding
to a ground state, a Rydberg s state, and two Rydberg p
states, respectively. In the case of the latter two states,
0/+ correspond to the polarization of the drive needed
to couple the s state to the corresponding p state. Addi-
tionally, we will assume that the p states have similar val-
ues of the principal quantum number n compared to the
s state, leading to strong dipole-dipole interactions be-
tween s states and p states. While Ref. [30] also realized
the desired form of interactions for Rydberg atoms via a
weak electric field, the scheme discussed here allows for
much stronger interactions, providing faster state trans-
fer with fewer errors due to dissipation.

In order to realize Hint, we will consider dressing the
|s⟩ state with the |pπ⟩ state with a strong resonant mi-
crowave field. In the absence of any external fields, these
two states interact according to the dipole-dipole inter-
action

Hdd =
∑
i ̸=j

µ2
0

1− 3 cos2 θij
r3ij

|sipj,π⟩⟨pi,πsj |, (13)

where rij is the distance between atoms i and j, θij is
the angle the displacement vector makes with the quan-
tization axis, and µ0 = ⟨pπ|d0|s⟩ is the corresponding
transition dipole moment. Like for polar molecules, we
have neglected additional resonant interaction terms in-
volving other states because the introduction of a strong
microwave field will cause these to become strongly off-
resonant due to the resulting energy shifts. Additionally,
since we are considering dipolar state transfer only in
d = 2, we shall consider θij = π/2 throughout.

Using the strong resonant microwave field, we may
encode |0⟩ = |g⟩ and |1⟩ = (|s⟩+ |pπ⟩)/

√
2. In the limit

of a strong microwave Rabi frequency Ωmw ≫ Hdd, we
may express the dipole-dipole interactions in the |0⟩, |1⟩
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basis as

Hint =
1

2

∑
i ̸=j

µ2
0

8

1

r3ij
(1− Zi)(1− Zj). (14)

In order to realize H ′
int ≡ −aHint, we will use the same

approach as for Hint. However, rather than dressing the
|s⟩ state with |pπ⟩, we instead resonantly dress it with
|pσ⟩. In this case, the corresponding dipole-dipole inter-
action is

H ′
dd =

∑
i ̸=j

−
µ2
+

2

1

r3ij
|sipj,σ⟩⟨pi,σsj |, (15)

where µ+ = ⟨pσ|d+|s⟩ and we neglect the other terms
due to the energy shifts caused by the strong microwave
field once again. Note that, aside from a constant fac-
tor, the dipole-dipole interaction here only differs by
a sign from Hdd. As such, if we now encode |1′⟩ =

(|s⟩+ |pσ⟩)/
√
2 and again take the limit of a strong mi-

crowave Rabi frequency Ωmw ≫ Hdd, the resulting in-
teractions are

H ′
int = −1

2

∑
i ̸=j

µ2
+

16

1− 3 cos2 θ

r3ij
(1− Zi)(1− Zj), (16)

which differs from Hint by a negative constant factor.

Like for polar molecules, by transferring the |1⟩ popu-
lation to the |1′⟩ state while also changing the polariza-
tion of the microwave field, it is possible to implement
the state-transfer protocols via Rydberg atoms. Note
that when the polarization of the drive is changed, one
must ensure that the qubit state is temporarily not en-
coded in |s⟩, |pπ⟩, or |pσ⟩. Alternatively, provided the
relevant time-scales are fast enough relative to the in-
teractions, one can transfer the states by adiabatically
turning Ωπ off while adiabatically turning Ωσ on, which
simultaneously changes between the two schemes and
changes the sign of the interactions. Additionally, to
avoid leakage out of the computational basis, like with
the polar molecules we utilize the fact that Ω ≫ Hdd,
so the dressed energies will make these leakage processes
off-resonant.

As discussed in the polar molecules section, it is also
possible to realize the desired control-target interactions
without the spin-echo approach by engineering asymmet-
ric blockade interactions. This is achieved by turning on
both drives Ωπ/σ with detunings ∆π/σ and using differ-
ent principal quantum numbers n for |pπ/σ⟩. With a
proper choice of parameters, two of the resulting dressed
states |c⟩, |t⟩ interact with each other but not themselves,
realizing asymmetric blockade. Thus by forming the con-
trol qubits with |c⟩ and the target qubits with |t⟩ as the
logical |1⟩ states and the ground state as |0⟩ for both, the
desired pure control-target interactions can be realized.
The full details of engineering this form of interactions
for Rydberg atoms be found in Ref. [43].

Rydberg vdW interactions in 3D

We briefly discuss how to use 1/r6 vdW interactions
for state transfer in 3D. While this will not be as fast
as using 1/r3 dipole-dipole interactions (t ∼ e3

√
3 logL

for vdW interactions with the Tran protocol vs. t ∼
polylog(L) for the Tran and Eldredge protocols with
dipolar interactions), some aspects are less complicated
since the vdW interactions will have no significant angu-
lar dependence. Moreover, it provides a natural means
of experimentally demonstrating that vdW interactions
are long-range in three dimensions.

One option to realize the desired sign change in the
vdW interactions is by inducing a Förster resonance
for an s state via an external magnetic field. Provided
one keeps the atoms sufficiently far apart outside of the
dipole-dipole interaction regime, where the interaction
causes pairs of s states to hybridize with pairs of p states,
the sign of C6 will be opposite on either side of the
Förster resonance [44].

Alternatively, microwave drive approaches can be used
here as well. In this case, we would use an asymmetric
blockade approach as in Ref. [43] applied to vdW inter-
actions. Ref. [45] discusses how a microwave-dressed su-
perposition of Rydberg s states can experience no vdW
interactions. By engineering two such states with two
pairs of Rydberg s states, only the interactions between
the two states remains. By separating these two pairs of
s states from each other in n, the flip-flop interactions
will fall off rapidly compared to the diagonal vdW in-
teractions as in Ref. [46], leaving only the desired Ising
interactions.

C. Magnetic atoms (dysprosium)

In this subsection, we consider the implementation of
the state-transfer protocol in a two-dimensional lattice
of ultracold dysprosium atoms. For concreteness, we
consider bosonic isotopes of dysprosium (such as 162Dy,
164Dy), so that the nuclear spin is zero. We choose to
encode the computational states |0⟩ , |1⟩ in the Zeeman
manifold of the electronic ground state of the dyspro-
sium. The interactions between a pair of dysprosium
atoms i, j are given by the following magnetic dipole-
dipole interactions—written in units of µ0(gJµB)

2/4π,
where gJ is the Landé g factor, µB is the Bohr magne-
ton, and µ0 is the vacuum magnetic permeability (not
to be confused with the dipole transition moment used
previously) [47]:

Hij =
1

r3ij

[
(1− 3 cos2 θij)[J

z
i J

z
j − 1

4
(J+

i J
−
j + J−

i J
+
j )]

− 3

4
sin2 θij [e

−2iϕijJ+
i J

+
j +H.c]

]
.

(17)

Here, J = 8 is the electronic angular momentum of the
ground state, and θij , ϕij are the polar and azimuthal
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Figure 7. Level structure and dressing schemes for bosonic dysprosium atoms. We show only a subset of the full J = 8
manifold. In all three schemes, a far-detuned optical field is included, while a magnetic field is also applied in (b) and (c).
(a) Dressing scheme for realizing positive interactions. (b) Dressing scheme for realizing negative interactions. (c) Dressing
scheme for realizing non-interacting states.

angles of the displacement vector between sites i and j
with respect to the quantization axis, which is set by a
far-detuned optical field. This field additionally breaks
the degeneracy of the Zeeman levels |M⟩J ,−8 ≤M ≤ 8,
which can be utilized to limit leakage out of the compu-
tational basis. Since the corresponding energy shifts are
quadratic inM , in some cases it might also be necessary
utilize a linear energy shift in M via a Zeeman shift,
further breaking degeneracies.

In the following, we will describe example dressed
states that can realize the desired forms of interactions.
While we will not discuss precise dressing schemes to pre-
pare these dressed states, the same principles will hold as
for polar molecules and Rydberg atoms. Specifically, the
dressing field must be stronger than the resulting dressed
interactions. Additionally, it is important to ensure that
the interactions do not lead to leakage out of the com-
putational basis. While typically we expect the dressing
to ensure any such processes will be off-resonant, we will
discuss which leakage processes need to be considered.
As always, we restrict our focus to θij = π/2, which here
allows us to neglect the J+

i J
+
j terms in the Hamiltonian

as well.
The simplest way of realizing the diagonal interac-

tions that we require is to make use of the Jz
i J

z
j term in

Eq. (17), setting |0⟩ ≡ |−m⟩J , |1⟩ ≡ |m⟩J with |m| ≥ 2,
as shown in Fig. 7(a). The choice m = 8 maximizes the
interaction strength and yields the Hamiltonian

Hint =
1

2

∑
i ̸=j

64

r3ij
ZiZj (18)

Flip-flop interactions can be avoided by once again using
an off-resonant optical field. Neither a magnetic field nor
a dressing field is necessary in this case since we utilize
the Zeeman levels directly.

In order to realize the reverse Hamiltonian, i.e the
same Hamiltonian but with opposite sign, we will make
use of the flip-flop interactions in Eq. (17). Using mi-
crowave and/or optical dressing, we can choose, for ex-
ample, the following dressed states: |0′⟩ ≡ (|−4⟩J +

|4⟩J)/
√
2, and |1′⟩ ≡ 1

N (a |8⟩J + b |7⟩J + c |−8⟩J), where
the a, b, c amplitudes are tunable via the dressing param-

eters and N is a normalization constant [Fig. 7(b)]. This
choice clearly yields ⟨0′| Jz |0′⟩ = 0 and by properly tun-

ing a, b, c (namely, setting |b|2 = 8(|c|2 − |a|2)/7) we can
also ensure that ⟨1′| Jz |1′⟩ = 0. In this case, only the
flip-flop interactions from Eq. (17) contribute, for which
the only nonzero matrix element is ⟨1′1′|Hij |1′1′⟩. This
realizes the new interaction Hamiltonian

H ′
int = −1

2

∑
i ̸=j

2|ab|2

r3ij |N |4
(1− Zi)(1− Zj), (19)

with the same ZiZj interactions as before, but with the
opposite sign.

Finally, we describe how to realize non-interacting
states. We cannot use the bare Zeeman levels, since they
will always have non-trivial interactions, particularly due
to the Jz

i J
z
j term in Eq. (17). Thus, we propose to use

the dressed states |0′′⟩ ≡ |0⟩J , |1′′⟩ ≡ (|−2⟩J + |2⟩J)/
√
2

(which can be realized using microwave or optical dress-
ing) to encode the computational |0′′⟩ , |1′′⟩ states, as
shown in Fig. 7(c). Due to the choice of states, both
have ⟨Jz⟩ = 0 and are not coupled via the flip-flop inter-

actions. We could not have used (|−2⟩J − |2⟩J)/
√
2 as

the |0′′⟩ state (which could be achieved with no dressing
in the absence of a Zeeman shift) because the Ising in-
teractions would induce resonant flip-flop interactions in
the computational basis. Thus dressing is necessary to
realize non-interacting states.

In schemes (b) and (c), it is important in to ensure that
the bare Hij interactions do not induce leakage to states
outside of the computational basis. For example in (b),
the flip-flop interactions can take |7⟩J |8⟩J → |8⟩J |8⟩J
or |−4⟩J |4⟩J → |−3⟩J |5⟩J , while the Ising interactions
could take |0′⟩|0′⟩ → (|−4⟩J − |4⟩J)(|−4⟩J − |4⟩J)/2.
While in (a) these are automatically off-resonant due
to the far-detuned optical field or 0 due to the choice of
states, similar processes exist for (c). Although these in-
teractions may or may not be resonant in the undressed
basis, this can change in the dressed basis. In light of
this, it is important that any dressed states which have
overlap with the bare Zeeman levels involved in these in-
teraction have dressed energies which ensure that any po-
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Figure 8. Scheme for implementing different colors in 2D. Each plaquette only interacts with other plaquettes of the same
“color,” e.g. plaquettes labeled A (green) only talk to each other. For n different colors, the distance between plaquettes of the
same color scales as R =

√
nL, where L is the size of the individual plaquette. In subfigures (a) and (b), we depict the Tran

protocol generating a GHZ state with characteristic length r = 6L using n = 4 and n = 9 colors respectively; the distances
between plaquettes of the same color will be R = 2L and R = 3L respectively. (c) The spin-echo pulse sequence that cancels
out interactions between plaquettes with different colors. Vertical lines between the +’s and −’s denote the spin-echo pulses.
For n colors, the protocol will in general require 2n−1 distinct pulses.

tential leakage is off-resonant. In some cases, the dress-
ing fields will be sufficient to ensure that they are off-
resonant; however, in cases where this is not the case, for
example due to the M → −M symmetry, the Zeeman
shift (in addition to the far-detuned optical field) pro-
vides another degree of tunability which simultaneously
removes any accidental resonances from the symmetry.

III. CROSSTALK INTERACTIONS

One concern in the implementation of the protocol
by Tran et al. [31] is that, in the process of simultane-
ously creating GHZ states on multiple registers of qubits,
crosstalk interactions may occur between qubits in differ-
ent clusters. Specifically, while the spin-echo procedure
is able to eliminate interactions within and between reg-
isters of control (target) qubits, the control qubits in one
register may interact with target qubits in another regis-
ter, leading to undesirable crosstalk interactions. In this
section, we analyze the extent of these crosstalk interac-
tions and propose a few methods to address them.

Recall from Section I that, in the Tran protocol, in
order to encode a qubit into a generalized GHZ state
of characteristic length r, it is first necessary to create
md GHZ states (including one generalized GHZ state)
with characteristic length r1 ≡ r/m in parallel, where
m is some α-dependent factor. In Fig. 8, we illustrate
the set-up using qubits arrayed in a 2D grid. We take
L = r1 to be the characteristic length of one of the m2

(d = 2) plaquettes C1, C2, . . . , Cm2—each containing L2

qubits. Then, crosstalk interactions may arise due to the
L4 pairwise couplings present between qubits in different
plaquettes.

Using a variation of the spin-echo protocol with ad-
ditional single-qubit π/2 pulses, it’s possible to cancel
the interactions between controls and targets in differ-
ent registers as follows. We label the md registers with
n different “colors” and apply single-qubit pulses that

cancel the crosstalk interactions between the qubits in
registers with different colors. The pulse sequence for the
protocol is shown for n = 4 in Fig. 8(c). The sequence
of single-qubit pulses will lead to alternating signs of
the interaction Hamiltonians and lead to cancellations
between registers with different colors. However, inter-
actions will still occur between qubits in registers with
the same color. To estimate the crosstalk error incurred
by these interactions, we perform the following analysis.

Consider in the worst case that all qubits in plaquettes
with the same color will interact with each other during
a single GHZ-creation step. Then, multiply the total
strength of this crosstalk interaction by the number of
colors and the time required to create the GHZ state,
and then sum this quantity over the total number of
recursive steps required to implement the full protocol.
This leads to the following bound on the total crosstalk
error [full details in Appendix B]:

εtot =


O
(

r2d−α

nα/d−1 polylog(r)
)

if d < α < 2d,

O
(

eγ
√

log r

n polylog(r)
)

if α = 2d,

O
(

1
nα/d−1 polylog(r)

)
if 2d < α ≤ 2d+ 1.

(20)

As such, the number of colors required in order to achieve
a fixed amount of crosstalk error [εtot = O(1)] scales as

n =


Ω
(
rd(2d−α)/(α−d)polylog(r)

)
if d < α < 2d,

Ω
(
eγ

√
log rpolylog(r)

)
if α = 2d, and

Ω
(
log(r)

d/(α−d)
)

if 2d < α ≤ 2d+ 1,

(21)

where the Ω(·) denotes an asymptotic lower bound. In-
tuitively, for smaller α, the interactions are stronger,
so more colors are required to cancel out the error.
In particular, for α ≤ 2d, the number of colors re-
quired to achieve a fixed crosstalk error scales super-
logarithmically in the state-transfer distance.



12

In order to cancel the errors using the spin-echo proce-
dure, the number of spin pulses required will scale expo-
nentially in the number of colors. Specifically, for color
i ∈ [n], a total of 2i−1 for i ≥ 3 (i = 1, 2 require 0 and 2,
respectively) single-qubit pulses will be required to pro-
vide the alternating signs required for the interactions
[Fig. 8(c)]. As such, for α < 2d, the fact that n scales at
least polynomially in r will lead to an exponential scaling
of the number of pulses with r. In the worst case, when
performing a single step of the hybrid protocol, the num-
ber of colors will be at most equal to the total number
of GHZ plaquettes, i.e. md. For d = 2, we determined
in Section I that the crossover point where the hybrid
protocol surpasses the pure Eldredge protocol was for
characteristic length r = 244 and m = 5. For this value,
the spin-echo procedure would in the worst case require

2m
2−1 ≈ 1.6 × 107 pulses. As such, an approach based

solely on spin-echo pulses would likely be inefficient at
mitigating crosstalk errors.

Another approach to eliminating crosstalk between
qubits in different registers would be to use multiple dif-
ferent level encodings. This approach would only require
a number of encodings proportional to the number of col-
ors required to achieve a fixed crosstalk error, leading to
a resource cost that scales only polynomially in the state
transfer distance r.

As an example, for Rydberg atoms, these different en-
codings could be realized through the use of multiple
states with different principal quantum numbers to en-
code the corresponding |1⟩ states for each color. Pro-
vided the principal quantum numbers are sufficiently
different, the interactions between them are minimal, al-
though the number of colors can become limited due to
the large variation in the vdW coefficients C6 as a func-
tion of the principal quantum number.

As another example, the asymmetric blockade ap-
proach, developed in Ref. [43] and discussed in Sec-
tions IIA and IIB, could be generalized to eliminate
the interactions between different colors through the use
of additional dressing fields, whose number will scale at
most polynomially in the number of colors (since the
corresponding constraints on the interactions scale poly-
nomially). Used in conjunction with the spin-echo-based
crosstalk mitigation strategy, these encoding-based ap-
proaches could potentially eliminate the crosstalk er-
ror using far fewer—indeed, exponentially so—spin-echo
pulses. Concretely, in the example discussed above with
m = 5, generating a pair of colors using state engineering

would reduce the number of pulses to 2m
2/2−1 ≈ 2900—

i.e. four orders of magnitude fewer than without state
engineering. If five colors are realized, then the number
of pulses drops to 16, which is well within the realm of
experimental feasibility.

In summary, we’ve outlined two methods to elimi-
nate the crosstalk interactions between control and tar-
get qubits in different registers incurred during the Tran
protocol: the first by using additional spin-echo pulses,
and the second by encoding qubits in different energy
levels. We observed that the latter method is able to

mitigate crosstalk errors using a number of encodings
that only scales polynomially in the state transfer dis-
tance. We envision that a combination of the two meth-
ods will help experimentalists to manage the crosstalk
interactions that occur throughout the Tran protocol in
a thorough and efficient way.

IV. CONCLUSIONS AND OUTLOOK

In conclusion, we’ve provided a roadmap for the ex-
perimental realization of fast state-transfer protocols in
atomic and molecular systems. The approaches we pre-
sented only require single-qubit control in addition to
global power-law interactions, which can be realized us-
ing electric and magnetic dipole-dipole interactions and
van der Waals interactions present in polar molecules,
Rydberg atoms, and atoms with large magnetic mo-
ments. For these types of interactions, the protocols are
able to realize a superballistic—and, sometimes, even a
superpolynomial—state transfer, as opposed to ballistic
state transfer for finite-range interactions.

We also addressed certain issues that may arise
throughout the course of implementing these protocols,
namely the potential for crosstalk errors that could occur
in the process of creating multiple many-body entangled
states in parallel. We presented a few methods that can
mitigate these errors. One interesting further direction
would be to look into whether the protocols themselves
could be modified to not suffer from the crosstalk errors
at all.

Finally, we note that these protocols can be quite sen-
sitive to noise. This is largely due to their use of the
GHZ state as an intermediate entangled state, which is
highly sensitive to single-qubit decoherence. Other pro-
tocols that utilize more robust intermediate states could
potentially provide higher noise tolerance. For example,
the protocol in Ref. [32] achieves state transfer with the
same scaling in time as the Eldredge protocol, but uses
an intermediate W state, which is known to have high ro-
bustness to single-qubit noise. However, existing proto-
cols using intermediate W states have typically required
the use of flip-flop interactions [32, 38], for which the
spin-echo procedure for selectively implementing control-
target interactions doesn’t apply. Additionally, since the
protocol in Ref. [32] relies on uniform coupling, inhomo-
geneities in the interactions—whether from the power-
law form or angular dependence—lead to fundamental
errors in the state transfer that, unlike for the Eldredge
and Tran protocols, cannot be eliminated through shelv-
ing sites in non-interacting states or through spin-echo
techniques. We leave the investigation of the experimen-
tal realization of such W-state-based protocols to future
work.
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Appendix A: Review of optimal state-transfer
protocol by Tran et al.

We first describe the setting of the problem and the
main result of Ref. [31] in this section. For simplicity,
we consider a d-dimensional hypercubic lattice Λ and a
two-level system located at every site of the lattice. The
protocol generalizes straightforwardly to all regular lat-
tices. Without loss of generality, we assume that the
lattice spacing is one. We consider a power-law interact-
ing Hamiltonian H(t) =

∑
i,j∈Λ hij(t), where hij(t) is a

Hamiltonian supported on sites i, j such that, at all times
t and for all i ̸= j, we have ∥hij∥ ≤ 1/dist(i, j)α, where
dist(i, j) is the distance between i, j, ∥·∥ is the operator
norm, and α ≥ 0 is a constant. We use |GHZ(a, b)⟩S to
denote the GHZ-like state over sites in S ⊆ Λ:

|GHZ(a, b)⟩S ≡ a |0̄⟩S + b |1̄⟩S , (A1)

where |x̄⟩S ≡
⊗

j∈S |x⟩j (x = 0, 1) are product states
over all sites in S and a, b are complex numbers such
that |a|2 + |b|2 = 1. In particular, we use |GHZ⟩ to

denote the symmetric state a = b = 1/
√
2.

Given a d-dimensional hypercube C ⊆ Λ of length r ≥
1, we consider the task of encoding a possibly unknown
state a |0⟩+ b |1⟩ of a site c ∈ C into the GHZ-like state
|GHZ(a, b)⟩C over C, assuming that all sites in C, except
for c, are initially in the state |0⟩. Specifically, we con-
struct a time-dependent, power-law interacting Hamilto-

nian H(t) that generates U(t) = T exp
(
−i

∫ t

0
dsH(s)

)
satisfying

U(t) (a |0⟩+ b |1⟩)c |0̄⟩C\c = a |0̄⟩C + b |1̄⟩C (A2)

at time

t(r) ≤ Kα ×


logκα r if d < α < 2d,

eγ
√
log r if α = 2d,

rα−2d if 2d < α ≤ 2d+ 1.

(A3)

Here, γ = 3
√
d, κα = log(4)/ log(2d/α), and Kα are con-

stants independent of t and r. Additionally, by reversing
the unitary in Eq. (A2) to “concentrate” the information
in |GHZ(a, b)⟩ onto a different site in C, we can transfer
a quantum state from c ∈ C to any other site c′ ∈ C in
time 2t.

The key idea of the protocol from [31] is to recursively
build the GHZ-like state in a large hypercube from the
GHZ-like states of smaller hypercubes. For the base case,
we note that hypercubes of finite lengths, i.e. r ≤ r0 for
some fixed r0, can always be generated in times that
satisfy Eq. (A3) for some suitably large (but constant)
prefactor Kα. Assuming that we can encode informa-
tion into a GHZ-like state in hypercubes of length r1 in
time t1 satisfying Eq. (A3), the following subroutine en-
codes information into a GHZ-like state in an arbitrary
hypercube C of length r = mr1 containing c—the site
initially holding the state information a, b. Here m is an
α-dependent number that we choose to be proportional

to r
2d/α−1
1 for α < 2d; to exp

{
γ
2d

√
log r1

}
for α = 2d;

and to r1 for α > 2d.

Step 1: We divide the hypercube C into md smaller
hypercubes C1, . . . , Cmd , each of length r1. Without loss
of generality, let C1 be the hypercube that contains c.
Let V = rd1 be the number of sites in each Cj . In this
step, we simultaneously encode a, b into |GHZ(a, b)⟩C1

and prepare |GHZ⟩Cj
for all j = 2, . . . ,md, which, by

our assumption, takes time

t1 ≤ Kα ×


logκα r1 if d < α < 2d,

eγ
√
log r1 if α = 2d,

rα−2d
1 if 2d < α ≤ 2d+ 1.

(A4)

By the end of this step, the hypercube C is in the state

(a |0̄⟩+ b |1̄⟩)C1

md⊗
j=2

|0̄⟩Cj
+ |1̄⟩Cj√
2

. (A5)

Step 2: Next, we apply the following Hamiltonian to
the hypercube C:

H2 =
1

(mr1
√
d)α

md∑
j=2

∑
µ∈C1

∑
ν∈Cj

|1⟩ ⟨1|µ ⊗ |1⟩ ⟨1|ν . (A6)

This Hamiltonian effectively generates the so-called
controlled-PHASE gate between the hypercubes, with
C1 being the control hypercube and C2, . . . , Cmd be-
ing the target hypercubes. We choose the interactions
between qubits in Eq. (A6) to be identical for simplic-
ity. If the interactions were to vary between qubits, we
would simply turn off the interaction between C1 and Cj

once the total phase accumulated by Cj reaches π [48].

The prefactor 1/(mr1
√
d)α ensures that this Hamilto-

nian satisfies the condition of a power-law interacting
Hamiltonian. It is straightforward to verify that, under
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this evolution, the state of the hypercube C rotates to

a |0̄⟩C1

md⊗
j=2

|0̄⟩Cj
+ |1̄⟩Cj√
2

+ b |1̄⟩C1

md⊗
j=2

|0̄⟩Cj
− |1̄⟩Cj√
2

(A7)

after time t2 = πdα/2(mr1)
α/V 2.

The role of power-law interactions in our protocol can
be inferred from the value of t2. Intuitively, the speed
of simultaneously entangling hypercube C1 with hyper-
cubes C2, . . . , Cmd is enhanced by the V 2 = r2d1 cou-
plings between the hypercubes. However, the strength
of each coupling, proportional to 1/(mr1)

α, is suppressed
by the maximum distance between the sites in C1 and
those in C2, . . . , Cmd . With a small enough α, the
enhancement due to V 2 overcomes the suppression of
power-law interactions, resulting in a small entanglement
time t2. In particular, when α < 2d, t2 actually decreases
with r1, implying that Step 2 would be faster in later it-
erations if we were to keep m constant.

To obtain the desired state |GHZ(a, b)⟩C , it re-
mains to apply a Hadamard gate on the effective qubit
{|0̄⟩Cj

, |1̄⟩Cj
} for j = 2, . . . ,md. We do this in the fol-

lowing three steps by first concentrating the information
stored in hypercube Cj onto a single site cj ∈ Cj (Step
3), then applying a Hadamard gate on cj (Step 4), and
then unfolding the information back onto the full hyper-
cube Cj (Step 5).

Step 3: By our assumption, for each hypercube Cj

(j = 2, . . . ,md) and given a designated site cj ∈ Cj ,
there exists a (time-dependent) Hamiltonian Hj that
generates a unitary Uj such that

(a |0⟩+ b |1⟩)cj |0̄⟩Cj\cj
Uj−−→ a |0̄⟩Cj

+ b |1̄⟩Cj
(A8)

for all complex coefficients a and b, in time t1 satisfy-
ing Eq. (A4). By linearity, this property applies even if
Cj is entangled with other hypercubes. Consequently,

backward time evolution under Hj generates U†
j , which

“undoes” the GHZ-like state of the jth hypercube:

a |0̄⟩Cj
+ b |1̄⟩Cj

U†
j−−→ (a |0⟩+ b |1⟩)cj |0̄⟩Cj\cj (A9)

for any a, b. In this step, we simultaneously apply U†
j to

Cj for all j = 2, . . . ,md. These unitaries rotate the state
of C to

a |0̄⟩C1

md⊗
j=2

|+⟩cj |0̄⟩Cj\cj + b |1̄⟩C1

md⊗
j=2

|−⟩cj |0̄⟩Cj\cj ,

(A10)

where |±⟩ = (|0⟩ ± |1⟩)/
√
2.

Step 4: We then apply a Hadamard gate, i.e.

1√
2

(
1 1
1 −1

)
, (A11)

to the site cj of each hypercubes Cj , j = 2, . . . ,md.
These Hadamard gates can be implemented arbitrarily
fast since we do not assume any constraints on the single-
site terms of the Hamiltonian. The state of C by the end
of this step is

a |0̄⟩C1

md⊗
j=2

|0⟩cj |0̄⟩Cj\cj + b |1̄⟩C1

md⊗
j=2

|1⟩cj |0̄⟩Cj\cj .

(A12)

Step 5: Finally, we apply Uj again to each hypercube
Cj (j = 2, . . . ,md) to obtain the desired GHZ-like state:

a |0̄⟩C1

md⊗
j=2

|0̄⟩Cj
+ b |1̄⟩C1

md⊗
j=2

|1̄⟩Cj
= |GHZ(a, b)⟩C .

(A13)

At the end of this routine, we have implemented the
unitary satisfying Eq. (A2) in time

t = 3t1 + t2 = 3t1 + πdα/2mαrα−2d
1 . (A14)

Solving this recurrence relation for three different ranges
of α yields the scalings given in Eq. (A3).

Appendix B: Analysis of crosstalk interactions
during the Tran protocol

In this section, we estimate the number of colors re-
quired to upper bound the potential error incurred by
the crosstalk interactions from creating GHZ states in
parallel during the Tran protocol. The analysis assumes
that one of the procedures outlined in Section III of the
main text has already been used to cancel out interac-
tions between plaquettes with different color labels.
To estimate the total amount of crosstalk error in the

worst case, we first compute the total possible crosstalk
interactions between all plaquettes of the same color and
multiply them by the timescales required to create the
GHZ states. We then sum over the sizes of the plaquettes
required by different steps in the protocol and multiply
by the number of colors, n, in order to obtain an estimate
of the worst-case error incurred over the course of the
whole protocol.
For a given step of the protocol with a plaquette size

of L, we define the worst-case crosstalk error ε(L) to be

ε(L) = ntGHZ(L)∥Hcrosstalk(L,R)∥, (B1)

where tGHZ(L) is the time required to create a GHZ state
of size L by merging GHZ states from the previous step
and ∥Hcrosstalk(L,R)∥ = maxCi

∑
Cj

∥HCiCj
∥, where Ci

and Cj are plaquettes of the same color separated by
a distance of at least R, is the largest possible crosstalk
interaction between plaquettes of the same color for fixed
L and R.
We observe that ∥HCiCj∥ ≤ |Ci||Cj |

d(Ci,Cj)α
= L2d

d(Ci,Cj)α
,

where d(Ci, Cj) is the distance between the sets Ci and
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Cj . Bounding the sum in ∥Hcrosstalk(L,R)∥ by an inte-
gral, we have:

ε(L) ≲ ntGHZ(L)

∫ r/R

1

ddx⃗
L2d

(R|x⃗|)α
, (B2)

where r is the length scale corresponding to the final
(largest) GHZ state being created. For all α > d,
the integral can be upper bounded by a constant times
L2d/Rα.

The time tGHZ for each GHZ-creation step has the
same scaling as in Eq. (A3), which we reproduce here
for ease of reference:

tGHZ(L) ≤ Kα ×


logκα L if d < α < 2d,

eγ
√
logL if α = 2d,

Lα−2d if 2d < α ≤ 2d+ 1.

(B3)

For α < 2d, m ∝ Lλ−1, where λ = 2d/α. To compute
the total crosstalk error, it is necessary to sum over all
length scales Li from r0 to r. It can be observed that Li

grows doubly exponentially in the number of time steps
i, due to the relation Li+1 = mLi = Lλ

i , where we note
that λ > 1. Since the largest crosstalk error is incurred
when Li = r, the total crosstalk error εtot can be upper
bounded by the maximum number of recursive steps imax

times the largest crosstalk error ε(r) as follows:

εtot =
∑
i

ε(Li) =

imax∑
i=0

ε(rλ
i

0 ) < imaxε(r)

≲ log log(r) logκα(r)
r2d−α

nα/d−1
,

(B4)

where imax = log log(r)/(log(λ)log log(r0)). So
maintaining constant crosstalk error requires n ≳
polylog(r)rd(2d−α)/(α−d) colors. This leads to the first
line in Eq. (21).

For α = 2d, the crosstalk error is given by

ε(L) ≲ eγ
√
logL L

2d−α

nα/d−1
=
eγ

√
logL

n
. (B5)

Since the scaling of m is given by m ∝ e
γ
2d

√
logL, where

γ = 3
√
d, we have that m(L) > m′ for some constant

m′ = O(1). Thus, the scaling of Li throughout the re-
cursive protocol is at least geometric, so the number of
steps will be at most log(r). So the overall crosstalk
error can be bounded by

εtot =
∑
i

ε(Li) =

imax∑
i=0

ε
(
(m′)ir0

)
< imaxε(r)

≲ log(r)
eγ

√
log r

n
,

(B6)

where imax = logm′(r/r0). So to cancel out the crosstalk
error, the scaling of n with r must be at least n ≳
log(r)eγ

√
log r, which is faster than any logarithmic func-

tion of r, and reproduces the second line of Eq. (21).
Finally, for α ∈ (2d, 2d+1), the scaling of Li increases

geometrically with i and given by Li+1 = cL2
i for some

constant c. So the crosstalk error is given by

εtot =
∑
i

ε(Li) =

imax∑
i=0

ε
(
cir0

)
(B7)

=

logm
r
r0∑

i=0

(cir0)
α−2d (c

ir0)
2d−α

nα/d−1
≲

log(r)

nα/d−1
, (B8)

so the scaling of the colors must be n ≳ log(r)
d/(α−d)

,
confirming the last line in Eq. (21).

Appendix C: Polar molecule interactions

In this section, we present the details of the deriva-
tion for the polar molecule Ising interactions using a sin-
gle dressing field at a time. At the end of this section,
we discuss the dressing necessary to realize asymmetric
blockade with polar molecules.

First, we remark on which interaction terms remain
resonant and time-independent in the rotating frame of
the microwave field. For schemes (a) and (b), these are

Va =
1

r3ij

[
(µ0|ϕ0,0⟩⟨ϕ0,0|+ µ1|ϕ1,0⟩⟨ϕ1,0|+ µ2|ϕ2,−2⟩⟨ϕ2,−2|)× (µ0|ϕ0,0⟩⟨ϕ0,0|+ µ1|ϕ1,0⟩⟨ϕ1,0|+ µ2|ϕ2,−2⟩⟨ϕ2,−2|)+

µ2
01|ϕ0,0ϕ1,0⟩⟨ϕ1,0ϕ0,0|+ µ2

01|ϕ1,0ϕ0,0⟩⟨ϕ0,0ϕ1,0|
]
,

(C1a)

Vb =
1

r3ij

[
(µ0|ϕ0,0⟩⟨ϕ0,0|+ µ′

1|ϕ1,1⟩⟨ϕ1,1|+ µ2|ϕ2,−2⟩⟨ϕ2,−2|)× (µ0|ϕ0,0⟩⟨ϕ0,0|+ µ′
1|ϕ1,1⟩⟨ϕ1,1|+ µ2|ϕ2,−2⟩⟨ϕ2,−2|)+

(−µ′2
01|ϕ0,0ϕ1,1⟩⟨ϕ1,1ϕ0,0| − µ′2

01|ϕ1,1ϕ0,0⟩⟨ϕ0,0ϕ1,1|)/2
]
,

(C1b)
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Figure 9. Ising interactions for scheme (a) and (b) as a function of f0 and d|E|/B0. The equal superposition f0 = 1/2 is
discussed in the main text. In (a), the dashed line denotes when the effective dipole moments of |0⟩ and |1⟩ are equal. In (b),
the thick black line indicates when the Ising interactions change sign.

respectively, where the flip-flop interactions in the last
line of equation equation differ in sign and magnitude.

We are interested in dressed states of the form |0/0′⟩ ≡√
f0|ϕ0,0⟩ +

√
1− f0|ϕ1,0/1⟩ depending on the scheme,

where f0 captures the dressed state population of the
|ϕ0,0⟩ state and the relative phase of the superposition
does not affect the interactions. We evaluate the inter-
actions in the basis of interest for scheme (a)

⟨00|Va|00⟩ ∝ [f0µ0+(1−f0)µ1]
2+2f0(1−f0)µ2

01, (C2a)

⟨01|Va|01⟩ ∝ [f0µ0 + (1− f0)µ1]µ2, (C2b)

⟨11|Va|11⟩ ∝ µ2
2, (C2c)

and for scheme (b)

⟨0′0′|Vb|0′0′⟩ ∝ [f0µ0 + (1− f0)µ
′
1]

2 − f0(1− f0)µ
′2
01,

(C3a)

⟨0′1|Vb|0′1⟩ ∝ [f0µ0 + (1− f0)µ
′
1]µ2, (C3b)

⟨11|Vb|11⟩ ∝ µ2
2, (C3c)

where the proportionality corresponds to the rij-
dependence we have dropped for simplicity. These terms
correspond to the V0, V1, V01 terms (and their primed
counterparts) in the main text up to a factor of 4.

In Fig. 9, we plot the strength of the Ising interactions
as a function of f0 and d|E|/B0. We illustrate the pa-
rameters where the effective dipole moments of |0⟩, |1⟩
are equal for scheme (a) and the region where negative
Ising interactions are realized for scheme (b). In the ab-
sence of an electric field, the interactions are strongest for
both schemes when f0 = 1/2, corresponding to an equal
superposition. For scheme (a), the interactions can in
principle be increased at sufficiently large electric fields
d|E|/B0 ≳ 2. For scheme (b), the strongest negative
interactions occur at E = 0, and increasing the electric
field only shifts the interactions towards positive values.

Asymmetric blockade

In this section, we present some of the details for the
dressing parameters needed to realize asymmetric block-
ade. This is largely reproduced from Ref. [43], so the
discussion of the dressing parameters applies to Rydberg
atoms as well, so long as the drives are not sufficiently
strong to cause coupling to additional states.
First, we define µπ, µσ to be the transition dipole

moments associated with the driven π and σ transitions,
respectively, with the ratio M ≡ µπ/µσ. Additionally,

we have the relation cπ = C/
√

|2M2 − 1|. For a given
choice of Ωπ, the other dressing parameters are

Ωσ =
√
2M1 + c2π(1− 2M2)

1− c2π(1− 2M2)
Ωπ, (C4a)

∆π =
1− 2c2π + C4

cπ(1− c2π(1− 2M2))
Ωπ, (C4b)

∆σ =
1− 4c2πM2 + C4

cπ(1− c2π(1− 2M2))
Ωπ, (C4c)

which are naturally all proportional to Ωπ. At C = 1,
the dipolar c-t interactions are maximized with a value
of

Cmax
3 = min

(
µ2
π

µ2
σ/2

,
µ2
σ/2

µ2
π

)
(µ2

π − µ2
σ/2), (C5)

although, as discussed in the main text, the two dressed
states |c⟩, |t⟩ are degenerate when this is realized.

Next, we discuss the vdW interactions in the context
of polar molecules. As indicated by the discussion in the
main text, the vdW interactions for polar molecules are
less complicated than for Rydberg atoms. This is be-
cause the transition energy differences are typically on



17

the order of GHz, much larger than the dressing and in-
teraction scales. As a result, only the resonant dipolar
interactions [e.g., the flip-flop terms in Eq. (C1)] are rel-
evant to the vdW interactions, so a Floquet approach is
not needed to deal with the multiple rotating frames as
it is for Rydberg atoms.

In our example, these interactions are the flip-flop in-
teractions between theN = 0 andN = 1 states as well as
the flip-flop interactions between the N = 1 and N = 2
states, which we capture via a dipolar interaction Hamil-
tonian Hdd. Furthermore, the drives also couple addi-
tional transitions, such as |1, 1⟩ → |2, 2⟩, among others.
In light of this, we utilize the same rotating frame for

all N = 2 states as the |2, 1⟩ state, including the un-
coupled states |2,−2⟩, |2,−1⟩, which allows us to write
Hdd in a fully time-independent form. As a result, in the
dressed basis, we have the usual expression for the vdW
interactions:

V
(c)
vdW =

∑
k ̸=cc

|⟨k|Hdd|cc⟩|2

2Ec − Ek
, (C6)

where k are all other dressed state pairs in the basis
and Ek the corresponding dressed state energies in the
rotating frame.
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