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Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One
intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing
boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian
skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a
versatile platform for the investigation of these effects free of geometric restrictions. Despite holding
broad applications, studies of these effects have been limited to static cases so far, and full dynamical
control over the non-Hermitian effects has remained elusive. Here, we demonstrate the emergence
of topological non-Hermitian corner states with remarkable temporal controllability and robustness
in a two-dimensional photonic synthetic time lattice. Specifically, we showcase various dynamic
control mechanisms for light confinement and flow, including spatial mode tapering, sequential
non-Hermiticity on-off switching, dynamical corner state relocation, and light steering. Moreover,
we establish the corner state’s robustness in the presence of intensity modulation randomness and
quantitatively determine its breakdown regime. Our findings extend non-Hermitian and topological
photonic effects into higher synthetic dimensions, offering remarkable flexibility and real-time control
possibilities. This opens avenues for topological classification, quantum walk simulations of many-
body dynamics, and robust Floquet engineering, free from the limitations of physical geometries.

INTRODUCTION

Non-Hermitian systems host a range of intriguing phenomena in physics, such as reconfigurable
light routing [1], potential for enhanced sensitivity [2, 3] and unidirectional invisibility [4], that are
deeply rooted in symmetry and topology. One such phenomenon is the non-Hermitian skin effect
(NHSE) where a macroscopic fraction of the eigenmodes of a finite system become exponentially
localized at its boundary [5, 6]. This localization is a direct consequence of the nontrivial (topo-
logical) winding of the system’s eigenvalues in the complex energy plane [7–9]. Disorder and small
variations in the system do not change the winding number which is a topological invariant [9].
Over the last few years, the NHSE has been demonstrated on a variety of platforms [5, 10, 11].

Exemplary platforms include acoustics and phononics [12], topo-electric circuits [13], and photonics
[14]. These developments are in part motivated by the profound impact of NHSE on band topology
[7, 15, 16], spectral symmetry [17], and dynamics [18, 19]. Particularly in photonics, recently the
NHSE has enabled intriguing demonstrations of the tuneable directional flow of light [20], near-field
beam steering [21], engineering arbitrary band topology [22] and topological funneling of light [14].
Nevertheless, these demonstrations have been limited to systems that can be effectively described
by time-independent Hamiltonians [23]. The introduction of time-dependent non-Hermitian Hamil-
tonians can lead to a dynamic control over the skin effect and also lead to fundamental advances
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in novel non-Hermitian topological phases that are not accessible using time-independent systems.

Here we demonstrate dynamical control of the two-dimensional non-Hermitian photonic skin
effect, that is, corner states, using purely synthetic temporal dimensions. Specifically, using time-
multiplexed light pulses in fiber loops, we show manipulation of the gain/loss in the system at a scale
that is faster than the dynamics of light pulses in the lattice. Using this dynamical manipulation,
we demonstrate adiabatic control over the degree of localization of the corner states, adiabatic
tweezing of light where we move the corner states along a predefined trajectory in the lattice, and
2D funneling of light where photons always funnel to the corner state irrespective of their initial
position in the 2D lattice. Finally, by introducing controlled disorder in the system in the form of
random variations in gain and loss, we quantitatively investigate the robustness of the corner states
against such disorders. Our work opens up an avenue to explore the rich physics of time-dependent
non-Hermitian models such as non-Hermitian Floquet systems.

2D QUANTUM WALK WITH NON-HERMITIAN TOPOLOGY

Our system simulates a discrete-time quantum walk of photons on a two-dimensional non-
Hermitian square lattice, as illustrated schematically in Figure 1(a). Specifically, we implement
a split-step walk where the walker first randomly steps to either left or right (corresponding to
the X direction) with equal probability, then up or down (corresponding to the Y direction). To
introduce non-Hermiticity, we introduce an additional gain e+δx when the walker steps to the left,
and an additional loss e−δx when the walker steps to the right. Similarly, the walker experiences a
gain e+δy when moving down and a loss of e−δy when moving up. The parameters δx and δy then
indicate the degree of non-Hermiticity of the walk.

For this quantum walk, a concept of complex energy can analogously be defined, by solving for
the eigenmodes of the non-unitary quantum walk evolution operator Û and taking the logarithm of
the corresponding eigenvalue uj . Namely, this can be formulated as ϵj = ilog(uj), where Û |uj⟩ =
uj |uj⟩. If we further impose periodic boundary conditions (PBCs) in both x and y for the bulk
in Figure 1(a), we can apply the Bloch theorem for the walk and obtain the complex energy
bands ϵup/down(kx, ky). (The two bands seen in Figure 1(b) arise due to the up/down channel
configuration of our experiment, see supplementary information (SI) for derivation details). The
non-unitary time evolution of the walk leads to a non-trivial winding of ϵ(kx, ky) for each band in
the complex energy plane as one continuously varies Bloch vector (kx, ky) along a certain curve in
the Brillouin zone. To illustrate this, in Figure 1(b), we plot the complex energies ϵup/down(kx, ky)
of the bulk lattice shown in Figure 1(a) as we vary kx from −π to π while keeping ky fixed to
different values 0,±π/4,±3π/8. As (kx, ky) varies along each of these directed horizontal curves
in the Brillouin zone, both ϵup(kx, ky) and ϵdown(kx, ky) winds one loop in the counterclockwise
direction, thus exhibiting an integer-valued winding number −1. This is a topological invariant for
our non-Hermitian quantum walk. Also, the two winding loops contributed from the two bands
ϵup/down exhibit a line-gapped topology [24], such that the two winding loops never cross the line
Re(ϵ) = 0 in the complex plane. Windings of complex energy along other curves in the Brillouin
zone are shown in the SI.

In a finite system, the non-trivial winding of the complex energies and the associated 2D non-
Hermitian skin effect[24] is manifested as corner states, that is, localization of the walker can happen
at an interface between regions with opposite windings (or bulk band topologies). Figure 1(c) shows
one exemplary case which consists of four distinct regions, represented by the four different color
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FIG. 1. Two-dimensional quantum walk in non-Hermitian synthetic lattice. (a) Example of
photonic quantum walk in a 2D synthetic lattice. The blue and red curved arrows show the direction-
dependent loss and gain. (b) Winding of effective eigenenergies ϵup/down(kx, ky) in the complex energy plane
for a single bulk non-Hermitian lattice with periodic boundary condition, showing line-gapped topology
(indicated by the green line). Here we choose five different values ky ≡ 0,±π/4,±3π/8. (c) Four bulk
lattices with different gain-loss patterns are glued along their edges to form a corner. Note that δx > 0
implies gain for a step towards −X and loss for a step toward +X. For δx < 0 the gain-loss is inverted. A
similar rule applies for δy. (d) Averaged spatial profile of corner states formed in the system shown in (c),
by taking non-Hermitian parameters δx = δy = 0.175. The lattice size is 30×30. (e) The time-multiplexed
experimental scheme, with which the lattice parameters can be (dynamically) controlled by the intensity
modulators.

patches. The gray patch is identical to the system described in Figure 1(a). The other three regions
exhibit an inverted gain-loss relation (indicated by a change in the sign of the gain parameter) either
along the x or y-axis, or both. This inversion of gain-loss leads to different windings for each region.
Non-Hermitian skin effect occurs in such a system, and we numerically verify in Figure 1(d) that
the averaged eigenmodes of the quantum walk exhibit clustering at the junction between the four
regions - as indicated by the red dot in Figure 1(c).

To simulate the quantum walk described above, we use classical light pulses in a time-multiplexed
setup shown in Figure 1(e). We note that for this linear system, the evolution of classical light
pulses in the lattice exactly follows that of the quantum walk of single photons in the lattice.
We map the state space of the 2D square lattice into different time-delays in two fiber feedback
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FIG. 2. Light localization and light funneling for static control. (a) Light localization at the corner
state located at (x, y) = (0, 0) for non-Hermitian parameter |δx| = |δy| = 0.175. Here a single pulse is
initialized at (x, y) = (0, 0) in the up channel. (b) Light funneling for the same lattice parameter and pulse
initialization, but the corner state is located at (x, y) = (−10, 10). Here the skin effect allows light to flow
to the corner state and localize there. In both (a) and (b), from left to right the snapshots are shown for
time steps 1, 9, 21, respectively.

loops, as introduced in previous works [25, 26]. To introduce non-Hermiticity, we use four intensity
modulators that introduce individually controllable loss when the walker moves along any direction.
We also use two erbium-doped fiber amplifiers (EDFAs) that provide gain in the system, and
together with the intensity modulators, introduce a gain-loss mechanism that can be controlled at
each step of the walker. We specifically choose electro-optic modulators with a high bandwidth to
allow reconfigurability of the system’s topology at each step of the quantum walk. A full discussion
of the experimental setup is provided in the SI.

RESULTS

SKIN EFFECT UNDER STATIC CONTROL

To show the presence of non-Hermitian corner states, we first construct the model as shown in
Figure 1(c), with the corner located at the lattice origin (x = 0, y = 0). We inject a single light pulse
into the time bin corresponding to the lattice origin and choose non-Hermitian parameters |δx| and
|δy| to be 0.175 as in Figure 1(c). In Figure 2(a), we plot the snapshots of the light distribution in
the lattice for different time steps 1, 9, and 21, which are obtained by measuring the pulse power
at each time bin. The evolution of distribution shows that the walker stays localized at the origin,
confirming the presence of a corner state. In sharp contrast, when we set δx and δy to 0, we observe
a significant spreading of the intensity distribution, indicating the absence of any corner states (see
the SI for the experimental data).

Having shown the localization of light at the corner state, we next demonstrate the skin-effect-
induced funneling of light. Namely, the system dynamics bring any initial state towards the corner
states. We set the corner state to be at the lattice site (x = −10, y = 10) while light pulses are
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FIG. 3. Dynamical control of the corner state. (a) Dynamical control of corner state spatial
profile. As the non-Hermitian parameter is adiabatically reduced from |δx,max| = |δy,max| = 0.175 to
|δx,max| = |δy,max| = 0.02 and back to |δx,max| = |δy,max| = 0.175, the corner state becomes delocalized
and then localized. From left to right the snapshots are shown for time steps 1, 9, 17, 25, 37, respectively. (b)
Dynamically tweezing localized light along a designed “L”-shaped trajectory using the skin effect. Localized
light is first moved in the +Y direction for 8 steps and then to the −X direction for 10 steps.

still injected at x = 0, y = 0, which is now in the bulk of the lattice (Figure 2(b)). As the system
evolves, initially light spreads in bulk, but finally converges to the corner site. As shown in the SI
for several different lattice configurations, light pulses always converge to the corner regardless of
the initialization location. This funneling of light to the corner state is a manifestation of the skin
effect where all the eigenmodes of the system are localized at the corner. Our experimental results
are in good agreement with our theoretical prediction shown in Figure 2(b).
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DYNAMICALLY CONTROLLING THE NON-HERMITIAN LATTICE AND SKIN
EFFECT

The use of time as a synthetic dimension allows us to dynamically reconfigure our non-Hermitian
lattice as a function of time. Specifically, by controlling the intensity modulators at each time step
of the quantum walk, we achieve temporal modulation of the gain/loss parameters δx(t) and δy(t)
such that they are time-dependent. Using this time dependence, first, we demonstrate dynamical
control over the degree of localization of the corner states. At the start of the evolution, we adopt
the configuration as in Figure 1(c) and set |δx(0)| = |δy(0)| = 0.175, and inject a single light
pulse at the corner state situated at the origin. As the system evolves, we reduce both |δx|, |δy| by
50% for every four time-steps and continue doing so until step 16 (Figure 3(a)). Because of this
reduction, we observe that the corner states become less confined to the origin. This is because the
smaller non-Hermitian parameter exhibits eigenmodes distributed over a larger area, as predicted
theoretically (see the SI). Thereafter, starting from step 17, we reverse the process, that is, we
increase the gain /loss parameters |δx|, |δy| back to its original value at the same rate. We now
observe a relocalization of light at the origin.

Next, we demonstrate adiabatic repositioning of the corner states in the lattice. We use the same
lattice geometry shown in Figure 1(c) and fix the non-Hermitian parameter to δx = δy = 0.175. As
the system evolves, we adiabatically move the interface between the four distinct topological regions,
repositioning the corner state as a function of time. We first move the position of the corner state
upwards for 8 unit cells, and then leftward for 10 unit cells. As before, we inject light pulses at the
corner state. As the system evolves, we observe that the center of the intensity distribution follows
the position of the corner state as it adiabatically moves along the given ”L”-shaped trajectory from
its initial location (x = 0, y = 0) to its final location at (x = −10, y = 8). Furthermore, during this
process, the intensity distribution remains tightly localized close to the corner state. Evidently, the
corner serves as a non-Hermitian tweezer of light, which allows us to adiabatically move trapped
photons along a given trajectory in the synthetic lattice. Note that non-Hermitian light steering has
been demonstrated in real-space lattices [1], and our demonstration in synthetic time dimensions
portends the potential for such photonic control using the temporal degree of freedom of light.

ROBUSTNESS OF THE SKIN EFFECT

The topological nature of the non-Hermitian skin effect ensures its robustness against disorder in
gain/loss parameters δx, δy. To quantitatively investigate this robustness, we introduce a disorder
on the gain/loss. At each lattice site, we randomly pick both δx, δy from a uniform distribution
on the interval [δmax(1− η), δmax], where max is the maximum gain parameter and is the disorder
parameter which quantifies the variance of the gain parameter. In our experiment, we vary the
disorder parameter between 0 (no disorder) and 2 (max disorder).

We find that the skin effect is robust when the disorder parameter η < 1. In Figure 4(a-b), we
plot the evolution of light pulses in the lattice for two different values η = 0.5 and η = 1. For
both cases, we inject light pulses at the corner state located at the origin. We observe that, even
though the localization of the intensity distribution reduces as disorder increases, the distribution
still stays confined around the origin, indicating the existence of corner states even in the presence
of disorder. Nevertheless, once we increase the disorder parameter to 1.5 and 2 (Figure 4(c-d)), the
intensity distribution diffusively spreads away from the origin, indicating the breakdown of corner
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FIG. 4. Robustness of the skin effect at the presence of different degrees of lattice disorder. The
randomness is introduced to the intensity modulation of the lattice and the pulse is injected at (x, y) = (0, 0).
(a-b) Experimental observation of robustness of the corner state and skin effect in a lattice with moderate
disorder (ηy = ηx = 0.5, 1). Here the disorder leads to a relaxed spatial confinement of light without
breaking the localization of light. (c-d) Breakdown of the localization in the presence of strong disorder
(ηy = ηx = 1.5, 2). Light can diffuse arbitrarily far away from the original location. In (a-d), from left to
right the snapshots are shown for time steps 1, 5, 13, respectively.

states. Our experimental observation agrees with the intuitively expected behavior that, for η < 1,
even though there is a disorder in the modulation amplitudes, the gain for the step towards the
corner is always larger than that of the outwards direction. Thus the four regions maintain their
distinct non-Hermiticity and the corner state exists. But, when η > 1, a direction-dependent gain
for the time steps is no longer always valid and therefore the four regions are no longer distinct and
the corner state ceases to exist.

To better characterize the robustness and breakdown of the skin effect, we compute the evolution
of the mean-square displacement of the intensity distribution in the lattice as a function of time.
The mean-square displacement is quantified as < r2 > (n) =

∑
x,y Px,y(n)(x

2 + y2), where Px,y(n)

is the time-varying intensity distribution of light. Figure 5 shows the calculated < r2 > (n) for
several values of the disorder parameter for both theoretical calculations and experimentally mea-
sured values. Each experimental curve corresponds to an average of four independent experimental
realizations of disorder, while the theory corresponds to four averages. Due to the limited size of
the lattice 30 × 30, we only collect data from step 1 to step 15, and plot < r2 > (n) for the odd
steps. The violet, red, and green curves correspond to the weak disorder, with disorder parameters
being 0, 0.5, and 1, respectively. All three curves saturate to a fixed value which is well below a
certain threshold. This behavior thus implies the robustness of the skin effect. But for larger disor-
ders of 1.5 and 2, corresponding to the yellow and blue curve, the mean squared distance does not
converge. Instead, it spreads out until it becomes limited by the finite size of the lattice, indicating
a complete breakdown of the skin effect.
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FIG. 5. (a) Theory and (b) Experimental evolution of space-averaged displacement < r2 >=<
x2 + y2 > as a function of step number under different lattice disorders. For disorder strength
lower than the threshold η = 1, the disorder increases the effective spatial diameter of the corner state, as
shown in the evolution of average displacement with time. For disorders higher than the threshold, light
diffusively spreads to large distances on the lattice.

SUMMARY AND OUTLOOK

In conclusion, we demonstrated robust dynamical control over the photonic non-Hermitian skin
effect in a 2D synthetic lattice. We created a corner state that localizes light and dynamically tuned
the degree of light localization. Moreover, we dynamically steered trapped light along any given
trajectory in the 2D lattice. We also demonstrate the robustness of the skin effect under lattice
disorder below a certain threshold.
Looking forward, the dynamic techniques developed in this work can be further applied to inves-

tigate Floquet non-Hermitian models [27, 28], in particular in synthetic dimensions [29]. Further,
one can create an analogue of on-site interaction by imposing a nonlinear phase shifter after the
linear optical transformations, and investigate non-Hermitian models of interacting particles [30].
Such nonlinearities could also have implications in the recently discovered regime of topological
frequency combs [31–33] due to the periodic temporal pulses that define our platform. Moreover,
the two-fold spin characteristics in our system can potentially be extended to non-Hermitian models
for lattice gauge theories with higher spins and non-Abelian statistics, by increasing the number
of loops [34]. Finally, our non-hermitian lattice can be enriched with engineered synthetic gauge
fields as demonstrated recently for both Hermitian [35] and non-Hermitian models[20], to explore
intriguing proposals such as the quantum Skin Hall effect [36].
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SUPPLEMENTARY INFORMATION: DYNAMIC CONTROL OF 2D NON-HERMITIAN
PHOTONIC CORNER STATES IN SYNTHETIC DIMENSIONS

Experimental Setup

Here we show the details of the experimental setup.

To encode the 2D lattice in time we consider two fiber loops shown in Figure S1(a), labeled up

FIG. S1. Sketch of the complete experimental setup and encoding scheme. (a) Details of the
experiment, with continuous wave (CW) laser, polarization control (PC), wavelength division multiplexer
(WDM), photodiode (PD), beam splitter (BS), intensity modulators (X/Y-mod), erbium doped fiber am-
plifier (EDFA) and semiconductor optical amplifier (SOA). (b) Encoding the 2D lattice in time bins in two
fiber loops. The two loops are named “up channel” and “down channel”, respectively.
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channel and down channel. The length of each fiber loop is ∼ 3 (km), and one circulation of light in
the loop is equivalent to one step of the walk. Hence, we can encode the entire 2D lattice within a
time-duration (or time-delay) of ∼ 15000 (ns) without mixing time-bins in step n and step (n+1).
As in Figure S1(b), we first encode 30 “Y”-time bins in both the up and down channel, each of
time duration 250 (ns) in a total time duration of 7500 (ns). Each “Y”-time bin is then occupied
by 30 “X”-time bins, each of time duration 7.5 (ns). At any time, the state of the system is thus
represented by a complex vector (Ux,y, Dx,y), encoded in the phase and amplitude of the light pulse
circulating in the two fiber loops.

To initialize the system, we inject a single pulse into the down channel of the fiber loop. We
use a continuous wave CW laser with 1550 (nm) wavelength (Optilab DFB-1551-SM-10) and by
modulation of this laser using a Thorlabs SOA (SOA1013SXS), we have generated pulses of width
∼ 6 (ns) at a repetition rate of 1 (pulse/ms). We then control the polarization of the laser with an
inline fiber polarization control (PC) before injecting the light into the down channel with a 90/10
beam splitter. Note that we use two identical 90/10 beam splitter, one for each channel. The 90/10
beam splitter in the down channel is used to inject light into the quantum walk, whereas the 90/10
beam splitter in the up channel is used to weakly couple light pulses out of the quantum walk so
that we can measure the pulse power after n steps of evolution.

As a pulse enters the system, by default we recognize it as entering the (x = 0, y = 0) time bin, and
thus the initial state is D0,0 = 1. The pulse then sequentially passes through a 50/50 beam splitter
denoted as ±X-beam splitter, a pair of time-varying intensity modulators (Optilab IMP-1550-20-
PM) is used to impose the correct gain/loss as each time bin (x, y) passes through it, controlled by
RF signal generated from Teledyne Lecroy arbitrary waveform generator (T3AWG3252). We then
impose a delay of 3 (m) in the up channel and no delay in the down channel. The same procedure
then repeats for Y , as shown in Figure S1(a), except the difference in delay between the up and
down channels is 100 (m).

To combat photon loss in the walk, we use two Thorlabs erbium-doped fiber amplifiers (EDFA)
(EDFA100S), one for each channel. Before amplifying the pulse, we use wavelength division mul-
tiplexers (WDM) (DWDM-SM-1-34-L-1-2) to couple a 1543 (nm) CW laser (DFB-1543-SM-30) to
the pulses so that the spontaneous emission noise during the amplification is reduced. We decouple
the 1550 (nm) pulses from the 1543 (nm) CW laser with the same WDM after the amplification is
done. Finally, we use PC to ensure the correct linear polarization for the 1550 (nm) signal pulses.
After this, a complete quantum walk step is finished.

Mathematical formulation of the quantum walk experiment

Here we give the most general mathematical formulation of our quantum walk. Figure S2(a-g)
shows this evolution when the input state is D0,0 = 1.

As mentioned in the previous section, the state at each step is given by a complex vector
(Ux,y, Dx,y) where x and y ranges from −15 to +15. After the first beam splitter (±X), the
state is updated to (Figure S2(b):

U
′

x,y =
1√
2
(Ux,y −Dx,y)

D
′

x,y =
1√
2
(Ux,y +Dx,y)

(S1)
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FIG. S2. Example of full evolution in a complete step. Both the up and down channels of the fiber
loops are shown. (a-g) The complete evolution within one step given that the initial state is Dx=0,y=0 = 1
and all other Ux,y and Dx,y are 0.

After the first pair of modulators (±X modulators), we obtain:

U
′′

x,y = U
′

x,yf
(U)
x,y

D
′′

x,y = D
′

x,yf
(D)
x,y

(S2)

where f
(U/D)
x,y is the gain/loss applied to each time bin in the up/down channel by the X modulators.

After the delay:

U
′′′

x,y = U
′′

x+1,y

D
′′′

x,y = D
′′

x−1,y

(S3)

This yields:

U
′′′

x,y =
1√
2
(Ux+1,y −Dx+1,y)f

(U)
x+1,y

D
′′′

x,y =
1√
2
(Ux−1,y +Dx−1,y)f

(D)
x−1,y

(S4)
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Then, we enter the second beamsplitter (±Y ):

W
′

x,y =
1√
2
(U

′′′

x,y −D
′′′

x,y)

F
′

x,y =
1√
2
(U

′′′

x,y +D
′′′

x,y)

(S5)

After modulation (±Y modulators):

W
′′

x,y = W
′

x,yc
(U)
x,y

F
′′

x,y = F
′

x,yc
(D)
x,y

(S6)

where c
(U/D)
x,y is the gain/loss applied to each time bin in the up/down channel by the Y modulators.

After delay:

W
′′′

x,y = W
′′

x,y+1 =
1√
2
(U

′′′

x,y+1 −D
′′′

x,y+1)× c
(U)
x,y+1

F
′′′

x,y = F
′′

x,y−1 =
1√
2
(U

′′′

x,y−1 +D
′′′

x,y−1)× c
(D)
x,y−1

(S7)

(W
′′′

x,y, F
′′′

x,y) is thus the output state given the input state (Ux,y, Dx,y). Consider a pulse ending

up in time bin (x, y) at step (n+ 1). Denoting it as U
(n+1)
x,y and D

(n+1)
x,y , we have:

U (n+1)
x,y =

1

2
[(U

(n)
x+1,y+1 −D

(n)
x+1,y+1)f

(U)
x+1,y+1c

(U)
x+1,y+1 − (U

(n)
x−1,y+1 +D

(n)
x−1,y+1)f

(D)
x−1,y+1c

(U)
x−1,y+1]

D(n+1)
x,y =

1

2
[(U

(n)
x+1,y−1 −D

(n)
x+1,y−1)f

(U)
x+1,y−1c

(D)
x+1,y−1 + (U

(n)
x−1,y−1 +D

(n)
x−1,y−1)f

(D)
x−1,y−1c

(D)
x−1,y−1]

(S8)
The above equation thus describes the full evolution of the state within one step. We can obtain

lattice gain/loss pattern as shown in Figure 1(a) or in Figure 1(c) of the main text, by properly
choosing f (U/D) and c(U/D) as a function of (x, y). For example, for a bulk lattice as shown in Figure

1(a) of the main text, we choose f
(U)
x,y = αe0.175, f

(D)
x,y = αe−0.175, c

(U)
x,y = αe0.175, c

(D)
x,y = αe−0.175.

Here α is the additional loss imposed by the modulators, and we use EDFA to compensate for the
loss such that effectively, α = 1. In the experiment, we are only measuring light in the up channel,
and thus the power of pulses, or the probability distribution of the walker in the up channel, is
Px,y ∝ |Ux,y|2. We normalize this probability distribution for all experiment data.

Effective band and energy winding of the bulk model

Here we impose periodic boundary conditions for the bulk lattice as shown in Figure 1(a) of

the main text, in both X and Y directions. The modulations are f
(U)
x,y = e0.175, f

(D)
x,y = e−0.175,

c
(U)
x,y = e0.175, c

(D)
x,y = e−0.175, and thus δx = 0.175 and δy = 0.175. With this assumption, we

can therefore apply the Bloch theorem to the quantum walk evolution equation in the previous
section and introduce the Bloch vector (kx, ky). We use the ansatz Ux,y = eikxx+ikyyŨkx,ky

and

Dx,y = eikxx+ikyyD̃kx,ky
for the eigenmodes of the walk. The evolution equation can now be

simplified to:
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FIG. S3. Bulk band non-Hermitian topology. (a) For each bulk patch, we choose two oriented loops
in the Brillouin zone: lh = {ky ≡ π/4, kx ∈ [−π → π]} and lv = {kx ≡ π/4, ky ∈ [−π → π]}. Each loop li
then contributes to two individual complex energy winding loops ϵup(li) and ϵdown(li) winding in the same
direction. We calculate this winding for all four patches in (b), corresponding to positive or negative δx
and δy. (c-f) The topological invariant is the winding direction of the directed curve ϵ(lh) and ϵ(lv) in the
complex energy plane, which can either be clockwise or counterclockwise.

[
Ũkx,ky

D̃kx,ky

]
=

1

2

[
eikx+ikyf (U)c(U) − e−ikx+ikyf (D)c(U) −eikx+ikyf (U)c(U) − e−ikx+ikyf (D)c(U)

eikx−ikyf (U)c(D) + e−ikx−ikyf (D)c(D) −eikx−ikyf (U)c(D) + e−ikx−ikyf (D)c(D)

] [
Ũkx,ky

D̃kx,ky

]
(S9)

Since we have two discrete degree of freedom U and D, we always obtain two different eigenvalues
for each (kx, ky) as we diagonalize the above 2× 2 matrix. We call the two eigenvalues ukx,ky

and
dkx,ky

. The two effective energies are thus defined as ϵup(kx, ky) = ilog(ukx,ky
) and ϵdown(kx, ky) =



vi

FIG. S4. Averaged eigenmode spatial profile for different non-Hermitian parameters δx = δy.
We adopt the lattice geometry as in Figure S2(b). From left to right we take values 0.03, 0.06, 0.09, 0.12, 0.15
and 0.18.

ilog(dkx,ky
).

We further consider the four bulk patches in Figure S3(b) and show that they exhibit different
non-Hermitian topological invariants, namely the winding of the effective energy ϵup/down(kx, ky)
in the complex plane. Without loss of generality, we always pick two loops in the Brillouin zone:
lv = {kx ≡ π/4, ky ∈ [−π → π]} and lh = {ky ≡ π/4, kx ∈ [−π → π]}, as shown in Figure
S3(a). For each bulk panel in Figure S3(b), as one varies (kx, ky) along lv and lh, the corresponding
complex energy ϵ(kx, ky) can finish a single loop in the complex plane, either in the clockwise
or counterclockwise direction. The winding direction of ϵ(lv) and ϵ(lh) forms the non-Hermitian
topological invariant of the bulk. Note that we have suppressed the unimportant label up and down
since ϵup(li) and ϵdown(li) always wind in the same direction.

Localized eigenmodes at the presence of boundary and corner

As shown in Figure 1(d) in the main text, the averaged spatial profile of the eigenmodes of the
walk is localized at the corner. In Figure 1(c) of the main text we have chosen δx = δy = 0.175, but
the feature of the spatial profile persists for any δx = δy > 0. Here in Figure S4 of the supplemen-
tary section, we show the average eigenmode spatial profile for δx = δy = 0.03, 0.06, 0.09, 0.12, 0.15
and 0.18. As one increases δx = δy, we observe that the averaged spatial profile becomes more
localized. This explains the adiabatic tapering of the walker’s probability distribution as one in-
creases/decreases the non-Hermitian parameter in time, as shown in Figure 3(a) in the main text.

Static control supplementary data

Here we present additional experimental results for the quantum walk with no dynamical control.
We first show that, with δx = δy = 0, the walker diffusively spreads into the bulk of the lattice, as
shown in Figure S5(a), where the probability distribution of the walker is plotted for step 1, 5, 9, 13.
The averaged displacement, defined as < r2 > (n) =

∑
x,y Px,y(n)(x

2 + y2), is plotted in Figure
S5(b), for step 1, 3, 5, 7, 9, 11, 13 and 15. Here Px,y is the probability distribution of the walker at
time step n.
Furthermore, as mentioned in the main text, the funneling of light happens wherever the walker

is initialized, assuming the lattice gain-loss pattern shown in Figure 1(c) of the main text. This is
manifestly shown in Figure S6, where we always choose the initial state to be Dx=0,y=0 = 1, but
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FIG. S5. Evolution of probability distribution for non-Hermitian parameters δx = δy = 0,
showing diffusive spreading. (a) Probability distribution evolution, where the snapshots are taken
at time step 1, 5, 9, 13, respectively. (b) Evolution of averaged displacement < r2 >=< x2 + y2 >=∑

x,y Px,y(x
2 + y2) for time step from 1, 3, 5, 7, 9, 11, 13 and 15.

lattice corner is located at (10,−10), (10, 10) and (−10,−10), respectively.
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FIG. S6. Funneling and stabilization of light starting from arbitrary bulk patches. Light is
always initialized at (x, y) = (0, 0), but the corner position is held fixed at (a) (10,−10), (b) (10, 10) and
(c) (−10,−10). For each panel, the top row is probability distributions collected at step 1, 9, 17, 21 of the
experiment, and the bottom row is the corresponding simulation results.
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