Efficiently verifiable quantum advantage on near-term analog quantum simulators

Zhenning Liu1,2,3, Dhruv Devulapalli1,2, Dominik Hangleiter1, Yi-Kai Liu1,4,
Alicia J. Kollár2,5, Alexey V. Gorshkov1,2, and Andrew M. Childs1,3,6

1 Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
2 Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
3 Department of Computer Science, University of Maryland, College Park, Maryland 20742, USA
4 Applied and Computational Mathematics Division, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
5 Department of Physics, University of Maryland, College Park, Maryland 20742, USA
6 Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742, USA

Existing schemes for demonstrating quantum computational advantage are subject to various practical restrictions, including the hardness of verification and challenges in experimental implementation. Meanwhile, analog quantum simulators have been realized in many experiments to study novel physics. In this work, we propose a quantum advantage protocol based on \textit{single-step Feynman-Kitaev} verification of an analog quantum simulation, in which the verifier need only run an $O(\lambda^2)$-time classical computation, and the prover need only prepare $O(1)$ samples of a history state and perform $O(\lambda^2)$ single-qubit measurements, for a security parameter λ. We also propose a near-term feasible strategy for honest provers and discuss potential experimental realizations.

I. INTRODUCTION

A. Background & Motivation

Quantum computers offer the promise of executing some computational tasks exponentially faster than classical computers. This suggests a violation of the extended Church-Turing thesis, which says that any physically realizable model of computation can be efficiently simulated by a classical Turing machine. Indeed, quantum computers were originally proposed as a means of simulating Hamiltonian dynamics \cite{Feynman1982}, Kitaev encoding and the scheme of Bermejo-Vega et al. \cite{Bermejo-Vega2010}, but such protocols are neither designed for analog quantum simulation nor practical on near-term analog quantum devices. Previous work towards verifying analog simulation has suggested approaches such as cross-platform verification \cite{Li2020, Devulapalli2021}, Hamiltonian learning \cite{Devulapalli2021}, and performing a Loschmidt echo \cite{Devulapalli2021, Devulapalli2022}. Unlike protocols for digital verification, these approaches can be spoofed by dishonest or inaccurate quantum simulators, and therefore cannot be used to demonstrate quantum advantage in a sound, efficiently verifiable way. A step toward verified analog simulation is made in \cite{Liu2023}, in which the verifier measures the energy of a \textit{parent Hamiltonian} of the output state of analog quantum simulation. However, all these works require a significant number of samples of the simulator's state to certify it.

B. Our Contribution

In this paper, by combining a \textit{single-step} Feynman-Kitaev encoding and the scheme of Bermejo-Vega et al. \cite{Bermejo-Vega2012}, we propose a novel quantum advantage protocol with reduced resource requirements, where a verifier ca-
pable of polynomial-time classical computation can verify the result by asking the prover to perform trusted measurements on a constant number of copies of a state. We also present a strategy for the honest prover and argue that it is feasible on near-term devices.

The Protocol. Our protocol involves interaction between a polynomial-time classical verifier, and a quantum prover who can do polynomial-time quantum computation, although we present a strategy for an honest prover who must only perform analog quantum simulation and some limited additional operations. In our protocol, the prover is capable of single-qubit trusted measurements, which means that he performs the correct single-qubit measurements as instructed by the verifier with error rate $\epsilon = O(1/n)$ (with n the number of qubits), and reports the outcome honestly. We also allow a polynomial amount of classical communication in both directions.

Our protocol still works without the assumption of trusted measurements if the prover can send polynomial-size quantum states to the verifier, and the verifier can perform single-qubit measurements, as in the notion of a non-interactive QPIP$_k$ protocol defined by Aharonov et al. [25] (where QPIP stands for quantum prover interactive proof).

Definition 1 (QPIP$_k$ protocol (simplified)). An interactive proof for a language \mathcal{L} is said to be QPIP$_k$ if the prover is a BQP machine, the verifier is a hybrid BQP-BPP machine that can process at most k qubits at a time, and quantum states of k qubits can be transmitted from the prover to the verifier.

However, as reliably sending quantum states is unlikely to be feasible in the near term, we focus on the former model.

Prover’s Model of Computation. We also give an experimentally practical strategy for honest provers. The strategy is specifically designed for near-term machines that are not capable of fully digital quantum computation, but are slightly more powerful than analog quantum simulation, a popular notion that is often not clearly defined. In our work, we define a mostly analog model of computation, its commuting version, and its extension with a global CZ gate, which we argue are feasible for near-term experiments.

Definition 2 (Mostly analog quantum computation). A model of quantum computation involving n qubits is called mostly analog if all the following conditions hold. (1) The system can evolve under a time-independent 2-body Hamiltonian H containing $\text{poly}(n)$ Pauli terms for time $T = \text{poly}(n)$. (2) $O(1)$ alternations between the evolution under H and single-qubit rotations can be performed. (3) Measurements can only be performed once at the end of the whole process.

Note that condition (2) distinguishes this model from common notions of analog quantum computation, as it may require a degree of control not always available to analog quantum simulators. Despite being mostly analog, the above model of computation is even capable of BQP-complete quantum computations [26]. We introduce a weaker model where the 2-local Hamiltonian H must also be commuting, which means that all Pauli terms must commute with each other.

Definition 3 (Mostly analog commuting quantum computation). A mostly analog model of computation is called commuting if H is a commuting Hamiltonian.

Even a mostly analog commuting quantum device can solve some classically intractable problems [24]. We focus on an even more restricted model that should be easier to realize, in which the Hamiltonian H is a specific commuting Hamiltonian containing only nearest-neighbor Z operators, as discussed further below.

We also assume the ability to perform a globally controlled CZ gate. This arguably makes our model less analog, but it plays a key role in developing a sample-efficient protocol to verify the solutions given by the device, and it can potentially be realized using experimental capabilities that have already been demonstrated [27, 28], as we discuss in Section III.B.

Definition 4 (Mostly analog + GCZ commuting quantum computation). A mostly analog commuting model of computation is called mostly analog + GCZ if the system also contains a quantum degree of freedom (e.g., a qubit) that can serve as a global control for all of the qubits, such that one can apply—only $O(1)$ times—a global CZ gate that is controlled by the degree of freedom and acts on all of the qubits. Here GCZ stands for global CZ.

The Classically Hard Problem. In the protocol, the verifier asks the prover to solve a classically hard problem based on Hamiltonian evolution. The prover generates a quantum state but is not trusted to do so correctly. However, the prover is trusted to honestly measure this state to generate a classical witness. The verifier checks this witness to determine if the problem has been successfully solved. If so, then quantum advantage has been demonstrated.

Instead of considering a general quantum circuit, we aim to demonstrate quantum advantage by verifying a specific analog quantum simulation performed on a mostly analog + GCZ commuting machine. The simulation is motivated by the class of IQP (instantaneous quantum polynomial-time) circuits [29, 30], in which all quantum gates are commuting (and thus interchangeable in time). Despite this strong restriction, IQP circuits are believed to be hard to simulate classically [30, 31]. Furthermore, Bermejo-Vega et al. [24] presented a concrete scheme to show quantum speedup on an analog simulator by running a specific unit-time Hamiltonian evolution. The Hamiltonian includes only nearest-neighbor ZZ interactions and local Z terms (a form that we call a $(ZZ + Z)$-type Hamiltonian) on a 2-dimensional square.
There exists a classically intractable sampling problem that can be simulated contains only $O(2^{24})$ lattice:

$$\sum_{\{i,j\} \in NN} \frac{\pi}{4} Z_i Z_j - \sum_{i=1}^{n} \frac{\pi}{4} Z_i,$$

(1)

where NN denotes the set of edges connecting nearest-neighbor qubits. The qubits are randomly initialized in either $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ or $\frac{1}{\sqrt{2}}(|0\rangle - e^{-i\pi/4}|1\rangle)$. Bermejo-Vega et al. [24] and Ringbauer et al. [32] prove that a classical computer cannot efficiently sample from the output distribution of X-basis measurements on the above system within total variation distance (TVD) 0.292, under plausible computational assumptions that we review in Appendix S1. Moreover, since single-qubit Z_i operators commute with all $Z_i Z_j$ operators, one can absorb the single-qubit evolution $\exp\left(i\frac{\pi}{4} \sum_i Z_i\right)$ into the initial state of each qubit, so that the qubits are initialized in either $\frac{1}{2} \left[(1 + i) |0\rangle + (1 - i) |1\rangle\right]$ or $\frac{1}{2} \left[(1 + i) |0\rangle + e^{-i\pi/4}(1 - i) |1\rangle\right]$, which can be prepared by single-qubit operations. Then the Hamiltonian H to be simulated contains only ZZ interaction terms:

$$H = \sum_{\{i,j\} \in NN} \frac{\pi}{4} Z_i Z_j.$$

(2)

Main Result. We now have all the building blocks to formalize the main result. In the state-transmission scenario, we have the following theorem.

Theorem 1 (Main result—state-transmission version). There exists a classically intractable sampling problem that can be verified by a single-round QPIP$_1$ protocol where the prover runs a specific mostly analog + GCZ commuting quantum task $O(1)$ times.

In the trusted-measurement scenario, our result is as follows.

Theorem 2 (Main result—trusted-measurement version). There exists a classically intractable sampling problem that can be verified by a single-round protocol where the classical verifier trusts the prover to perform single-qubit measurements, and the prover runs a specific mostly analog + GCZ commuting quantum task $O(1)$ times.

Our protocol has constant sample complexity, i.e., it only requires the prover to generate $O(1)$ samples of an n-qubit state. This is significantly less expensive than Bermejo-Vega et al. [24], which uses $O(n^2)$ samples.

In both this work and Ref. [24], the prover is expected to perform trusted measurements (or the prover sends qubits to the verifier for her to measure), unlike proofs of quantumness (PoQs) based on trapdoor claw-free functions (TCFs) [9, 33] and quantum supremacy experiments [7, 8] based on sampling problems, which makes it difficult to compare the resource requirements. However, in all of these schemes, single-qubit measurements must be performed many times, either by the prover or the verifier. Hence the number of qubits measured is a comparable quantity.

Equivalently, without transforming the protocols, we can still compare the number of measurements in terms of the security parameter, whether the measurements are trusted or not. The security parameter λ is defined such that a dishonest prover without quantum computational power needs time $2^{\Omega(\lambda)}$ in order to make the verifier accept. For our protocol, the number of qubits n is quadratic in λ, just as in Bermejo-Vega et al. [24]. Under optimistic assumptions, cryptographic PoQs can probably have $n = O(\lambda)$ [33], but for most common TCFs, n scales at least quadratically with λ [9]. Since it has constant sample complexity, our protocol uses $O(\lambda^2)$ single-qubit measurements. This is better than Bermejo-Vega et al. [24], which uses $O(\lambda^3)$ measurements. Furthermore, our protocol can be verified by $O(\lambda^2)$-time classical computation, significantly below the verification cost of $O(\lambda^6)$ for Bermejo-Vega et al. [24] and presumably $\exp(\lambda)$ for quantum supremacy experiments based on sampling problems [7, 35, 36].

We summarize the comparison between our work and other quantum advantage protocols in Table I.

On the prover side, TCF-based PoQs generally require $\text{poly}(\lambda)$-depth low-noise digital quantum computation, while our honest strategy is designed for analog quantum simulators with only limited digital capabilities. This may be harder than fully analog simulation [7, 24, 37, 38], but should still be feasible in the relatively near term. Moreover, our protocol can detect—and is robust against—a specific type of phase error that happens frequently in practice. Thus we believe our work achieves a significant improvement in terms of verification efficiency for verified quantum advantage protocols, and is an easier-to-implement scheme. We provide exact threshold fidelities (independent of the system size) for the device to demonstrate quantum advantage using our scheme. We also show that when the noise is incoherent, the fidelity requirements can be further relaxed.

The remainder of this paper is organized as follows. In Section II, we describe the sample-efficient quantum advantage protocol and analyze its resource requirements. In Section III, we give the near-term strategy for honest provers and discuss potential experimental realizations. Finally, we summarize the results and discuss their implications and potential future extensions in Section IV.

II. THE QUANTUM ADVANTAGE PROTOCOL

A. The Single-Step Feynman-Kitaev Construction

Our protocol is inspired by the Feynman-Kitaev mapping [18], which converts the task of executing a quantum circuit to that of finding the ground state of an associated Hamiltonian. The Feynman-Kitaev Hamiltonian is the foundation of several verification schemes in the circuit model: if a quantum server can provide the ground
We define the (single-step) history state
\[
|\psi_{\text{hist}}\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle |\phi_{\text{in}}\rangle + |1\rangle U |\phi_{\text{in}}\rangle \right),
\]
where $|\phi_{\text{in}}\rangle$ is the input state and U is the propagation unitary. The state $|\psi_{\text{hist}}\rangle$ is the ground state of the single-step Feynman-Kitaev Hamiltonian. Since we are considering quantum simulation of the ZZ-type Hamiltonian H defined in Eq. (2), we have $U = \exp(-iHT)$ with $T = 1$, and $|\phi_{\text{in}}\rangle$ is the random input state defined in the system of Bermejo-Vega et al. [24] with single-qubit Z evolution absorbed. The computationally hard sampling problem can be solved by measuring $U |\phi_{\text{in}}\rangle$ in the X basis. We use P_{ideal} to denote the ideal distribution of measurement outcomes.

The Feynman-Kitaev Hamiltonian includes a term
\[
H_{\text{prop}}^{\text{prop}} = \frac{1}{2} \left(I \otimes I - |1\rangle \langle 0| \otimes U - |0\rangle \langle 1| \otimes U^\dagger \right),
\]
which ensures that the ground state encodes the correct propagation unitary U. One can easily check that $H_{\text{prop}}^{\text{prop}}$ is positive semidefinite and $H_{\text{prop}}^{\text{prop}} |\psi_{\text{hist}}\rangle = 0$, so $|\psi_{\text{hist}}\rangle$ is a ground state of $H_{\text{prop}}^{\text{prop}}$.

The other term of the Feynman-Kitaev Hamiltonian is
\[
H_{\text{in}} = |0\rangle \langle 0| \otimes \left(I - \sum_i |\phi_{\text{in,i}}\rangle \langle \phi_{\text{in,i}}| \right),
\]
where $|\phi_{\text{in,i}}\rangle$ is the state of the ith qubit of $|\phi_{\text{in}}\rangle$. H_{in} ensures that the input state is $|\phi_{\text{in}}\rangle$. It is also positive semidefinite and satisfies $H_{\text{in}} |\psi_{\text{hist}}\rangle = 0$.

A toy version of our protocol for demonstrating quantum advantage, without any technical detail, is as follows.

The verifier sends classical descriptions of H and $|\phi_{\text{in}}\rangle$ to the prover, and asks the prover to prepare N_M copies of the history state $\sum_{\lambda} (|0\rangle |\phi_{\text{in}}\rangle + |1\rangle U |\phi_{\text{in}}\rangle)$. For each copy, the verifier chooses whether to generate a sample or to verify the state, with equal probability. If she chooses to sample, then she asks the prover to measure the first qubit (i.e., the clock qubit) in the Z basis and all other qubits in the X basis, and a sample is generated if the first measurement outcome is -1 (i.e., the clock qubit is in $|1\rangle$). If the verifier chooses to verify, then she measures the energy of $H_{\text{prop}}^{\text{prop}} + H_{\text{in}}$ by quantum phase estimation. Finally, if every run of quantum phase estimation returns 0, which means that the fidelity between the measured state and the perfect history state is very high (the infidelity is inverse exponential in N_M if $N_M/2$ copies are chosen for verification) and therefore the measurement outcomes are close to the desired distribution P_{ideal}, she accepts and announces all of the samples obtained. Otherwise, she rejects.

One disadvantage of the verification part of this scheme is that it can only accept devices that provide history states with exponentially small infidelity. While near-term devices will be imperfect, they might still be able to sample from classically intractable distributions. Also, experimentalists may prefer to know how well their devices are performing and whether they are making progress, but a “yes or no” result cannot provide this kind of information. Finally, measurements of $H_{\text{prop}}^{\text{prop}} + H_{\text{in}}$ might be difficult, potentially requiring many measurements to determine the energy with sufficiently high precision, and quantum phase estimation is not feasible in the near term.

Therefore, inspired by the original single-step Feynman-Kitaev Hamiltonian, we propose a new verification scheme to replace the toy protocol. In the new scheme, different parameters are measured to lower bound the total variation distance between the sampled distribution P_{exp} and the desired distribution P_{ideal}, demonstrating quantum advantage according to [24, 32]. We also give an efficient near-term strategy for estimating those parameters.
B. Our Measurement Scheme

To begin, consider an arbitrary \((n+1)\)-qubit state
\[
\rho = \sum_i p_i |\psi_i\rangle \langle \psi_i|,
\]
where \(\{|\psi_i\rangle\}\) is the (unknown) eigenbasis of \(\rho\), and \(p_i\) is the probability corresponding to \(|\psi_i\rangle\). We can write
\[
|\psi_i\rangle = \alpha_i |0\rangle|\phi_i\rangle + \beta_i |1\rangle|\phi'_i\rangle
\]
(7)
where \(|\phi_i\rangle\) and \(|\phi'_i\rangle\) are \(n\)-qubit states and \(\alpha_i, \beta_i \in \mathbb{C}\) satisfy \(|\alpha_i|^2 + |\beta_i|^2 = 1\). Thus we can interpret \(\rho\) as a classical mixture of states \(|\psi_i\rangle\) as above with input states \(|\phi_i\rangle\) and output states \(|\phi'_i\rangle\).

The first parameter to be estimated in our scheme, the input fidelity, is defined as
\[
F_{\text{in}}(\rho) := \sum_i p_i |\alpha_i|^2 |\langle \phi_i | \phi_{\text{in}} \rangle|^2 / \sum_i p_i |\alpha_i|^2 .
\]
(8)
This quantifies the quality of initial state preparation. It plays a similar role to \(\langle H^\text{in} \rangle\) in the single-step Feynman-Kitaev Hamiltonian.

Another parameter is the probability of obtaining a \(-1\) outcome when measuring the clock qubit. We call this the probability of sampling:
\[
p_{\text{samp}} := \sum_i p_i |\beta_i|^2 .
\]
(9)
The last parameter is the de facto mean value of the non-Hermitian operator
\[
O_{10} := |1\rangle \langle 0| \otimes U ,
\]
(10)
whose expectation value in the state \(\rho\) is
\[
\text{Tr}[\rho O_{10}] = \sum_i p_i \alpha_i \beta_i^* \langle \phi'_i | U | \phi_i \rangle .
\]
(11)
We mainly consider its squared norm, \(\text{Tr}[\rho O_{10}]^2\). This quantity is related to the quality of propagation from \(|\phi\rangle\) to \(U |\phi\rangle\), so it plays a similar role to \(\langle H^\text{prop} \rangle\) in the single-step Feynman-Kitaev Hamiltonian.

As we show in Lemmas 1 and 2, \(F_{\text{in}}(\rho), \ p_{\text{samp}}, \) and \(\text{Tr}[\rho O_{10}]\) can all be estimated by single-qubit measurements, and the precision depends only on the number of samples measured, independent of the system size. Note that \(O_{10}\) is not Hermitian, so it is in general not an observable, but its de facto mean value (which is a complex number) can still be estimated. We discuss this in detail in the proof of Lemma 2.

We are interested in the output fidelity, defined as
\[
F_{\text{output}} := \sum_i p_i |\beta_i|^2 |\langle \phi'_i | U | \phi_{\text{in}} \rangle|^2 / \sum_i p_i |\beta_i|^2 .
\]
(12)
This quantifies the fidelity between the state being measured to generate samples from \(F_{\text{exp}}\) and the ideal state that can be measured to generate samples from \(F_{\text{ideal}}\), and thus can be directly related to the TVD between distributions, \(\text{TVD}(P_{\text{exp}}, P_{\text{ideal}})\). In Appendix S2, we explicitly relate \(F_{\text{output}}\) and \(\text{TVD}(P_{\text{exp}}, P_{\text{ideal}})\), and find the threshold fidelity 0.915 using the hardness result proved in [32], which gives a criterion for verified quantum advantage.

In Appendix S2, we also derive a lower bound for \(F_{\text{output}}\) in terms of \(\epsilon := 1/4 - \text{Tr}[\rho O_{10}]\), \(\epsilon' := 1/2 - p_{\text{samp}}\), and \(\epsilon'' := 1 - F_{\text{in}}(\rho)\), as follows.

Theorem 3 (Lower bound on the output fidelity).
\[
F_{\text{output}} \geq 1 - 16 \epsilon - 3\epsilon'' + \text{h.o.}
\]
(13)
where h.o. indicates higher-order terms in \(\epsilon, \epsilon', \epsilon''\).

If the device is close to perfect (which is the scenario we consider here), then \(\epsilon, \epsilon'', \ll 1\) and \(|\epsilon'| \ll 1\). Hence, the higher-order terms can be safely dropped, as is shown in detail in Appendix S2, and the above bound can be written as
\[
F_{\text{output}} \geq 16 \text{Tr}[\rho O_{10}]^2 + 3 F_{\text{in}}(\rho) - 6 .
\]
(14)

Using Theorem 3 with threshold fidelity 0.915, we conclude that the measurement outcomes sample from a classically intractable distribution provided \(4 \text{Tr}[\rho O_{10}]^2 \geq 0.988\) and \(F_{\text{in}}(\rho) \geq 0.988\).

Observe that the final lower bound does not contain first-order terms in \(\epsilon' = 1/2 - p_{\text{samp}}\). However, we still need to estimate \(p_{\text{samp}}\) to ensure that its value is sufficiently close to 1/2 that our first-order approximation still holds. Hence, we also require \(|1/2 - p_{\text{samp}}| \leq 0.012\).

It is clear from the above theorem that our protocol can also tolerate a small amount of noise in the measurements of the quantum state. To simplify the analysis, in the rest of this section, we make the perfect-measurement assumption: all measurements, whether performed by the prover in the trusted-measurement scheme or by the verifier in the state-transmission scheme, are noiseless. We postpone the discussion of noisy measurements to Appendix S3.

We claim that the number of copies of the history state needed to verify quantumness (i.e., the sample complexity) depends only on the precision and is not related to the system size \(n\). As a result, the prover only needs to perform \(O(n)\) trusted single-qubit measurements. These properties are formalized and proven in Lemmas 1 and 2.

Since the TVD between ideal and real output distributions is lower bounded by estimating \(F_{\text{in}}\) and \(\text{Tr}[\rho O_{10}]\), the sample complexity of the protocol is determined by how many copies of the state are required to estimate both quantities to a specific precision.

Lemma 1 (Sufficiency of single-qubit measurements for \(F_{\text{in}}\) and \(p_{\text{samp}}\)). A verifier capable of single-qubit measurements and polynomial-time classical computation can estimate \(F_{\text{in}}\) and \(p_{\text{samp}}\) in a mixed state \(\rho\) with error at most \(\delta_o\) using \(O(1/\delta_o^2)\) samples of \(\rho\).
Proof. First recall that the ideal input state $|\phi_{in}\rangle$ is a product state of either $|x\rangle := \frac{1}{\sqrt{2}}[(1+i)|0\rangle + (1-i)|1\rangle]$ or $|y\rangle := \frac{1}{\sqrt{2}}[(1+i)|0\rangle + e^{-i\pi/4}(1-i)|1\rangle]$. Their corresponding orthogonal states are $|x^+\rangle := \frac{1}{\sqrt{2}}[(1-i)|0\rangle - (1+i)|1\rangle]$ and $|y^+\rangle := \frac{1}{2}[(1-i)|0\rangle - e^{-i\pi/4}(1+i)|1\rangle]$, respectively.

If a pure state $|\psi_i\rangle = \alpha_i |0\rangle |\phi_i\rangle + \beta_i |1\rangle |\phi'_i\rangle$ is given, the fidelity of the input state, $\langle|\phi_i|\phi_{in}\rangle^2$, can be estimated as follows. We first measure the clock qubit in $|0\rangle$ or $|1\rangle$. More precisely, we can use Hoeffding's inequality to quantify the precision of estimating N_{in+} where the clock qubit measurement gives $+1$ is $\frac{N_{in+}}{\epsilon^2}$, valid measurements, independent of the system size. Moreover, since the single-step history state has equal weight between the $|0\rangle$ and $|1\rangle$ states of the clock qubit, N_{in+} should be close to $N_M/2$, where N_M is the total number of states measured.

We also describe how to estimate p_{samp}. Fortunately, this can already be obtained from N_{in+}. Since p_{samp} is just the probability of a Z-basis measurement of the first qubit returning -1, $\frac{N_{in+}}{\epsilon^2}$ is an unbiased estimator of p_{samp}. Similarly, the probability for the estimate of p_{samp} to have error more than δ_o is upper bounded as

$$\Pr[|p_{samp,M} - p_{samp}| \geq \delta_o] \leq 2 \exp\left(-2\frac{\delta_o^2 N_{in+}}{\epsilon^2}\right),$$

where $p_{samp,M}$ denotes the estimated value of p_{samp}. Since $N_M > N_{in+}$, we can always estimate p_{samp} to a higher precision than F_{in} when they are estimated together.

Proof. We can write

$$O_{10} = |1\rangle \langle 0| \otimes U = \frac{1}{2}(X - iY) \otimes U.$$

(18)

It can be difficult to measure O_{10} in general, because U typically decomposes into exponentially many Pauli terms. Fortunately, in our protocol, we have $U = \exp(-iT)$ for the ZZ-type Hamiltonian

$$H = \frac{\pi}{4} \sum_{k=1}^m H_k = \frac{\pi}{4} \sum_{\{ij\} \in NN} Z_i Z_j,$$

(19)

where each H_k is one of the $Z_i Z_j$s. As all H_k terms commute, we can decompose U into a product of evolutions for each term, and further express these evolutions in terms of trigonometric functions as every H_k is a Pauli string:

$$U = \exp\left(-i\frac{\pi}{4} \sum_{k=1}^m H_k\right) = \prod_{k=1}^m \exp\left(-i\frac{\pi}{4} H_k\right) = \prod_{k=1}^m \left(\cos\left(\frac{\pi}{4}\right) I - i\sin\left(\frac{\pi}{4}\right) H_k\right).$$

U is not a well-defined quantum observable since it is not Hermitian, but we can still define its de facto single-measurement outcome as a complex number u. Since all H_ks can be simultaneously measured, u can be inferred by evaluating the right-hand side of Eq. (20). More specifically, letting h_k denote the outcome of a single measurement of H_k, we have

$$u = \prod_{k=1}^m \left(\cos\left(\frac{\pi}{4}\right) - i\sin\left(\frac{\pi}{4}\right) h_k\right).$$

(21)

Since each H_k is $Z_i Z_j$, the verifier need only perform single-qubit Z measurements to obtain the h_ks.

In summary, to estimate the expected value of O_{10}, it suffices to measure the clock qubit in either the X or the Y basis, measure all other qubits in the Z basis to get the values of u, and repeat this process enough times to obtain the mean values of $X \otimes U$ and $Y \otimes U$ with sufficiently high precision.

To determine the number of samples required, we evaluate the probability that the measured value deviates from the expected value using concentration bounds. Note that O_{10} is not Hermitian, so its de facto measurement outcomes are complex numbers. Recall that $O_{10} = \frac{1}{2}(X \otimes U - iY \otimes U)$, so one sample of the value of O_{10} can be obtained by measuring two copies of the state of interest, and both the real and imaginary parts of the measurement outcome of O_{10} are at most $1/2$. Therefore, for any $0 < \delta_o < 1/2$, letting $\langle \phi \rangle_M$ be the average of

Lemma 2 (Sufficiency of single-qubit Pauli measurements for $|\langle O_{10} \rangle|^2$). A verifier capable of single-qubit measurements and polynomial-time classical computation can estimate $|\langle O_{10} \rangle|^2$ in a mixed state ρ with error at most δ_o, using $O(1/\delta_o^2)$ samples of ρ.

the measurement outcomes after running the experiment N_M times, and using Hoeffding’s inequality,
\[
\Pr \left[|\langle O_{10} \rangle_M^2 - |\langle O_{10} \rangle |^2 | \geq \delta_o^2 \right] \\
\leq \Pr \left[| \text{Re}[\langle O_{10} \rangle_M] - \text{Re}[\langle O_{10} \rangle] | \geq \delta_o \right] \\
+ \Pr \left[| \text{Im}[\langle O_{10} \rangle_M] - \text{Im}[\langle O_{10} \rangle] | \geq \delta_o \right] \\
\leq 4 \exp(-2\delta_o^2 N_M).
\]

In conclusion, to ensure that the error in the estimation of $|\langle O_{10} \rangle|^2$ is less than δ_o, with probability at least $1-p_e$, it suffices to measure O_{10} on $2N_M = O(\ln p_e/\delta_o^2)$ copies of the state, irrespective of the size of the system. Moreover, if p_e is a negligible function of the security parameter λ, then N_M only needs to scale linearly with λ. In other words, the probability of obtaining a wrong estimate of $|\langle O_{10} \rangle|^2$ converges to 0 exponentially with respect to the number of copies, N_M.

C. Our Protocol

In this subsection, we outline the behavior of the verifier and the prover in our protocol, and present the soundness and completeness conditions.

The verifier first provides the prover with descriptions of H and $|\phi_i\rangle$, and the desired number of copies of the history state N_M (whose value is determined in Theorems 4 and 6).

The verifier asks the prover to perform measurements to estimate (or measures by herself if state transmission is allowed) $|\langle O_{10} \rangle|^2$, N_{in+0}, and N_{in+} from the N_M samples to verify the correctness of the output state. She also asks the prover to generate samples by measuring the $|\phi\rangle$ state conditioned on obtaining -1 from measuring the clock state. Therefore, the verifier should generate two random bits for every state before measuring it.

The first bit, b_{sampling}, determines whether the verifier should ask the prover to generate samples ($b_{\text{sampling}} = 1$) or verify the output state ($b_{\text{sampling}} = 0$). If $b_{\text{sampling}} = 1$, the prover should measure the clock qubit in the standard basis and all system qubits in the Hadamard basis. If the clock is measured to be -1, and if the prover passes the verification protocol, then the outcomes of Hadamard measurements on system qubits are samples from the desired distribution.

When $b_{\text{sampling}} = 0$, the verifier must decide whether to use this copy to estimate $|\langle O_{10} \rangle|^2$ or $F_{\text{in}}(\rho)$ and p_{samp} by generating the other random bit b_{esttype}. If the second random bit, b_{esttype}, is 0, then she estimates $F_{\text{in}}(\rho)$ and p_{samp} by asking the prover to measure the clock qubit in the computational basis and all system qubits in their corresponding basis, updating the values of N_{in+0} and N_{in+}, as in the proof of Lemma 1. For $b_{\text{esttype}} = 1$, she estimates $|\langle O_{10} \rangle|^2$, so the prover should use the same strategy as in the proof of Lemma 2 to measure the value of U and, subsequently, the values of $X \otimes U$ or $Y \otimes U$.

In the end, the verifier estimates the parameters of interest. As in the proofs of Lemmas 1 and 2, we denote the estimated values of $|\langle O_{10} \rangle|^2$, p_{samp}, and F_{in} by $|\langle O_{10} \rangle|^2$, $p_{\text{samp},M}$, and $F_{\text{in},M}$, respectively. The verifier then decides to accept or not by checking whether the estimated values are within the acceptance ranges, which are $0.994 \leq 4|\langle O_{10} \rangle|^2 \leq 1$, $0.994 \leq F_{\text{in},M}(\rho) \leq 1$, and $0.494 \leq p_{\text{samp},M} \leq 0.506$. Note that here we choose more stringent values than the quantum advantage criterion in Theorem 3 such that if the fidelity of the output state is slightly below the quantum advantage criterion, the verifier will reject with high probability. This is related to the soundness of the protocol, which is discussed in detail in Theorem 6.

We now present the completeness and soundness properties of the protocol. A proof of quantumness is called complete if any honest prover with quantum computational ability (which in our case means being able to prepare the required history state $|\psi_{\text{hist}}\rangle$ with tolerable error, as explained in more detail below) is accepted with probability at least $2/3$. It is called sound if no prover with only classical polynomial-time computational ability can be accepted with probability higher than $1/3$.

Before showing the completeness theorem, we observe that any phase error in the clock qubit does not affect the correctness of sampling, which means that a family of history states can be and should be accepted. In fact, one can easily check that $F_{\text{in}}(|\psi_{\text{hist}}(\theta)\rangle \langle \psi_{\text{hist}}(\theta)|) = 1$ and $4|\text{Re}[\langle \psi_{\text{hist}}(\theta)|\psi_{\text{hist}}(\theta)\rangle O_{10}|^2 = 1$ for all $|\psi_{\text{hist}}(\theta)\rangle := \frac{1}{\sqrt{2}}(0 |\phi_{in}\rangle + e^{i\theta}|1\rangle U |\phi_{in}\rangle)$, where θ can be any real number. This immediately leads to the following completeness result.

Theorem 4 (Completeness). If the prover constructs $N_M = 3.5 \times 10^6$ copies of $|\psi_{\text{hist}}(\theta)\rangle$ with a fixed value of θ, then the verifier will accept with probability at least $2/3$.

Proof. We can calculate that $F_{\text{in}}(|\psi_{\text{hist}}(\theta)\rangle \langle \psi_{\text{hist}}(\theta)|) = 1$, $4|\text{Re}[\langle \psi_{\text{hist}}(\theta)|\psi_{\text{hist}}(\theta)\rangle O_{10}|^2 = 1$, and $p_{\text{samp}} = 1/2$. Therefore, it suffices to ensure the probabilities that the measurement errors exceed 0.0015 for $|\langle O_{10} \rangle|^2$, and 0.006 for $F_{\text{in},M}$ and p_{samp}, are all less than $1/3$.

Suppose that of N_M available samples, $N_M/2$ are used to generate samples, $N_M/4$ are used to estimate $|\langle O_{10} \rangle|^2$, and $N_M/4$ are used to estimate F_{in}. According to Lemmas 1 and 2, and letting $N_{in+} = N_M/8$, the probability of rejection is at most $\max\{2 \exp(-0.006^2 N_M/4), 4 \exp(-0.0015^2 N_M/2)\} = 0.08 < 1/3$.

However, in a real experiment, it is unlikely for a device to only make one specific error—a phase error on the clock qubit—and to otherwise produce $|\psi_{\text{hist}}(\theta)\rangle$ perfectly. Instead, every experimental platform might have its own pattern of noise with multiple types of errors. Our verification scheme also has some robustness against these more general errors. Here we characterize the robustness for the case where the device can prepare a noiseless initial state but its Hamiltonian evolution has some error.
Protocol to demonstrate quantum advantage by analog quantum simulation

Let H be a Hamiltonian to be simulated, and let $|\phi_{in}\rangle$ be the initial state of Hamiltonian evolution.

1. The verifier initializes counters $s_{(X,U)}, s_{(Y,U)}, N_X, N_Y, N_{in+}, N_{in+0}$ to 0. She sends N_M and classical descriptions of H and $|\phi_{in}\rangle$ to the prover.

2. The prover creates N_M copies of the correct history state $|\psi\rangle = 1/\sqrt{2}(|0\rangle|\phi_{in}\rangle + e^{i\gamma}|1\rangle U |\phi_{in}\rangle)$, where γ is a fixed arbitrary phase, and (only in the state-transmission scenario) sends them to the verifier.

3. For each state (in the trusted-measurement scenario) to be measured by the prover or (in the state-transmission scenario) to be received by the verifier:

 (a) The verifier generates 2 random bits b_{random} and b_{testtype}. If $b_{\text{random}} = 1$, the verifier will obtain a sample from the distribution. If $b_{\text{random}} = 0$ and $b_{\text{testtype}} = 0$, the verifier will check if the input state is correct. If $b_{\text{random}} = 0$ and $b_{\text{testtype}} = 1$, the verifier will check if the Hamiltonian evolution is correct.

 (b) If $b_{\text{random}} = 1$, the verifier measures (or asks the prover to measure) the first qubit in the standard basis. If the measurement outcome is -1, then she measures all other qubits in the Hadamard basis and stores the measured bit string.

 (c) If $b_{\text{random}} = 0$ and $b_{\text{testtype}} = 0$, the verifier measures (or asks the prover to measure) the first qubit in the standard basis. If the outcome is $+1$:

 i. The verifier updates the counter by $N_{in+} \leftarrow N_{in+} + 1$.

 ii. The verifier measures (or asks the prover to measure) every other qubit in the following basis: if its initial state is supposed to be $|x\rangle$, then measure it in the $\{|x\rangle, |x^+\rangle\}$ basis; otherwise, measure it in the $\{|y\rangle, |y^+\rangle\}$ basis.

 iii. If all outcomes are $+1$, she updates the counter as $N_{in+0} \leftarrow N_{in+0} + 1$.

4. (a) The verifier calculates $h_{X,U} = s_{(X,U)}/N_X$ and $h_{Y,U} = s_{(Y,U)}/N_Y$. She also calculates $\langle O_{10}\rangle_{M} = h_{X,U} - i h_{Y,U}$ and $4|\langle O_{10}\rangle_{M}|^2$.

(b) The verifier calculates $F_{in,M} = N_{in+0}/N_{in+}$.

5. If $4|\langle O_{10}\rangle_{M}|^2 > 0.988$ and $F_{in,M} > 0.988$, the verifier accepts the interaction and publishes the stored bit strings as the samples from the distribution. Otherwise, she rejects.

Theorem 5 (Completeness + Robustness). If the prover constructs $N_M = 3.5 \times 10^6$ copies of the noisy history state $|\psi_{\text{noisy}}\rangle := \frac{1}{\sqrt{2}}(|0\rangle|\phi_{in}\rangle + e^{i\theta} |1\rangle U |\phi_{in}\rangle)$ where $|\langle \phi' | U |\phi_{in}\rangle|^2 = 0.999$, then the verifier will accept the interaction with probability at least 2/3.

Proof. We can check that $F_{in}(|\psi_{\text{noisy}}\rangle) = 1$, $p_{\text{samp}} = 1/2$, and $4|\langle O_{10}\rangle_{M}|^2 = |\langle \phi' | U |\phi_{in}\rangle|^2 = 0.999$. Therefore, it suffices to estimate $4|\langle O_{10}\rangle_{M}|^2$ within precision 0.005 and F_{in} and p_{samp} within precision 0.006. This precision can be achieved using N_M copies of the prepared state, which gives success probability $0.73 > 2/3$.

Theorem 6 (Soundness). If the verifier accepts with probability at least 2/3 with $N_M = 3.5 \times 10^6$ copies of the state provided by the prover, then measurements of the state generate samples from a classically intractable distribution.

Proof. This theorem has almost been proven in Theorem 3, in which $F_{\text{output}} \geq 0.915$ is guaranteed if $F_{in} \geq 0.988$, $|p_{\text{samp}} - 1/2| \leq 0.012$, and $4|\langle O_{10}\rangle_{M}|^2 \geq 0.988$. Also, according to the proof of Theorem 4, with N_M samples, the error in the estimation of all parameters is lower than 0.006 with probability at least 2/3.

Therefore, if the verifier accepts with probability at least 2/3, which means that $F_{in,M} \geq 0.994$, $|p_{\text{samp}} - 1/2| \leq 0.006$, and $4|\langle O_{10}\rangle_{M}|^2 \geq 0.994$ with probability at least 2/3, then it is immediately clear that $F_{in} \geq 0.988$, $|p_{\text{samp}} - 1/2| \leq 0.012$, and $4|\langle O_{10}\rangle_{M}|^2 \geq 0.988$, which im-

The state $|\psi'_\text{hist}\rangle$ can be prepared as follows. Since H involves nearest-neighbor ZZ interactions in a square lattice, one can divide all qubits into two parts such that every ZZ term acts on qubits from different parts, as shown in Fig. 2. Call the filled dots part A, and the non-filled dots part B. Apply CNOT$_B$ gates before and after a $T/2$ time evolution, where CNOT$_B$ is controlled by the clock qubit and acts on the whole part B, followed by an X operation (denoted by X_0) on the clock qubit. This gives the state (up to normalization)

$$X_0 \text{CNOT}_B \exp(-\frac{i}{2}HT) \text{CNOT}_B(|0\rangle + |1\rangle) |\phi_m\rangle = |1\rangle \exp(-\frac{i}{2}HT) |\phi_m\rangle + |0\rangle X_B \exp(- \frac{i}{2}HT) X_B |\phi_m\rangle = |0\rangle \exp(\frac{i}{2}H_2T) |\phi_m\rangle + |1\rangle \exp(- \frac{i}{2}H_2T) |\phi_m\rangle,$$

(26)

where X_B denotes X operators acting on all qubits of part B.

One might be concerned that applying CNOT gates on only half of the lattice could be difficult with a near-term device. However, one can implement CNOT$_B$ using only a global controlled-Z (CZ) operator and local Hadamard operators H. For all qubits in B, we perform the operation $H \cdot CZ \cdot H$, which is exactly a CNOT$_B$ gate. For qubits in A, we do not apply Hadamard operators, so the controlled-Z operation only adds a phase to the second state. This phase is canceled out in the end, because this effective CNOT$_B$ operation is performed twice, and $Z^2 = I$.

Note that this echo approach works for more general Ising-type Hamiltonians, although they might not be easy to verify. A more general discussion can be found in Appendix S5.

In summary, to realize the proposed protocol, the experimental platform should have at least n system qubits and be capable of running single-qubit operations, nearest-neighbor ZZ interactions, and a global CZ operation, which is exactly the capability of our mostly analog + GCZ model of quantum computation. The quantum circuit for a 4-qubit toy model is shown in Fig. 3.

B. Prospects for Experimental Implementation

As explained in Section III A, our protocol uses the mostly analog + GCZ capability, which roughly contains two types of ingredients: first, an analog simulator capable of implementing a ZZ-type Hamiltonian along with a limited number of single-qubit rotations and measurements, and, second, a global CZ gate. The first ingredient is easily accessible in many different hardware platforms including trapped ions, neutral-atom arrays, and superconducting qubits. The second ingredient is not common in hardware architectures for digital quantum computing, but similar ideas have been explored in the context of routing and switching of single- or few-photon signals [42–44] using atomic excitations, and in the case of single-photon-controlled switches [27, 28], where a single photon

FIG. 2. The square lattice can be divided into two parts such that every ZZ operator acts on qubits from both parts.

The analysis in this section assumes noiseless measurements, which are impractical in real devices. We discuss the protocol’s tolerance of noisy measurements in Appendix S3.

III. THE HONEST-PROVER STRATEGY

A. History State Preparation

Our protocol features a rather efficient verification strategy, but for it to be practical, the prover must be able to prepare $O(1)$ copies of the single-step history state of the ZZ-type quantum simulation. A simple approach is to run the time-independent Hamiltonian evolution generated by

$$H_{\text{prep}} = |0\rangle \langle 0| \otimes 1 + |1\rangle \langle 1| \otimes H,$$

(23)

giving

$$\exp(-iH_{\text{prep}}T) \left[\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \langle \phi | \right] = |\psi_{\text{hist}}\rangle.$$

(24)

However, H_{prep} contains 3-body interaction terms. It is possible for near-term devices to implement a 3-body Hamiltonian (see for example Refs. [39–41]), but it may be challenging to realize H_{prep} in this way.

To circumvent the hardness of implementing 3-body interactions, we propose an echo-based method for preparing history states using only 1-qubit and 2-qubit operations.

One can easily prepare the history state of H by running a half-T evolution of H from the state

$$|\psi_{\text{hist}}\rangle \propto |0\rangle \exp\left(\frac{i}{2}HT\right) |\phi_m\rangle + |1\rangle \exp\left(-\frac{i}{2}HT\right) |\phi_m\rangle.$$

(25)

The state $|\psi_{\text{hist}}\rangle$ can be prepared as follows. Since H involves nearest-neighbor ZZ interactions in a square lattice, one can divide all qubits into two parts such that every ZZ term acts on qubits from different parts, as shown in Fig. 2. Call the filled dots part A, and the non-filled dots part B. Apply CNOT$_B$ gates before and after a $T/2$ time evolution, where CNOT$_B$ is controlled by the clock qubit and acts on the whole part B, followed by an X operation (denoted by X_0) on the clock qubit. This gives the state (up to normalization)

$$X_0 \text{CNOT}_B \exp(-\frac{i}{2}HT) \text{CNOT}_B(|0\rangle + |1\rangle) |\phi_m\rangle = |1\rangle \exp(-\frac{i}{2}HT) |\phi_m\rangle + |0\rangle X_B \exp(- \frac{i}{2}HT) X_B |\phi_m\rangle = |0\rangle \exp(\frac{i}{2}H_2T) |\phi_m\rangle + |1\rangle \exp(- \frac{i}{2}H_2T) |\phi_m\rangle,$$

(26)

where X_B denotes X operators acting on all qubits of part B.

One might be concerned that applying CNOT gates on only half of the lattice could be difficult with a near-term device. However, one can implement CNOT$_B$ using only a global controlled-Z (CZ) operator and local Hadamard operators H. For all qubits in B, we perform the operation $H \cdot CZ \cdot H$, which is exactly a CNOT$_B$ gate. For qubits in A, we do not apply Hadamard operators, so the controlled-Z operation only adds a phase to the second state. This phase is canceled out in the end, because this effective CNOT$_B$ operation is performed twice, and $Z^2 = I$.

Note that this echo approach works for more general Ising-type Hamiltonians, although they might not be easy to verify. A more general discussion can be found in Appendix S5.

In summary, to realize the proposed protocol, the experimental platform should have at least n system qubits and be capable of running single-qubit operations, nearest-neighbor ZZ interactions, and a global CZ operation, which is exactly the capability of our mostly analog + GCZ model of quantum computation. The quantum circuit for a 4-qubit toy model is shown in Fig. 3.
Qubits cannot be achieved without $M \geq N$ excitations of the bus mode. The bus-system interaction must, instead, be dispersive so that the presence of excitations in the bus mode gives rise to phase shifts of simulator qubits.

While atom-cavity interactions in the single-photon strong-coupling regime are possible in atomic cavity QED, coupling strengths in the so-called strong dispersive regime which are strong enough to produce an off-resonant CZ gate with only a few photons are typically only achievable with superconducting qubits coupled to microwave cavities and superconducting qubits [45]. Alternative implementations may also exist using a confined phonon mode, such as the vibrational modes of an ion trap [46]. Lastly, making use of strong dispersive couplings to implement a globally controlled Z gate between a single excitation in the bus cavity and all of the system qubits would require building the entire simulator inside or attached to the single bus cavity. While this is certainly possible in principle, it is a bespoke feature that would need to be incorporated into the simulator as part of its initial design.

Because of the stringent hardware constraints for the “bus” method of implementing the clock qubit, it is worth considering other methods in which the operation of the clock qubit is more separated from the operation of the quantum simulator under test. Separating these two means that instead of being used to switch the simulator qubits directly, the clock qubit must now switch the control signals for single-qubit Z gates on and off. This architecture, shown schematically in Fig. 5, provides significantly more separation between the design constraints of the simulator and those of the clock qubit, but it requires the clock qubit to control a very high-performance quantum switch. In particular, it is not sufficient to use a classical switch with an extremely low switching energy provided by the clock qubit; instead, the switch itself must be able to exist in a superposition between on and off. Such a superposition switching state is extremely
challenging to achieve with large control signals since there are many opportunities to lose a photon (and thus destroy the superposition). Compared to other architectures, superconducting qubits typically require very low switching power—as low as a few photons—so they are a likely candidate for implementation of the necessary quantum switch. For example, a broadband and high-dynamic-range switch such as the one demonstrated in Pechal et al. [47] could be converted to use, e.g., a galvanically coupled fluxonium qubit [48] as the switching element. In the optical domain, single-photon controlled switches have been implemented using atomic ensembles [27] and self-assembled semiconductor quantum dots [28] as the switching medium.

IV. SUMMARY & DISCUSSIONS

In summary, we have proposed a novel scheme for demonstrating quantum computational ability based on verification of analog quantum simulation. The verifier in the scheme need only be capable of polynomial-time classical computation. The prover can be an analog quantum simulator with the additional power of single-qubit operations and a specific global CZ gate, and only needs to be able to prepare a constant number of samples, independent of the system size. Additionally, we assume the prover can perform trusted measurements. We also described some possible near-term experimental implementations of the global CZ gate.

Hangleiter et al. [23] propose another certification scheme that was applied in [24] to verify measurement outcomes using only local measurements. The method in [23] can even verify BQP-complete computation encoded through the Feynman-Kitaev mapping, but it requires $O(n^2)$ samples of the output state for the $ZZ + Z$ Hamiltonian evolution, which is more expensive than our constant-sample-complexity scheme. Our improvement is achieved by a combination of the single-step Feynman-Kitaev encoding and the commuting nature of the $ZZ + Z$ Hamiltonian (or the ZZ Hamiltonian when single-qubit Zs are absorbed). In fact, our protocol can verify all commuting Hamiltonians with constant sample complexity if entangled multi-qubit measurements are allowed, but it is unclear whether there are also near-term honest-prover strategies in this more general case. We discuss this in more detail in Appendix S5.

It is worth noting that there can be a tradeoff between the verification cost and the difficulty of experimental realization. Our verification protocol presented in Section II does not rely on the condition that in H, the coefficient of every term Z_iZ_j is the same ($\pi/4$), but this uniformity makes it possible to simulate the system using $2^{O(\sqrt{n})}$ time classical computation, so that $n = O(\lambda^2)$. If instead the coefficients are randomly selected, then the above simulation is no longer available, and we can conjecture the classical simulation cost to be $2^{\Omega(n)}$ as in [36]. In this case, the number of qubits, the number of single-qubit measurements, and the classical computational cost can all be reduced to $O(\lambda)$—at the cost of more difficult history state preparation—since non-uniform Hamiltonian evolution is in general more challenging.

As the main technical tool of this work, we studied a simplified single-step Feynman-Kitaev construction and developed a scheme to lower bound the output fidelity F_{output} (and subsequently the TVD between ideal and experimental distributions) using three parameters. In fact, the lower bound holds for any unitary U, but the three parameters may not be efficiently estimatable in general. One might ask if we can simply combine the protocol of Fitzsimons et al. [16] with our single-step construction to verify arbitrary quantum operations, such as non-commuting Hamiltonian evolutions or digital quantum circuits. We do not have a definite answer, but this seems difficult for most hard-to-simulate unitaries because they generally decompose into exponentially many Pauli terms and, unlike $ZZ + Z$ or ZZ Hamiltonian evolution, their de facto measurement outcome cannot be efficiently deduced from $\text{poly}(\lambda)$ single-qubit measurements.

Experimental implementation of the protocol would be of significant interest. Although it might be difficult to implement quantum communication in the adversarial scenario, our protocol could be a useful tool for experimentalists to benchmark the quality of their devices, because the quality of initial state preparation and that of Hamiltonian evolution can be estimated separately and precisely. As shown in Appendix S2, if the noise pattern is known to be fully stochastic instead of coherent, the experimentalist only needs to achieve output fidelity 0.708, which is significantly easier than the bound of 0.915 in the fully coherent case.

Finally, our approach may have applications to realizing near-term quantum advantage even in devices capable of digital quantum computation. Reconfigurable atom arrays [49, 50] may be one such system. In these arrays, physical qubits (realized by individual neutral atoms con-
trolled by optical tweezers) can be moved accurately on the 2-D plane in parallel, and transversal CZ gates are available. Therefore, our global CZ gate can be implemented as follows. One can first prepare a large n-qubit GHZ state that behaves as the clock qubit. The GHZ state preparation can be implemented by either performing a sequence of CNOT gates or using constant-depth unitary operations interleaved with measurements and classical computations [51]. One can then move all qubits in the GHZ state such that every system qubit pairs with a GHZ qubit. Next, using the Levine-Pichler gate [52], CZ gates can be implemented in parallel for every pair of system and GHZ qubits, effectively implementing the global CZ acting on all system qubits. There is also a multi-step solution to mitigate the hardness of GHZ preparation: since our system is a \sqrt{n} x \sqrt{n} square lattice, it suffices to prepare a 1-D \sqrt{n}-qubit GHZ state, and apply the transversal CZ gate n times to achieve the same global CZ gate. This proposal is depicted in Fig. 6.

While digital reconfigurable atom arrays are capable of even more powerful quantum operations than the mostly-analog + GCZ commuting model, it may still be worth performing our proposed experiment using Rydberg atoms. Running our verification protocol gives several quantitative performance measures (F_{in} and $|\langle O_{10}\rangle|^2$), and can thus be used to benchmark the performance of this fast-developing platform in a sample-efficient manner.

ACKNOWLEDGMENTS

We thank Wentai Deng and Ruozhen Gong for helpful discussions. This work received support from the National Science Foundation (QLCI grant OMA-2120757). Z.L. acknowledges financial support by the QuICS Lanczos Graduate Fellowship. D.D. acknowledges support by the NSF GRFP under Grant No. DGE-1840340, an LPS Quantum Graduate Fellowship, and the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Quantum Testbed Pathfinder program (award number DE-SC0019040). A.V.G. was also supported in part by AFOSR, DoE ASCR Accelerated Research in Quantum Computing program (award No. DE-SC0020312), DoE ASCR Quantum Testbed Pathfinder program (awards No. DE-SC0019040 and No. DE-SC0024220), NSF STAG program, AFOSR MURI, and DARPA SAVaNT ADVENT. Support is also acknowledged from the U.S. Department of Energy, Office of Science, National Quantum Information Science Research Centers, Quantum Systems Accelerator. D.H. acknowledges funding from the US department of defense through a QuICS Hartree fellowship. Y.K.L. acknowledges support from NIST, and from AFOSR MURI Scalable Certification of Quantum Computing Devices and Networks.

APENDICES

In these appendices, we present details omitted from the main text. In Appendix S1, we state and briefly explain the conjectures used to establish computational hardness \cite{bermejo2019phaselift,ringbauer2020quantum}. In Appendix S2, we lower bound the output fidelity and the total variation distance between distributions using the parameters in our verification scheme. In Appendix S3, we discuss noisy measurements and estimate the noise rate that both verification and sampling can tolerate. In Appendix S4, we discuss an additional soundness property of our protocol against correlated output states using martingale inequalities. In Appendix S5, we generalize the echo method presented in the main text to more general Ising-type Hamiltonians.

Appendix S1: Conjectures for the classical hardness

As mentioned in the main text, the classical hardness of X-basis sampling from a state produced by $(ZZ + Z)$-Hamiltonian evolution is proven in Bermejo-Vega et al. \cite{bermejo2019phaselift} and Ringbauer et al. \cite{ringbauer2020quantum} under several plausible conjectures, which we review in this section.

Conjecture 1 (Polynomial Hierarchy—Conjecture 1 in \cite{bermejo2019phaselift}). The polynomial hierarchy is infinite.

The second conjecture considers the hardness of a random nearest-neighbor Ising model on an $n \times m$ square lattice where m grows at least linearly with n, with the Hamiltonian

$$H^{(\alpha, \beta)} = \sum_{i,j} \frac{\pi}{4} Z_i Z_j - \sum_i h^{(\alpha, \beta)}_i Z_i,$$ \hspace{1cm} (S1.1)

where $h^{(\alpha, \beta)}_i = \frac{\pi}{4} - \frac{\alpha_i + \beta_i}{2}$, with $\alpha_i \in \{0, \pi\}$, $\beta_i \in \{0, \pi/4\}$ chosen uniformly at random.

Conjecture 2 (Average-case complexity—Conjecture 2 in \cite{bermejo2019phaselift} and conjecture in \cite{ringbauer2020quantum}). Let $Z^{(\alpha, \beta)} := \text{Tr}(e^{iH^{(\alpha, \beta)}})$. Approximating $|Z^{(\alpha, \beta)}|^2$ up to relative error $1/4 + o(1)$ for any 0.001 fraction of the field configurations is \#P-hard.

The last conjecture is about anti-concentration of the output distribution. Consider a one-dimensional nearest-neighbor n-qubit $\Theta(n)$-depth random circuit

$$C = \prod_{i=1}^{n-1} CZ_{i,i+1} \prod_{i=1}^{n} Z_i^{c_i} e^{-i\pi d_i Z_i} H_i,$$ \hspace{1cm} (S1.2)

where c_i, d_i are uniformly randomly chosen from $\{0, 1\}$ and H_i are Hadamard gates.

Conjecture 3 (Anti-concentration—Conjecture 3 in \cite{bermejo2019phaselift}). For the random circuit C described above,

$$\Pr_{C} \left(|x| C |0\rangle^{\otimes n} |^2 \geq \frac{1}{2^n} \right) \geq \frac{1}{e},$$ \hspace{1cm} (S1.3)

for any binary string $x \in \{0, 1\}^n$.

Appendix S2: Relating the parameters to the total variation distance

In this appendix, we derive an upper bound on the total variation distance of interest, TVD($P_{\text{ideal}}, P_{\text{real}}$), in terms of the parameters $F_{\text{in}}, |\langle O_{10}\rangle|^2$, and p_{samp}. We use the same definition of ρ and $|\psi_i\rangle$ as in Eqs. (6) and (7).

First, we relate the TVD and the output fidelity

$$F_{\text{out}}(\rho) := \sum_i p_i |\beta_i|^2 |\langle \phi_i^r | U | \phi_{\text{in}} \rangle|^2 \sum_i p_i |\beta_i|^2,$$ \hspace{1cm} (S2.1)

This is the fidelity between the state used for sampling, ρ, and $U | \phi_{\text{in}} \rangle$, since the state corresponding to the “output” of the computation is $| \phi_i^r \rangle$ for all i.

In the second step, we derive a lower bound on the state fidelity in terms of the parameters. We lower bound $F_{\text{out}}(\rho)$ using only the parameters $\text{Tr}[\rho O_{10}]$ and $F_{\text{in}}(\rho)$. We find

$$F_{\text{out}}(\rho) \geq 16 |\text{Tr}[\rho O_{10}]|^2 + 3F_{\text{in}}(\rho) - 6$$ \hspace{1cm} (S2.2)

up to higher-order terms. As a sanity check, if the history state is perfectly prepared, both $|\text{Tr}[\rho O_{10}]|^2$ and F_{in} should take their maximum values, which are $1/4$ and 1 (as shown later in this section), giving $F_{\text{out}} = 1$ as expected.
1. Relating the total variation distance to the output fidelity

To demonstrate quantum advantage, we generate samples from the desired distribution \(P_{\text{ideal}} \) defined by \(U |\phi_{\text{in}}\rangle \) with total variation distance (TVD) less than \(\delta = 0.292 \) as per Ringbauer et al. [32]. Therefore, we would like to relate the fidelity \(F_{\text{out}} \) obtained from the measurements to the distance between the distribution \(P_{\text{real}} \) corresponding to the classical mixture of \(|\phi_i^\prime\rangle \)s (i.e., \(\sum \beta_i |\phi_i^\prime\rangle \langle \phi_i^\prime| \)) and the ideal distribution \(P_{\text{ideal}} \).

Let \(\| \cdot \|_\text{Tr} \) be the trace norm (Schatten 1-norm). The TVD between probability distributions generated by measurements on quantum states is upper bounded by the trace distance between those states, which is in turn related to the fidelity:

\[
\text{TVD}(P_{\text{ideal}}, P_{\text{real}}) \leq \frac{1}{2} \left\| U |\phi_{\text{in}}\rangle \langle \phi_{\text{in}}| U^\dagger - \sum_i p_i |\beta_i|^2 |\phi_i^\prime\rangle \langle \phi_i^\prime| \right\|_\text{Tr}
\]

\[
\leq \sqrt{1 - F(U |\phi_{\text{in}}\rangle \langle \phi_{\text{in}}| U^\dagger, \sum_i p_i |\beta_i|^2 |\phi_i^\prime\rangle \langle \phi_i^\prime|)}
\]

\[
= \sqrt{1 - \sum_i p_i |\beta_i|^2 F(|\phi_i^\prime\rangle, U |\phi_{\text{in}}\rangle)} = \sqrt{1 - F_{\text{out}}}.
\]

Thus, \(\text{TVD}(P_{\text{ideal}}, P_{\text{real}}) \leq 0.292 \) is satisfied if

\[
F_{\text{out}} \geq 0.915 > 1 - \delta^2,
\]

where we use \(\delta = 0.292 \).

We also observe that the output fidelity requirement can be relaxed to 0.708 if the noise in the system is known to be fully stochastic. We discuss this in Appendix S2.3.

2. Lower bounding the output fidelity using the parameters

As a mathematical tool, we define an inner product based on the (not explicitly known) diagonalization of \(\rho \). Suppose \(\rho = \sum_{i=1}^{2^{n+1}} p_i |\psi_i\rangle \langle \psi_i| \) and there exists an integer \(N_{\neq 0} > 1 \) such that \(p_i > 0 \) for all \(1 \leq i \leq N_{\neq 0} \) and \(p_i = 0 \) for all \(N_{\neq 0} < i \leq 2^{n+1} \). The inner product \(\langle \cdot, \cdot \rangle_\rho \) is defined for the \(N_{\neq 0} \)-dimensional complex vector space \(V = \mathbb{C}^{N_{\neq 0}} \) as

\[
\langle \tilde{A}, \tilde{B} \rangle_\rho := \sum_{1 \leq i \leq N_{\neq 0}} p_i A_i B_i^*,
\]

where \(\tilde{A} := (A_1, A_2, \ldots, A_{N_{\neq 0}})^T \) and \(\tilde{B} := (B_1, B_2, \ldots, B_{N_{\neq 0}})^T \) are vectors in \(V \). It is straightforward to verify that for any valid density matrix \(\rho \), the vector space \(V \) equipped with \(\langle \cdot, \cdot \rangle_\rho \) is an inner product space. Therefore, one can define the norm of a vector in \(V \) as

\[
\| \tilde{A} \|^2 := \langle \tilde{A}, \tilde{A} \rangle_\rho = \sum_i p_i |A_i|^2.
\]

Next, we define several vectors to help represent the state and the parameters: the input fidelity vector \(\vec{f}_{\text{in}} \), the propagation fidelity vector \(\vec{f}_{\text{prop}} \), the output fidelity vector \(\vec{f}_{\text{out}} \), the \(\alpha \) coefficient vector \(\vec{\alpha} \), the \(\beta \) coefficient vector \(\vec{\beta} \), and the \(\gamma \) coefficient vector \(\vec{\gamma} \) for a given mixed state \(\rho \), namely

\[
\vec{f}_{\text{in}} := (\ldots, |\phi_1\rangle |\phi_{\text{in}}\rangle, \ldots)^T,
\]

\[
\vec{f}_{\text{prop}} := (\ldots, |\phi_i^\prime\rangle |U\langle \phi_i|, \ldots)^T,
\]

\[
\vec{f}_{\text{out}} := (\ldots, |\phi^\prime_i\rangle |U\langle \phi_{\text{in}}|, \ldots)^T,
\]

\[
\vec{\alpha} := (\ldots, \alpha_1, \ldots)^T,
\]

\[
\vec{\beta} := (\ldots, \beta_1, \ldots)^T,
\]

\[
\vec{\gamma} := (\ldots, \alpha_1 \beta_1^*, \ldots)^T.
\]
respectively. Note that \(\|\gamma\|^2 \leq 1/4 \) and \(\|\vec{f}_{\text{in}}\|^2, \|\vec{f}_{\text{prop}}\|^2, \|\vec{f}_{\text{out}}\|^2 \leq 1 \) since \(|\alpha_i|^2 + |\beta_i|^2 = 1 \), \(\sum_i p_i = 1 \), and fidelities are at most 1.

Observe that \(p_{\text{amp}} \) is the same as \(\|\vec{\alpha}\|^2 \). Another parameter, \(\text{Tr}[\rho_{O_{10}}] \), can be written as the inner product of two of the above vectors:

\[
\text{Tr}[\rho_{O_{10}}] = \sum_i p_i \alpha_i \beta_i^* \langle \phi_i^' | U | \phi_i \rangle = \langle \vec{\gamma}, \vec{f}_{\text{prop}} \rangle_{\rho}.
\]

(S2.8)

Using the Cauchy-Schwarz inequality, we find

\[
\|\text{Tr}[\rho_{O_{10}}]\|^2 = |\langle \vec{\gamma}, \vec{f}_{\text{prop}} \rangle|^2 \leq \|\vec{\gamma}\|^2 \|\vec{f}_{\text{prop}}\|^2 \leq 1/4.
\]

(S2.9)

Since \(\|\gamma\|^2 \leq 1/4 \) and \(\|\vec{f}_{\text{prop}}\|^2 \leq 1 \), the above inequality implies that

\[
4 \|\gamma\|^2 \geq \|\text{Tr}[\rho_{O_{10}}]\|^2,
\]

\[
\|\vec{f}_{\text{prop}}\|^2 \geq 4 \|\text{Tr}[\rho_{O_{10}}]\|^2.
\]

(S2.10)

If the prover performs well, then the estimated value \(\text{Tr}[\rho_{O_{10}}] \) should be close to 1/4, \(\|\vec{\alpha}\|^2 \) should be close to 1/2, and \(\vec{F}_{\text{in}} \) should be close to 1. Therefore we write them as \(\text{Tr}[\rho_{O_{10}}] = 1/4 - \epsilon, \|\vec{\alpha}\|^2 = 1/2 + \epsilon' = 1 - \|\vec{\beta}\|^2 \), and \(\vec{F}_{\text{in}} = 1 - \epsilon'' \), where \(\epsilon, \epsilon', \epsilon'' \) are all small and \(\epsilon, \epsilon'' > 0 \). This also implies that \(\|\gamma\|^2 = \sum_i p_i |\alpha_i|^2 |\beta_i|^2 \geq 1/4 - \epsilon \) and \(\|\vec{f}_{\text{prop}}\|^2 \geq 1 - 4\epsilon \).

Recall that our final objective is to lower bound \(\vec{F}_{\text{out}}(\rho) \). We start by giving a lower bound on \(\|\vec{f}_{\text{in}}\|^2 \) in terms of \(\vec{F}_{\text{in}} \).

First, the Cauchy-Schwarz inequality gives

\[
\vec{F}_{\text{in}}(\rho) = \frac{1}{\|\vec{\alpha}\|^2} \sum_i p_i |\alpha_i|^2 \| \langle \phi_i^' | U | \phi_i \rangle \|^2 \\
\leq \frac{1}{\|\vec{\alpha}\|^2} \sum_i p_i |\alpha_i|^2 | \langle \phi_i^' | U | \phi_i \rangle | \\
\leq \frac{1}{\|\vec{\alpha}\|^2} \left(\sum_i p_i |\alpha_i|^4 \right)^{1/2} \|\vec{f}_{\text{in}}\|.
\]

Plugging in the identity \(|\alpha_i|^4 = |\alpha_i|^2 - |\alpha_i|^2 |\beta_i|^2 \), we get

\[
\vec{F}_{\text{in}}(\rho) \leq \frac{1}{\|\vec{\alpha}\|^2} (\|\vec{\alpha}\|^2 - \|\gamma\|^2)^{1/2} \|\vec{f}_{\text{in}}\|.
\]

As before, suppose that \(\|\gamma\|^2 = 1/4 - \epsilon \) and \(\|\vec{\alpha}\|^2 = 1/2 + \epsilon' \). This implies that

\[
\vec{F}_{\text{in}}(\rho) \leq \frac{1}{\frac{1}{2} + \epsilon'} \left(\frac{1}{2} + \epsilon' - \frac{1}{2} + \epsilon \right)^{1/2} \|\vec{f}_{\text{in}}\|.
\]

We can rewrite this as

\[
\|\vec{f}_{\text{in}}\| \geq \frac{\frac{1}{2} + \epsilon'}{\sqrt{\frac{1}{2} + \epsilon' + \epsilon} \vec{F}_{\text{in}}(\rho) = (1 - 2\epsilon) \vec{F}_{\text{in}} + O(\epsilon^2) + O(\epsilon^2) + O(\epsilon \epsilon').
\]

Next, since \(|\langle \phi_i^' | U | \phi_{i'n} \rangle|^2 \geq |\langle \phi_i^' | U | \phi_i \rangle|^2 \| \langle \phi_i | U | \phi_{i'n} \rangle \|^2 \), we have

\[
\vec{F}_{\text{out}}(\rho) \geq \frac{1}{\|\vec{\beta}\|^2} \sum_i p_i |\beta_i|^2 \| \langle \phi_i^' | U | \phi_i \rangle \|^2 \| \langle \phi_i | U | \phi_{i'n} \rangle \|^2.
\]

Note that for any \(\delta_1, \delta_2 \in [0, 1] \), we have \((1 - \delta_1)(1 - \delta_2) \geq 1 - \delta_1 - \delta_2 = (1 - \delta_1) + (1 - \delta_2) - 1 \). Using this inequality, we can write

\[
\vec{F}_{\text{out}}(\rho) \geq \frac{1}{\|\vec{\beta}\|^2} \sum_i p_i |\beta_i|^2 \left(|\langle \phi_i^' | U | \phi_i \rangle|^2 + |\langle \phi_i | U | \phi_{i'n} \rangle|^2 - 1 \right) \\
= -1 + \frac{1}{\|\vec{\beta}\|^2} \sum_i p_i (1 - |\alpha_i|^2) \left(|\langle \phi_i^' | U | \phi_i \rangle|^2 + |\langle \phi_i | U | \phi_{i'n} \rangle|^2 \right) \\
= -1 + \frac{1}{\|\vec{\beta}\|^2} \left(\|\vec{f}_{\text{prop}}\|^2 + \|\vec{f}_{\text{in}}\|^2 \right) - \frac{1}{\|\vec{\beta}\|^2} \sum_i p_i |\alpha_i|^2 |\phi_i^' | U | \phi_i \rangle|^2 - \frac{\|\vec{\alpha}\|^2}{\|\vec{\beta}\|^2} \vec{F}_{\text{in}}(\rho).
\]
The second-to-last term can be bounded in terms of \(\| \vec{f}_{\text{prop}} \| \), using the same argument we used to relate \(F_{\text{in}}(\rho) \) and \(|\vec{f}_{\text{in}}| \). This yields

\[
\frac{1}{\| \vec{\beta} \|^2} \sum_i p_i |\alpha_i|^2 |\langle \phi_i | U | \phi_i \rangle|^2 \leq \frac{\sqrt{\frac{1}{2} + \epsilon' - \frac{1}{2} + \epsilon}}{\frac{1}{2} - \epsilon'} \| \vec{f}_{\text{prop}} \| = (1 + 4\epsilon' + 2\epsilon) \| \vec{f}_{\text{prop}} \| + O(\epsilon^2) + O(\epsilon^2) + O(\epsilon\epsilon').
\] (S2.11)

Plugging this into the preceding equation, we get

\[
F_{\text{out}}(\rho) \geq -1 + \frac{1}{\| \vec{\beta} \|^2} \left(\| \vec{f}_{\text{prop}} \|^2 + \| \vec{f}_{\text{in}} \|^2 \right) - \frac{\sqrt{\frac{1}{2} + \epsilon' - \frac{1}{2} + \epsilon}}{\frac{1}{2} - \epsilon'} \| \vec{f}_{\text{prop}} \| - \frac{\| \vec{\alpha} \|^2}{\| \vec{\beta} \|^2} F_{\text{in}}(\rho)
\]

\[
\geq -1 + \frac{2}{1 - 2\epsilon'} \left(\| \vec{f}_{\text{prop}} \|^2 + \| \vec{f}_{\text{in}} \|^2 \right) - \frac{\sqrt{\frac{1}{2} + \epsilon' - \frac{1}{2} + \epsilon}}{\frac{1}{2} - \epsilon'} \| \vec{f}_{\text{prop}} \| - \frac{\| \vec{\alpha} \|^2}{\| \vec{\beta} \|^2} F_{\text{in}}(\rho)
\]

\[
= 1 - 16\epsilon - 3\epsilon'' + \text{h.o.,}
\] (S2.12)

where h.o. indicates higher-order terms in \(\epsilon, \epsilon', \epsilon'' \). Numerically, this first-order approximation of the lower bound has absolute error at the \(10^{-3} \) order of magnitude if all of \(\epsilon, |\epsilon'|, \epsilon'' \) are upper bounded by 0.02. We have thus established Theorem 3.

3. Relaxing the fidelity requirement for fully stochastic noise models

We notice that inequality (S2.3) can be improved to get a bound that approaches

\[
\text{TVD}(P_{\text{ideal}}, P_{\text{real}}) \leq 1 - F_{\text{out}}
\] (S2.13)

in cases where the errors are stochastic rather than coherent. Let \(\rho_{\text{real}} := \sum_i p_i |\beta_i|^2 |\phi_i \rangle \langle \phi_i | \) be the real state (that is, the state prepared in the experiment), and let \(\sigma = |\psi \rangle \langle \psi | \) be the ideal pure state. The real state \(\rho_{\text{real}} \) has fidelity \(F_{\text{out}} = \langle \psi | \rho_{\text{real}} | \psi \rangle = 1 - \delta_f \) (where \(\delta_f \) is the “infdidelity”).

Furthermore, assume that \(\rho_{\text{real}} \) is mixed, in the sense that \(\text{Tr}(\rho_{\text{real}}^2) = 1 - \delta_p \) (where \(\delta_p \) is the “impurity”). This assumption can be checked by estimating \(\text{Tr}(\rho_{\text{real}}^2) \) using either randomized measurements [53] or the swap test. (The former method is appropriate for small quantum systems where the experimenter has a relatively limited degree of control; the latter method is capable of handling much larger quantum systems, but requires more sophisticated quantum control.)

Define projectors \(\Pi_0 := |\psi \rangle \langle \psi | \) and \(\Pi_1 := I - \Pi_0 \). Write the state in block-diagonal form as \(\rho_{\text{real}} = \rho_{00} + \rho_{01} + \rho_{10} + \rho_{11} \), where \(\rho_{ab} := \Pi_a \rho_{\text{real}} \Pi_b \) for \(a, b \in \{0, 1\} \).

Let \(\| \cdot \|_F \) be the Frobenius norm (i.e., the Schatten 2-norm). Then we can upper bound the trace distance between \(\rho_{\text{real}} \) and \(\sigma \) as follows:

\[
\| \rho_{\text{real}} - \sigma \|_\text{Tr} \leq \| \rho_{00} - \sigma \|_\text{Tr} + \| \rho_{11} \|_\text{Tr} + \| \rho_{01} \|_\text{Tr} + \| \rho_{10} \|_\text{Tr}
\]

\[
= 2\delta_f + 2\| \rho_{01} \|_\text{Tr}.
\] (S2.14)

We have

\[
\| \rho_{01} \|_\text{Tr} = \| \rho_{01} \|_F
\]

\[
= \frac{1}{\sqrt{2}} \left(\text{Tr}(\rho_{\text{real}}^2) - \| \rho_{00}\|^2_F - \| \rho_{11}\|^2_F \right)^{1/2}
\]

\[
\leq \frac{1}{\sqrt{2}} \left(\text{Tr}(\rho_{\text{real}}^2) - \| \rho_{00}\|^2_F \right)^{1/2}
\]

\[
= \frac{1}{\sqrt{2}} (1 - \delta_p - (1 - \delta_f)^2)^{1/2}
\]

\[
= \frac{1}{\sqrt{2}} (2\delta_f - \delta^2_p - \delta_p)^{1/2}.
\] (S2.15)

Therefore,

\[
\frac{1}{2} \| \rho_{\text{real}} - \sigma \|_\text{Tr} \leq \delta_f + \sqrt{\delta_f - \delta^2_f/2 - \delta_p/2}.
\] (S2.16)
This bound can be compared to inequalities (S2.3) and (S2.13). When ρ is a pure state, we have $\delta_p = 0$, so the above bound is roughly $\sqrt{\delta_f}$, which looks like inequality (S2.3). When ρ is highly mixed, δ_p can be as large as $\delta_p = 2\delta_f - \delta_f^2$, so the above bound is roughly δ_f, which looks like inequality (S2.13). This implies that, when the noise model is known to be fully stochastic, the output state fidelity need only be at least $1 - \delta = 0.708$ to demonstrate quantum advantage, according to inequality (S2.13).

Appendix S3: Noisy Measurements

In the analysis in the main article, we assume that all measurements are perfect. In this appendix, we discuss the potential negative effects of noisy measurements in both verification and sampling. We also show that the tolerable noise rate in measurements for an n-qubit system is $\epsilon \ll 1/n$.

1. Noisy measurements in verification

Let us first discuss the estimation of $|\langle O_{10}\rangle|^2 = |\langle X \otimes U \rangle + i \langle Y \otimes U \rangle|^2$. When $\epsilon \ll 1/n$, the number of erroneous measurements in each estimation of the de facto value of $X \otimes U$ or $Y \otimes U$ is much less than 1. Therefore, the mean values measured for both quantities only deviate by up to $n\epsilon \langle X \otimes U \rangle$ and $n\epsilon \langle Y \otimes U \rangle$ due to the measurement errors, leading to constant-factor errors in the estimation of $|\langle O_{10}\rangle|^2$. Hence, the error rate must be sufficiently small, e.g., $\epsilon = \frac{1}{100n}$, such that the estimated value can still be in the range of acceptance.

Similarly, we require the measurement error to be as small as $\frac{1}{100n}$ to estimate F_{in} to sufficiently high precision, because the value of N_{in+0} could be lowered by $N_{M}n\epsilon$ when measuring N_{M} samples. This may lead to a constant-factor error (of order $n\epsilon$) in $F_{in,M}$.

2. Noisy measurements in sampling

In the following lemma, we show that we can still sample from a classically intractable distribution if the measurement error is much lower than $1/n$.

Lemma 3. If $F_{output} = 1 - \delta_f$, and all measurements have the same error rate $\epsilon \ll 1/n$, then the measurement outcomes sample from a distribution P_{real} with $\text{TVD}(P_{real}, P_{ideal}) \leq \delta' = \sqrt{\delta_f} + O(1)$.

Proof. Since there are n Hadamard measurements to be performed, the probability of having no error in the measurements is

$$p_{\text{measure}} = (1 - \epsilon)^n \approx 1 - \epsilon n. \quad (S3.1)$$

Therefore, there is a $1 - \epsilon n$ probability that the measurement outcome samples from a distribution that is $\sqrt{\delta_f}$ away from the ideal distribution in terms of TVD. In the worst case, we simply assume the distribution of erroneous measurements has maximum TVD from the ideal distribution, which is 1. Hence, the TVD between the real experiment distribution and the ideal distribution can be upper bounded by

$$\text{TVD}(P_{real}, P_{ideal}) \leq (1 - \epsilon n) \text{TVD}(P_{real}, P_{ideal}) + \epsilon n = (1 - \epsilon n)\sqrt{\delta_f} + \epsilon n = \sqrt{\delta_f} + O(1), \quad (S3.2)$$

where in the last step we use $\epsilon \ll 1/n$ and $\delta_f < 1$. \hfill \Box

Appendix S4: Relaxing the assumption that the trials are i.i.d.

Our protocol consists of N_M repeated trials or experiments that are carried out by the prover and the verifier. In the preceding discussion, we have assumed that these trials are independent and identically distributed (i.i.d.), so that the accuracy of our protocol can be shown using simple large-deviation bounds, such as Hoeffding’s inequality. Here we sketch how this i.i.d. assumption can be relaxed. In this case, the accuracy of our protocol can be shown using large-deviation bounds based on martingales, such as Azuma’s inequality [54].

To demonstrate this, consider a protocol that estimates the expectation value of an observable A by repeating an experiment (preparing a quantum state and measuring it) N_M times. More complicated protocols can be handled in a similar way. For $j = 1, 2, \ldots, N_M$, let F_j be the random variable that represents the classical measurement outcome
from the jth repetition of the experiment. Let $F = (1/N_M) \sum_{j=1}^{N_M} F_j$ be the average of the F_j, which we use to estimate the expectation value of A. In addition, assume that the operator norm of A is bounded by $\|A\| \leq \beta$, where β is independent of the size of the system, and hence $|F_j| \leq \beta$. This assumption is satisfied for many commonly-used measurements, such as computational-basis measurements preceded by arbitrary single-qubit rotations.

In the case where the trials are i.i.d., the same quantum state ρ is prepared in every trial, and the random variables F_j are i.i.d. with expectation value $\text{Tr}(A\rho)$. Then F has expectation value $\text{Tr}(A\rho)$, and Hoeffding’s inequality implies that F satisfies a Gaussian-like tail bound with width $O(\beta/\sqrt{N_M})$.

In the non-i.i.d. case, it is possible for the N_M trials to be correlated. Without loss of generality, we can imagine that there exists a joint state σ on N_M copies of the quantum system, and for each j, the random variable F_j comes from measuring the reduced state on the jth copy of the system, which we denote $\sigma_j := \text{Tr}_{\{1,\ldots,N_M\}\setminus\{j\}}(\sigma)$.

Despite these complications, it is still possible to interpret F as an estimate of the expectation value of A for a particular quantum state τ on a single copy of the system. This follows since each F_j has expectation value $\text{Tr}(A\tau)$, and hence F has expectation value $(1/N_M) \sum_{j=1}^{N_M} \text{Tr}(A\sigma_j) = \text{Tr}(A\tau)$, where $\tau = (1/N_M) \sum_{j=1}^{N_M} \sigma_j$.

Furthermore, despite the fact that the random variables F_j are correlated, one can still show that F satisfies a Gaussian-like tail bound with width $O(\beta/\sqrt{N_M})$. Intuitively, this is because each F_j can influence the value of F by an amount that is bounded by $\pm \beta/N_M$. Formally, this can be shown by well-known martingale techniques (see [54]), i.e., constructing the Doob martingale $G_j = E(F|F_1,\ldots,F_1)$, showing that G_j has bounded differences $|G_j - G_{j-1}| \leq 2\beta/N_M$, and applying Azuma’s inequality.

Appendix S5: Echo for more general Hamiltonians

In the main text, we have shown that the echo approach can be used to generate the single-step history state for a $(ZZ + Z)$-type Hamiltonian on a bipartite lattice. In this section, we show that the single-step history state can be prepared for some—though not all—other Ising-type Hamiltonians.

A $(ZZ + Z)$-type Hamiltonian is very special because its terms commute. This allows us to run the controlled-Zs independently and only worry about controlled-ZZs. For more general non-commuting Hamiltonians, we may have to “invert” all its terms in the echo approach. Under suitable conditions, we can do this using the following theorem.

Theorem 7. If there exists an operator P which is a product of single-qubit operations such that $PHP = -H$, then the single-step history state can be prepared using 2-local operations and controlled-P gates.

Proof. We start with the initial state $(|0\rangle + |1\rangle)\ket{\phi}$ and perform CP before and after a half-time evolution of H, followed by a Pauli-X on the clock qubit and a half-time evolution of H. The final state is

$$
e^{-iHT/2} \cdot X_0 \cdot CP \cdot e^{-iHT/2} \cdot CP \cdot (|0\rangle + |1\rangle)\ket{\phi} = e^{-iHT/2} \left[|1\rangle e^{-iHT/2} \ket{\phi} + |0\rangle P e^{-iHT/2} P \ket{\phi} \right]$$

$$= e^{-iHT/2} \left[|1\rangle e^{-iHT/2} \ket{\phi} + |0\rangle \sum_k \frac{1}{k!} P(-iHT/2)^k P \ket{\phi} \right]$$

$$= e^{-iHT/2} \left[|1\rangle e^{+iHT/2} \ket{\phi} + |0\rangle \sum_k \frac{1}{k!} (+iHT/2)^k \ket{\phi} \right]$$

$$= e^{-iHT/2} \left[|1\rangle e^{-iHT/2} \ket{\phi} + |0\rangle e^{+iHT/2} \ket{\phi} \right]$$

which is the desired output. \square

There are several cases in which an operator P satisfying the conditions of the theorem can be constructed. For example, if the Hamiltonian consists of ZZ terms on a bipartite interaction graph, then P can apply an X (or Y) operator to all qubits on one half of the bipartition. We can also handle some cases where the Hamiltonian is non-commuting, such as

$$H = \sum_{(i,j)\in NN} (X_i X_j + Y_i Y_j) + \sum_i Z_i$$

acting on a bipartite lattice. Then we can split the system into two sets of qubits where all interactions are between qubits in different sets. If the operator P acts with X on the first set of qubits and Y on the second set, then it anticommutes with each term of H, so it has the desired behavior.