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Existing schemes for demonstrating quantum computational advantage are subject to various
practical restrictions, including the hardness of verification and challenges in experimental imple-
mentation. Meanwhile, analog quantum simulators have been realized in many experiments to
study novel physics. In this work, we propose a quantum advantage protocol based on single-step

Feynman-Kitaev verification of an analog quantum simulation, in which the verifier need only run
an O(λ2)-time classical computation, and the prover need only prepare O(1) samples of a history
state and perform O(λ2) single-qubit measurements, for a security parameter λ. We also propose a
near-term feasible strategy for honest provers and discuss potential experimental realizations.

I. INTRODUCTION

A. Background & Motivation

Quantum computers offer the promise of executing
some computational tasks exponentially faster than clas-
sical computers. This suggests a violation of the extended
Church-Turing thesis, which says that any physically re-
alizable model of computation can be efficiently simu-
lated by a classical Turing machine. Indeed, quantum
computers were originally proposed as a means of simu-
lating quantum mechanical systems [1], a task considered
classically hard. There has been much progress toward
identifying classically difficult problems that quantum
computers can solve efficiently, such as integer factoriza-
tion [2], simulating Hamiltonian dynamics [3–5], and ex-
tracting information about solutions of high-dimensional
linear systems [6].

A significant milestone for the field of quantum com-
puting is the first demonstration that a quantum de-
vice can perform computational tasks that a classical de-
vice with comparable resources cannot. This milestone
has been called quantum supremacy [7, 8], quantum ad-
vantage, or a proof of quantumness [9], and has insti-
gated numerous theoretical proposals and experimental
efforts. However, there remain formidable technologi-
cal challenges to building quantum computers, requiring
both theoretical and experimental progress in architec-
ture design, fault tolerance, and control. Various pro-
posals for quantum advantage have addressed these chal-
lenges in different ways, by making trade-offs between
ease of experimental demonstration, ease of verification,
security guarantees, and practical applications.

Analog quantum simulation [10], i.e., using one many-
body quantum system to simulate another, is a natu-
ral approach to demonstrating quantum advantage. By
building quantum systems with tunable (but perhaps
non-universal) Hamiltonians, one can emulate a large

class of Hamiltonians that may be difficult to simu-
late classically. Since it directly encodes hard problems
into controllable quantum systems, analog simulation ar-
guably mitigates many of the issues faced by digital ap-
proaches [11, 12]. Furthermore, analog simulation avoids
Trotter error and other sources of algorithmic error in
digital quantum simulation [13, 14]. Indeed, analog sim-
ulations of systems with hundreds of qubits have already
been performed [15].

A major challenge for both quantum simulation and
more general forms of quantum computation is the diffi-
culty of verifying the correctness of a quantum process.
There have been several proposals to verify digital quan-
tum computation [16, 17] based on the Feynman-Kitaev
circuit-to-Hamiltonian mapping [18], but such protocols
are neither designed for analog quantum simulation nor
practical on near-term analog quantum devices. Previous
work towards verifying analog simulation has suggested
approaches such as cross-platform verification [19, 20],
Hamiltonian learning [20], and performing a Loschmidt
echo [20–22]. Unlike protocols for digital verification,
these approaches can be spoofed by dishonest or inaccu-
rate quantum simulators, and therefore cannot be used
to demonstrate quantum advantage in a sound, efficiently
verifiable way. A step toward verified analog simulation
is made in [23], in which the verifier measures the energy
of a parent Hamiltonian of the output state of analog
quantum simulation. However, all these works require a
significant number of samples of the simulator’s state to
certify it.

B. Our Contribution

In this paper, by combining a single-step Feynman-
Kitaev encoding and the scheme of Bermejo-Vega et al.
[24], we propose a novel quantum advantage protocol
with reduced resource requirements, where a verifier ca-
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pable of polynomial-time classical computation can verify
the result by asking the prover to perform trusted mea-
surements on a constant number of copies of a state. We
also present a strategy for the honest prover and argue
that it is feasible on near-term devices.
The Protocol. Our protocol involves interaction be-

tween a polynomial-time classical verifier, and a quantum
prover who can do polynomial-time quantum computa-
tion, although we present a strategy for an honest prover
who must only perform analog quantum simulation and
some limited additional operations. In our protocol, the
prover is capable of single-qubit trusted measurements,
which means that he performs the correct single-qubit
measurements as instructed by the verifier with error
rate ǫ = O(1/n) (with n the number of qubits), and re-
ports the outcome honestly. We also allow a polynomial
amount of classical communication in both directions.
Our protocol still works without the assumption of

trusted measurements if the prover can send polynomial-
size quantum states to the verifier, and the verifier can
perform single-qubit measurements, as in the notion of
a non-interactive QPIP1 protocol defined by Aharonov
et al. [25] (where QPIP stands for quantum prover inter-
active proof ).

Definition 1 (QPIPk protocol (simplified)). An inter-
active proof for a language L is said to be QPIPk if the
prover is a BQP machine, the verifier is a hybrid BQP-
BPP machine that can process at most k qubits at a time,
and quantum states of k qubits can be transmitted from
the prover to the verifier.

However, as reliably sending quantum states is unlikely
to be feasible in the near term, we focus on the former
model.
Prover’s Model of Computation. We also give an

experimentally practical strategy for honest provers. The
strategy is specifically designed for near-term machines
that are not capable of fully digital quantum computa-
tion, but are slightly more powerful than analog quantum
simulation, a popular notion that is often not clearly de-
fined. In our work, we define a mostly analog model of
computation, its commuting version, and its extension
with a global CZ gate, which we argue are feasible for
near-term experiments.

Definition 2 (Mostly analog quantum computation). A
model of quantum computation involving n qubits is called
mostly analog if all the following conditions hold. (1)
The system can evolve under a time-independent 2-body
Hamiltonian H containing poly(n) Pauli terms for time
T = poly(n). (2) O(1) alternations between the evolution
under H and single-qubit rotations can be performed. (3)
Measurements can only be performed once at the end of
the whole process.

Note that condition (2) distinguishes this model from
common notions of analog quantum computation, as it
may require a degree of control not always available to

analog quantum simulators. Despite being mostly ana-
log, the above model of computation is even capable
of BQP-complete quantum computations [26]. We in-
troduce a weaker model where the 2-local Hamiltonian
H must also be commuting, which means that all Pauli
terms must commute with each other.

Definition 3 (Mostly analog commuting quantum com-
putation). A mostly analog model of computation is
called commuting if H is a commuting Hamiltonian.

Even a mostly analog commuting quantum device can
solve some classically intractable problems [24]. We focus
on an even more restricted model that should be easier
to realize, in which the Hamiltonian H is a specific com-
muting Hamiltonian containing only nearest-neighbor Z
operators, as discussed further below.

We also assume the ability to perform a globally con-
trolled CZ gate. This arguably makes our model less ana-
log, but it plays a key role in developing a sample-efficient
protocol to verify the solutions given by the device, and
it can potentially be realized using experimental capabil-
ities that have already been demonstrated [27, 28], as we
discuss in Section III B.

Definition 4 (Mostly analog + GCZ commuting quan-
tum computation). A mostly analog commuting model of
computation is called mostly analog + GCZ if the system
also contains a quantum degree of freedom (e.g., a qubit)
that can serve as a global control for all of the qubits,
such that one can apply—only O(1) times—a global CZ
gate that is controlled by the degree of freedom and acts
on all of the qubits. Here GCZ stands for global CZ.

The Classically Hard Problem. In the protocol,
the verifier asks the prover to solve a classically hard
problem based on Hamiltonian evolution. The prover
generates a quantum state but is not trusted to do so
correctly. However, the prover is trusted to honestly mea-
sure this state to generate a classical witness. The verifier
checks this witness to determine if the problem has been
successfully solved. If so, then quantum advantage has
been demonstrated.

Instead of considering a general quantum circuit, we
aim to demonstrate quantum advantage by verifying
a specific analog quantum simulation performed on a
mostly analog + GCZ commuting machine. The sim-
ulation is motivated by the class of IQP (instantaneous
quantum polynomial-time) circuits [29, 30], in which all
quantum gates are commuting (and thus interchangeable
in time). Despite this strong restriction, IQP circuits are
believed to be hard to simulate classically [30, 31]. Fur-
thermore, Bermejo-Vega et al. [24] presented a concrete
scheme to show quantum speedup on an analog simu-
lator by running a specific unit-time Hamiltonian evo-
lution. The Hamiltonian includes only nearest-neighbor
ZZ interactions and local Z terms (a form that we call a
(ZZ + Z)-type Hamiltonian) on a 2-dimensional square
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lattice:

∑

{i,j}∈NN

π

4
ZiZj −

n
∑

i=1

π

4
Zi, (1)

where NN denotes the set of edges connecting nearest-
neighbor qubits. The qubits are randomly initialized in
either 1√

2
(|0〉 + |1〉) or 1√

2
(|0〉 + e−iπ/4 |1〉). Bermejo-

Vega et al. [24] and Ringbauer et al. [32] prove that a
classical computer cannot efficiently sample from the
output distribution of X-basis measurements on the
above system within total variation distance (TVD)
0.292, under plausible computational assumptions that
we review in Appendix S1. Moreover, since single-
qubit Zi operators commute with all ZiZj operators,
one can absorb the single-qubit evolution exp

(

iπ4
∑

i Zi

)

into the initial state of each qubit, so that the qubits
are initialized in either 1

2 [(1 + i) |0〉+ (1 − i) |1〉] or
1
2

[

(1 + i) |0〉+ e−iπ/4(1− i) |1〉
]

, which can be prepared
by single-qubit operations. Then the Hamiltonian H to
be simulated contains only ZZ interaction terms:

H =
∑

{i,j}∈NN

π

4
ZiZj. (2)

Main Result. We now have all the building blocks
to formalize the main result. In the state-transmission
scenario, we have the following theorem.

Theorem 1 (Main result—state-transmission version).
There exists a classically intractable sampling problem
that can be verified by a single-round QPIP1 protocol
where the prover runs a specific mostly analog + GCZ
commuting quantum task O(1) times.

In the trusted-measurement scenario, our result is as
follows.

Theorem 2 (Main result—trusted-measurement ver-
sion). There exists a classically intractable sampling
problem that can be verified by a single-round protocol
where the classical verifier trusts the prover to perform
single-qubit measurements, and the prover runs a spe-
cific mostly analog + GCZ commuting quantum task O(1)
times.

Our protocol has constant sample complexity, i.e., it
only requires the prover to generate O(1) samples of an
n-qubit state. This is significantly less expensive than
Bermejo-Vega et al. [24], which uses O(n2) samples.
In both this work and Ref. [24], the prover is expected

to perform trusted measurements (or the prover sends
qubits to the verifier for her to measure), unlike proofs of
quantumness (PoQs) based on trapdoor claw-free func-
tions (TCFs) [9, 33] and quantum supremacy experi-
ments [7, 8] based on sampling problems, which makes
it difficult to compare the resource requirements. How-
ever, in all of these schemes, single-qubit measurements
must be performed many times, either by the prover or

the verifier. Hence the number of qubits measured is a
comparable quantity.
Equivalently, without transforming the protocols, we

can still compare the number of measurements in terms
of the security parameter, whether the measurements are
trusted or not. The security parameter λ is defined such
that a dishonest prover without quantum computational
power needs time 2Ω(λ) in order to make the verifier
accept. For our protocol, the number of qubits n is
quadratic in λ, just as in Bermejo-Vega et al. [24]. Under
optimistic assumptions, cryptographic PoQs can proba-
bly have n = O(λ) [33], but for most common TCFs, n
scales at least quadratically with λ [9]. Since it has con-
stant sample complexity, our protocol uses O(λ2) single-
qubit measurements. This is better than Bermejo-Vega
et al. [24], which uses O(λ3) measurements. Further-
more, our protocol can be verified by O(λ2)-time classi-
cal computation, significantly below the verification cost
of O(λ6) for Bermejo-Vega et al. [24] and presumably
exp(λ) for quantum supremacy experiments based on
sampling problems [7, 35, 36].
We summarize the comparison between our work and

other quantum advantage protocols in Table I.
On the prover side, TCF-based PoQs generally re-

quire poly(λ)-depth low-noise digital quantum compu-
tation, while our honest strategy is designed for analog
quantum simulators with only limited digital capabili-
ties. This may be harder than fully analog simulation
[7, 24, 37, 38], but should still be feasible in the relatively
near term. Moreover, our protocol can detect—and is
robust against—a specific type of phase error that hap-
pens frequently in practice. Thus we believe our work
achieves a significant improvement in terms of verifica-
tion efficiency for verified quantum advantage protocols,
and is an easier-to-implement scheme. We provide exact
threshold fidelities (independent of the system size) for
the device to demonstrate quantum advantage using our
scheme. We also show that when the noise is incoherent,
the fidelity requirements can be further relaxed.
The remainder of this paper is organized as follows. In

Section II, we describe the sample-efficient quantum ad-
vantage protocol and analyze its resource requirements.
In Section III, we give the near-term strategy for honest
provers and discuss potential experimental realizations.
Finally, we summarize the results and discuss their im-
plications and potential future extensions in Section IV.

II. THE QUANTUM ADVANTAGE PROTOCOL

A. The Single-Step Feynman-Kitaev Construction

Our protocol is inspired by the Feynman-Kitaev map-
ping [18], which converts the task of executing a quantum
circuit to that of finding the ground state of an associ-
ated Hamiltonian. The Feynman-Kitaev Hamiltonian is
the foundation of several verification schemes in the cir-
cuit model: if a quantum server can provide the ground
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Scheme
# of

Measurements
Classical

Verification
Requirements for
Honest Provers

Requirements for
Verifiers

Cryptographic PoQs [9, 33] poly(λ) poly(λ) Digital Purely Classical

Random Circuit Sampling [7, 34] O(λ) exp(λ) Digital Purely Classical

Parent Hamiltonians [24] O(λ6) O(λ6) Analog Single-Qubit Measurements

This Work (State Transmission) O(λ2) O(λ2) Mostly Analog + Global CZ Single-Qubit Measurements

This Work (Trusted Measurements) O(λ2) O(λ2)
Mostly Analog + Global CZ
+ Trusted Measurements

Purely Classical

TABLE I. Comparison of demonstrations of quantum advantage. As discussed in the main text, λ denotes the security
parameter.

state (the witness) to the client, then the client can verify
the quantum computation by measuring its energy. Ex-
amples include the Fitzsimons et al. [16] protocol where
the prover needs to perform single-qubit trusted measure-
ments, and the Mahadev [17] protocol that works even
for untrusted measurements.
Inspired by the above protocols for circuit-model com-

putations, we consider using a simplified Feynman-
Kitaev mapping to verify analog quantum simulation of
the system in [24], i.e., the Hamiltonian H in Eq. (2).
We define the (single-step) history state

|ψhist〉 =
1√
2
(|0〉 |φin〉+ |1〉U |φin〉) , (3)

where |φin〉 is the input state and U is the propagation
unitary. The state |ψhist〉 is the ground state of the single-
step Feynman-Kitaev Hamiltonian. Since we are consid-
ering quantum simulation of the ZZ-type Hamiltonian H
defined in Eq. (2), we have U = exp(−iHT ) with T = 1,
and |φin〉 is the same random input state defined in the
system of Bermejo-Vega et al. [24] with single-qubit Z
evolution absorbed. The computationally hard sampling
problem can be solved by measuring U |φin〉 in the X
basis. We use Pideal to denote the ideal distribution of
measurement outcomes.
The Feynman-Kitaev Hamiltonian includes a term

Hprop =
1

2

(

I ⊗ I − |1〉 〈0| ⊗ U − |0〉 〈1| ⊗ U †) , (4)

which ensures that the ground state encodes the correct
propagation unitary U . One can easily check that Hprop

is positive semidefinite and Hprop |ψhist〉 = 0, so |ψhist〉 is
a ground state of Hprop.
The other term of the Feynman-Kitaev Hamiltonian is

H in = |0〉 〈0| ⊗
(

I −
∑

i

|φin,i〉 〈φin,i|
)

, (5)

where |φin,i〉 is the state of the ith qubit of |φin〉. H in

ensures that the input state is |φin〉. It is also positive
semidefinite and satisfies H in |ψhist〉 = 0.
A toy version of our protocol for demonstrating quan-

tum advantage, without any technical detail, is as follows.

The verifier sends classical descriptions of H and |φin〉 to
the prover, and asks the prover to prepare NM copies of
the history state 1√

2
(|0〉 |φin〉+|1〉U |φin〉). For each copy,

the verifier chooses whether to generate a sample or to
verify the state, with equal probability. If she chooses
to sample, then she asks the prover to measure the first
qubit (i.e., the clock qubit) in the Z basis and all other
qubits in the X basis, and a sample is generated if the
first measurement outcome is −1 (i.e., the clock qubit is
in |1〉). If the verifier chooses to verify, then she measures
the energy of Hprop+H in by quantum phase estimation.
Finally, if every run of quantum phase estimation returns
0, which means that the fidelity between the measured
state and the perfect history state is very high (the in-
fidelity is inverse exponential in NM if NM/2 copies are
chosen for verification) and therefore the measurement
outcomes are close to the desired distribution Pideal, she
accepts and announces all of the samples obtained. Oth-
erwise, she rejects.

One disadvantage of the verification part of this scheme
is that it can only accept devices that provide his-
tory states with exponentially small infidelity. While
near-term devices will be imperfect, they might still be
able to sample from classically intractable distributions.
Also, experimentalists may prefer to know how well their
devices are performing and whether they are making
progress, but a “yes or no” result cannot provide this kind
of information. Finally, measurements of Hprop + H in

might be difficult, potentially requiring many measure-
ments to determine the energy with sufficiently high pre-
cision, and quantum phase estimation is not feasible in
the near term.

Therefore, inspired by the original single-step
Feynman-Kitaev Hamiltonian, we propose a new ver-
ification scheme to replace the toy protocol. In the
new scheme, different parameters are measured to lower
bound the total variation distance between the sam-
pled distribution Pexp and the desired distribution Pideal,
demonstrating quantum advantage according to [24, 32].
We also give an efficient near-term strategy for estimat-
ing those parameters.
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B. Our Measurement Scheme

To begin, consider an arbitrary (n+ 1)-qubit state

ρ =
∑

i

pi |ψi〉 〈ψi| , (6)

where {|ψi〉} is the (unknown) eigenbasis of ρ, and pi is
the probability corresponding to |ψi〉. We can write

|ψi〉 = αi |0〉 |φi〉+ βi |1〉 |φ′i〉 (7)

where |φi〉 and |φ′i〉 are n-qubit states and αi, βi ∈ C

satisfy |αi|2 + |βi|2 = 1. Thus we can interpret ρ as a
classical mixture of states |ψi〉 as above with input states
|φi〉 and output states |φ′i〉.
The first parameter to be estimated in our scheme, the

input fidelity, is defined as

Fin(ρ) :=

∑

i pi|αi|2 |〈φi|φin〉|2
∑

i pi|αi|2
. (8)

This quantifies the quality of initial state preparation. It
plays a similar role to 〈H in〉 in the single-step Feynman-
Kitaev Hamiltonian.
Another parameter is the probability of obtaining a −1

outcome when measuring the clock qubit. We call this
the probability of sampling:

psamp :=
∑

i

pi|βi|2. (9)

The last parameter is the de facto mean value of the
non-Hermitian operator

O10 := |1〉 〈0| ⊗ U, (10)

whose expectation value in the state ρ is

Tr[ρO10] =
∑

i

piαiβ
∗
i 〈φ′i|U |φi〉. (11)

We mainly consider its squared norm, |Tr[ρO10]|2. This
quantity is related to the quality of propagation from
|φ〉 to U |φ〉, so it plays a similar role to 〈Hprop〉 in the
single-step Feynman-Kitaev Hamiltonian.
As we show in Lemmas 1 and 2, Fin(ρ), psamp, and

Tr[ρO10] can all be estimated by single-qubit measure-
ments, and the precision depends only on the number of
samples measured, independent of the system size. Note
that O10 is not Hermitian, so it is in general not an ob-
servable, but its de facto mean value (which is a complex
number) can still be estimated. We discuss this in detail
in the proof of Lemma 2.
We are interested in the output fidelity, defined as

Foutput :=

∑

i pi|βi|2|〈φ′i|U |φin〉|2
∑

i pi|βi|2
. (12)

This quantifies the fidelity between the state being mea-
sured to generate samples from Pexp and the ideal state

that can be measured to generate samples from Pideal,
and thus can be directly related to the TVD between
distributions, TVD(Pexp, Pideal). In Appendix S2, we ex-
plicitly relate Foutput and TVD(Pexp, Pideal), and find the
threshold fidelity 0.915 using the hardness result proved
in [32], which gives a criterion for verified quantum ad-
vantage.
In Appendix S2, we also derive a lower bound for

Foutput in terms of ǫ := 1/4−Tr[ρO10], ǫ
′ := 1/2−psamp,

and ǫ′′ := 1− Fin(ρ), as follows.

Theorem 3 (Lower bound on the output fidelity).

Foutput ≥ 1− 16ǫ− 3ǫ′′ + h.o. (13)

where h.o. indicates higher-order terms in ǫ, ǫ′, ǫ′′.

If the device is close to perfect (which is the scenario
we consider here), then ǫ, ǫ′′ ≪ 1 and |ǫ′| ≪ 1. Hence,
the higher-order terms can be safely dropped, as is shown
in detail in Appendix S2, and the above bound can be
written as

Fout(ρ) ≥ 16|Tr[ρO10]|2 + 3Fin(ρ)− 6. (14)

Using Theorem 3 with threshold fidelity 0.915, we con-
clude that the measurement outcomes sample from a clas-
sically intractable distribution provided 4|Tr[ρO10]|2 ≥
0.988 and Fin(ρ) ≥ 0.988.
Observe that the final lower bound does not contain

first-order terms in ǫ′ = 1/2 − psamp. However, we still
need to estimate psamp to ensure that its value is suf-
ficiently close to 1/2 that our first-order approximation
still holds. Hence, we also require |1/2− psamp| ≤ 0.012.
It is clear from the above theorem that our protocol can

also tolerate a small amount of noise in the measurements
of the quantum state. To simplify the analysis, in the
rest of this section, we make the perfect-measurement as-
sumption: all measurements, whether performed by the
prover in the trusted-measurement scheme or by the ver-
ifier in the state-transmission scheme, are noiseless. We
postpone the discussion of noisy measurements to Ap-
pendix S3.
We claim that the number of copies of the history state

needed to verify quantumness (i.e., the sample complex-
ity) depends only on the precision and is not related to
the system size n. As a result, the prover only needs to
perform O(n) trusted single-qubit measurements. These
properties are formalized and proven in Lemmas 1 and 2.
Since the TVD between ideal and real output distribu-

tions is lower bounded by estimating Fin and Tr[ρO10],
the sample complexity of the protocol is determined by
how many copies of the state are required to estimate
both quantities to a specific precision.

Lemma 1 (Sufficiency of single-qubit measurements for
Fin and psamp). A verifier capable of single-qubit mea-
surements and polynomial-time classical computation can
estimate Fin and psamp in a mixed state ρ with error at
most δo using O(1/δ2o) samples of ρ.
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Proof. First recall that the ideal input state |φin〉 is a
product state of either |x〉 := 1

2 [(1 + i) |0〉+ (1− i) |1〉]
or |y〉 := 1

2

[

(1 + i) |0〉+ e−iπ/4(1− i) |1〉
]

. Their corre-

sponding orthogonal states are
∣

∣x⊥
〉

:= 1
2 [(1 − i) |0〉 −

(1 + i) |1〉] and
∣

∣y⊥
〉

:= 1
2 [(1 − i) |0〉 − e−iπ/4(1 + i) |1〉],

respectively.
If a pure state |ψi〉 = αi |0〉 |φi〉 + βi |1〉 |φ′i〉 is given,

the fidelity of the input state, |〈φi|φin〉|2, can be esti-
mated as follows. We first measure the clock qubit in
the Z basis, and if the outcome is +1 (so the state col-
lapses to |0〉 |φi〉), we measure every other qubit in its
corresponding rotated basis, which is either {|x〉 ,

∣

∣x⊥
〉

}
or {|y〉 ,

∣

∣y⊥
〉

}. If all measurement outcomes are +1, then
|φ′i〉 collapses to |φin〉. Therefore, if the number of copies
for which the clock qubit measurement gives +1 is Nin+,
and among them the number of copies where all other

measurements give +1 is Nin+0, then
Nin+0

Nin+
is an unbi-

ased estimator of |〈φi|φin〉|2. Furthermore, for a mixed
state ρ, the same strategy gives an estimate of Fin(ρ):

Fin(ρ) = lim
Nin+→∞

Nin+0

Nin+
. (15)

The precision of estimating Fin increases with Nin+.
More precisely, we can use Hoeffding’s inequality to quan-
tify their relationship:

Pr[|Fin,M − Fin| ≥ δo] ≤ 2 exp
(

−2δ2oNin+

)

, (16)

where Fin,M represents the estimate from measurements.
For the estimate of Fin to have error at most δo with
probability at least 1 − pe, it suffices to use Nin+ =
O(|ln pe|/δ2o) valid measurements, independent of the sys-
tem size. Moreover, since the single-step history state has
equal weight between the |0〉 and |1〉 states of the clock
qubit, Nin+ should be close to NM/2, where NM is the
total number of states measured.
We also describe how to estimate psamp. Fortunately,

this can already be obtained from Nin+. Since psamp

is just the probability of a Z-basis measurement of the

first qubit returning −1, Nin+

NM
is an unbiased estimator

of psamp. Similarly, the probability for the estimate of
psamp to have error more than δo is upper bounded as

Pr[|psamp,M − psamp| ≥ δo] ≤ 2 exp
(

−2δ2oNM

)

, (17)

where psamp,M denotes the estimated value of psamp.
Since NM > Nin+, we can always estimate psamp to a
higher precision than Fin when they are estimated to-
gether.

Lemma 2 (Sufficiency of single-qubit Pauli measure-
ments for |〈O10〉|2). A verifier capable of single-qubit
measurements and polynomial-time classical computation
can estimate |〈O10〉|2 in a mixed state ρ with error at
most δo using O(1/δ2o) samples of ρ.

Proof. We can write

O10 = |1〉 〈0| ⊗ U =
1

2
(X − iY )⊗ U. (18)

It can be difficult to measure O10 in general, because
U typically decomposes into exponentially many Pauli
terms. Fortunately, in our protocol, we have U =
exp(−iHT ) for the ZZ-type Hamiltonian

H =
π

4

m
∑

k=1

Hk =
π

4

∑

{i,j}∈NN

ZiZj , (19)

where each Hk is one of the ZiZjs. As all Hk terms
commute, we can decompose U into a product of evolu-
tions for each term, and further express these evolutions
in terms of trigonometric functions as everyHk is a Pauli
string:

U = exp

(

−i
π

4

m
∑

k=1

Hk

)

=

m
∏

k=1

exp
(

−i
π

4
Hk

)

=

m
∏

k=1

(

cos
(π

4

)

I − i sin
(π

4

)

Hk

)

.

(20)

U is not a well-defined quantum observable since it is
not Hermitian, but we can still define its de facto single-
measurement outcome as a complex number u. Since
all Hks can be simultaneously measured, u can be in-
ferred by evaluating the right-hand side of Eq. (20). More
specifically, letting hk denote the outcome of a single
measurement of Hk, we have

u =

m
∏

k=1

(

cos
(π

4

)

− i sin
(π

4

)

hk

)

. (21)

Since each Hk is ZiZj, the verifier need only perform
single-qubit Z measurements to obtain the hks.
In summary, to estimate the expected value of O10,

it suffices to measure the clock qubit in either the X or
the Y basis, measure all other qubits in the Z basis to
get the values of u, and repeat this process enough times
to obtain the mean values of X ⊗ U and Y ⊗ U with
sufficiently high precision.
To determine the number of samples required, we eval-

uate the probability that the measured value deviates
from the expected value using concentration bounds.
Note that O10 is not Hermitian, so its de facto mea-
surement outcomes are complex numbers. Recall that
O10 = 1

2 (X ⊗ U − iY ⊗ U), so one sample of the value
of O10 can be obtained by measuring two copies of the
state of interest, and both the real and imaginary parts of
the measurement outcome of O10 are at most 1/2. There-
fore, for any 0 < δo < 1/2, letting 〈·〉M be the average of
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the measurement outcomes after running the experiment
NM times, and using Hoeffding’s inequality,

Pr
[
∣

∣|〈O10〉M|2 − |〈O10〉|2
∣

∣ ≥ δ2o
]

≤ Pr[|Re[〈O10〉M]− Re[〈O10〉]| ≥ δo]

+ Pr[| Im[〈O10〉M]− Im[〈O10〉]| ≥ δo]

≤ 4 exp
(

−2δ2oNM

)

.

(22)

In conclusion, to ensure that the error in the estimation
of |〈O10〉|2 is less than δo with probability at least 1−pe, it
suffices to measureO10 on 2NM = O

(

| ln pe|/δ2o
)

copies of
the state, irrespective of the size of the system. Moreover,
if pe is a negligible function of the security parameter λ,
then NM only needs to scale linearly with λ. In other
words, the probability of obtaining a wrong estimate of
|〈Tr[ρO10]〉|2 converges to 0 exponentially with respect to
the number of copies, NM.

C. Our Protocol

In this subsection, we outline the behavior of the veri-
fier and the prover in our protocol, and present the sound-
ness and completeness conditions.
The verifier first provides the prover with descriptions

of H and |φin〉, and the desired number of copies of the
history state NM (whose value is determined in Theo-
rems 4 and 6).
The verifier asks the prover to perform measurements

to estimate (or measures by herself if state transmission is

allowed) |〈O10〉|2, Nin+0, and Nin+ from the NM samples
to verify the correctness of the output state. She also
asks the prover to generate samples by measuring the
|φ′〉 state conditioned on obtaining −1 from measuring
the clock state. Therefore, the verifier should generate
two random bits for every state before measuring it.
The first bit, bsampling, determines whether the verifier

should ask the prover to generate samples (bsampling = 1)
or verify the output state (bsampling = 0). If bsampling = 1,
the prover should measure the clock qubit in the stan-
dard basis and all system qubits in the Hadamard basis.
If the clock is measured to be −1, and if the prover passes
the verification protocol, then the outcomes of Hadamard
measurements on system qubits are samples from the de-
sired distribution.
When bsampling = 0, the verifier must decide whether to

use this copy to estimate |〈O10〉|2 or Fin(ρ) and psamp by
generating the other random bit btesttype. If the second
random bit, btesttype, is 0, then she estimates Fin(ρ) and
psamp by asking the prover to measure the clock qubit
in the computational basis and all system qubits in their
corresponding basis, updating the values of Nin+0 and
Nin+, as in the proof of Lemma 1. For btesttype = 1,
she estimates |〈O10〉|2, so the prover should use the same
strategy as in the proof of Lemma 2 to measure the value
of U and, subsequently, the values of X ⊗ U or Y ⊗ U .
In the end, the verifier estimates the parameters of

interest. As in the proofs of Lemmas 1 and 2, we de-

note the estimated values of |〈O10〉|2, psamp, and Fin by
|〈O10〉M|2, psamp,M, and Fin,M, respectively. The verifier
then decides to accept or not by checking whether the es-
timated values are within the acceptance ranges, which
are 0.994 ≤ 4|〈O10〉M|2 ≤ 1, 0.994 ≤ Fin,M(ρ) ≤ 1, and
0.494 ≤ psamp,M ≤ 0.506. Note that here we choose more
stringent values than the quantum advantage criterion
in Theorem 3 such that if the fidelity of the output state
is slightly below the quantum advantage criterion, the
verifier will reject with high probability. This is related
to the soundness of the protocol, which is discussed in
detail in Theorem 6.
We now present the completeness and soundness prop-

erties of the protocol. A proof of quantumness is called
complete if any honest prover with quantum computa-
tional ability (which in our case means being able to pre-
pare the required history state |ψhist〉 with tolerable error,
as explained in more detail below) is accepted with prob-
ability at least 2/3. It is called sound if no prover with
only classical polynomial-time computational ability can
be accepted with probability higher than 1/3.
Before showing the completeness theorem, we observe

that any phase error in the clock qubit does not affect the
correctness of sampling, which means that a family of his-
tory states can be and should be accepted. In fact, one
can easily check that Fin(|ψhist(θ)〉 〈ψhist(θ)|) = 1 and
4|Tr[|ψhist(θ)〉 〈ψhist(θ)|O10]|2 = 1 for all |ψhist(θ)〉 :=
1√
2
(|0〉 |φin〉 + eiθ |1〉U |φin〉), where θ can be any real

number. This immediately leads to the following com-
pleteness result.

Theorem 4 (Completeness). If the prover constructs
NM = 3.5 × 106 copies of |ψhist(θ)〉 with a fixed value
of θ, then the verifier will accept with probability at least
2/3.

Proof. We can calculate that Fin(|ψhist(θ)〉 〈ψhist(θ)|) =
1, 4|Tr[|ψhist(θ)〉 〈ψhist(θ)|O10]|2 = 1, and psamp = 1/2.
Therefore, it suffices to ensure the probabilities that the
measurement errors exceed 0.0015 for |〈O10〉|2, and 0.006
for Fin,M and psamp, are all less than 1/3.
Suppose that of NM available samples, NM/2

are used to generate samples, NM/4 are used to
estimate |〈O10〉|2, and NM/4 are used to estimate
Fin. According to Lemmas 1 and 2, and letting
Nin+ = NM/8, the probability of rejection is at most
max{2 exp

(

−0.0062NM/4
)

, 4 exp
(

−0.00152NM/2
)

} =
0.08 < 1/3.

However, in a real experiment, it is unlikely for a de-
vice to only make one specific error—a phase error on
the clock qubit—and to otherwise produce |ψhist(θ)〉 per-
fectly. Instead, every experimental platform might have
its own pattern of noise with multiple types of errors.
Our verification scheme also has some robustness against
these more general errors. Here we characterize the ro-
bustness for the case where the device can prepare a
noiseless initial state but its Hamiltonian evolution has
some error.
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Protocol to demonstrate quantum advantage by analog quantum simulation

Let H be a Hamiltonian to be simulated, and let |φin〉 be the initial state of Hamiltonian evolution.

1. The verifier initializes counters s{X,U}, s{Y,U}, NX , NY , Nin+, Nin+0 to 0. She sends NM and classical descriptions of H
and |φin〉 to the prover.

2. The prover creates NM copies of the correct history state |ψ〉 = 1√
2
(|0〉 |φin〉+ eiγ |1〉U |φin〉), where γ is a fixed arbitrary

phase, and (only in the state-transmission scenario) sends them to the verifier.

3. For each state (in the trusted-measurement scenario) to be measured by the prover or (in the state-transmission scenario)
to be received by the verifier:

(a) The verifier generates 2 random bits bsampling and btesttype. If bsampling = 1, the verifier will obtain a sample from
the distribution. If bsampling = 0 and btesttype = 0, the verifier will check if the input state is correct. If bsampling = 0
and btesttype = 1, the verifier will check if the Hamiltonian evolution is correct.

(b) If bsampling = 1, the verifier measures (or asks the prover to measure) the first qubit in the standard basis. If the
measurement outcome is −1, then she measures all other qubits in the Hadamard basis and stores the measured
bit string.

(c) If bsampling = 0 and btesttype = 0, the verifier measures (or asks the prover to measure) the first qubit in the standard
basis. If the outcome is +1:

i. The verifier updates the counter by Nin+ ← Nin+ + 1.

ii. The verifier measures (or asks the prover to measure) every other qubit in the following basis: if its initial state
is supposed to be |x〉, then measure it in the {|x〉 ,

∣

∣x⊥〉} basis; otherwise, measure it in the {|y〉 ,
∣

∣y⊥
〉

} basis.
iii. If all outcomes are +1, she updates the counter as Nin+0 ← Nin+0 + 1.

(d) If bsampling = 0 and btesttype = 1:

i. The verifier selects the basis from {X, Y } randomly, measures (or asks the prover to measure) the clock qubit
in the chosen basis, and stores the measurement outcome in b.

ii. The verifier measures (or asks the prover to measure) all system qubits in the Z basis. Then, she calculates
the values of U according to the proof of Lemma 2, denoted by u.

iii. If the basis chosen is X, the verifier updates the counters as NX ← NX + 1, s{X,U} ← s{X,U} + bu.

iv. If the basis chosen is Y , the verifier updates the counters as NY ← NY + 1, s{Y,U} ← s{Y,U} + bu.

4. (a) The verifier calculates hX,U = s{X,U}/NX and hY,U = s{Y,U}/NY . She also calculates 〈O10〉M = hX,U − ihY,U and

4|〈O10〉M|2.
(b) The verifier calculates Fin,M =

Nin+0

Nin+
.

5. If 4|〈O10〉M|2 > 0.988 and Fin,M > 0.988, the verifier accepts the interaction and publishes the stored bit strings as the
samples from the distribution. Otherwise, she rejects.

Protocol 1. Our protocol for demonstrating quantum advantage.

Theorem 5 (Completeness + Robustness). If the prover
constructs NM = 3.5 × 106 copies of the noisy his-
tory state |ψnoisy〉 := 1√

2
(|0〉 |φin〉 + eiθ |1〉 |φ′〉) where

| 〈φ′|U |φin〉 |2 = 0.999, then the verifier will accept the
interaction with probability at least 2/3.

Proof. We can check that Fin(|ψnoisy〉 〈ψnoisy|) = 1,
psamp = 1/2, and 4|〈O10〉|2 = |〈φ′|U |φin〉|2 = 0.999.
Therefore, it suffices to estimate 4|〈O10〉|2 within pre-
cision 0.005 and Fin and psamp within precision 0.006.
This precision can be achieved using NM copies of the
prepared state, which gives success probability 0.73 >
2/3.

Next, we establish the soundness condition. Recall
that, informally, a quantum advantage protocol is called
sound if all provers without quantum computational ca-
pability are rejected by the verifier with high probability.

Theorem 6 (Soundness). If the verifier accepts with
probability at least 2/3 with NM = 3.5 × 106 copies of
the state provided by the prover, then measurements of
the state generate samples from a classically intractable
distribution.

Proof. This theorem has almost been proven in Theo-
rem 3, in which Foutput ≥ 0.915 is guaranteed if Fin ≥
0.988, |psamp−1/2| ≤ 0.012, and 4|〈O10〉|2 ≥ 0.988. Also,
according to the proof of Theorem 4, with NM samples,
the error in the estimation of all parameters is lower than
0.006 with probability at least 2/3.

Therefore, if the verifier accepts with probability at
least 2/3, which means that Fin,M ≥ 0.994, |psamp −
1/2| ≤ 0.006, and 4|〈O10〉M|2 ≥ 0.994 with probability at
least 2/3, then it is immediately clear that Fin ≥ 0.988,
|psamp − 1/2| ≤ 0.012, and 4|〈O10〉|2 ≥ 0.988, which im-
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FIG. 2. The square lattice can be divided into two parts such
that every ZZ operator acts on qubits from both parts.

plies that Foutput ≥ 0.915.

A detailed description of the protocol can be found in
Protocol 1.
One hidden assumption in this section is that all copies

of the history state provided by the prover are indepen-
dent of each other. However, if the prover is an adver-
sarial challenger, he can provide correlated states. In
Appendix S4, we outline how martingale inequalities can
be used to show that our protocol is sound even if the
states measured are correlated across multiple trials.
The analysis in this section assumes noiseless measure-

ments, which are impractical in real devices. We discuss
the protocol’s tolerance of noisy measurements in Ap-
pendix S3.

III. THE HONEST-PROVER STRATEGY

A. History State Preparation

Our protocol features a rather efficient verification
strategy, but for it to be practical, the prover must be
able to prepare O(1) copies of the single-step history
state of the ZZ-type quantum simulation. A simple ap-
proach is to run the time-independent Hamiltonian evo-
lution generated by

Hprep = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗H, (23)

giving

exp(−iHprepT )

[

1√
2
(|0〉+ |1〉) |φ〉

]

= |ψhist〉 . (24)

However, Hprep contains 3-body interaction terms. It
is possible for near-term devices to implement a 3-body
Hamiltonian (see for example Refs. [39–41]), but it may
be challenging to realize Hprep in this way.
To circumvent the hardness of implementing 3-body in-

teractions, we propose an echo-based method for prepar-
ing history states using only 1-qubit and 2-qubit opera-
tions.
One can easily prepare the history state of H by run-

ning a half-T evolution of H from the state

|ψ′
hist〉 ∝ |0〉 exp

(

i
2HT

)

|φin〉+ |1〉 exp
(

− i
2HT

)

|φin〉 .
(25)

The state |ψ′
hist〉 can be prepared as follows. Since

H involves nearest-neighbor ZZ interactions in a square
lattice, one can divide all qubits into two parts such that
every ZZ term acts on qubits from different parts, as
shown in Fig. 2. Call the filled dots part A, and the non-
filled dots part B. Apply CNOTB gates before and after
a T/2 time evolution, where CNOTB is controlled by the
clock qubit and acts on the whole part B, followed by an
X operation (denoted by X0) on the clock qubit. This
gives the state (up to normalization)

X0CNOTB exp
(

− i
2HT

)

CNOTB(|0〉+ |1〉) |φin〉
= |1〉 exp

(

− i
2HT

)

|φin〉+ |0〉XB exp
(

− i
2HT

)

XB |φin〉
= |0〉 exp

(

i
2H2T

)

|φin〉+ |1〉 exp
(

− i
2H2T

)

|φin〉 ,
(26)

where XB denotes X operators acting on all qubits of
part B.
One might be concerned that applying CNOT gates on

only half of the lattice could be difficult with a near-term
device. However, one can implement CNOTB using only
a global controlled-Z (CZ) operator and local Hadamard
operators H. For all qubits in B, we perform the oper-
ation H · CZ · H, which is exactly a CNOTB gate. For
qubits in A, we do not apply Hadamard operators, so the
controlled-Z operation only adds a phase to the second
state. This phase is canceled out in the end, because
this effective CNOTB operation is performed twice, and
Z2 = I.
Note that this echo approach works for more gen-

eral Ising-type Hamiltonians, although they might not be
easy to verify. A more general discussion can be found
in Appendix S5.
In summary, to realize the proposed protocol, the

experimental platform should have at least n system
qubits and be capable of running single-qubit operations,
nearest-neighbor ZZ interactions, and a global CZ oper-
ation, which is exactly the capability of our mostly analog
+ GCZ model of quantum computation. The quantum
circuit for a 4-qubit toy model is shown in Fig. 3.

B. Prospects for Experimental Implementation

As explained in Section III A, our protocol uses the
mostly analog + GCZ capability, which roughly contains
two types of ingredients: first, an analog simulator capa-
ble of implementing a ZZ-type Hamiltonian along with
a limited number of single-qubit rotations and measure-
ments, and, second, a global CZ gate. The first ingredient
is easily accessible in many different hardware platforms
including trapped ions, neutral-atom arrays, and super-
conducting qubits. The second ingredient is not common
in hardware architectures for digital quantum comput-
ing, but similar ideas have been explored in the context
of routing and switching of single- or few-photon signals
[42–44] using atomic excitations, and in the case of single-
photon-controlled switches [27, 28], where a single photon
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|+〉

|φin〉1

|φin〉2

|φin〉3

|φin〉4

X

H Z H

e−iHT/2

H Z H

e−iHT/2

Z Z

Z Z

H Z H H Z H

FIG. 3. The final quantum circuit for a (4+1)-qubit example system, where the initial state has been prepared as |ψinitial〉 =
1√
2
(|0〉+ |1〉) |φin〉). Here the first qubit is the clock qubit, and part B consists qubits 1 and 4, while part A consists of qubits 2

and 3. The initial state |ψinitial〉 can be prepared by single-qubit rotations. By applying Hadamard gates before and after the
globally controlled-ZZZZ gate for qubits in part B, a controlled-XZZX is implemented. As single-qubit Z commutes with
e−iHT , the Z operations cancel out for qubits in block A.

Bus(Clock)

Qubit 1 Qubit 2

Qubit 3 Qubit 4

Qubit 5 Qubits ...

FIG. 4. The “bus” scheme for realizing a global CZ gate.
All simulation qubits are only coupled with the central “bus”
cavity mode, which behaves effectively as the clock qubit.
Both the global CZ gate and the ZZ+Z interaction between
simulation qubits can be mediated via the bus mode.

can be used to switch the state of all the photons in a
wave packet.

There are two possible ways for the clock qubit to glob-
ally turn simulator-qubit Z gates on and off. First, cou-
pling between the clock qubit and the simulator qubits
can directly implement the Z gates. Second, the clock
qubit can be used to switch classical controls to the sim-
ulator qubits on and off. Both implementations are in
principle possible, and each of them comes with its own
unique set of hardware constraints and challenges, which
we describe below.

In the first method, the clock qubit itself is the sig-
nal that gives rise to Z rotations of the simulator qubits.
This requires the clock qubit to interact directly with
all of the simulator qubits. Therefore, this method re-
quires the existence of a single global “bus” degree of
freedom (e.g., a qubit or bosonic mode) that contains
the two clock-qubit states |0〉 to |1〉, shown schematically
in Fig. 4. The bus mode must interact strongly with each
of the system qubits so that a single excitation/photon
(or few photons) in the bus mode can produce a signif-
icant effect. Such interactions are possible if all of the
simulator qubits are strongly coupled to a single cavity
mode. Furthermore, the bus-system interaction cannot
be resonant (i.e., cannot involve direct absorption of ex-
citations in the bus); otherwise a Z gate on N system

qubits cannot be achieved without M ≥ N excitations
of the bus mode. The bus-system interaction must, in-
stead, be dispersive so that the presence of excitations
in the bus mode gives rise to phase shifts of simulator
qubits.
While atom-cavity interactions in the single-photon

strong-coupling regime are possible in atomic cavity
QED, coupling strengths in the so-called strong disper-
sive regime which are strong enough to produce an off-
resonant CZ gate with only a few photons are typically
only achievable with superconducting qubits coupled to
microwave cavities and superconducting qubits [45]. Al-
ternative implementations may also exist using a con-
fined phonon mode, such as the vibrational modes of an
ion trap [46]. Lastly, making use of strong dispersive cou-
plings to implement a globally controlled Z gate between
a single excitation in the bus cavity and all of the system
qubits would require building the entire simulator inside
or attached to the single bus cavity. While this is cer-
tainly possible in principle, it is a bespoke feature that
would need to be incorporated into the simulator as part
of its initial design.
Because of the stringent hardware constraints for the

“bus” method of implementing the clock qubit, it is worth
considering other methods in which the operation of the
clock qubit is more separated from the operation of the
quantum simulator under test. Separating these two
means that instead of being used to switch the simula-
tor qubits directly, the clock qubit must now switch the
control signals for single-qubit Z gates on and off. This
architecture, shown schematically in Fig. 5, provides sig-
nificantly more separation between the design constraints
of the simulator and those of the clock qubit, but it re-
quires the clock qubit to control a very high-performance
quantum switch. In particular, it is not sufficient to use a
classical switch with an extremely low switching energy
provided by the clock qubit; instead, the switch itself
must be able to exist in a superposition between on and
off. Such a superposition switching state is extremely
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Quantum switch

Clock qubit

Signal

System

FIG. 5. The quantum switch scheme. Here the simulation
qubits are assigned in the square lattice as usual. A pho-
ton source gives signals that implement Z operations for each
simulation qubit. A high-performance quantum switch, con-
trolled by the clock qubit which could be in superposition,
determines whether the signal can be received by simulation
qubits or not, which realizes a global CZ gate.

challenging to achieve with large control signals since
there are many opportunities to lose a photon (and thus
destroy the superposition). Compared to other architec-
tures, superconducting qubits typically require very low
switching power—as low as a few photons—so they are
a likely candidate for implementation of the necessary
quantum switch. For example, a broadband and high-
dynamic-range switch such as the one demonstrated in
Pechal et al. [47] could be converted to use, e.g., a gal-
vanically coupled fluxonium qubit [48] as the switching
element. In the optical domain, single-photon controlled
switches have been implemented using atomic ensembles
[27] and self-assembled semiconductor quantum dots [28]
as the switching medium.

IV. SUMMARY & DISCUSSIONS

In summary, we have proposed a novel scheme for
demonstrating quantum computational ability based on
verification of analog quantum simulation. The verifier in
the scheme need only be capable of polynomial-time clas-
sical computation. The prover can be an analog quantum
simulator with the additional power of single-qubit op-
erations and a specific global CZ gate, and only needs
to be able to prepare a constant number of samples, in-
dependent of the system size. Additionally, we assume
the prover can perform trusted measurements. We also
described some possible near-term experimental imple-
mentations of the global CZ gate.
Hangleiter et al. [23] propose another certification

scheme that was applied in [24] to verify measurement
outcomes using only local measurements. The method
in [23] can even verify BQP-complete computation en-
coded through the Feynman-Kitaev mapping, but it re-
quires O(n2) samples of the output state for the ZZ +Z
Hamiltonian evolution, which is more expensive than our
constant-sample-complexity scheme. Our improvement
is achieved by a combination of the single-step Feynman-

Kitaev encoding and the commuting nature of the ZZ+Z
Hamiltonian (or the ZZ Hamiltonian when single-qubit
Zs are absorbed). In fact, our protocol can verify all com-
muting Hamiltonians with constant sample complexity if
entangled multi-qubit measurements are allowed, but it
is unclear whether there are also near-term honest-prover
strategies in this more general case. We discuss this in
more detail in Appendix S5.

It is worth noting that there can be a tradeoff between
the verification cost and the difficulty of experimental
realization. Our verification protocol presented in Sec-
tion II does not rely on the condition that in H , the
coefficient of every term ZiZj is the same (π/4), but this
uniformity makes it possible to simulate the system using
2O(

√
n)-time classical computation, so that n = O(λ2). If

instead the coefficients are randomly selected, then the
above simulation is no longer available, and we can con-
jecture the classical simulation cost to be 2Ω(n), as in
[36]. In this case, the number of qubits, the number
of single-qubit measurements, and the classical compu-
tational cost can all be reduced to O(λ)—at the cost
of more difficult history state preparation—since non-
uniform Hamiltonian evolution is in general more chal-
lenging.

As the main technical tool of this work, we studied a
simplified single-step Feynman-Kitaev construction and
developed a scheme to lower bound the output fidelity
Foutput (and subsequently the TVD between ideal and
experimental distributions) using three parameters. In
fact, the lower bound holds for any unitary U , but the
three parameters may not be efficiently estimatable in
general. One might ask if we can simply combine the
protocol of Fitzsimons et al. [16] with our single-step con-
struction to verify arbitrary quantum operations, such as
non-commuting Hamiltonian evolutions or digital quan-
tum circuits. We do not have a definite answer, but this
seems difficult for most hard-to-simulate unitaries be-
cause they generally decompose into exponentially many
Pauli terms and, unlike ZZ+Z or ZZ Hamiltonian evolu-
tion, their de facto measurement outcome cannot be effi-
ciently deduced from poly(λ) single-qubit measurements.

Experimental implementation of the protocol would be
of significant interest. Although it might be difficult to
implement quantum communication in the adversarial
scenario, our protocol could be a useful tool for experi-
mentalists to benchmark the quality of their devices, be-
cause the quality of initial state preparation and that of
Hamiltonian evolution can be estimated separately and
precisely. As shown in Appendix S2, if the noise pattern
is known to be fully stochastic instead of coherent, the ex-
perimentalist only needs to achieve output fidelity 0.708,
which is significantly easier than the bound of 0.915 in
the fully coherent case.

Finally, our approach may have applications to realiz-
ing near-term quantum advantage even in devices capable
of digital quantum computation. Reconfigurable atom
arrays [49, 50] may be one such system. In these arrays,
physical qubits (realized by individual neutral atoms con-
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FIG. 6. The reconfigurable atom array scheme. The gray
dots represent qubits in a

√
n-qubit GHZ state. Local CZ

gates can be realized between pairs of GHZ qubits and system
qubits in parallel. Then the GHZ qubits are moved down to
the next row and the parallel CZ gates are repeated.

trolled by optical tweezers) can be moved accurately on
the 2-D plane in parallel, and transversal CZ gates are
available. Therefore, our global CZ gate can be imple-
mented as follows. One can first prepare a large n-qubit
GHZ state that behaves as the clock qubit. The GHZ
state preparation can be implemented by either perform-
ing a sequence of CNOT gates or using constant-depth
unitary operations interleaved with measurements and
classical computations [51]. One can then can move all
qubits in the GHZ state such that every system qubit
pairs with a GHZ qubit. Next, using the Levine-Pichler
gate [52], CZ gates can be implemented in parallel for
every pair of system and GHZ qubits, effectively imple-
menting the global CZ acting on all system qubits. There
is also a multi-step solution to mitigate the hardness of
GHZ preparation: since our system is a

√
n×√

n square
lattice, it suffices to prepare a 1-D

√
n-qubit GHZ state,

and apply the transversal CZ gate
√
n times to achieve

the same global CZ gate. This proposal is depicted in
Fig. 6.

While digital reconfigurable atom arrays are capa-

ble of even more powerful quantum operations than
the mostly-analog + GCZ commuting model, it may
still be worth performing our proposed experiment us-
ing Rydberg atoms. Running our verification protocol
gives several quantitative performance measures (Fin and
|〈O10〉|2), and can thus be used to benchmark the per-
formance of this fast-developing platform in a sample-
efficient manner.
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Stephan Dürr. Single-photon switch based on rydberg
blockade. Physical Review Letters, 112(7):073901, 2014.

[44] Weibin Li and Igor Lesanovsky. Coherence in a cold-atom
photon switch. Physical Review A, 92(4):043828, 2015.

[45] Alexandre Blais, Arne L Grimsmo, Steven M Girvin, and
Andreas Wallraff. Circuit quantum electrodynamics. Re-
views of Modern Physics, 93(2):025005, 2021.

[46] Christopher Monroe, Wes C Campbell, L-M Duan, Z-X
Gong, Alexey V Gorshkov, Paul W Hess, Rajibul Islam,
Kihwan Kim, Norbert M Linke, Guido Pagano, et al.
Programmable quantum simulations of spin systems with
trapped ions. Reviews of Modern Physics, 93(2):025001,
2021.

[47] M Pechal, J-C Besse, Mintu Mondal, M Oppliger, S Gas-
parinetti, and A Wallraff. Superconducting switch for
fast on-chip routing of quantum microwave fields. Phys-
ical Review Applied, 6(2):024009, 2016.

[48] Vladimir E Manucharyan, Jens Koch, Leonid I Glazman,
and Michel H Devoret. Fluxonium: Single cooper-pair
circuit free of charge offsets. Science, 326(5949):113–116,
2009.

[49] Jerome Beugnon, Charles Tuchendler, Harold Marion,
Alpha Gaetan, Yevhen Miroshnychenko, Yvan R. P. Sor-
tais, Andrew M. Lance, Matthew P. A. Jones, Gaetan
Messin, Antoine Browaeys, and Philippe Grangier. Two-
dimensional transport and transfer of a single atomic
qubit in optical tweezers. Nature Physics, 3(10):696–699,
2007.

[50] Dolev Bluvstein, Simon J Evered, Alexandra A Geim, So-
phie H Li, Hengyun Zhou, Tom Manovitz, Sepehr Ebadi,
Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter,
et al. Logical quantum processor based on reconfigurable
atom arrays. Nature, pages 1–3, 2023.

[51] Adam Bene Watts, Robin Kothari, Luke Schaeffer, and
Avishay Tal. Exponential separation between shallow
quantum circuits and unbounded fan-in shallow classical
circuits. In Proceedings of the 51st Annual ACM Sympo-

sium on Theory of Computing, pages 515–526, 2019.
[52] Harry Levine, Alexander Keesling, Giulia Semeghini,

Ahmed Omran, Tout T Wang, Sepehr Ebadi, Hannes
Bernien, Markus Greiner, Vladan Vuletić, Hannes Pich-
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APPENDICES

In these appendices, we present details omitted from the main text. In Appendix S1, we state and briefly explain
the conjectures used to establish computational hardness [24, 32]. In Appendix S2, we lower bound the output
fidelity and the total variation distance between distributions using the parameters in our verification scheme. In
Appendix S3, we discuss noisy measurements and estimate the noise rate that both verification and sampling can
tolerate. In Appendix S4, we discuss an additional soundness property of our protocol against correlated output states
using martingale inequalities. In Appendix S5, we generalize the echo method presented in the main text to more
general Ising-type Hamiltonians.

Appendix S1: Conjectures for the classical hardness

As mentioned in the main text, the classical hardness of X-basis sampling from a state produced by (ZZ +
Z)-Hamiltonian evolution is proven in Bermejo-Vega et al. [24] and Ringbauer et al. [32] under several plausible
conjectures, which we review in this section.

Conjecture 1 (Polynomial Hierarchy—Conjecture 1 in [24]). The polynomial hierarchy is infinite.

The second conjecture considers the hardness of a random nearest-neighbor Ising model on an n×m square lattice
where m grows at least linearly with n, with the Hamiltonian

H(α,β) =
∑

i,j

π

4
ZiZj −

∑

i

h
(α,β)
i Zi, (S1.1)

where h
(α,β)
i = π

4 − αi+βi

2 with αi ∈ {0, π}, βi ∈ {0, π/4} chosen uniformly at random.

Conjecture 2 (Average-case complexity—Conjecture 2 in [24] and conjecture in [32]). Let Z(α,β) := Tr
(

eiH
(α,β))

.

Approximating |Z(α,β)|2 up to relative error 1/4 + o(1) for any 0.001 fraction of the field configurations is #P-hard.

The last conjecture is about anti-concentration of the output distribution. Consider a one-dimensional nearest-
neighbor n-qubit Θ(n)-depth random circuit

C =

[

n−1
∏

i=1

CZi,i+1

][

n
∏

i=1

Zci
i e

−iπ4 diZiHi

]

, (S1.2)

where ci, di are uniformly randomly chosen from {0, 1} and Hi are Hadamard gates.

Conjecture 3 (Anti-concentration—Conjecture 3 in [24]). For the random circuit C described above,

Pr
C

(

|〈x|C|0〉⊗n|2 ≥ 1

2n

)

≥ 1

e
(S1.3)

for any binary string x ∈ {0, 1}n.

Appendix S2: Relating the parameters to the total variation distance

In this appendix, we derive an upper bound on the total variation distance of interest, TVD(Pideal, Preal), in terms
of the parameters Fin, |〈O10〉|2, and psamp. We use the same definition of ρ and |ψi〉 as in Eqs. (6) and (7).
First, we relate the TVD and the output fidelity

Fout(ρ) :=

∑

i pi|βi|2 |〈φ′i|U |φin〉|2
∑

i pi|βi|2
. (S2.1)

This is the fidelity between the state used for sampling, ρ, and U |φin〉, since the state corresponding to the “output”
of the computation is |φ′i〉 for all i.
In the second step, we derive a lower bound on the state fidelity in terms of the parameters. We lower bound

Fout(ρ) using only the parameters Tr[ρO10] and Fin(ρ). We find

Fout(ρ) ≥ 16|Tr[ρO10]|2 + 3Fin(ρ)− 6 (S2.2)

up to higher-order terms. As a sanity check, if the history state is perfectly prepared, both |Tr[ρO10]|2 and Fin should
take their maximum values, which are 1/4 and 1 (as shown later in this section), giving Fout = 1 as expected.
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1. Relating the total variation distance to the output fidelity

To demonstrate quantum advantage, we generate samples from the desired distribution Pideal defined by U |φin〉
with total variation distance (TVD) less than δ = 0.292 as per Ringbauer et al. [32]. Therefore, we would like to
relate the fidelity Fout obtained from the measurements to the distance between the distribution Preal corresponding
to the classical mixture of |φ′i〉s (i.e.,

∑

i pi|βi|2 |φ′i〉 〈φ′i|) and the ideal distribution Pideal.
Let ‖ · ‖Tr be the trace norm (Schatten 1-norm). The TVD between probability distributions generated by mea-

surements on quantum states is upper bounded by the trace distance between those states, which is in turn related
to the fidelity:

TVD(Pideal, Preal) ≤
1

2

∥

∥

∥

∥

∥

U |φin〉 〈φin|U † −
∑

i

pi|βi|2 |φ′i〉 〈φ′i|
∥

∥

∥

∥

∥

Tr

≤

√

√

√

√1− F

(

U |φin〉 〈φin|U †,
∑

i

pi|βi|2 |φ′i〉 〈φ′i|
)

=

√

1−
∑

i

pi|βi|2F (|φ′i〉 , U |φin〉) =
√

1− Fout.

(S2.3)

Thus, TVD(Pideal, Preal) ≤ 0.292 is satisfied if

Fout ≥ 0.915 > 1− δ2, (S2.4)

where we use δ = 0.292.
We also observe that the output fidelity requirement can be relaxed to 0.708 if the noise in the system is known to

be fully stochastic. We discuss this in Appendix S2.3.

2. Lower bounding the output fidelity using the parameters

As a mathematical tool, we define an inner product based on the (not explicitly known) diagonalization of ρ.

Suppose ρ =
∑2n+1

i=1 pi |ψi〉 〈ψi| and there exists an integer N 6=0 > 1 such that pi > 0 for all 1 ≤ i ≤ N 6=0 and pi = 0
for all N 6=0 < i ≤ 2n+1. The inner product 〈·, ·〉ρ is defined for the N 6=0-dimensional complex vector space V = CN 6=0

as

〈 ~A, ~B〉ρ :=
∑

1≤i≤N 6=0

piAiB
∗
i , (S2.5)

where ~A := (A1, A2, . . . , AN 6=0
)T and ~B := (B1, B2, . . . , BN 6=0

)T are vectors in V . It is straightforward to verify that
for any valid density matrix ρ, the vector space V equipped with 〈·, ·〉ρ is an inner product space. Therefore, one can
define the norm of a vector in V as

‖ ~A‖2 := 〈 ~A, ~A〉ρ =
∑

i

pi|Ai|2. (S2.6)

Next, we define several vectors to help represent the state and the parameters: the input fidelity vector ~fin, the

propagation fidelity vector ~fin, the output fidelity vector ~fout, the α coefficient vector ~α, the β coefficient vector ~β,
and the γ coefficient vector ~γ for a given mixed state ρ, namely

~fin := (. . . , 〈φi|φin〉, . . . )T,
~fprop := (. . . , 〈φ′i|U |φi〉, . . . )T,
~fout := (. . . , 〈φ′i|U |φin〉, . . . )T,
~α := (. . . , αi, . . . )

T,

~β := (. . . , β, . . . )T,

~γ := (. . . , αiβ
∗
i , . . . )

T,

(S2.7)
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respectively. Note that ‖~γ‖2 ≤ 1/4 and ‖~fin‖2, ‖~fprop‖2, ‖~fout‖2 ≤ 1 since |αi|2 + |βi|2 = 1,
∑

i pi = 1, and fidelities
are at most 1.
Observe that psamp is the same as ‖~α‖2. Another parameter, Tr[ρO10], can be written as the inner product of two

of the above vectors:

Tr[ρO10] =
∑

i

piαiβ
∗
i 〈φ′i|U |φi〉 = 〈~γ, ~fprop〉ρ. (S2.8)

Using the Cauchy-Schwarz inequality, we find

|Tr[ρO10]|2 = |〈~γ, ~fprop〉|2 ≤ ‖~γ‖2‖~fprop‖2 ≤ 1/4. (S2.9)

Since ‖~γ‖2 ≤ 1/4 and ‖~fprop‖2 ≤ 1, the above inequality implies that

4‖~γ‖2 ≥ |Tr[ρO10]|2,
‖~fprop‖2 ≥ 4|Tr[ρO10]|2.

(S2.10)

If the prover performs well, then the estimated value Tr[ρO10] should be close to 1/4, ‖~α‖2 should be close to 1/2,

and Fin should be close to 1. Therefore we write them as Tr[ρO10] = 1/4 − ǫ, ‖~α‖2 = 1/2 + ǫ′ = 1 − ‖~β‖2, and
Fin = 1 − ǫ′′, where ǫ, ǫ′, ǫ′′ are all small and ǫ, ǫ′′ > 0. This also implies that ‖~γ‖2 =

∑

i pi|αi|2|βi|2 ≥ 1/4 − ǫ and

‖~fprop‖2 ≥ 1− 4ǫ.

Recall that our final objective is to lower bound Fout(ρ). We start by giving a lower bound on ‖~fin‖2 in terms of
Fin.
First, the Cauchy-Schwarz inequality gives

Fin(ρ) =
1

‖~α‖2
∑

i

pi|αi|2 |〈φi|φin〉|2

≤ 1

‖~α‖2
∑

i

pi|αi|2 |〈φi|φin〉|

≤ 1

‖~α‖2

(

∑

i

pi|αi|4
)1/2

‖~fin‖.

Plugging in the identity |αi|4 = |αi|2 − |αi|2|βi|2, we get

Fin(ρ) ≤
1

‖~α‖2 (‖~α‖
2 − ‖~γ‖2)1/2‖~fin‖.

As before, suppose that ‖~γ‖2 = 1/4− ǫ and ‖~α‖2 = 1/2 + ǫ′. This implies that

Fin(ρ) ≤
1

1
2 + ǫ′

(

1
2 + ǫ′ − 1

4 + ǫ
)1/2 ‖~fin‖.

We can rewrite this as

‖~fin‖ ≥
1
2 + ǫ′

√

1
4 + ǫ′ + ǫ

Fin = (1− 2ǫ)Fin +O(ǫ′2) +O(ǫ2) +O(ǫǫ′).

Next, since |〈φ′i|U |φin〉|2 ≥ |〈φ′i|U |φi〉|2 |〈φi|φin〉|2, we have

Fout(ρ) ≥
1

‖~β‖2
∑

i

pi|βi|2 |〈φ′i|U |φi〉|2 |〈φi|φin〉|2 .

Note that for any δ1, δ2 ∈ [0, 1], we have (1− δ1)(1− δ2) ≥ 1− δ1 − δ2 = (1− δ1) + (1− δ2)− 1. Using this inequality,
we can write

Fout(ρ) ≥
1

‖~β‖2
∑

i

pi|βi|2
(

|〈φ′i|U |φi〉|2 + |〈φi|φin〉|2 − 1
)

= −1 +
1

‖~β‖2
∑

i

pi(1− |αi|2)
(

|〈φ′i|U |φi〉|2 + |〈φi|φin〉|2
)

= −1 +
1

‖~β‖2
(

‖~fprop‖2 + ‖~fin‖2
)

− 1

‖~β‖2
∑

i

pi|αi|2 |〈φ′i|U |φi〉|2 −
‖~α‖2

‖~β‖2
Fin(ρ).
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The second-to-last term can be bounded in terms of ‖~fprop‖, using the same argument we used to relate Fin(ρ) and

‖~fin‖. This yields

1

‖~β‖2
∑

i

pi|αi|2 |〈φ′i|U |φi〉|2 ≤

√

1
2 + ǫ′ − 1

4 + ǫ

1
2 − ǫ′

‖~fprop‖ = (1 + 4ǫ′ + 2ǫ)‖~fprop‖+O(ǫ′2) +O(ǫ2) +O(ǫǫ′). (S2.11)

Plugging this into the preceding equation, we get

Fout(ρ) ≥ −1 +
1

‖~β‖2
(

‖~fprop‖2 + ‖~fin‖2
)

−

√

1
2 + ǫ′ − 1

4 + ǫ

1
2 − ǫ′

‖~fprop‖ −
‖~α‖2

‖~β‖2
Fin(ρ)

≥ −1 +
2

1− 2ǫ′

(

‖~fprop‖2 + ‖~fin‖2
)

−

√

1
2 + ǫ′ − 1

4 + ǫ

1
2 − ǫ′

‖~fprop‖ −
1
2 + ǫ′

1
2 − ǫ′

Fin(ρ)

= 1− 16ǫ− 3ǫ′′ + h.o.,

(S2.12)

where h.o. indicates higher-order terms in ǫ, ǫ′, ǫ′′. Numerically, this first-order approximation of the lower bound has
absolute error at the 10−3 order of magnitude if all of ǫ, |ǫ′|, ǫ′′ are upper bounded by 0.02. We have thus established
Theorem 3.

3. Relaxing the fidelity requirement for fully stochastic noise models

We notice that inequality (S2.3) can be improved to get a bound that approaches

TVD(Pideal, Preal) ≤ 1− Fout (S2.13)

in cases where the errors are stochastic rather than coherent. Let ρreal :=
∑

i pi|βi|2 |φ′i〉 〈φ′i| be the real state (that
is, the state prepared in the experiment), and let σ = |ψ〉 〈ψ| be the ideal pure state. The real state ρreal has fidelity
Fout = 〈ψ| ρreal |ψ〉 = 1− δf (where δf is the “infidelity”).
Furthermore, assume that ρreal is mixed, in the sense that Tr

(

ρ2real
)

= 1 − δp (where δp is the “impurity”). This

assumption can be checked by estimating Tr
(

ρ2real
)

using either randomized measurements [53] or the swap test. (The
former method is appropriate for small quantum systems where the experimenter has a relatively limited degree of
control; the latter method is capable of handling much larger quantum systems, but requires more sophisticated
quantum control.)
Define projectors Π0 := |ψ〉 〈ψ| and Π1 := I − Π0. Write the state in block-diagonal form as ρreal = ρ00 + ρ01 +

ρ10 + ρ11, where ρab := ΠaρrealΠb for a, b ∈ {0, 1}.
Let ‖ · ‖F be the Frobenius norm (i.e., the Schatten 2-norm). Then we can upper bound the trace distance between

ρreal and σ as follows:

‖ρreal − σ‖Tr ≤ ‖ρ00 − σ‖Tr + ‖ρ11‖Tr + ‖ρ01‖Tr + ‖ρ10‖Tr
= 2δf + 2‖ρ01‖Tr.

(S2.14)

We have

‖ρ01‖Tr = ‖ρ01‖F
= 1√

2
(Tr
(

ρ2real
)

− ‖ρ00‖2F − ‖ρ11‖2F )1/2

≤ 1√
2
(Tr
(

ρ2real
)

− ‖ρ00‖2F )1/2

= 1√
2
(1− δp − (1− δf )

2)1/2

= 1√
2
(2δf − δ2f − δp)

1/2.

(S2.15)

Therefore,

1

2
‖ρreal − σ‖Tr ≤ δf +

√

δf − δ2f/2− δp/2. (S2.16)



19

This bound can be compared to inequalities (S2.3) and (S2.13). When ρ is a pure state, we have δp = 0, so the

above bound is roughly
√

δf , which looks like inequality (S2.3). When ρ is highly mixed, δp can be as large as

δp ≈ 2δf − δ2f , so the above bound is roughly δf , which looks like inequality (S2.13). This implies that, when the noise
model is known to be fully stochastic, the output state fidelity need only be at least 1 − δ = 0.708 to demonstrate
quantum advantage, according to inequality (S2.13).

Appendix S3: Noisy Measurements

In the analysis in the main article, we assume that all measurements are perfect. In this appendix, we discuss the
potential negative effects of noisy measurements in both verification and sampling. We also show that the tolerable
noise rate in measurements for an n-qubit system is ǫ≪ 1/n.

1. Noisy measurements in verification

Let us first discuss the estimation of |〈O10〉|2 = |〈X ⊗ U〉 + i〈Y ⊗ U〉|2. When ǫ ≪ 1/n, the number of erroneous
measurements in each estimation of the de facto value of X ⊗ U or Y ⊗ U is much less than 1. Therefore, the mean
values measured for both quantities only deviate by up to nǫ〈X ⊗U〉 and nǫ〈Y ⊗ U〉 due to the measurement errors,
leading to constant-factor errors in the estimation of |〈O10〉|2. Hence, the error rate must be sufficiently small, e.g.,
ǫ = 1

100n , such that the estimated value can still be in the range of acceptance.

Similarly, we require the measurement error to be as small as 1
100n to estimate Fin to sufficiently high precision,

because the value of Nin+0 could be lowered by NMnǫ when measuringNM samples. This may lead to a constant-factor
error (of order nǫ) in Fin,M.

2. Noisy measurements in sampling

In the following lemma, we show that we can still sample from a classically intractable distribution if the measure-
ment error is much lower than 1/n.

Lemma 3. If Foutput = 1 − δf , and all measurements have the same error rate ǫ ≪ 1/n, then the measurement

outcomes sample from a distribution Preal with TVD(Preal, Pideal) ≤ δ′ =
√

δf +O(1).

Proof. Since there are n Hadamard measurements to be performed, the probability of having no error in the measure-
ments is

pmeasure = (1− ǫ)n ≈ 1− ǫn. (S3.1)

Therefore, there is a 1 − ǫn probability that the measurement outcome samples from a distribution that is
√

δf
away from the ideal distribution in terms of TVD. In the worst case, we simply assume the distribution of errorneous
measurements has maximum TVD from the ideal distribution, which is 1. Hence, the TVD between the real experiment
distribution and the ideal distribution can be upper bounded by

TVD(Preal, Pideal) ≤ (1− ǫn)TVD(Preal, Pideal) + ǫn = (1 − ǫn)
√

δf + ǫn =
√

δf +O(1), (S3.2)

where in the last step we use ǫ≪ 1/n and δf < 1.

Appendix S4: Relaxing the assumption that the trials are i.i.d.

Our protocol consists of NM repeated trials or experiments that are carried out by the prover and the verifier. In
the preceding discussion, we have assumed that these trials are independent and identically distributed (i.i.d.), so
that the accuracy of our protocol can be shown using simple large-deviation bounds, such as Hoeffding’s inequality.
Here we sketch how this i.i.d. assumption can be relaxed. In this case, the accuracy of our protocol can be shown
using large-deviation bounds based on martingales, such as Azuma’s inequality [54].
To demonstrate this, consider a protocol that estimates the expectation value of an observable A by repeating an

experiment (preparing a quantum state and measuring it) NM times. More complicated protocols can be handled in
a similar way. For j = 1, 2, . . . , NM , let Fj be the random variable that represents the classical measurement outcome
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from the jth repetition of the experiment. Let F = (1/NM )
∑NM

j=1 Fj be the average of the Fj , which we use to

estimate the expectation value of A. In addition, assume that the operator norm of A is bounded by ‖A‖ ≤ β, where
β is independent of the size of the system, and hence |Fj | ≤ β. This assumption is satisfied for many commonly-used
measurements, such as computational-basis measurements preceded by arbitrary single-qubit rotations.
In the case where the trials are i.i.d., the same quantum state ρ is prepared in every trial, and the random variables

Fj are i.i.d. with expectation value Tr(Aρ). Then F has expectation value Tr(Aρ), and Hoeffding’s inequality implies
that F satisfies a Gaussian-like tail bound with width O(β/

√
NM ).

In the non-i.i.d. case, it is possible for the NM trials to be correlated. Without loss of generality, we can imagine
that there exists a joint state σ on NM copies of the quantum system, and for each j, the random variable Fj comes
from measuring the reduced state on the jth copy of the system, which we denote σj := Tr{1,...,NM}\{j}(σ).
Despite these complications, it is still possible to interpret F as an estimate of the expectation value of A for a

particular quantum state τ on a single copy of the system. This follows since each Fj has expectation value Tr(Aσj),

and hence F has expectation value (1/NM )
∑NM

j=1 Tr(Aσj) = Tr(Aτ ), where τ = (1/NM )
∑NM

j=1 σj .
Furthermore, despite the fact that the random variables Fj are correlated, one can still show that F satisfies

a Gaussian-like tail bound with width O(β/
√
NM ). Intuitively, this is because each Fj can influence the value of

F by an amount that is bounded by ±β/NM . Formally, this can be shown by well-known martingale techniques
(see [54]), i.e., constructing the Doob martingale Gj = E(F |Fj , . . . , F1), showing that Gj has bounded differences
|Gj −Gj−1| ≤ 2β/NM , and applying Azuma’s inequality.

Appendix S5: Echo for more general Hamiltonians

In the main text, we have shown that the echo approach can be used to generate the single-step history state for a
(ZZ + Z)-type Hamiltonian on a bipartite lattice. In this section, we show that the single-step history state can be
prepared for some—though not all—other Ising-type Hamiltonians.
A (ZZ + Z)-type Hamiltonian is very special because its terms commute. This allows us to run the controlled-Zs

independently and only worry about controlled-ZZs. For more general non-commuting Hamiltonians, we may have
to “invert” all its terms in the echo approach. Under suitable conditions, we can do this using the following theorem.

Theorem 7. If there exists an operator P which is a product of single-qubit operations such that PHP = −H, then
the single-step history state can be prepared using 2-local operations and controlled-P gates.

Proof. We start with the initial state (|0〉 + |1〉) |φ〉 and perform CP before and after a half-time evolution of H ,
followed by a Pauli-X on the clock qubit and a half-time evolution of H . The final state is

e−iHT/2 ·X0 · CP · e−iHT/2 · CP (|0〉+ |1〉) |φ〉 = e−iHT/2
[

|1〉 e−iHT/2 |φ〉+ |0〉Pe−iHT/2P |φ〉
]

= e−iHT/2

[

|1〉 e−iHT/2 |φ〉+ |0〉
∑

k

1

k!
P (−iHT/2)kP |φ〉

]

= e−iHT/2

[

|1〉 e+iHT/2 |φ〉 + |0〉
∑

k

1

k!
(+iHT/2)k |φ〉

]

= e−iHT/2
[

|1〉 e−iHT/2 |φ〉+ |0〉 e+iHT/2 |φ〉
]

= |0〉 |φ〉+ |1〉 e−iHT |φ〉 ,

(S5.1)

which is the desired output.

There are several cases in which an operator P satisfying the conditions of the theorem can be constructed. For
example, if the Hamiltonian consists of ZZ terms on a bipartite interaction graph, then P can apply an X (or
Y ) operator to all qubits on one half of the bipartition. We can also handle some cases where the Hamiltonian is
non-commuting, such as

H =
∑

(i,j)∈NN

(XiXj + YiYj) +
∑

i

Zi (S5.2)

acting on a bipartite lattice. Then we can split the system into two sets of qubits where all interactions are between
qubits in different sets. If the operator P acts with X on the first set of qubits and Y on the second set, then it
anticommutes with each term of H , so it has the desired behavior.


