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Moiré superlattices based on two-dimensional transition metal dichalcogenides (TMDs) have
emerged as a highly versatile and fruitful platform for exploring correlated topological electronic
phases. One of the most remarkable examples is the recently discovered fractional quantum anoma-
lous Hall effect (FQAHE) under zero magnetic field. Here we propose a minimal structure that
hosts long-lived excitons—a ubiquitous bosonic excitation in TMD semiconductors—with narrow
topological bosonic bands. The nontrivial exciton topology originates from hybridization of moiré
interlayer excitons, and is tunable by controlling twist angle and electric field. At small twist angle,
the lowest exciton bands are isolated from higher energy bands, and provides a solid-state realization
of bosonic Kane-Mele model with topological flatbands, which could potentially support the bosonic
version of FQAHE.

Introduction.—Owing to their narrow bandwidths and
intertwined electronic wavefunctions, moiré superlattices
formed from overlaying two-dimensional TMD semicon-
ductors have become a unique crossroad where strong
electron correlations and nontrivial topology meet, un-
der unprecedented controllability in both directions.
In TMD superlattices where band topology is trivial,
a plethora of strongly correlated phenomena, such as
Mott insulators, generalized Wigner crystals, and metal-
insulator transitions, have been identified [1–12]. Re-
cently, in TMD superlattices featuring topological bands,
experimental studies observed correlated phases with
non-trivial topological characteristics [13–21], including
both integer and fractional quantum anomalous Hall
states. The latter, also referred to as fractional Chern in-
sulators, is observed for the first time in experiments after
being proposed for over a decade [22–26]. These obser-
vations establish TMD moiré superlattices as promising
candidates for solid-state fermionic quantum simulations.

The drastic influence of the long-period moiré pat-
tern extends to excitons—tightly-bound electron-hole
pair excitations—in TMD moiré superlattices, rendering
their localization on moiré lattices [27–38]. Remarkably,
recent experiments discovered a correlated incompress-
ible state of excitons [39–42], or a bosonic Mott insula-
tor, in TMD moiré heterobilayers, breaking new grounds
for exploring many-body systems of bosons. The moiré
modulation in these superlattices leads to localized exci-
tons seating on a triangular lattice and with strong on-
site interactions, effectively simulating the Bose-Hubbard
model. The emergence of localized bosonic lattices can
be understood as the formation of trivial excitonic moiré
bands with narrow bandwidths. One intriguing ques-
tion arises: Is it possible to form topological moiré bands
for excitons, thereby paving the way to achieve bosonic
correlated topological phases, such as bosonic fractional

Chern insulators?

It was understood that excitons in the +K and −K
valleys of TMD monolayers have non-zero berry cur-
vatures due to valley-momentum coupling induced by
electron-hole exchange interactions [44–47]. Based on
this, F. Wu and coworkers [34] showed that when such
intralayer exciton is subjected to a periodic moiré po-
tential, the resulting low-energy moiré exciton bands can
have a definite Chern number, provided an effective Zee-
man field for the exciton pseudospin is included. How-
ever, one critical issue that remains unaddressed in this
scenario is the short lifetime of excitons, which is detri-
mental for experimental realization of many-body states
of excitons. Intralayer excitons are known to have large
optical dipole moment responsible for their short re-
combination lifetime; they decay rapidly before a quasi-
equilibrium population of excitons can be established.
The fact that the strength of the valley-momentum cou-
pling is proportional to the optical dipole moment places
topology and long lifetime at odds with each other.

In this Letter, we propose a minimal TMD moiré het-
erostructure capable of supporting excitons that are both
long-lived and topological. It is based on interlayer moiré
excitons whose optical dipole moments nearly vanish due
to layer separation of their constituent electron and hole.
The topology of the exciton moiré bands originates from
spatially varying hybridization of interlayer excitons sit-
uated in different layers of the moiré heterostructure.
This mechanism does not involve the exchange-induced
exciton berry curvature, thereby avoiding the conflict be-
tween topology and long lifetime. We develop an effec-
tive bosonic continuum model for the interlayer moiré ex-
citons. The valley-projected exciton bandstructure fea-
tures a rich set of bosonic topological bands with op-
posite Chern numbers for opposite valley pseudo-spins.
We find that, as the twist angle is varied, the band-
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FIG. 1. (a) Schematic illustration of the proposed moiré het-
erostructure. The WSe2 layers are twisted relative to each
other by an angle θ while the MoSe2 layer is rotation aligned
with its neighboring WSe2 layer. (b) The corresponding band
diagram hosting the two low-energy interlayer excitons, X1

and X2, illustrated in (a). (c) Energy of the X1 and X2 exci-
tons as a function of vertical electric field.

width of the lowest exciton band exhibits a minimum at a
“magic” angle. At small twist angles, the pair of isolated
lowest-energy exciton bands provides a first solid-state
realization of the bosonic Kane-Mele model with nearly-
flat topological bands.

Moiré heterostructure.—The proposed structure con-
sists of a twisted WSe2 (tWSe2) homobilayer stacked on
top of a MoSe2 monolayer, with rotation alignment be-
tween the interfacing WSe2 and MoSe2 layers, as illus-
trated in Fig. 1(a). We have chosen TMD layers with
a common chalcogen element (i.e., selenium), for their
negligible mismatch in lattice constant, to avoid unim-
portant complications due to the formation of a second
moiré pattern at the hetero-interface. In this regard,
our theory applies to the general tMX2/M

′X2 moiré het-
erostructure, where M, M′ represent different transition
metal atoms, W or Mo, and X represents a S, Se or Te
atom [43]. It will becomes clear below that the twisted
WX2 part provides the moiré modulated hybridization
critical in our theory.

The tWSe2/MoSe2 heterostructure feature a type-
II band alignment with a momentum-direct interlayer
bandgap between the conduction band in the MoSe2
and the valence band in the tWSe2 at the ±K valleys
[Fig. 1(b)]. The lowest energy excitons are the intraval-
ley interlayer excitons formed by electrons in the MoSe2
layer and holes in the middle and top WSe2 layers, la-
beled as X1 and X2, respectively. Because of their dif-
ferent electron-hole vertical separations, X1 and X2 ex-
citons have different binding energies. Their relative en-
ergies can be tuned by a perpendicular electric field E
[Fig. 1(c)]. Assuming both interlayer spacings between
neighboring layers are d, the exciton energy is given by
EXl

= E0
Xl

−eEld (with e > 0), where l = 1, 2 and E0
Xl

is
the exciton energy at E = 0. As we demonstrate below,
interesting physics occurs when X1 and X2 are close in
energy and hybridize significantly with each other (high-

lighted by the cyan circle in Fig. 1(c)).
The electron-hole two-body problem in the moiré su-

perlattice can be simplified, taking advantage of the
facts that the exciton binding energy (∼100 meV) is
much larger than the interlayer hybridization strength
(∼ 10− 20 meV), and that the binding energy variation
in the superlattice potential is generally smaller than the
bandgap variation. This allows us to treat the exciton
problem and the effect of the superlattice in a two-step
process. We start by solving the Bethe-Salpeter equa-
tions (BSEs) [36, 46] in the absence of the moiré potential
and interlayer hybridization,

(Eτ,c,k+Q/2 − Eτ,vl,k−Q/2)A
τ
lQ(k)

+
∑
k′

⟨τ lkQ|Vsc|τ lk′Q′⟩Aτ
lQ′(k′) = Eτ

l (Q)Aτ
lQ(k), (1)

where Q and k are the center-of-mass and rela-
tive momentum of the electron-hole state, |τ lkQ⟩ ≡
ĉ†τck+Q/2ĉτvlk−Q/2|0⟩. ĉ†(ĉ) is the electron creation (an-

nihilation) operator, and |0⟩ is the ground state at
charge neutrality. Eτck = ℏ2k2/2m∗

c + Eg and Eτvlk =
−ℏ2k2/2m∗

v+eEld are the monolayer conduction (c) and
valence (v) band dispersions under the effective mass
approximation. τ = ±K is the valley index, l = 1, 2
concurrently denotes the middle (l = 1) and the top
(l = 2) WSe2 layers, and Eg is the interlayer bandgap.
We adopted the usual convention that k is measured from
the ±K point of each layer. ⟨τ lkQ|Vsc|τ lk′Q⟩ represents
the direct interlayer Coulomb interaction matrix and Vsc

is the screened Coulomb interaction obtained by solving
the Poisson equation for the trilayer structure (see Sup-
plemental Material for details.) Note that the exchange
interaction mentioned above, which couples +K and −K
excitons, is absent for the interlayer excitons.
The lowest energy solution of each BSE is the interlayer

exciton state Xl with energy Eτ
l (Q) and wavefunction,

|Xl(Q)⟩τ =
∑
k

Aτ
lQ(k)ĉ†τck+Q/2ĉτvlk−Q/2|0⟩. (2)

We find that the internal wavefunction Aτ
lQ(k) is nearly

independent ofQ and isotropic in k, reminiscent of the 1s
exciton wavefunction. Eτ

l (Q) ≈ EXl
+ℏ2Q2/M∗

l at small
Q, where the exciton effective mass M∗

l is renormalized
from the bare value M0 = m∗

c +m∗
v due to the screened

interaction. The energy difference ∆E0 ≡ E0
X2

− E0
X1

is
about 40 meV. We remark that a more accurate account
of the exciton problem could be conducted using, for ex-
ample, the GW-BSE approach combined with ab initio
bandstructure calculations [46, 48], which, however, falls
outside the focus and scope of the this work.
Exciton moiré Hamiltonian.—We now derive a contin-

uum model Hamiltonian for the interlayer excitons, tak-
ing into account the effect of the moiré superlattice mod-
ulation and interlayer hybridization. For convenience,
we will take τ = +K and suppress the valley index; the
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FIG. 2. (a) Rotated Brillouin zones of the middle (cyan) and
top (red) WSe2 layers, and the moiré Brillouin zone (black)
of the tWSe2. (b) Exciton moiré Brillouin zone with its cen-
ter (γ point) set at the origin Γ of momentum space. (c)
Bandstructure of hybridized moiré excitons at θ = 2.0◦ and
E = ∆E0/ed. Blue (red) line color indicates the fraction
of the X1(X2) component. (d) The exciton hybridization
strength T/t as a function of twist angle. (e) Berry curva-
ture of the lowest exciton band. The corresponding Chern
number is C0 = 1.

Hamiltonian at the −K valley can be obtained by time
reversal symmetry. Since the valence bands are situated
in the tWSe2 superlattice, the hole component of the ex-
citons experience a moiré potential modulation [34]. The
moiré potential modulation on the valence bands takes
the form [49, 50]

Ul(r) = 2V
∑

i=1,3,5

cos
(
gi · r + slϕ

)
, (3)

where V and ϕ are the amplitude and the phase of moiré
potential, sl = (−1)l−1. g1 = 4π/

√
3aM (1, 0) and gi =

(R̂π/3)
i−1g1 are moiré reciprocal lattice vectors where

R̂π/3 is counter-clockwise rotation around z axis by π/3
[Fig. 2(a)]. By Fourier transforming ul(r) and projecting
it to the exciton basis in Eq. (2), we obtain the exciton
moiré potential,

Ul,Q,Q′ = −V

6∑
i=1

exp
(
si,lϕ

)
δQ+gi,Q′ (4)

where si,l = (−1)isl. The minus sign of the amplitude re-
flects that excitons experience a negative moiré potential
compared to the valence electrons (see SM for additional
details). The delta function ensures the conservation of
exciton COM momentum Q up to a moire reciprocal vec-
tor.

The X1 and X2 excitons hybridize with each other via
their hole component due to the interlayer hybridization
between the valence bands of the twisted WSe2 bilayers.
Because of the presence of the moiré superlattice, the
interlayer band hybridization varies periodically in real
space with nontrivial layer pseudospin winding [50–52].
In the lowest-order harmonic approximation, it takes the
form

T (r) = t
∑
n

eiqn·r, (5)

where t is the tunneling strength. q1 = K2 − K1 is
the momentum shift between the K points in the two
WSe2 layers and qn is related to q1 by three-fold rotation
qn = (R̂2π/3)

n−1q1 [Fig. 2(a)]. Note that we ignore the
hybridization with the MoSe2 layer because of the large
valence band offset between the WSe2 and MoSe2 layers.
Using the same procedure, we obtain the Hamiltonian for
hybridization between the X1 and X2 excitons,

TQ,Q′ = t

3∑
n=1

∑
k

A∗
1,Q(k)A2,Q′

(
k−qn

2

)
δQ+qn,Q

′ , (6)

where the coefficient of the three hoping processes, Tn ≡
t
∑

k A
∗
1,Q(k)A2,Q+qn

(k−qn/2), depends on the overlap
of the exciton internal wavefunctions with a relative shift
qn/2. Because of the C3 symmetry (around z-axis), the
three amplitudes are equal, T1 = T2 = T3 ≡ T . Al,Q(k)
is real and weakly dependent on Q for small |Q|. Fig-
ure 2(d) plots T/t as a function of twist angle θ. When
θ is small, T/t is close to unity; as θ increases, T/t de-
creases monotonically mainly due to the qn/2 shift and
thus reduced exciton wavefunction overlap. It should be
emphasized that the COM momentum of X2 exciton is
measured from κ = K2 − K1 instead of γ as shown in
Fig. 2(b).
Combining Eq. (4) and (6), we arrive at the full exciton

moiré Hamiltonian in the basis {|X1⟩, |X2⟩},

HQ,Q′=

(E1(Q)δQ,Q′+ U1,Q,Q′ TQ,Q′

T †
Q,Q′ E2(Q)δQ,Q′+ U2,Q,Q′

)
.

(7)

The valley projected (τ = +K) Hamiltonian H respects
the C3, time-reversal T , and C2yT symmetries, where
C2y is two-fold rotation around y-axis. We choose the ex-
citon moiré Brillouin zone (mBZ) whose center (γ point)
sits at the origin of COM momentum Γ, as illustrated in
Fig. 2(b) and numerically diagonalize H to obtain the ex-
citon moiré band structure. (See Supplemental Material
for more details.)
Exciton topological flatbands.—The exciton moiré

bandstructure for a single valley (τ = +K) is shown
in Fig. 2(c) at a representative twist angle θ = 2.0◦

and under the electric field E = ∆E0/ed when EX1

and EX2
cross each other. The bandstructure features

two narrow low-energy bands isolated from higher en-
ergy bands. A gap opens up between the two as a re-
sult of the hybridization between the X1 and X2 ex-
citons. The berry curvature of the lowest band, illus-
trated in Fig. 2(e), exhibit strong amplitudes at high
symmetry points γ and κ, reminiscent of a band inver-
sion that occurs at these points. The wavefunctions at
these high symmetry points are eigenstates of C3 trans-
formation, C3|Ψn,Q⟩ = ηC3

n,Q|Ψn,Q⟩, where n is the band

index and the eigenvalues, ηC3
0,γ = ηC3

0,κ = 1 for the lowest

band (n = 0), and ηC3
1,γ = ηC3

1,κ = ei2π/3 for the sec-
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FIG. 3. (a) Topological phase diagram of the moiré exci-
ton bands. The numbers in the parenthesis are (C0, C1), the
Chern number of the two lowest bands. (b) Bandwidth and
energy gap as a function of displacement field at twist angle
θ = 2.0◦. W0 is the bandwidth of the lowest (n = 0) moiré
band. ∆01 (∆12) is the global gap between the n = 0 and
1 (n = 1 and 2) bands. (c) Bandwidth and energy gap as a
function of twist angle at fixed displacement field Vb = 2∆E0.

ond lowest band (n = 1), have an inverted order com-
pared to the limit of zero hybridization. (ηC3

n,κ′ = e−i2π/3

for both n = 0 and 1.) Note that we factored out the
non-moiré angular momentum of excitons (See SM). The
Chern numbers of the two lowest bands are C0 = −1 and
C1 = 1, indicating that a pair of time reversal symme-
try protected bosonic helical edge states exist inside their
gap.

Upon varying twist angle and displacement field, the
exciton bands display a rich topological phase diagram as
illustrated in Fig. 3(a). As the displacement field, mea-
sured in energy as Vb ≡ 2eEd, is tuned closer to 2∆E0,
the band inversion between the first and second moiré
bands occurs, resulting in a topological transition from
the trivial phase with (C0, C1)=(0, 0) to the topological
phase with (C0, C1) = (−1,+1). The gap between the
two lowest bands ∆01 closes at the transition point as
shown in Fig. 3(b). For small twist angle θ < 1.7◦, the
displacement field range for the inverted region is nar-
row because of the small bandwidths. As θ increases,
the n = 1 band intersects the higher (n = 2) band
at around θc = 2.7◦ (where ∆12 vanishes as shown in
Fig. 3(c)), leading to a change in the Chern number, from
C1 = +1 to C1 = −1 while C0 remains unchanged. At
large |Vb−2∆E0|, this intersection takes place before the
topological band inversion between the lowest two bands,
yielding a transition from the (C0, C1)=(0, 0) phase to
the (C0, C1)=(0,−2). Interestingly, the bandwidth W0

of the lowest band exhibits a minimum close to zero at
around θm = 2.3◦, marking the emergence of a “magic
angle” for the bosonic topological flatband.

Bosonic Kane-Mele model.—The topology and real
space density (see Supplemental Material) of the two low-
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FIG. 4. (a) Bosonic Kane-Mele tight-binding model dis-
persion (red solid line) in comparison with the band dis-
persion obtained from the continuum model. (b) Schematic
illustration of the Kane-Mele tight-binding model (for val-
ley τ = +K) with nearest (NN) and next-nearest neighbor
(NNN) hoppings. ωn and ϕl represent the phase of the NN

and NNN hopping processes, where ω = ei2π/3 and l = 1, 2.
The black diamond marks a real space moiré unit cell. (c-f)
Amplitudes of the Wannier orbitals in real space. Wα,l is the
Xl component of the Wα orbital at the moiré site R = 0, with
α = 1, 2. The black grids mark the moiré unit cells.

est moiré bands indicate that they can be described by
an effective Kane-Mele lattice model with two orbitals
(or sublattices) in each unit cell. To confirm this, we
construct Wannier states for the two lowest bands in
the regime where the gap to higher energy bands remain
open. The Wannier functions are given by

|Wα⟩ =
1√
N

∑
n=0,1

∑
Q

Fn
α,Q|Ψn,Q⟩ (8)

for α = 1, 2. FQ is a unitary matrix for fixing the gauge
of the wavefunction |Ψn,Q⟩. We obtain FQ by requir-
ing that

∑
n F

n
α,Q|Ψn,Q⟩ is maximally polarized to its

Xl=α component and is real at its center (where its am-
plitude peaks) in real space. (See details in SM and also
Ref. [53]). Figure 4(c-f) plot the X1 and X2 components
of Wα(r) = [Wα,1(r),Wα,2(r)]

T for site R = 0. Wα(r)
has dominant weight in its Wα,α(r) component and is
centered around r = tα, where t1 = (1/

√
3, 0)aM and

t2 = (2/
√
3, 0)aM corresponds to the XM and MX posi-

tions in the moiré superlattice. We construct the bosonic
tight-biding model for the honeycomb lattice formed by
the W1 and W2 exciton orbitals as shown in Fig. 4(b).
The effective lattice Hamiltonian, keeping the nearest
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and next-nearest hopping terms, takes the form

H+K
eff =−

∑
α,i

3∑
m=1

t(2)eiϕα b̂†α,Ri+am
b̂α,Ri

−
∑
α,i

3∑
m=1

t(1)eiω
m−1

b̂†1,Ri+δm
b̂2,Ri

+ h.c. (9)

where b̂†α,Ri
is the creation operator for the Wα,Ri

state.

a1 = (
√
3/2,−1/2)aM and am = (R̂π/3)

m−1a1 are real
lattice vectors, and δm = {0,−a3,a1}. The first term
is the intra-sublattice hopping with amplitude t(2) and
phase ϕα. ϕ1 = 0 and ϕ2 = κ · a1 in the limit of zero
hybridization, T = 0, and gradually deviates from these
values as T is increased. The second term is the near-
est inter-orbital hopping term where ω = ei2π/3. The
bond dependent phase seemingly breaks C3 symmetry
but in fact does not. This is because |W1⟩ and |W2⟩
transform differently under C3, C3|W1,R⟩ = |W1,R′⟩ and
C3|W2,R⟩ = ω|W2,R′⟩ with R′ + tα = R̂π/3(R+ tα) (See

SM for details). H+K
eff is thus a modified version of the

Haldane Hamiltonian [55] (and can mapped to the orig-
inal version by a simple momentum shift, H+K

eff (Q) =
HHaldane(Q−κ′)). The two valley copies of the effective
Hamiltonian, H±K

eff , together form the Kane-Mele (KM)
model [56]. The dispersion of the effective KM model
agrees well with the continuum model bandstructure as
illustrated in Fig. 4(a), confirming the accuracy of trun-
cating at the NNN hoppings.

Discussions and Outlook.—The tWX2/MoX2 moiré
heterostructure we propose realizes topological excitons
with extended lifetimes, crucial for exploring strongly
correlated many-body exciton phases, and establishes a
new mechanism for inducing exciton topology that has
not been explored before. Most excitingly, it provides
a promising route for realizing the first solid-state-based
platform for the bosonic Kane-Mele model, which fea-
tures topological flatbands and is therefore capable of
simulating strongly correlated topological bosons with
unprecedented controllability.

It has been predicted that in a Kane-Mele model with
flatbands interacting hardcore bosons , the ground state
is an abelian FQAHE state at ν = 1/2 [57] and exhibit
non-abelian quantum Hall effect (NA-QHE) at ν = 1
[58], both in the absence of Landau levels. The inter-
layer moiré excitons can be generated by optical exci-
tations and a finite quasi-equilibrium population can be
sustained thanks to the slow exciton recombination rate.
Given the success in the observation of a bosonic Mott in-
sulator, we are optimistic that the proposed structure can
support a rich set of topological versions of the strongly
correlated insulator, including the FQAHE and NA-QHE
insulators.

The hallmark of nontrivial exciton topology is the he-
lical edges states inside the topological gap which can

potentially be probed by optical reflection measurement
[59] with polarization sensitivity and spatial resolution
down to the moiré scale. A recent experiment [60] demon-
strated visualization of real space exciton wavefunction
using local scanning probe coupled with optical current
which can also be used for imaging the bosonic helical
edge states. On the other hand, the circular polariza-
tion information of emitted excitons can reveal the berry
curvature of bulk exciton moiré bands [61].

Acknowledgment.—The authors acknowledge helpful
discussions with Allan MacDonald, You Zhou, Jiabin Yu,
Beini Gao, and Lifu Zhang. This work was supported by
Laboratory for Physical Sciences.

∗ mingxie@umd.edu
[1] Y. Tang, L. Li, T. Li, Y. Xu, S. Liu, K. Barmak, K.

Watanabe, T. Taniguchi , A. H. MacDonald , J. Shan,
and K. F. Mak, Nature 579, 353 (2020).

[2] E. C. Regan, D. Wang, C. Jin, M. I. B. Utama, B. Gao, X.
Wei, S. Zhao, W. Zhao, Z. Zhang, K. Yumigeta, M. Blei,
J. D. Carlström, K. Watanabe, T. Taniguchi, S. Tongay,
M. Crommie, A. Zettl, and F. Wang, Nature 579, 359
(2020).

[3] Y. Xu, S. Liu, D. A. Rhodes, K. Watanabe, T. Taniguchi,
J. Hone, V. Elser, K. F. Mak, and J. Shan, Nature 587,
214 (2020).

[4] L. Wang, E.-M. Shih, A. Ghiotto, L. Xian, D. A. Rhodes,
C. Tan, M. Claassen, D. M. Kennes, Y. Bai, B. Kim, K.
Watanabe, T. Taniguchi, X. Zhu, J. Hone, A. Rubio,
A. N. Pasupathy, and C. R. Dean, Nat. Mater. 19, 861
(2020).

[5] Z. Zhang, Y. Wang, K. Watanabe, T. Taniguchi, K.
Ueno, E. Tutuc, and B. J. LeRoy, Nat. Phys. 16, 1093
(2020).

[6] C. Jin, Z. Tao, T. Li, Y.Xu, Y. Tang, J. Zhu, S. Liu, K.
Watanabe, T. Taniguchi, J. C. Hone, L. Fu, J.Shan, and
K. F. Mak, Nat. Mater. 20, 940 (2021).

[7] T. Li, S.Jiang, L. Li, Y. Zhang, K. Kang, J. Zhu, K.
Watanabe, T. Taniguchi, D. Chowdhury, L. Fu, J. Shan,
and K. F. Mak, Nature 597, 350 (2021).

[8] S. Shabani, D. Halbertal, W. Wu, M. Chen, S. Liu, J.
Hone, W. Yao, D. N. Basov, X. Zhu, and A. N. Pasupa-
thy, Nat. Phys. 17, 720 (2021).

[9] X. Huang, T. Wang, S. Miao, C. Wang, Z. Li, Z. Lian,
T. Taniguchi, K. Watanabe, S. Okamoto, D. Xiao, S.-F.
Shi, and Y.-T. Cui, Nat. Phys. 17, 715 (2021).

[10] Y. Tang, J. Gu, S. Liu, K. Watanabe, T. Taniguchi, J. C.
Hone, K. F. Mak, J. Shan, Nat. Comm. 13, 4271 (2022).

[11] A. Ghiotto, E.-M. Shih, G. S. S. G. Pereira, D. A.
Rhodes, B. Kim, J. Zang, A. J. Millis, K. Watanabe,
T. Taniguchi, J. C. Hone, L. Wang, C. R. Dean, and A.
N. Pasupathy, Nature 597, 345 (2021).

[12] W. Zhao, B. Shen, Z. Tao, Z. Han, K. Kang, K. Watan-
abe, T. Taniguchi, K. F. Mak, and J. Shan, Nature 616,
61 (2023).

[13] T. Li, S. Jiang, B. Shen, Y. Zhang, L. Li, T. Devakul, K.
Watanabe, T. Taniguchi, L. Fu, J. Shan, and K. F. Mak,
Nature 600, 641 (2021).

[14] J. Cai, E. Anderson, C. Wang, X. Zhang, X. Liu, W.

mailto:mingxie@umd.edu


6

Holtzmann, Y. Zhang, F. Fan, T. Taniguchi, K. Watan-
abe, Y. Ran, T. Cao, L. Fu, D. Xiao, W. Yao, and X.
Xu, Nature (London) 622, 63 (2023).

[15] Y. Zeng, Z. Xia, K. Kang, J. Zhu, P. Knüppel, C.
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