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Recently, many experiments have been con-
ducted with the goal of demonstrating a quan-
tum advantage over classical computation.
One popular framework for these experiments
is Gaussian Boson Sampling, where quadratic
photonic input states are interfered via a linear
optical unitary and subsequently measured in
the Fock basis. In this work, we study the
modal entanglement of the output states in
this framework just before the measurement
stage. Specifically, we compute Page curves as
measured by various Rényi-𝛼 entropies, where
the Page curve describes the entanglement be-
tween two partitioned groups of output modes
averaged over all linear optical unitaries. We
derive these formulas for 𝛼 = 1 (i.e. the von
Neumann entropy), and, more generally, for
all positive integer 𝛼, in the asymptotic limit of
infinite number of modes and for input states
that are composed of single-mode-squeezed-
vacuum state with equal squeezing strength.
We then analyze the limiting behaviors when
the squeezing is small and large. Having de-
termined the averages, we then explicitly cal-
culate the Rényi-𝛼 variance for integers 𝛼 > 1,
and we are able to show that these entropies
are weakly typical.

1 Introduction
Major advances in quantum computing over the past
decade have opened up potential breakthroughs in
various fields of science [1, 2]. One such advancement
is Gaussian Boson Sampling (GBS), an experimen-
tal framework for demonstrating quantum advantage
that produces a sample from a distribution that is
classically hard to compute [3–6]. In this framework,
squeezed photons are transformed by a Haar-random,
passive Gaussian unitary consisting of beamsplitters
and phase shifters. Although GBS is not computa-
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tionally universal, it is nonetheless crucial for under-
standing the leverage of quantum devices over their
classical counterparts at performing specific tasks.

The preparation of squeezed states is a much easier
task than that of single photons used in Fock-state bo-
son sampling, hence making GBS an experimentally
favorable avenue toward demonstrating quantum ad-
vantage. Indeed, such demonstrations have already
been realized in the lab [7–9].

There is strong evidence that classically sampling
from the output probability distribution of a GBS ex-
periment is hard in the complexity-theoretic sense [7–
11], whereas such sampling can be done efficiently on
a quantum device. Moreover, entanglement is a criti-
cal asset across quantum computing, with additional
applications in teleportation, dense coding, and quan-
tum communication [12–15]. Therefore, quantifying
the behavior of entanglement in Gaussian bosonic
systems has been of recent interest [7, 8], especially
to sharpen the connection between entanglement and
computational complexity.

In 1993, Page conjectured an explicit formula for
the average entanglement entropy over all Haar-
random pure states in an 𝑁 -dimensional Hilbert space
of the reduced density matrix on an 𝑟𝑁 -dimensional
subsystem for 𝑟 ∈ [0, 1]. This conjecture was proven
soon after in the 𝑁 → ∞ limit, and the average en-
tanglement entropy as a function of 𝑟 is now known
as the Page curve [16–18]. The Page curve was ini-
tially studied in the context of information dynam-
ics in and around black holes [19–22], and has since
found applications in open quantum systems [23, 24]
and quantum information theory [25–27]. As a natu-
ral follow-up, many works investigated the deviation
of entanglement entropy from its expected value. A
system exhibits typical entanglement if the probabil-
ity that a random state has entanglement bounded
away from the average is small. This behavior, along
with strong and weak classes of entanglement typical-
ity, has been studied in black holes, thermodynamics,
and other systems [28–32].

Leaving the realm of standard finite-dimensional
systems, the Page curve for fermionic Gaussian states

1

ar
X

iv
:2

40
3.

18
89

0v
1 

 [
qu

an
t-

ph
] 

 2
7 

M
ar

 2
02

4

https://quantum-journal.org/?s=Average%20Rényi%20Entanglement%20Entropy%20in%20Gaussian%20Boson%20Sampling&reason=title-click
https://quantum-journal.org/?s=Average%20Rényi%20Entanglement%20Entropy%20in%20Gaussian%20Boson%20Sampling&reason=title-click
https://orcid.org/0000-0003-3383-1946
https://orcid.org/0000-0002-3167-6519
https://orcid.org/0000-0003-2848-1216
https://orcid.org/0000-0003-0509-3421
mailto:Jasony2025@gmail.com
mailto:jtiosue@umd.edu


has been extensively analyzed [33–35]. A natural next
step, especially given the relevance to GBS, is to study
bosonic Gaussian states. The typicality of entangle-
ment in random bosonic Gaussian states was stud-
ied in Refs. [36–39], and the Page curve for Gaussian
bosonic systems was first studied in Ref. [39]. How-
ever, Ref. [39] only computed the Page curve for the
Rényi-2 entropy.

In this work, we derive analytic expressions for the
Rényi-𝛼 Page curves of bosonic Gaussian systems for
all 𝛼 ∈ Z>0, with special considerations for the von
Neumann (Rényi-1) Page curve. The entropy of a
mixed state is an indicator of its entanglement with
the rest of the universe [40], and indeed the Rényi-𝛼
Page curve is a measure of the entanglement of an
average state in a system as measured by the Rényi-
𝛼 entropy, for 𝛼 ∈ R+. Each Rényi-𝛼 entropy has its
own unique mathematical features, and notable exam-
ples are the von Neumann/Shannon entropy (𝛼 = 1),
collision entropy (𝛼 = 2), and min-entropy (𝛼 → ∞).
In particular, the min-entropy, the entropy defined by
− log max(𝑝𝑖) for each 𝑝𝑖 a probability of occurence of
outcome 𝑖 when working with a discrete random vari-
able, is a useful expression for working with extract-
ing randomness from variables when lower entropies
(e.g. von Neumann) do not suffice [41]. Therefore, it
is natural to analyze the Rényi-𝛼 entropies in bosonic
systems and extract their unique properties.

Our expressions are asymptotically exact in the
number of modes 𝑛. Using these expressions, we prove
various results about typicality of entanglement with
respect to these Rényi-𝛼 entropies. Our setup is ex-
actly that of a GBS experiment, and is the same as
the setups considered in Refs. [38, 39]. A pure in-
put quantum state with 𝑛 squeezed vacuum modes is
acted on by a Haar-random, linear unitary (passive
Gaussian) circuit. The Page curve, as a function of 𝑟,
is the average Rényi-𝛼 entanglement between a group
of 𝑟𝑛 modes and the remaining system of (1 − 𝑟)𝑛
modes, where 𝑟 ∈ [0, 1]. We expound our setup in
greater detail in Section 2.

In Section 3, we present our results for the von Neu-
mann entropy. Under an equal squeezing regime, we
first present an explicit formula for the von Neumann
Page curve in Section 3.1 in terms of the partition
ratio 𝑟 and initial squeezing strength 𝑠, which is ex-
act up to terms that decay to zero as 𝑛 → ∞. We
subsequently discuss the von Neumann entropy un-
der squeezing limits 𝑠 → 0 and 𝑠 → ∞ in Section 3.2.

We then generalize our analyses to the Rényi-𝛼 en-
tropies for integers 𝛼 ≥ 2 in Section 4. In Section 4.1,
we derive the Rényi-𝛼 Page curve in terms of the par-
tition ratio 𝑟 and initial squeezing strength 𝑠, with
additional terms that vanish to zero as 𝑛 → ∞. We
calculate squeezing limits of the Rényi-𝛼 entropy, this
time with the extra dependence on 𝛼, in Section 4.2.
Finally, we evaluate the Rényi-𝛼 entropy under un-
equal, small initial squeezing strengths in Section 4.3

and derive typicality of entanglement results in Sec-
tion 4.4.

2 Setup
In this section, we present our setup. We consider a
bosonic system of 𝑛 modes. For a pedagogical intro-
duction to the concepts discussed in the section, we
refer to Ref. [42]. For each 𝑖 ∈ {1, 2, . . . , 𝑛}, define
𝑟𝑖 := 𝑥𝑖 to be the position operator and 𝑟𝑛+𝑖 := 𝑝𝑖

to be the momentum operator. A density matrix 𝜌
describes a Gaussian state if there exists a 𝛽 > 0
and a Hamiltonian 𝐻 that is at most quadratic in the
quadrature operators 𝑟𝑖 such that 𝜌 is the thermal
state 𝜌 ∝ e−𝛽𝐻 . When 𝜌 is Gaussian, it is fully char-
acterized by its first and second moments Tr(𝜌𝑟𝑖) and
𝜎𝑖𝑗 = 1

2 Tr[𝜌(𝑟𝑖𝑟𝑗 +𝑟𝑗𝑟𝑖)]−Tr(𝜌𝑟𝑖) Tr(𝜌𝑟𝑗). 𝜎 is called
the covariance matrix of the state 𝜌.

In this work, we investigate the properties of
bosonic states after the application of a linear op-
tical unitary. Linear optical unitaries generate pas-
sive (boson-number conserving, or equivalently energy
conserving) Gaussian unitaries. The set of passive
Gaussian unitaries is isomorphic to Sp(2𝑛) ∩ 𝑂(2𝑛) ∼=
U(𝑛), where Sp(2𝑛) is the symplectic group of 2𝑛×2𝑛
matrices, 𝑂(2𝑛) is the orthogonal group of 2𝑛×2𝑛 ma-
trices, and U(𝑛) is the unitary group of 𝑛×𝑛 matrices
[43].

We now define our notion of a random, pure Gaus-
sian state on 𝑛 modes. We initialize the 𝑖th mode
to be in a squeezed vacuum state with fixed squeez-
ing parameter 𝑠𝑖 ∈ R ∀ 𝑖 ∈ {1, . . . , 𝑛}. We then ran-
domly sample a passive Gaussian unitary 𝑈 ∈ U(𝑛)
according to the Haar measure [43] and apply it to
the 𝑛 modes. The output state is characterized by
the input squeezing strengths 𝑠𝑖 and the unitary 𝑈 .
For squeezing parameters 𝑠1, 𝑠2, . . . , 𝑠𝑛, the total ex-
pected number of bosons in the state on the 𝑛 modes
is
∑︀𝑛

𝑖=1 sinh2(𝑠𝑖). In this work, we primarily consider
the case when all the squeezing parameters are equal,
𝑠𝑖 = 𝑠. Then, the average total number of bosons per
mode is sinh2(𝑠).

We partition the 𝑛 output modes into two groups:
one group of 𝑘 = 𝑟𝑛 modes for some 0 ≤ 𝑟 ≤ 1,
and the other group of 𝑛 − 𝑘 = (1 − 𝑟)𝑛 modes. We
calculate the Rényi-𝛼 entropy of the reduced state of
the 𝑘 modes. Because we are considering pure states,
this is equivalent to the entropy of the reduced state
of the 𝑛 − 𝑘 modes [44].

For the density matrix 𝜌(𝑈) on the 𝑘 modes,
we denote its Rényi-𝛼 entropy by 𝑆𝛼(𝑈) :=

1
1−𝛼 log Tr(𝜌(𝑈)𝛼). The limit as 𝛼 → 1 yields the
von Neumman entropy 𝑆1(𝑈) := − Tr 𝜌(𝑈) log 𝜌(𝑈).
We note that the dependence of these quantities on 𝑟,
𝑛, and 𝑠 is implicit. Furthermore, the average value
of 𝑆𝛼(𝑈) over U(𝑛) with respect to the Haar measure
is defined as the Rényi-𝛼 Page curve.
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We will frequently utilize 𝜎(𝑈), the covariance ma-
trix of 𝜌(𝑈). We also use the symplectic eigenvalues of
𝜎(𝑈), defined as the eigenvalues of the matrix 𝑖Ω𝜎(𝑈)
where

Ω :=
(︂

0𝑛×𝑛 I𝑛×𝑛

−I𝑛×𝑛 0𝑛×𝑛

)︂
. (1)

3 Von Neumann Entropy
In this section, we calculate an explicit formula for
the von Neumann Page curve as a function of equal
squeezing strength 𝑠 and the partition size ratio 𝑟 up
to terms that decay to zero as 𝑛 increases. Then, we
compute and interpret the Page curve in the squeez-
ing limits 𝑠 → 0 and 𝑠 → ∞. Next, we discuss
an approach to the case of small, unequal squeezing
strengths. Finally, we comment on difficulties in de-

riving the variance and entanglement typicality of the
von Neumann entropy in this setting.

3.1 Explicit formula
The von Neumann entropy is a function of the
squeezing strength 𝑠 (assuming all modes are equally
squeezed) and the partition size ratio 𝑟 = 𝑘

𝑛 , up to
terms that decay to zero as 𝑛 → ∞. We explicitly
calculate this function, which also leads us to the von
Neumann Page curve as 𝑛 → ∞.

Theorem 1 (von Neumann entropy). Choose any 𝑠 ∈
R and 𝑟 ∈ [0, 1]. Let 𝐶𝑖 = 1

𝑖+1
(︀2𝑖

𝑖

)︀
represent the 𝑖th

Catalan number and 2𝐹1 the hypergeometric function
[45, 46]. Then, the average von Neumann entropy
over all unitaries 𝑈 ∈ 𝑈(𝑛) is

E
𝑈∈𝑈(𝑛)

𝑆1(𝑈) =
∞∑︁

𝑖=1

[︂
1
2𝑖

− 1
3sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂]︂
(𝑛𝐺𝑖(𝑟) − 𝐻𝑖(𝑟) + 𝑜(1)), (2)

where

𝐺𝑖(𝑟) = 𝑟 − 𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖, 𝑖, 2 + 𝑖, 𝑟), (3)
𝐻𝑖(𝑟) = 4𝑖−1(𝑟(1 − 𝑟))𝑖 (4)

are functions independent of 𝑛 detailed in Ref. [39],
and 𝑜(1) denotes terms that vanish as 𝑛 → ∞.

The derivation for this formula is detailed in Ap-
pendix A.1. In the derivation we use a formula for
the von Neumann entropy in terms of the covariance
matrix of the subsystem of 𝑘 modes. Using the decom-
position of the covariance matrix derived in Ref. [39],
we Taylor expand about the identity matrix and uti-
lize the negative binomial theorem. Finally, we use
formulas from Ref. [39] regarding expectation values
over U(𝑛) of certain functions of matrix elements to
arrive at the final expression.

The von Neumann Page curve as 𝑛 → ∞ is de-
rived from Theorem 1 by dividing by 𝑛. The 𝐻𝑖(𝑟)
and 𝑜(1) terms on the RHS subsequently vanish. One
important note is that the Page curve must be sym-
metric under 𝑟 ↦→ 1 − 𝑟 since the global state on the
𝑛 modes is pure [44]. Since 𝐺𝑖(𝑟) and 𝐻𝑖(𝑟) are sym-
metric about 𝑟 = 1

2 [39], the von Neumann Page curve
derived from Theorem 1 is indeed symmetric about
𝑟 = 1

2 . This symmetry allows one to replace 𝑟 with
min(𝑟, 1 − 𝑟).

3.2 Squeezing limits
Theorem 1 applies for all equal squeezing strengths
𝑠. We find considerable simplifications when exam-
ining the limiting behavior as a function of 𝑠. We

begin with the 𝑠 → 0 limit, which corresponds to
photons in their near-vacuum states. One might
expect the von Neumann Page curve to grow with
the total number of bosons,

∑︀𝑛
𝑖=1 sinh 𝑠2 ≈ 𝑛𝑠2

for small 𝑠𝑖. Indeed, this behavior occurs for the
rest of the Rényi entropies (with integer 𝛼 ≥ 2)
as shown in Section 4.2. However, the pertinent
limit lim𝑠→0 lim𝑛→∞ E

𝑈∈𝑈(𝑛)
1

𝑠2𝑛 𝑆1(𝑈) diverges to in-

finity. In Appendix A.2, we prove this result and
demonstrate the relevant scaling to be E

𝑈
𝑆1(𝑈) ∼

𝑠2 log(1/𝑠2), as formulated in the following theorem.

Theorem 2. For the squeezing strength limit 𝑠 → 0,

lim
𝑠→0

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
(𝑠2 log(1/𝑠2)) 𝑛

𝑆1(𝑈) = 𝑟(1 − 𝑟).

(5)

While the derivation of Theorem 2 is fairly straight-
forward, its significance is more interesting. The von
Neumann Page curve’s growth in order 𝑠2 log(1/𝑠2)
for small 𝑠 can be attributed to the unique definition
of the von Neumann entropy 𝑆1(𝜌) = − Tr(𝜌 log 𝜌),
where 𝜌 is the density matrix of the quantum state.
Therefore, the symplectic eigenvalues 𝜈𝑗 of the co-
variance matrix would also scale the von Neumann
entropy in order 𝜈𝑗 log 𝜈𝑗 , warranting the 𝑠2 log(1/𝑠2)
dependence (as 𝜈𝑗 ∼ 𝑠2). Furthermore, the von Neu-
mann entropy is non-analytic unlike the rest of the
Rényi entropies. Therefore, the argument presented
in Ref. [39] that the Rényi entropy can be expanded
in lowest order 𝑠2 doesn’t apply to the von Neumann
case. More specifically, the deviation from analytic

3



behavior arises from the von Neumman entropy for-
mula in terms of the covariance matrix 𝜎 [47, 42, 48]:

𝑆1 = 1
2 log det

(︂
𝜎 + iΩ

2

)︂
+ 1

2 Tr
(︀
coth−1(iΩ𝜎)iΩ𝜎

)︀
,

(6)

where Ω is the symplectic form defined in Eq. (1).
Since coth−1(𝑥) is not a real analytic function, the
resulting Page curve is not analytic, either.

In a similar vein, we compute the von Neumann
Page curve as 𝑠 → ∞, assuming an equal squeezing
regime.

Theorem 3. In the strong squeezing limit 𝑠 → ∞,

lim
𝑠→∞

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑠𝑛

𝑆1(𝑈) = 2 min(𝑟, 1 − 𝑟). (7)

Here, the von Neumann Page curve scales with 𝑠 as
𝑠 → ∞. This is because, for large absolute squeezing
values, higher orders in 𝑟 dominate the expansion of
Theorem 1, which scale with 𝑠. Interestingly, Theo-
rem 3 remains the exact same for the Rényi-2 entropy
[39], and indeed we will see in Sec. 4.2 that it is the
same for all the Rényi-𝛼 entropies for integral 𝛼.

3.3 Unequal squeezing
In Ref. [39], the expected value of the Rényi-2 en-
tropy for small, unequal squeezing strengths was cal-
culated through a power-series analysis. The analyt-
icity of the Rényi-2 function was what allowed writing
the entropy as a power series in 𝑠𝑖, where 𝑠𝑖 was the
squeezing strength of the 𝑖th mode. Using this power
series expansion, along with the translational invari-
ance of the Haar measure, Ref. [39] derived a formula
for unequal squeezing in order 𝑠2, which reduces to
the 𝑠 → 0 squeezing limit for small, equal 𝑠𝑖.

However, due to the von Neumann entropy not be-
ing analytic around 𝑠 = 0, we cannot perform the

same analysis to derive a formula for unequal squeez-
ing strengths. Furthermore, directly approaching the
unequal squeezing regime via the Taylor expansion
of the von Neumann entropy runs into another prob-
lem, since the separation between 𝑠 and 𝑟 dependence
present in the Rényi-2 case presented in Ref. [39] no
longer applies here. Specifically, the matrix 𝑊 de-
scribed in Appendix A.1 is no longer independent of
𝑠. Therefore, carrying out the Taylor expansion would
yield complicated matrix expressions in 𝜎 that do not
simplify appreciably at first glance. Due to these diffi-
culties, we are unable to derive the unequal squeezing
case for the von Neumann entropy. It is nonetheless
possible, though, that executing the complicated ma-
trix Taylor expansion and simplifying terms yields a
closed-form result for the von Neumann entropy.

4 General Rényi-𝛼 Entropies

In this section, we extend much of our analysis with
the von Neumann entropy in Section 3 to Rényi-𝛼 en-
tropies for integer 𝛼 ≥ 2. We also derive results for
the typicality of entanglement and the small, unequal
squeezing case. First, we present the Rényi-𝛼 Page
curve ∀𝛼 ∈ Z, 𝛼 ≥ 2. Next, we investigate squeez-
ing limits as 𝑠 → 0 and 𝑠 → ∞, as well as consider
the Rényi-𝛼 Page curve for small, unequal squeezing
strengths. We also study the variance of the entan-
glement and prove various regimes of entanglement
typicality. Finally, we show some numerical simula-
tions confirming our results.

4.1 Explicit formula
As before, we consider a system of 𝑛 modes, each with
equal initial squeezing strength 𝑠.

Theorem 4 (Rényi-𝛼 Page curve). For all integer
𝛼 ≥ 2, define 𝑎 =

⌊︀
𝛼−1

2
⌋︀
. Let 𝜁 = 1 if 𝛼 is even and

𝜁 = 0 if 𝛼 is odd. Then, the Rényi-𝛼 entropy is given
by

E
𝑈∈𝑈(𝑛)

𝑆𝛼(𝑈) = 𝜁

𝛼 − 1 · E
𝑈∈𝑈(𝑛)

𝑆2 + 1
𝛼 − 1

∞∑︁
𝑖=1

[︃
𝑎∑︁

𝑚=1

sinh2𝑖(2𝑠)
𝑖(cosh2(2𝑠) + cot2 𝜋𝑚

𝛼 )𝑖

]︃
(𝑛𝐺𝑖(𝑟) − 𝐻𝑖(𝑟) + 𝑜(1)) , (8)

where E
𝑈∈𝑈(𝑛)

𝑆2 is the expected value of the Rényi-2

entropy as a function of 𝑠 and 𝑟 given as

E
𝑈∈𝑈(𝑛)

𝑆2 =
∞∑︁

𝑖=1

tanh2𝑖(2𝑠)
2𝑖

(𝑛𝐺𝑖(𝑟) − 𝐻𝑖(𝑟) + 𝑜(1)) ,

(9)

and where 𝐺𝑖(𝑟) and 𝐻𝑖(𝑟) are defined in Eq. (3).

The proof of Theorem 4 is shown in Appendix B.1.

In the proof, we use a formula for the Rényi-𝛼 entropy
in terms of the symplectic eigenvalues of 𝜎, the covari-
ance matrix of the reduced state of 𝑘 modes (see, e.g.,
Ref. [42]). We convert this formula into a matrix ex-
pression in terms of Ω and 𝜎, and perform significant
simplifications. Finally, to compute the expectation
value over the unitary group, we again utilize aver-
aged matrix quantities derived in Ref. [39].

Since 𝐺𝑖(𝑟) is symmetric under 𝑟 → 1 − 𝑟, we

4



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
𝑈∈𝑈(𝑛)

1
𝑛

𝑆1(𝑈)

E
𝑈∈𝑈(𝑛)

1
𝑛

𝑆15(𝑈)

𝑟

E
𝑈∈𝑈(𝑛)

1
𝑛 𝑆𝛼(𝑈)

Figure 1: Simulated Page curves for Rényi-𝛼 entropies for 𝛼 ∈ {1, 2, 3, 4, 5, 6, 7, 15} in dots (smaller Page curves indicate
larger 𝛼), overlaid on the analytic expressions derived in Theorem 1 and Theorem 4. The simulated values were run 250 times.
The number of modes is 𝑛 = 400 with equal squeezing strength 𝑠 = 0.5.

see that the Page curves are also manifeslty sym-
metric under 𝑟 → 1 − 𝑟. Various analytic Rényi-
𝛼 Page curves are plotted in Fig. 1. We also plot
numerically-simulated values of the Page curve, where
we generate Haar-random unitary matrices and com-
pute the entropies using the positive symplectic eigen-
values 𝜈𝑗 of each covariance matrix 𝜎. Then, we
compute the respective Rényi-𝛼 entropy as 𝑆𝛼(𝑈) =∑︀𝑛

𝑗=1
1

1−𝛼 ln
(︁

2𝛼

(𝜈𝑗+1)𝛼−(𝜈𝑗−1)𝛼

)︁
[42]. The numerical

and analytical values overlap, indicating the validity
of Theorem 1 and Theorem 4.

4.2 Squeezing limits
We now investigate the Rényi-𝛼 Page curve for all
integer 𝛼 ≥ 2 in the squeezing limits 𝑠 → 0 and 𝑠 →
∞. We find that, just as in the Rényi-2 case, the Page
curve scales with 𝑠2 when 𝑠 approaches zero and scales
with 𝑠 when 𝑠 → ∞.

Theorem 5. For integer 𝛼 ≥ 2, the Page curves of
the Rényi-𝛼 entropy as the equal squeezing strength 𝑠
approaches 0 and ∞, respectively, are given by

lim
𝑠→0

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑛𝑠2 𝑆𝛼(𝑈) = 𝛼

𝛼 − 1𝑟(1 − 𝑟), (10)

lim
𝑠→∞

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑛𝑠

𝑆𝛼(𝑈) = 2 min(𝑟, 1 − 𝑟). (11)

In general, the Rényi entropies satisfy 𝑆𝛼 ≥ 𝑆𝛼′

whenever 𝛼 ≤ 𝛼′. This behavior matches with our for-
mulas for the Rényi-𝛼 limits in Theorem 5, as the Page
curve decreases when 𝛼 increases. From Theorem 5,
it is furthermore evident that 𝑆2(𝑈) = 2𝑆∞(𝑈) when
𝑠 → 0. This relation between two Rényi entropies

saturates the case of a discrete random variable with
outcome probabilities 𝑝1, 𝑝2, . . . , 𝑝𝑚, where

𝑆2 = − log
∑︁

𝑖

𝑝2
𝑖 ≤ − log sup 𝑝2

𝑖 = −2 log sup 𝑝𝑖 = 2𝑆∞.

(12)

In the infinite squeezing case, the Page curve re-
mains independent of 𝛼 in order 𝑠 as 𝛼 → ∞. This
indicates that, as 𝑠 → ∞, the Page curve approaches
the curve of maximum entanglement.

4.3 Unequal squeezing
We now consider the Rényi-𝛼 entropy when the ini-
tial squeezing strengths are not necessarily equal, but
are close to zero. We let the squeezing strength
on the 𝑖th mode be 𝑠𝑖 for some 𝑠𝑖 ∈ R. Define
𝑠max := max (|𝑠1|, |𝑠2|, . . . , |𝑠𝑛|).

Theorem 6. For integer 𝛼 ≥ 2, the Rényi-𝛼 entropy
for small, unequal squeezing strengths 𝑠1, 𝑠2, . . . , 𝑠𝑛 is
given by

E
𝑈∈U(𝑛)

𝑆𝛼(𝑈) = 𝛼

𝛼 − 1𝑟(1 − 𝑟)
𝑛∑︁

𝑖=1
𝑠2

𝑖 + 𝒪
(︀
𝑟𝑛𝑠4

max
)︀

.

(13)

To prove Theorem 6, note that the Rényi-𝛼 entropy
is real analytic for positive integer 𝛼. This is because
the Rényi-𝛼 expression, when written in terms of the
covariance matrix 𝜎, contains only analytic expres-
sions in the vicinity of 𝑠 = 0, and thus the final ex-
pression is also analytic in the small-squeezing limit
[42]. Thus, we can write the entropy as a power series
in 𝑠𝑖. Furthermore, there exists a passive, local (i.e.
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𝑘 = Θ(𝑛) 𝑘 = 𝑜(𝑛) [39] 𝑘 = 𝑜
(︀
𝑛1/3)︀ [38]

Equal Rényi-𝛼 (𝛼 ≥ 2) weak strong strong
squeezing von Neumann ? weak strong

Unequal Rényi-𝛼 (𝛼 ≥ 2) ? weak* strong
squeezing von Neumann ? weak* strong

Table 1: A summary of the current status of rigorous results on entanglement typicality in Gaussian bosonic systems. This table
is the same as the one provided in Ref. [39], but the Rényi-2 case has been generalized for all Rényi-𝛼 entropies where 𝛼 ∈ Z+.
Note that “weak*” indicates that the result is not fully proven, but is based on Conjecture 10 in Ref. [39]. Furthermore,
wherever "weak" typicality is displayed, we have not ruled out the possibilty of strong typicality. We present typicality results
when 𝑘, the number of modes in the subsystem, scales with Θ(𝑛) , 𝑜(𝑛) , and 𝑜

(︀
𝑛1/3)︀ , respectively. Note that we only take

the "worst-case" typicality; if there exists both weak and strong typicality for one scaling, we display only the weakly typical
case. We present typicality results separately for the Rényi-𝛼 entropies and the von Neumann entropy. The leftmost column
(𝑘 = Θ(𝑛)) stems from our findings in Section 4.4, while the middle column (𝑘 = 𝑜(𝑛)) follows from Ref. [39]. The rightmost
column (𝑘 = 𝑜

(︀
𝑛1/3)︀) follows from the results of Ref. [38]. Refs. [36, 37] proved strong typicality in the regime 𝑘 = 𝒪(1).

acting independently on each mode) Gaussian unitary
that acts on the initial covariance matrix 𝜎0 with the
transformation 𝑠𝑖 → −𝑠𝑖. Since this unitary can ab-
sorbed into the Haar random unitary 𝑈 , the power
series can be expanded in 𝑠2

𝑖 . Note that when the ab-
solute squeezing strengths are close to zero, the first
statement of Theorem 5 is a special case of Theorem 6.

There exists another passive Gaussian unitary that
acts on 𝜎0 via the transformation 𝑠𝑖 → 𝑠𝜏(𝑖) for any
permutation 𝜏 of 𝑛 elements. Since this unitary can
also be absorbed into the Haar random unitary 𝑈 ,
the power series is symmetric under 𝑠𝑖 → 𝑠𝜏(𝑖). Thus,
the 𝑠2

𝑖 term in the power series expansion is of the
form 𝑔(𝑟, 𝑛)

∑︀𝑛
𝑖=1 𝑠2

𝑖 for some function 𝑔(𝑟, 𝑛). The
equal-squeezing result in Theorem 5 then immediately
implies 𝑔(𝑟, 𝑛) = 𝛼

𝛼−1 𝑟(1 − 𝑟).

4.4 Typicality of entanglement
Next, we investigate the variance of the Rényi-𝛼 Page
curve. Chebyshev’s inequality allows one to relate the
variance with the typicality of entanglement, where
typicality describes how quickly the difference be-
tween some quantity (in this case, entanglement) and
its average vanishes. This analysis is useful in statis-
tical mechanics, where typicality is useful for thermo-
dynamic variables to accurately represent their mean
values.

The formal definition of typicality as described in
Ref. [39] is as follows: a unitary-dependent nonnega-
tive random variable 𝑆(𝑈) is weakly typical if, for any
constant 𝜖 > 0,

lim
𝑛→∞

Pr
𝑈∈𝑈(𝑛)

⎡⎣⃒⃒⃒⃒⃒⃒ 𝑆(𝑈)
E

𝑉 ∈𝑈(𝑛)
𝑆(𝑉 ) − 1

⃒⃒⃒⃒
⃒⃒ < 𝜖

⎤⎦ = 1. (14)

Similarly, 𝑆(𝑈) is strongly typical if, for any constant
𝜖 > 0,

lim
𝑛→∞

Pr
𝑈∈𝑈(𝑛)

[︂⃒⃒⃒⃒
𝑆(𝑈) − E

𝑉 ∈𝑈(𝑛)
𝑆(𝑉 )

⃒⃒⃒⃒
< 𝜖

]︂
= 1. (15)

Perhaps contrary to intuition, a weakly typical vari-
able has its multiplicative distance vanish in the ther-
modynamical limit, while a strongly typical variable
has its additive distance vanish. This occurs because
the entropy goes to infinity as 𝑛 → ∞. In this regard,
strong typicality implies weak typicality.

We are able to prove typicality results based on a
crucial invariance described in Ref. [39]. Specifically,
Ref. [39] derives that the variance of the Rényi-2 en-
tropy is constant as 𝑛 → ∞. We extend this to gen-
eral integer 𝛼 ≥ 2 using a Cauchy-Schwarz argument
in Appendix B.4. Using a bound for the variance via
Chebyshev’s inequality, the Rényi-𝛼 entropy exhibits
weak typicality for 𝑘 = Θ(𝑛) (again, for all integer
𝛼 ≥ 2). We present our results, as well as past anal-
yses of entanglement typicality in Gaussian bosonic
systems, in Table 1.

5 Conclusions and open questions
In this paper, we have carefully studied the Rényi
and von Neumann entropies of random bosonic Gaus-
sian states. Such states are exactly the output states
of a GBS experiment. Specifically, we have found
closed formulas for the Rényi-𝛼 entanglement entropy
in terms of the squeezing strength 𝑠 and the mode
partition ratio 𝑟 that are exact asymptotically in 𝑛,
where 𝛼 ∈ Z+. Using this, we calculated the Rényi-𝛼
Page curve and various results stemming from it, such
as 𝑠 → 0 and 𝑠 → ∞ squeezing limits, and, for 𝛼 ≥ 2,
variance and typicality of entanglement.

We have not reached a conclusion regarding the typ-
icality of entanglement for the von Neumann entropy
as 𝑘 scales with Θ(𝑛). We have that Var𝑈 𝑆1(𝑈) =
E𝑈 𝑆1(𝑈)2 − (E𝑈 𝑆1(𝑈))2

, which we have not been
able to simplify appreciably when using the von Neu-
mann entropy formula from Theorem 1. Specifically,
the squaring of hypergeometric functions yields terms
in the variance expansion that we have not been able
to simplify. More research should be done to de-
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termine the typicality of entanglement for the von
Neumann entropy. However, since we’ve proven in
Appendix B.4 that the Rényi-𝛼 entropies for integer
𝛼 ≥ 2 are only weakly typical, the von Neumann en-
tropy is unlikely to be strongly typical. It remains
to be rigorously proven, perhaps through examining
special cases of the von Neumann entropy, such as
when 𝑟 = 1

2 or 𝑠 → 0, and attempting to extract the
variance from these cases.

Another point of research is in generalizing the
Rényi-𝛼 entropy in Theorem 4 to non-integer 𝛼. In
our work, we only considered 𝛼 ∈ Z+. Extending to
non-integer 𝛼 would allow a formula for the Rényi en-
tropies that is continuous in 𝛼, and could be useful to
examine the behavior of the Rényi entropy as 𝛼 → 1.

We also propose other areas of further research.
Thus far, we have only considered Haar-random uni-
taries that describe the linear optical circuit. How-
ever, an interesting point of research could be in exam-
ining the entanglement associated with random lin-
ear optical circuits of finite depth, that is, the depth
dependence of entanglement entropy. Currently, the
precise relationship between entanglement and cir-
cuit depth is largely unknown [49]. There have been
some numerical studies [50], but only specialized cases
where most, but not all, initial modes are vacuum are
understood analytically [51].

Another related notion deals with sampling com-
plexity, the overall complexity of classical computers
producing a sample from approximately the same dis-
tribution as the quantum system [52]. Quantifying
the relationship between entanglement and complex-
ity, and studying the depth dependence of entangle-
ment and complexity, could yield crucial new insights
into the classical hardness of simulating quantum ex-
periments such as GBS and, more generally, into the
relation between entanglement and complexity.

Another problem to tackle deals with unequal
squeezing. There are two primary avenues of future
research. First, for small, varying squeezing strengths
𝑠1, 𝑠2, . . . , 𝑠𝑛, what is the average von Neumann en-
tanglement entropy of the subsystem? We have out-
lined a method in Section 3.3 of tackling this prob-
lem, but initial attempts have proved futile due to
the heavy presence of inverse matrices. Nonetheless,
learning the behavior of the von Neumann entropy
for unequal squeezing regimes is important from a
practical standpoint, since many GBS experiments
are conducted with one set of modes at zero squeez-
ing strength and the other at some varied squeez-
ing strength close to zero. Second, it is interesting
to consider Rényi-𝛼 entropies for systems with vary-
ing squeezing strengths that are not necessarily close
to zero. The argument given in Section 4.3 revolves
around the entropy expression being analytic around
𝑠 = 0 and vanishing in higher orders of 𝑠max. How-
ever, for the most general case of 𝑠max ∈ R, one cannot
simply extend the 𝑠 → 0 squeezing limit for unequal

squeezing. Nonetheless, deriving such an expression
would be important for a wider range of bosonic sys-
tems.
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A von Neumann Entropy
In this section of the appendix, we show derivations of our results regarding the von Neumann entropy. We
cover the derivation of the von Neumann entropy presented in Theorem 1, show squeezing limits as 𝑠 → 0 and
𝑠 → ∞, (Theorem 2 and Theorem 3), and discuss a potential avenue for solving the unequal squeezing case.

A.1 Page Curve for the von Neumann Entropy
Here, we derive the von Neumann entanglement entropy between the subsystems with 𝑘 and 𝑛 − 𝑘 modes, in
terms of the partition size ratio 𝑟 = 𝑘

𝑛 and the squeezing strength 𝑠. We use much of the notation from Ref. [39],
and the background on bosonic Gaussian states and operations can be found in Ref. [42].

Consider a system of 𝑛 bosonic modes, where each mode 1 ≤ 𝑖 ≤ 𝑛 is prepared in a single-mode squeezed
state with squeezing strength 𝑠𝑖. This 𝑛-mode Gaussian state is acted on by a passive linear optical unitary
𝑈 ∈ 𝑈(𝑛).

We divide the output modes into two groups, with one group bearing 0 ≤ 𝑘 ≤ 𝑛 modes. Let 𝜎 be the 2𝑘 × 2𝑘
covariance matrix of the reduced state on these 𝑘 modes. As shown in Refs. [42, 47, 48], the von Neumann
entanglement entropy 𝑆1(𝑈) of the whole system is given by

𝑆1(𝑈) = 1
2𝑆

(1)
1 + 1

2𝑆
(2)
1 with

{︃
𝑆

(1)
1 = log det

(︀
𝜎+iΩ

2
)︀

𝑆
(2)
1 = Tr

(︀
coth−1(iΩ𝜎)iΩ𝜎

)︀ , (A1)

where coth−1(𝑥) is the inverse hyperbolic cotangent function, and the symplectic form Ω equals

Ω :=
(︂

0𝑛×𝑛 I𝑛×𝑛

−I𝑛×𝑛 0𝑛×𝑛

)︂
. (A2)

We aim to derive a formula for 𝑆1 solely in terms of 𝑟, 𝑛, and 𝑠 using Eq. (A1).
Define the 𝑘 × 𝑛 matrix 𝑃 and the 𝑛 × 𝑛 projector Π such that

𝑃 :=
(︀
I𝑘×𝑘 0𝑘×(𝑛−𝑘)

)︀
, (A3)

Π :=
(︂

I𝑘×𝑘 0𝑘×(𝑛−𝑘)
0(𝑛−𝑘)×𝑘 0(𝑛−𝑘)×(𝑛−𝑘)

)︂
= I𝑘×𝑘 ⊕ 0(𝑛−𝑘)×(𝑛−𝑘). (A4)

From Ref. [39], when 𝑠𝑖 = 𝑠𝑗 ∀𝑖, 𝑗 ∈ {1, 2, . . . , 𝑛} , the covariance matrix 𝜎 of the reduced state after the
application of 𝑈 can be expressed as

𝜎 = cosh (2𝑠)I + sinh (2𝑠)𝑀, where 𝑀 :=
(︂

𝑃 Re(𝑈̄𝑈†) 𝑃 𝑇 𝑃 Im(𝑈̄𝑈†) 𝑃 𝑇

𝑃 Im(𝑈̄𝑈†) 𝑃 𝑇 −𝑃 Re(𝑈̄𝑈†) 𝑃 𝑇

)︂
, (A5)

and 𝑈̄ , 𝑈𝑇 , 𝑈† represent the conjugate, transpose, and conjugate transpose of 𝑈, respectively. Two useful and
easily checkable properties of 𝑀 are that Ω𝑀 = −𝑀Ω and Tr(Ω𝑀 𝑗) = Tr(𝑀2𝑗−1) = 0, ∀𝑗 ∈ Z+.

Using Eq. (A5) and the properties above, 𝑆
(1)
1 from Eq. (A1) is expressed as

𝑆
(1)
1 = Tr log

(︂
𝜎 + iΩ

2

)︂
(A6)
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=
∞∑︁

𝑗=1

(−1)𝑗+1

𝑗
Tr
(︂

𝜎 + iΩ
2 − I

)︂𝑗

=
∞∑︁

𝑗=1

(−1)𝑗+1

𝑗2𝑗
Tr ((cosh(2𝑠) − 2)I + sinh(2𝑠)𝑀 + iΩ)𝑗

= Tr
∞∑︁

𝑗=1

(−1)𝑗+1

𝑗2𝑗

𝑗∑︁
ℓ=0

(︂
𝑗

ℓ

)︂
(sinh(2𝑠)𝑀 + iΩ)ℓ (cosh(2𝑠) − 2)𝑗−ℓ

=
∞∑︁

𝑗=1

(−1)𝑗+1

𝑗2𝑗

(︃
2𝑘(cosh(2𝑠) − 2)𝑗 + Tr

𝑗∑︁
ℓ=1

(︂
𝑗

ℓ

)︂
(sinh(2𝑠)𝑀 + iΩ)ℓ (cosh(2𝑠) − 2)𝑗−ℓ

)︃

= 2𝑘 log
(︂

cosh 2𝑠

2

)︂
− Tr

∞∑︁
ℓ=1

(sinh(2𝑠)𝑀 + iΩ)ℓ
∞∑︁

𝑗=ℓ

(−1)𝑗

𝑗2𝑗

(︂
𝑗

ℓ

)︂
(cosh(2𝑠) − 2)𝑗−ℓ

= 2𝑘 log
(︂

cosh 2𝑠

2

)︂
− Tr

∞∑︁
ℓ=1

(−1)ℓ

ℓ
(sinh(2𝑠)𝑀 + iΩ)ℓ cosh−ℓ(2𝑠)

= 2𝑘 log
(︂

cosh 2𝑠

2

)︂
− Tr

∞∑︁
ℓ=1

1
2ℓ

(sinh(2𝑠)𝑀 + iΩ)2ℓ cosh−2ℓ(2𝑠)

= 2𝑘 log
(︂

cosh 2𝑠

2

)︂
− Tr

∞∑︁
ℓ=1

1
2ℓ

cosh−2ℓ(2𝑠)
(︀
sinh2(2𝑠)𝑀2 + I

)︀ℓ
. (A7)

As discussed in Ref. [39], let 𝑊 = Π𝑈𝑈̄†Π𝑈̄𝑈†Π. Then, Tr(𝑀2𝑖) = 2 Tr(𝑊 𝑖) ∀𝑖 ∈ Z+. We emphasize that
the dependence on 𝑈 and 𝑟 is implicit in 𝑊 . Importantly, though, there is no 𝑠 dependence in 𝑊 . We also note
that, since now everything is written in terms of traces, we are able to replace 𝑃 with Π so that all matrices
are square. Incorporating this definition into Eq. (A7), we have

𝑆
(1)
1 = 2𝑘 log

(︂
cosh 2𝑠

2

)︂
− 2

∞∑︁
ℓ=1

1
2ℓ

cosh−2ℓ(2𝑠)
ℓ∑︁

𝑗=0

(︂
ℓ

𝑗

)︂
sinh2𝑗(2𝑠) Tr 𝑊 𝑗 (A8)

= 2𝑘 log
(︂

cosh 2𝑠

2

)︂
− 2

∞∑︁
ℓ=1

1
2ℓ

cosh−2ℓ(2𝑠)

⎛⎝𝑘 +
ℓ∑︁

𝑗=1

(︂
ℓ

𝑗

)︂
sinh2𝑗(2𝑠) Tr 𝑊 𝑗

⎞⎠
= 2𝑘 log

(︂
cosh 2𝑠

2

)︂
+ 𝑘 log

[︀
tanh2(2𝑠)

]︀
− 2

∞∑︁
𝑗=1

sinh2𝑗(2𝑠) Tr 𝑊 𝑗
∞∑︁

ℓ=𝑗

1
2ℓ cosh2ℓ(2𝑠)

(︂
ℓ

𝑗

)︂

= 𝑘 log
[︀
cosh2(𝑠) sinh2(𝑠)

]︀
− 2

∞∑︁
𝑗=1

sinh2𝑗(2𝑠) Tr 𝑊 𝑗 1
2𝑗 sinh(2𝑠)2𝑗

= 𝑘 log
[︂

sinh2(2𝑠)
4

]︂
−

∞∑︁
𝑗=1

1
𝑗

Tr 𝑊 𝑗 . (A9)

We use a similar approach to simplify 𝑆
(2)
1 . Notably, we use the Taylor expansion

coth−1(𝑥) =
∞∑︁

𝑗=0

𝑥−2𝑗−1

2𝑗 + 1 for |𝑥| ≥ 1. (A10)

The |𝑥| ≥ 1 condition is met, as the eigenvalues of 𝑖Ω𝜎 come in positive-negative pairs, each with magnitude
greater than (or equal to) 1. Thus,

𝑆
(2)
1 = Tr(coth−1(iΩ𝜎)iΩ𝜎)

=
∞∑︁

𝑗=0

1
2𝑗 + 1 Tr

(︁
(𝑖Ω𝜎)−2𝑗

)︁
=

∞∑︁
𝑗=0

(−1)𝑗

2𝑗 + 1 Tr
(︁

(Ω𝜎)−2𝑗
)︁
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=
∞∑︁

𝑗=0

(−1)𝑗

2𝑗 + 1 Tr
(︀
(Ω(cosh (2𝑠)I + sinh (2𝑠)𝑀))−2𝑗

)︀
=

∞∑︁
𝑗=0

(−1)𝑗

2𝑗 + 1 Tr
(︁

(cosh (2𝑠)Ω + sinh (2𝑠)Ω𝑀)−2𝑗
)︁

=
∞∑︁

𝑗=0

(−1)𝑗

2𝑗 + 1 Tr
(︁(︀

sinh2 (2𝑠)𝑀2 − cosh2 (2𝑠)I
)︀−𝑗
)︁

. (A11)

We use the negative binomial theorem to expand Eq. (A11). For non-negative integers 𝑗 and real numbers 𝑥
and 𝑎, we have

(𝑥 + 𝑎)−𝑛 =
∞∑︁

𝑘=0
(−1)𝑘

(︂
𝑛 + 𝑘 − 1

𝑘

)︂
𝑥𝑘𝑎−𝑛−𝑘, (A12)

as discussed in Ref. [53]. This equation can be extended to matrices if 𝑥 and 𝑎 commute. Using 𝑥 = sinh2 (2𝑠)𝑀2

and 𝑎 = − cosh2 (2𝑠)I, we have

𝑆
(2)
1 = 2𝑘 +

∞∑︁
𝑗=1

(−1)𝑗

2𝑗 + 1 Tr
(︃ ∞∑︁

𝑖=0
(−1)𝑖

(︂
𝑗 + 𝑖 − 1

𝑖

)︂
sinh2𝑖(2𝑠)𝑀2𝑖(− cosh2(2𝑠))−𝑗−𝑖

)︃
(A13)

= 2𝑘 +
∞∑︁

𝑗=1

(︃
1

2𝑗 + 1 ·
∞∑︁

𝑖=0

(︂
𝑗 + 𝑖 − 1

𝑖

)︂
tanh2𝑖(2𝑠)sech2𝑗(2𝑠) Tr(𝑀2𝑖)

)︃

= 2𝑘 cosh (2𝑠) tanh−1 (sech(2𝑠)) +
∞∑︁

𝑖=1
tanh2𝑖(2𝑠) Tr(𝑀2𝑖)

∞∑︁
𝑗=1

sech2𝑗(2𝑠)
2𝑗 + 1

(︂
𝑗 + 𝑖 − 1

𝑖

)︂

= 2𝑘 cosh (2𝑠) tanh−1 (sech(2𝑠)) + 2
3 sech2(2𝑠)

∞∑︁
𝑖=1

tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
Tr(𝑊 𝑖). (A14)

Therefore,

E
𝑈∈𝑈(𝑛)

𝑆1(𝑈) = 𝑘

2 log
[︂

sinh2(2𝑠)
4

]︂
−

∞∑︁
𝑗=1

1
2𝑗

E
𝑈

Tr 𝑊 𝑗

+ 𝑘 cosh (2𝑠) tanh−1 (sech(2𝑠)) + sech2(2𝑠)
3

∞∑︁
𝑖=1

tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
E
𝑈

Tr(𝑊 𝑖)

(A15)

= 𝑛𝑟

(︂
1
2 log

[︂
sinh2(2𝑠)

4

]︂
+ cosh(2𝑠) tanh−1[sech(2𝑠)]

)︂
+ sech2(2𝑠)

3

∞∑︁
𝑖=1

[︂
tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 3 cosh2(2𝑠)

2𝑖

]︂
E
𝑈

Tr 𝑊 𝑖

(A16)

=
∞∑︁

𝑖=1

[︂
1
2𝑖

− 1
3 sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂]︂
(𝑛𝐺𝑖(𝑟) − 𝐻𝑖(𝑟) + 𝑜(1)), (A17)

where the step from Eq. (A16) to Eq. (A17) arises from substituting E
𝑈

Tr 𝑊 𝑖 = 𝑛𝑟 − (𝑛𝐺𝑖(𝑟) − 𝐻𝑖(𝑟) + 𝑜(1))
as derived in Ref. [39] and the subsequent cancellation of the constant term. Finally, dividing by 𝑛 and noting
the vanishing behavior of 𝐻𝑖(𝑟) and 𝑜(1) as 𝑛 → ∞, the von Neumann Page curve is

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑛

𝑆1(𝑈) =
∞∑︁

𝑖=1

[︂
1
2𝑖

− 1
3 sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂]︂
𝐺𝑖(𝑟), (A18)

which is given in Theorem 1 in the main text.

A.2 Limit as 𝑠 → 0
In this section, we show the validity of Theorem 2. Moreover, we elucidate the odd behavior of the von Neumann
Page curve scaling with 𝑠2 log(1/𝑠2) instead of the traditional 𝑠2 seen in the other Rényi-𝛼 entropies with integer
𝛼 ≥ 2. We also give our motivation for investigating the 𝑠2 log(1/𝑠2) dependence.
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For small squeezing strengths, one might expect the Rényi entanglement entropy to scale with the number
of bosons in all modes. Furthermore, since the total expected number of bosons in the state of 𝑛 modes is∑︀𝑛

𝑖=1 sinh2 𝑠 ≈ 𝑛𝑠2 for equal squeezing, one may guess that all Rényi-𝛼 Page curves scale with 𝑠2.
However,

lim
𝑠→0

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑠2𝑛

𝑆1(𝑈) = ∞. (A19)

One difficulty arises in evaluating the limit as 𝑠 → ∞ of the first term in Eq. (A16). Notably,

1
2𝑠2 log

[︂
sinh2(2𝑠)

4

]︂
= log 𝑠

𝑠2 + 2
3 − 4

45𝑠2 + 64
2835𝑠4 − 32

4725𝑠6 + 1024
467775𝑠8 − . . . , (A20)

1
𝑠2 cosh(2𝑠) tanh−1(sech(2𝑠)) = − log 𝑠

𝑠2 + 1 − 6 log 𝑠

3 + 53 − 60 log 𝑠

90 𝑠2 + 251 − 252 log 𝑠

2835 𝑠4 + . . . . (A21)

Summing Eqs. (A20) and (A21) yields a complicated series involving log 𝑠, which diverges as 𝑠 → 0. Therefore,
we try evaluating lim𝑠→0 lim𝑛→∞ E

𝑈∈𝑈(𝑛)
1

(𝑠2 log 1/𝑠2)𝑛 𝑆1(𝑈) in hopes of achieving a convergent result. Using the

entanglement entropy expression derived in Eq. (A16),

lim
𝑠→0

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
(𝑠2 log 1/𝑠2)𝑛𝑆1(𝑈) = 𝑟

𝑠2 log 1/𝑠2 ·
(︂

1
2 log

[︂
sinh2(2𝑠)

4

]︂
+ cosh(2𝑠) tanh−1[sech(2𝑠)]

)︂
+ sech2(2𝑠)

3𝑠2 log(1/𝑠2)

∞∑︁
𝑖=1

[︂
tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 3 cosh2(2𝑠)

2𝑖

]︂
· 𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖; 𝑖; 𝑖 + 2; 𝑟).

(A22)

Note that 1
𝑠2 log(1/𝑠2) · 𝑟

(︁
1
2 log

[︁
sinh2(2𝑠)

4

]︁
+ cosh(2𝑠) tanh−1[sech(2𝑠)]

)︁
, the constant term in Eq. (A22), ap-

proaches 𝑟 as 𝑠 → 0. Now, we need to find the limit as 𝑠 → 0 of the second term in Eq. (A22):

= lim
𝑠→0

1
𝑠2 log(1/𝑠2)

sech2(2𝑠)
3

∞∑︁
𝑖=1

[︂
tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 3 cosh2(2𝑠)

2𝑖

]︂
𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖; 𝑖; 𝑖 + 2; 𝑟)

=
∞∑︁

𝑖=1
lim
𝑠→0

1
𝑠2 log(1/𝑠2)

(︂
1
3 sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 1

2𝑖

)︂
· 𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖; 𝑖; 𝑖 + 2; 𝑟)

=
∞∑︁

𝑖=1
lim
𝑠→0

1
𝑠2 log(1/𝑠2)

(︂
1
3 · 1 · (2𝑠)2𝑖

2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , (1 − 2𝑠2)2

)︂
− 1

2𝑖

)︂
· 𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖; 𝑖; 𝑖 + 2; 𝑟). (A23)

Note that, in the 𝑖 = 1 case, letting 𝐹 (𝑠) = 1
𝑠2 log(1/𝑠2)

1
3 · 1 · (2𝑠)2𝑖, the left-hand derivative 𝑑𝐹

𝑑𝑠𝑠=0−
= −∞,

while the right-hand derivative 𝑑𝐹
𝑑𝑠𝑠=0+

= ∞. This behavior deviates from all other values of 𝑖 ≥ 1, where 𝑑𝐹
𝑑𝑠 = 0

evaluated at 𝑠 = 0. Combined with the dependence of 2𝐹1
(︀ 3

2 , 1 + 𝑖, 5
2 , (1 − 2𝑠2)2)︀ on 𝑖, one can explicitly

calculate that Eq. (A23) evaluates to −𝑟2, as the 𝑖 = 1 case yields −𝑟2 and subsequent 𝑖 yield 0 in the sum.
Thus,

lim
𝑠→0

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
(𝑠2 log(1/𝑠2))𝑛𝑆1(𝑈) = 𝑟(1 − 𝑟). (A24)

It can easily be seen from Eq. (A16) that the result is the same if we swap the limits, so that by the Moore-
Osgood theorem [54],

lim
𝑛→∞
𝑠→0

E
𝑈∈𝑈(𝑛)

1
(𝑠2 log(1/𝑠2))𝑛𝑆1(𝑈) = 𝑟(1 − 𝑟). (A25)

as displayed in Theorem 2 in the main text.

A.3 Limit as 𝑠 → ∞
In a similar vein as Appendix A.2, we also compute the von Neumann Page curve for equal squeezing as 𝑠 → ∞.
The Page curve scales with 𝑠 in the limit 𝑠 → ∞, so we compute lim𝑠→∞ lim𝑛→∞ E

𝑈∈𝑈(𝑛)
1

𝑠𝑛 𝑆1(𝑈). We once
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again use the expression found in Eq. (A16) in our evaluations.

lim
𝑠→∞

lim
𝑛→∞

E
𝑈∈𝑈(𝑛)

1
𝑠𝑛

𝑆1(𝑈) = lim
𝑠→∞

𝐴1 + lim
𝑠→∞

𝐴2,

where 𝐴1 = 𝑟

𝑠

(︂
1
2 log

[︂
sinh2(2𝑠)

4

]︂
+ cosh(2𝑠) tanh−1[sech(2𝑠)]

)︂
,

𝐴2 = 1
𝑠

∞∑︁
𝑖=1

[︂
1
3 sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 1

2𝑖

]︂
· 𝑓𝑖(𝑟),

𝑓𝑖(𝑟) = 𝑟𝑖+1𝐶𝑖 2𝐹1(1 − 𝑖; 𝑖; 𝑖 + 2; 𝑟).

(A26)

It turns out that

lim
𝑠→∞

𝐴1 = lim
𝑠→∞

(︂
𝑟

𝑠

1
2 log

[︂
sinh2(2𝑠)

4

]︂)︂
+ lim

𝑠→∞

(︁𝑟

𝑠
· cosh(2𝑠) tanh−1[sech(2𝑠)]

)︁
(A27)

= 𝑟

2 lim
𝑠→∞

(︂
1
𝑠

log
[︂

sinh2(2𝑠)
4

]︂)︂
+ 0

= 2 min(𝑟, 1 − 𝑟). (A28)

Since the Page curve is symmetric about 𝑟 = 1
2 , Eq. (A28) contains a min(𝑟, 1 − 𝑟) term (as opposed to a

simple 𝑟-dependence). Next, we calculate lim𝑠→∞ 𝐴2:

lim
𝑠→∞

𝐴2 = lim
𝑠→∞

1
𝑠

∞∑︁
𝑖=1

[︂
1
3 sech2(2𝑠) tanh2𝑖(2𝑠) 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , sech2(2𝑠)

)︂
− 1

2𝑖

]︂
· 𝑓𝑖(𝑟) (A29)

= lim
𝑠→∞

1
𝑠

∞∑︁
𝑖=1

[︂
1
3 · 0 · 1 2𝐹1

(︂
3
2 , 1 + 𝑖,

5
2 , 0
)︂

− 1
2𝑖

]︂
· 𝑓𝑖(𝑟) (A30)

= 0. (A31)

Therefore,

lim
𝑛→∞
𝑠→∞

E
𝑈∈𝑈(𝑛)

1
𝑠𝑛

𝑆1(𝑈) = 2 min(𝑟, 1 − 𝑟), (A32)

where we again used the same discussion as around Eq. (A25)
Eq. (A32) is verified in Fig. B.2, alongside other Rényi-𝛼 Page curves in the limit as 𝑠 → ∞. Note that both

the von Neumann and Rényi Page curves approach the same limit of 2 min(𝑟, 1 − 𝑟) (see Appendix B.3 for the
relevant derivation). This indicates that, at large squeezing values, the von Neumann entropy behaves similarly
to the larger class of Rényi entropies.

B General Rényi-𝛼 Entropies
In this section, we extend our derivation in Appendix A from the von Neumann entropy to all general Rényi-𝛼
entropies, where 𝛼 is a positive integer greater than 1. We find a closed formula for the Rényi-𝛼 Page curve as a
function of equal squeezing strength 𝑠 and partition ratio 𝑟 in the asymptotic limit 𝑛 → ∞. Similar to the von
Neumann case, we calculate squeezing limits of the Rényi-𝛼 entropies as 𝑠 → 0 and 𝑠 → ∞ and then discuss
typicality of entanglement based on the variance.

B.1 Page Curve for the Rényi-𝛼 entropy
Here, we present our full derivation for the Page curve of the Rényi-𝛼 entropy, where 𝛼 is an integer great than
1, in terms of the partition ratio 𝑟 and equal squeezing strength 𝑠.

Our starting point is the general expression relating the Rényi-𝛼 entropy with the symplectic eigenvalues 𝜈𝑗

of the covariance matrix 𝜎 (recall that 𝜎 is precisely the second moment of 𝜌 [42]):

𝒮𝛼(𝜌) = 1
𝛼 − 1

𝑘∑︁
𝑗=1

log[(𝜈𝑗 + 1)𝛼 − (𝜈𝑗 − 1)𝛼] − 𝛼𝑘 log 2
𝛼 − 1 . (B1)
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If 𝛼 is a positive integer, then this function has 𝛼−1 singularities. We can solve for those singularities explicitly:

(𝜈0 + 1)𝛼 = (𝜈0 − 1)𝛼 ⇒ 𝜈0 + 1 = (𝜈0 − 1)𝑒𝑖 2𝜋ℓ
𝛼 , (B2)

⇒ 𝜈0 = −𝑖 cot 𝜋ℓ

𝛼
, ℓ = 1, . . . , 𝛼 − 1. (B3)

Note that we exclude the ℓ = 𝛼 case as Eq. (B2) does not have a root in that case. Thus, the polynomial
(𝜈𝑗 + 1)𝛼 − (𝜈𝑗 − 1)𝛼 can be rewritten in terms of a product of factors as follows:

(𝜈𝑗 + 1)𝛼 − (𝜈𝑗 − 1)𝛼 = 2𝛼𝜈𝜁
𝑗

⌊ 𝛼−1
2 ⌋∏︁

𝑚=1
(𝜈2

𝑗 + cot2 𝜋𝑚

𝛼
), (B4)

where we define 𝜁 := 1 − (𝛼 mod 2). The Rényi entropy is in turn given by

𝒮𝛼(𝜌) = 1
𝛼 − 1

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

𝑘∑︁
𝑗=1

log(𝜈2
𝑗 + cot2 𝜋𝑚

𝛼
) +

𝜁
∑︀𝑘

𝑗=1 log 𝜈2
𝑗

2(𝛼 − 1) + 𝑘 log 𝛼

𝛼 − 1 − 𝑘 log 2. (B5)

To work with the log 𝜈2
𝑗 terms, note that the squares of the symplectic eigenvalues of 𝜎 are precisely the

eigenvalues of (𝑖Ω𝜎)2 by matrix properties. Furthermore, since the eigenvalues of 𝑖Ω𝜎 come in plus-minus
pairs but the symplectic eigenvalues only consider positive numbers, the factor of 1

2 in Eq. (B5) arises. Taking
(𝑖Ω𝜎)2 = (𝑖Ω(I cosh(2𝑠) + 𝑀 sinh(2𝑠)))2 = cosh2(2𝑠) − 𝑀2 sinh2(2𝑠) into the above equation, we thus have

𝒮𝛼(𝜌) = 1
2(𝛼 − 1)

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1
Tr log(cot2 𝜋𝑚

𝛼
+ cosh2(2𝑠) − 𝑀2 sinh2(2𝑠))

+ 𝜁

4(𝛼 − 1)Tr log(cosh2(2𝑠) − 𝑀2 sinh2(2𝑠)) + 𝑘 log(𝛼)
𝛼 − 1 − 𝑘 log 2. (B6)

Let us now expand all the logarithmic functions in the sum in Eq. (B6) in orders of 𝑀2. Noting that 𝑀2 ≤ 1,
one could show that each of the following series always converge (for any integer ℓ):

Tr log(cosh2(2𝑠) − 𝑀2 sinh2(2𝑠)) = 4𝑘 log cosh(2𝑠) −
∞∑︁

ℓ=1

sinh2ℓ(2𝑠)
ℓ cosh2ℓ(2𝑠)

Tr(𝑀2ℓ), (B7)

Tr log(cot2 𝜋𝑚

𝛼
+ cosh2(2𝑠) − 𝑀2 sinh2(2𝑠)) = 2𝑘 log(cot2 𝜋𝑚

𝛼
+ cosh2(2𝑠)) −

∞∑︁
ℓ=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + cot2 𝜋𝑚

𝛼 )ℓ
Tr(𝑀2ℓ).

(B8)

Note that the product in Eq. (B4) vanishes when substituting 𝛼 = 2. Therefore, one gets from Eq. (B5) that 𝑆2 =∑︀𝑘
𝑗=1 log 𝜈2

𝑗 . Combining the expansion in Eq. (B7), we get that 𝑆2 = 𝑘 log cosh(2𝑠) −
∑︀∞

ℓ=1
tanh2ℓ(2𝑠)

2ℓ Tr(𝑀2ℓ).
This expression for 𝑆2 is utilized in the following steps to formally express the Rényi entropy with a positive
integer 𝛼 as

𝒮𝛼(𝜌) =𝑘

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

log(cot2 𝜋𝑚
𝛼 + cosh2(2𝑠))
𝛼 − 1 + 𝑘

𝜁 log cosh(2𝑠) + log 𝛼

𝛼 − 1 − 𝑘 log 2 (B9)

− 1
𝛼 − 1

∞∑︁
ℓ=1

⎡⎣⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + cot2 𝜋𝑚

2𝛼 )ℓ
+ 𝜁

sinh2ℓ(2𝑠)
2ℓ cosh2ℓ(2𝑠)

⎤⎦ Tr(𝑀2ℓ)
2

=𝑘

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

log(cot2 𝜋𝑚
𝛼 + cosh2(2𝑠))
𝛼 − 1 + 𝑘 log 𝛼

𝛼 − 1 − 𝑘 log 2 + 𝜁

𝛼 − 1𝑆2

− 1
𝛼 − 1

∞∑︁
ℓ=1

⎡⎣⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + cot2 𝜋𝑚

𝛼 )ℓ

⎤⎦ Tr(𝑀2ℓ)
2 (B10)

= 𝜁

𝛼 − 1𝑆2 + 1
𝛼 − 1

∞∑︁
ℓ=1

[︃
𝑎∑︁

𝑚=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + cot2 𝜋𝑚

𝛼 )ℓ

]︃ [︀
𝑘 − Tr(𝑊 ℓ)

]︀
, (B11)
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where 𝑎 ≡ ⌊ 𝛼−1
2 ⌋ = 𝛼−1−𝜁

2 . We have used Tr 𝑀2ℓ = 2 Tr 𝑊 ℓ in Eq. (B11). The step from Eq. (B10) to Eq. (B11)
utilizes the relation presented in Eq. (B8), where 𝑀 is substituted with the identity matrix. We can then use
the expression for E𝑈∈U(𝑛) Tr 𝑊 ℓ from Ref. [39] to derive the Page curve.

B.2 Limit as 𝑠 → 0
We now analyze the Rényi-𝛼 entropy as the squeezing strength approaches zero. This time, due to the analyticity
of the Rényi entropies for integer 𝛼 ≥ 2, the Page curve scales with the number of bosons ∼ 𝑠2 instead of the
𝑠2 log(1/𝑠2) dependence explained in Appendix A.2.

Recall that 𝐺ℓ(𝑟) is a function symmetric about 𝑟 = 1
2 defined as 𝑟 − 𝑟ℓ+1𝐶ℓ 2𝐹1(1 − ℓ; ℓ; ℓ + 2; 𝑟). Using

Eq. (B11) and substituting 𝑘 − Tr(𝑊 ℓ) = 𝑛𝐺ℓ(𝑟) to investigate the 𝑠 → 0 limit,

lim
𝑠→0

lim
𝑛→∞

1
𝑠2𝑛

E
𝑈

𝑆𝛼(𝑈) = lim
𝑠→0

1
𝑠2

1
𝛼 − 1

∞∑︁
ℓ=1

1
ℓ

(2𝑠)2ℓ𝐺ℓ(𝑟)
𝑎∑︁

𝑚=1

(︁
1 + cot2

(︁𝜋𝑚

𝛼

)︁)︁−ℓ

+ 𝜁

𝛼 − 12𝑟(1 − 𝑟) (B12)

= lim
𝑠→0

1
𝑠2

1
𝛼 − 1(2𝑠)2𝐺1(𝑟)

𝑎∑︁
𝑚=1

(︁
cot2

(︁𝜋𝑚

𝛼

)︁
+ 1
)︁−1

+ 𝜁

𝛼 − 12𝑟(1 − 𝑟)

= 4
𝛼 − 1𝑟(1 − 𝑟)

𝑎∑︁
𝑚=1

(︁
cot2

(︁𝜋𝑚

𝛼

)︁
+ 1
)︁−1

+ 𝜁

𝛼 − 12𝑟(1 − 𝑟)

= 𝑟(1 − 𝑟)
𝛼 − 1

(︃
4

𝑎∑︁
𝑚=1

(︁
cot2

(︁𝜋𝑚

𝛼

)︁
+ 1
)︁−1

+ 2𝜁

)︃

= 𝑟(1 − 𝑟)
𝛼 − 1

(︂(︂
− csc

(︁𝜋

𝛼

)︁
sin
(︂

2𝜋𝑎 + 𝜋

𝛼

)︂
+ 2𝑎 + 1

)︂
+ 2𝜁

)︂
. (B13)

Next, we use that 𝑎 = ⌊(𝛼 − 1)/2⌋ = (𝛼 − 1 − 𝜁)/2. Then

lim
𝑠→0

lim
𝑛→∞

1
𝑠2𝑛

E
𝑈

𝑆𝛼(𝑈) = 𝑟(1 − 𝑟)
𝛼 − 1

(︂
𝛼 + 𝜁 − sin(𝜋𝜁/𝛼)

sin(𝜋/𝛼)

)︂
(B14)

= 𝛼

𝛼 − 1 · 𝑟(1 − 𝑟). (B15)

As in the other cases, this results holds as a double limit lim𝑛→∞
𝑠→0

. Evidently, the Rényi-𝛼 Page Curve with
small squeezing approaches 𝑟(1 − 𝑟) · 𝑠2 as 𝛼 → ∞. We demonstrate Eq. (B15) numerically in Fig. B.1.

0.1 0.2 0.3 0.4 0.5

0.3

0.4

0.5 𝛼 = 2

𝛼 = 3
𝛼 = 4
𝛼 = 5

𝛼 = 15

𝑠

1
𝑠2 E𝑈

1
𝑛 𝑆𝛼(𝑈)

Figure B.1: The Rényi-𝛼 Page curves, for 𝛼 ∈ {2, 3, 4, 5, 15}, divided by 𝑠2, as a function of the squeezing strength 𝑠. These
functions are displayed as the solid lines. The Rényi-𝛼 Page curve limit as 𝑠 → 0, presented in Eq. (B15), is shown by the
dashed lines in corresponding color. As expected, the Rényi-𝛼 Page curve approaches 𝛼

𝛼−1 𝑟(1 − 𝑟) in order 𝑠2, where we take
𝑟 = 0.5 and 𝑛 = 400.

B.3 Limit as 𝑠 → ∞
Now, we investigate the squeezing limit 𝑠 → ∞.
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We have

lim
𝑠→∞

lim
𝑛→∞

1
𝑠𝑛

E
𝑈

𝑆𝛼(𝑈) = lim
𝑠→∞

1
𝑠

1
𝛼 − 1

∞∑︁
ℓ=1

1
ℓ

sinh2ℓ(2𝑠)𝐺ℓ(𝑟)
𝑎∑︁

𝑚=1

(︁
cot2

(︁𝜋𝑚

𝛼

)︁
+ cosh2(2𝑠)

)︁−ℓ

+ 𝜁

𝛼 − 12 min(𝑟, 1 − 𝑟)

(B16)

= lim
𝑠→∞

1
𝑠

2𝑎

𝛼 − 1

(︃ ∞∑︁
ℓ=1

tanh2ℓ(2𝑠)
2ℓ

𝐺ℓ(𝑟)
)︃

+ 𝜁

𝛼 − 12 min(𝑟, 1 − 𝑟)

= 2𝑎

𝛼 − 12 min(𝑟, 1 − 𝑟) + 𝜁

𝛼 − 12 min(𝑟, 1 − 𝑟)

= 4𝑎 + 2𝜁

𝛼 − 1 min(𝑟, 1 − 𝑟)

= 2 min(𝑟, 1 − 𝑟). (B17)

As in the other cases, this results holds as a double limit lim𝑛→∞
𝑠→0

.
We numerically validate Eq. (B17) and Eq. (A32) in Fig. B.2 below. As shown, both the von Neumann and

Rényi-𝛼 entropies indeed approach 2 min(𝑟, 1 − 𝑟) in order 𝑠 as 𝑠 → ∞.

2 4 6 8 10 12

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1 2 min(𝑟, 1 − 𝑟)
𝛼 = 1𝛼 = 2

𝛼 = 3

𝑠

1
𝑠 E𝑈

1
𝑛 𝑆𝛼(𝑈)

Figure B.2: Plots of the von Neumann, Rényi-2, and Rényi-3 Page curves divided by 𝑠, as a function of the squeezing strength
𝑠. These functions, which are presented more generally in Theorem 3 and Theorem 5, are shown by the solid red, blue, and
brown lines, respectively. The von Neumann and Rényi Page curves in the limit as squeezing strength approaches infinity,
derived in Appendix A.3 and Appendix B.3, have coinciding values of 2 min(𝑟, 1 − 𝑟) displayed as the black dotted line. We
take 𝑟 = 0.5.

B.4 Variance and typicality of entanglement
In this section, we prove weak typicality of entanglement described in Section 4.4. We consider the general
expression for the Rényi-𝛼 entropy as found in Eq. (B11):

𝒮𝛼(𝜌) = 𝜁

𝛼 − 1𝑆2 + 1
𝛼 − 1

∞∑︁
ℓ=1

[︃
𝑎∑︁

𝑚=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + cot2 𝜋𝑚

𝛼 )ℓ

]︃ [︀
𝑘 − Tr(𝑊 ℓ)

]︀
(B18)

= 1
𝛼 − 1

∞∑︁
ℓ=1

⎡⎣⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

sinh2ℓ(2𝑠)
ℓ(cosh2(2𝑠) + tan2 𝜋𝑚

2𝛼 )ℓ
+ 𝜁

sinh2ℓ(2𝑠)
2ℓ cosh2ℓ(2𝑠)

⎤⎦ [︀𝑘 − Tr(𝑊 ℓ)
]︀

, (B19)

with the same definition 𝑎 := ⌊ 𝛼−1
2 ⌋ = 𝛼−1−𝜁

2 . More specifically, the 𝛼 = 2 Rényi entropy is given by

𝒮𝛼=2(𝜌) =
∞∑︁

ℓ=1

sinh2ℓ(2𝑠)
2ℓ cosh2ℓ(2𝑠)

[︀
𝑘 − Tr(𝑊 ℓ)

]︀
. (B20)
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From Ref. [39], we know that the following covariance is a non-zero constant independent of 𝑛:

𝒱𝑑 ≡
𝑑−1∑︁
ℓ=1

1
ℓ(𝑑 − ℓ) (Tr(𝑊 ℓ) Tr(𝑊 𝑑−ℓ) − Tr(𝑊 ℓ) · Tr(𝑊 𝑑−ℓ)). (B21)

Then the variance of 𝒮𝛼=2(𝜌) can also be proved to be a constant. Letting the fluctuation in the Rényi entropy
be defined as 𝛿𝒮𝛼=2 = 𝒮𝛼=2(𝜌) − 𝒮𝛼=2(𝜌), we get Var 𝑆𝛼=2(𝜌) = 𝛿𝒮2

𝛼=2 as

𝛿𝒮2
𝛼=2 = 1

4

∞∑︁
𝑑=2

tanh2𝑑(2𝑠)
𝑑−1∑︁
ℓ=1

1
ℓ(𝑑 − ℓ) (Tr(𝑊 ℓ) Tr(𝑊 𝑑−ℓ) − Tr(𝑊 ℓ) · Tr(𝑊 𝑑−ℓ)) (B22)

= 1
4

∞∑︁
𝑑=2

tanh2𝑑(2𝑠)𝒱𝑑. (B23)

On the other hand, we can also expand the Rényi entropy as

𝒮𝛼(𝜌) = 1
𝛼 − 1

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1
𝒞𝑚(𝛼) + 𝜁

𝛼 − 1𝒮2(𝜌) (B24)

= 1
𝛼 − 1

⎡⎣⌊ 𝛼−1
2 ⌋∑︁

𝑚=1

∞∑︁
ℓ=1

(︃
sinh2(2𝑠)

cosh2(2𝑠) + cot2( 𝜋𝑚
2𝛼 )

)︃ℓ [︀
𝑘 − Tr(𝑊 ℓ)

]︀
ℓ

+ 𝜁

2

∞∑︁
ℓ=1

tanh2ℓ(2𝑠)
[︀
𝑘 − Tr(𝑊 ℓ)

]︀
ℓ

⎤⎦ , (B25)

where

𝒞𝑚(𝛼) =
∞∑︁

ℓ=1

(︃
sinh2(2𝑠)

cosh2(2𝑠) + cot2( 𝜋𝑚
2𝛼 )

)︃ℓ [︀
𝑘 − Tr(𝑊 ℓ)

]︀
ℓ

, 𝑚 = 1, 2, . . . ,

⌊︂
𝛼 − 1

2

⌋︂
. (B26)

Note that all quantities 𝒞𝑚(𝛼) are well-defined and converge for all integers 𝑚, 𝛼, and 𝑠, and, by definition,
𝒞0(𝛼) = 𝒮𝛼=2(𝜌). Further, for each 𝒞𝑚(𝛼), if we introduce its fluctuation 𝛿𝒞𝑚(𝛼) = 𝒞𝑚(𝛼) − 𝒞𝑚(𝛼) , then

𝛿𝒞2
𝑚(𝛼) = 1

4

∞∑︁
𝑑=2

(︃
sinh2(2𝑠)

cosh2(2𝑠) + cot2( 𝜋𝑚
2𝛼 )

)︃𝑑 𝑑−1∑︁
ℓ=1

1
ℓ(𝑑 − ℓ) (Tr(𝑊 ℓ) Tr(𝑊 𝑑−ℓ) − Tr(𝑊 ℓ) · Tr(𝑊 𝑑−ℓ)) (B27)

= 1
4

∞∑︁
𝑑=2

(︃
sinh2(2𝑠)

cosh2(2𝑠) + cot2( 𝜋𝑚
2𝛼 )

)︃𝑑

𝒱𝑑 (B28)

≤ 1
4

∞∑︁
𝑑=2

tanh2𝑑(2𝑠)𝒱𝑑,

meaning that each 𝐶𝑚 has smaller variance than that of 𝐶0. Furthermore, by the Cauchy-Schwarz inequality,
we have that

𝛿𝒞𝑚(𝛼)𝛿𝒞𝑚′(𝛼) ≤
√︁

𝛿𝒞𝑚(𝛼)𝛿𝒞𝑚(𝛼) · 𝛿𝒞𝑚′(𝛼)𝛿𝒞𝑚′(𝛼) ∀𝑚, 𝑚′ ∈ 0, 1, . . . ,

⌊︂
𝛼 − 1

2

⌋︂
, (B29)

so that covariances of the form 𝛿𝒞𝑚(𝛼)𝛿𝒞𝑚′(𝛼) ∀𝑚, 𝑚′ must also be bounded by a constant as 𝑛 increases.
Finally, since we have found the variance of 𝒞𝑚(𝛼) and 𝑆2(𝜌) to be constant in 𝑛, we can prove the concentration
of Rényi entropy with integer 𝛼 ≥ 2:

𝒮𝛼(𝜌) = 1
𝛼 − 1

⌊ 𝛼−1
2 ⌋∑︁

𝑚=1
𝒞𝑚(𝛼) + 𝜁

𝛼 − 1𝒮2(𝜌) ⇒ 𝛿𝒮2
𝛼 = const. (B30)
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