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This Supplemental Material is organized as follows. In Sec. I, we discuss the Thirring-Schwinger model, a gen-
eralization of the Schwinger model studied in the main text. In particular, we derive in perturbation theory the
effective quark-antiquark Hamiltonian [Eq. (4) of the main text] and discuss the existence (or lack thereof) of bound
states. In Sec. II, we derive a corresponding circuit-QED Hamiltonian (including a generalization to 2 dimensions)
and discuss an experimental scheme for wave-packet preparation. In Sec. III, we present the details of the numerical
tensor-network methods employed, including uniform matrix product states, wave-packet preparation, and particle
detection.
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I. THE MASSIVE THIRRING-SCHWINGER MODEL

In this section, we discuss the massive Thirring-Schwinger model, realized in our circuit-QED proposal, including its
bosonization, Hamiltonian formulation, and the presence of quark-antiquark bound states for different parameters.

A. Hamiltonian and bosonic dual

Consider the Lagrangian density for the so-called massive Thirring-Schwinger model

L = ψ̄(i/∂ − e /A−m)ψ − 1

4
FµνF

µν − 1

2
g(ψ̄γµψ)(ψ̄γµψ) , (S1)
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which for g = 0 reduces to the massive Schwinger model investigated in this study [Eq. (1) in the main text], while
e = 0 yields the massive Thirring model [S1, S2]. The gauge fields can be eliminated using Gauss’s law [S3], which,
after fixing the gauge to A1(x) = 0, reads

∂xE = −∂2xA0 = eρ, (S2)

where ρ(x) = ψ†(x)ψ(x) is the charge-density operator. The solution to this equation is

A0(x) = a0 −
eθ

2π
x− e

2

∫
dx′ ρ(x′)|x− x′|, (S3)

where a0 and θ are integration constants. As argued in Ref. [S3], physics depends on θ only modulo 2π, and so a
suitable range for this variable is θ ∈ (−π, π]. The Hamiltonian can be derived in the standard fashion, noting the
expression for the electric field from Eq. (S2) with A0 given in Eq. (S3). In the charge-zero subspace

∫
dx ρ(x) = 0,

the (normal-ordered) Hamiltonian of the Thirring-Schwinger model becomes

H =

∫
dx : ψ†γ0

(
−iγ1∂x +m

)
ψ : −e

2θ

2π

∫
dxx : ρ(x) :

− e2

4

∫
dx

∫
dx′ |x− x′| : ρ(x)ρ(x′) : +g

2

∫
dx :

[
ρ(x)2 −

(
ψ†(x)γ0γ1ψ(x)

)2]
. (S4)

Our conventions are such that {γµ, γν} = 2ηµν , with metric signature η00 = −η11 = +1. The two-component

spinor operators, ψ(x, t) ≡ (ψ1(x, t), ψ2(x, t))
T , satisfy the canonical anticommutation relations {ψa(x, t), ψ

†
b(x

′, t)} =
δabδ(x − x′), where a, b = 1, 2. The model described above can be shown to be dual to a bosonic theory with the
Hamiltonian [S1–S4]

H =

∫
dx :

[
Π2

2
+

(∂xϕ)
2

2
+
M2(ϕ+ θ/β)2

2
− u cos(βϕ)

]
: , (S5)

where [ϕ(x),Π(y)] = iδ(x− y) and [Π(x),Π(y)] = [ϕ(x), ϕ(y)] = 0 and the normal-ordering is defined with respect to
the boson mass M [S3, S4]. The model parameters are related to those in the fermionic model as follows:

M =
e√
π

1√
1 + g/π

, u =
exp(γ)

2π3/2
me, β =

√
4π

1 + g/π
, (S6)

with γ being the Euler’s constant. Furthermore, the following relation holds between the fermionic current ψγµψ and
the bosonic field ϕ [S2]:

ψγµψ = − β

2π
ϵµν∂νϕ. (S7)

Here, ϵµν is the Levi-Civita tensor. Now, using ∂xE = eψγ0ψ [see Eq. (S2)], one arrives at eβ
2πϕ = E, which relates

the scalar field ϕ to the electric field E. It is more convenient to work with a shifted ϕ: ϕ → ϕ− θ/β, such that the
Hamiltonian is

H =

∫
dx :

[
Π2

2
+

(∂xϕ)
2

2
+
M2ϕ2

2
− u cos(βϕ− θ)

]
: , (S8)

and the relation to the electric field is now eβ
2πϕ = E + eθ

2π ≡ ET , which in the limit g = 0 reproduces the relation
presented in the main text between the total electric field ET and the bosonic field of the massive Schwinger model.
When g = 0, Eq. (S8) reduces to Eq. (2) of the main text.

B. Quark-antiquark interactions and bound states

In this section, we derive an effective quark-antiquark Hamiltonian in the nonrelativistic limit in perturbation
theory and use this Hamiltonian to confirm the existence of quark-antiquark bound states (mesons). We also study
the meson bound states using nonperturbative tensor-network computation of the low-lying spectrum.
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1. Derivation of effective Hamiltonian

The goal is to derive an effective interaction Hamiltonian between a quark and an antiquark to leading order in the
interactions e and g. For g = 0, an analogous computation was discussed by Coleman in Ref. [S3]. The idea is that,
in the weak-coupling limit in which e/m, g ≪ 1, one can restrict the physics to subspaces with fixed particle number,
e.g., vacuum, quark-antiquark state, etc. [S5], since transitions between states with different particle numbers are
higher order in the coupling strength [S3]. This means that, in this limit, the full Hamiltonian can be assumed to
be almost block-diagonal in the Fock basis. This mimics a nonrelativistic limit in which one can define an ‘effective’
potential describing interactions in each fixed-particle sector, with well-defined quantum-mechanical operators x̂ and p̂
which would have been meaningless otherwise. Relativistic corrections in the dynamics can be included using standard
quantum-mechanical perturbation theory, while corrections in the kinematics can be included by incorporating higher-
order terms in p/m, where p is the typical momentum in the system. Such a notion of an effective Hamiltonian is
useful to get a qualitative understanding of the nature of quark-antiparticle interactions in such a limit, and to make
analytic predictions for the expected spectrum that can be compared against exact numerics.

To start with, we keep the kinematics relativistic but constrain our analysis to the two-particle sector only. A
nonrelativistic expansion in p/m will be performed at the end. First, note that the quadratic piece of the Hamiltonian
in Eq. (S4), H0 ≡

∫
dx : ψ†γ0

(
−iγ1∂x +m

)
ψ :, can be diagonalized by a standard mode expansion:

ψa(x) =

∫
dk√
4πEk

eikx
[
ua(k)b(k) + va(−k)c†(−k)

]
, (S9)

where Ek ≡
√
k2 +m2 with k ≡ k1 = −k1, and u(k) and v(k) are two-component spinor wave functions that satisfy

the classical Dirac equation for positive and negative frequencies, respectively: (/k − m)u(k) = (/k + m)v(k) = 0
(here, /k = Ekγ

0 − kγ1). The creation operators for quarks and antiquarks satisfy the canonical anticommutation
relations {b(k), b†(k′)} = {c(k), c†(k′)} = δ(k− k′). Further, the following representation of Dirac matrices is used for

explicit computations, γ0 = σz and γ1 = iσy, so that the spinor wavefunctions are given by u(k) =

(√
m+ Ek

k√
m+Ek

)
and

v(k) =

( k√
m+Ek√
m+ Ek

)
, leading to the free-fermion Hamiltonian

H0 =

∫
dk Ek

[
b†(k)b(k) + c†(k)c(k)

]
. (S10)

A quark-antiquark state in the noninteracting limit can be written as

|p, q⟩ = b†(p)c†(q)|0⟩, (S11)

where |0⟩ is the Fock vaccum of H0 and where the quark (antiquark) has momentum p (q). Following Coleman [S3],
one can now define the reduced center-of-mass Hamiltonian as the operator Heff , whose matrix elements in the
two-particle sector are given by

⟨p′, q′|H|p,−p⟩ = δ(p′ + q′)⟨p′|Heff |p⟩. (S12)

The effective Hamiltonian Heff is a function of a conjugate pair of operators [x̂, p̂] = i, where x̂ is the displacement
between the quark and the antiquark and |p⟩ is a single-particle momentum eigenstate, p̂|p⟩ = p|p⟩, with normalization
⟨p′|p⟩ = δ(p− p′). In the absence of interactions, one has

⟨p′, q′|H0|p,−p⟩ = 2
√
m2 + p2 δ(p− p′)δ(p′ + q′) ⇒ Heff = 2

√
m2 + p̂2 . (S13)

To compute ⟨p′, q′|H|p,−p⟩ in the interacting case, one can insert Eq. (S9) into Eq. (S4) to obtain

⟨p′|Heff |p⟩ = 2
√
m2 + p2 δ(p− p′)− e2θ

4π2

∫
dxx ei(p−p′)x +

e2

8πEp′Ep

(
m2 + p′p+ Ep′Ep

) ∫
dx |x| ei(p−p′)x

+
e2

8π

m2

E2
p′E2

p

− g

2πEp′Ep

(
m2 + p′p+ Ep′Ep

)
. (S14)
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Note that all interaction terms are of the form

⟨p′|Ô|p⟩ = f1(p
′)f2(p)

∫
dx

2π
g(x) ei(p−p′)x (S15)

for some functions f1, f2, and g [for the last line of Eq. (S14), g(x) = δ(x)]. This allows any interaction term Ô to be
written as follows:

Ô =

(∫
dp′ |p′⟩⟨p′|

)
Ô

(∫
dp |p⟩⟨p|

)

=

∫
dp′

∫
dp |p′⟩f1(p′)f2(p)

∫
dx

2π
g(x) ei(p−p′)x⟨p|

= f1(p̂)

∫
dp′

∫
dp |p′⟩

(∫
dx g(x)⟨p′|x⟩⟨x|p⟩

)
⟨p|f2(p̂)

= f1(p̂)

(∫
dp′ |p′⟩⟨p′|

)
g(x̂)

(∫
dx |x⟩⟨x|

)(∫
dp |p⟩⟨p|

)
f2(p̂)

= f1(p̂)g(x̂)f2(p̂) . (S16)

Equation (S15) is used in the second equality, and the identity ei(p−p′)x = 2π⟨p′|x⟩⟨x|p⟩ is used in the third equality.
Finally, the effective Hamiltonian can be written as

Heff = 2
(
m2 + p̂2

)1/2 − e2θ

2π
x̂+

e2

4

m

m2 + p̂2
δ(x̂)

m

m2 + p̂2

+
e2

4

[
|x̂|+ p̂

(m2 + p̂2)
1/2

|x̂| p̂

(m2 + p̂2)
1/2

+
m

(m2 + p̂2)
1/2

|x̂| m

(m2 + p̂2)
1/2

]

− g

[
δ(x̂) +

p̂

(m2 + p̂2)
1/2

δ(x̂)
p̂

(m2 + p̂2)
1/2

+
m

(m2 + p̂2)
1/2

δ(x̂)
m

(m2 + p̂2)
1/2

]
. (S17)

The lengthy expression in Eq. (S17) can be simplified by considering the nonrelativistic limit. Note that, when
momentum and energy are large enough for particle creation, ⟨p̂2⟩ >∼ m2, non-particle-conserving, i.e., inelastic,
transitions can occur, and, in such a regime, it is not particularly useful to consider an effective potential between
a quark and an antiquark. However, since our interest is in an effective interaction between static or slow-moving
quark and antiquark—in particular, for investigating the presence of bound states—the matrix elements between
states with different particle numbers will be reduced by kinematic constraints. Note that this limit is only applicable
when the dimensionless coupling constants e/m and g are small enough, since large couplings result in binding- or
scattering-energy scales large enough to violate these assumptions. Based on this discussion, Heff can be expanded in
p/m≪ 1 to obtain a simpler effective Hamiltonian at leading order in p/m, e/m, and g:

Heff = 2m+
p̂2

m
+
e2

2

(
|x̂| − θ

π
x̂

)
+

e2

4m2
δ(x̂)− 2gδ(x̂). (S18)

In taking the large-m limit, the dimensionless combination e/m is kept fixed. For the Schwinger model, g = 0,
this gives Eq. (4) in the main text. Note that the electric (e ̸= 0) and the Thirring (g ̸= 0) interactions contribute
short-range terms which compete with each other. In the confined phase (θ ̸= π), the linear potential guarantees quark-
antiquark bound states, which are the fundamental excitations, regardless of the short-range interactions. However,
in the deconfined phase (θ = π), quarks are free particles (as long as x > 0, i.e., the quark is to the left of the

antiquark). Here, the presence of bound states depends on the delta-function term in Eq. (S18). When g > gc ≡ e2

8m2 ,
the delta-function term is negative, giving rise to attractive short-range interactions, implying the existence of at least
one bound state. For g < gc (including the g = 0 case considered in the main text), on the other hand, the delta
function is repulsive, prohibiting any bound states from forming.
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As a nontrivial check on this expression, consider the Thirring model, e = 0, which is an integrable quantum field
theory whose spectrum is known exactly [S6, S7]. The effective Hamiltonian in this case is simply

Heff = 2m+
p̂2

m
− 2gδ(x̂) . (S19)

This is a standard problem in introductory quantum mechanics (see e.g., Ref. [S8]). For g > 0, there is a single bound
state with energy

Ebound = 2m
(
1− g2

2

)
. (S20)

The exact Thirring model with g > 0 has N bound states, where N is the largest integer smaller than 1 + 2g/π, and
the energy of the nth bound state is given by [S6]

En = 2m sin

(
nπ/2

1 + 2g/π

)
, n = 1, 2, .., N . (S21)

For small g, there is a single bound state (n = 1) with energy given, at leading order in g, by Eq. (S20).

2. Numerical verification

To go beyond the perturbative results, we make use of the variational uMPS quasiparticle ansatz [see Sec. IIIA and
Eq. (S38)] to verify the existence of the bound states. In the deconfined phase, quarks are topological “kinks” [S3],
and are numerically described by the topological uMPS ansatz, whereas the mesons, if they exist, would be described
by the topologically trivial uMPS ansatz (see Sec. III). The energy minimization of the topological uMPS ansatz yields
the quark mass mq, and the minimization of the topologically trivial uMPS ansatz returns an energy which we denote
mπ. To determine if this corresponds to a meson eigenstate, we plot the ratio mπ/mq in Fig. S1 as a function of g. If
the meson exists, that ratio needs to satisfy mπ/mq < 2, since the bound-state energy must be below the two-particle
continuum beginning at 2mq. Furthermore, plotting this ratio for different values of the bond dimension D of the
uMPS ansatz can signify the existence or absence of the meson. This is because, if the meson exists, its wavefunction
will be localized, and so the ansatz energy mπ should be rather insensitive to D and will quickly converge to the true
meson mass as D is increased [S9].
Figure S1 reveals a critical gc ≈ 1 (for the parameters used in the main text) above which mπ/mq < 2. This region

clearly shows insensitivity to D, signaling that the ansatz properly captures the nature of the bound-state wave

g
0 1 2 3

m
𝜋/m q

1.2

1.4

1.6

1.8

2.0

2.2

2.4 D = 20 D = 40
D = 60 D = 80

FIG. S1. Ratio of the meson mass mπ to the quark mass mq in the deconfined phase (θ = π) as a function of the Thirring
interaction strength g, for different bond dimensions D. The energies are calculated using the variational principle with the
uMPS quasiparticle ansatz [see Eq. (S38)] using the same parameters as in the main text (χ = 1, µ2 = 0.5, and λ = 0.1).
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function even for smaller bond dimensions. Below gc, on the other hand, mπ/mq > 2, and a qualitatively different
behavior is observed as a function of D, signaling sensitivity to the choice of bond dimension. All this suggests that
the bound state in the deconfined phase only exists for sufficiently large g, in agreement with the analytical prediction
in the previous section. In the absence of a bound state excitation, the minimization of the topologically trivial uMPS
ansatz can only yield a multi-particle state that is not an eigenstate, but is rather a superposition of many eigenstates
from the multi-particle continuum. Increasing the bond dimension of such a state leads to a reorganization of the
particles in it and a reduction of their interaction energy, giving rise to a strong dependence of the state energy on
the bond dimension, as can be seen in Fig. S1.

II. CIRCUIT-QED IMPLEMENTATION

In this section, we derive the circuit-QED Hamiltonian from a lumped-element model and present a scheme for
preparing meson excitations.

A. Hamiltonian derivation

Consider the circuit diagram in Fig. S2, which is a more detailed version of Fig. 4 of the main text. Here, each
unit cell consists of a capacitor with capacitance C, an inductor with inductance L, and a Josephson junction with
critical current Ic, in parallel, representing a general rf-SQUID circuit, which includes the fluxonium as a special case
[S10]. Each L-J loop is threaded by an external flux Φext, and different unit cells are coupled together via inductors
with inductance L′. Node fluxes are labeled by ϕi, branch fluxes by ϕiC , ϕ

i
J , and ϕ

i
L, for the corresponding elements

within node i, and the inter-node branch fluxes coupling nodes i and i+ 1 by ϕi,i+i
L′ . The branch currents are related

to the branch fluxes by IiC = Cϕ̈i, I
i
L = ϕiL/L, I

i,i+1
L′ = ϕi,i+1

L′ /L′, and IiJ = Ic sin
(
ϕiJ

)
, for the capacitor, inductors,

and the Josephson junction, respectively [S11].
The Hamiltonian of the circuit can be derived by standard means. The capacitor branch fluxes are chosen to

be equal to the node fluxes ϕiC = ϕi ∀ i. Flux quantization yields the remaining branch fluxes: ϕiJ + ϕiC = Φext,

ϕiC + ϕiL = 0, ϕi−1
J + ϕiC + ϕi−1,i

L′ = 0. Current conservation gives Ii−1,i
L′ − IiC + IiL + IiJ − Ii,i+1

L′ = 0, which, together
with the above, yields the equation of motion

−Cϕ̈i −
1

L
ϕi + Ic sin(Φext − ϕi) +

1

L′ (ϕi−1 − 2ϕi + ϕi+1) = 0. (S22)

The corresponding Lagrangian is

L =
∑
i

[
Cϕ̇2i
2

− (ϕi − ϕi−1)
2

2L′ − ϕ2i
2L

− Ic cos(ϕi − Φext)

]
. (S23)

Defining the conjugate momentum πi =
∂L
∂ϕ̇i

= Cϕ̇i and imposing the canonical commutation relations [ϕi, πj ] = iδij ,

we obtain the Hamiltonian

H =
∑
i

[
4ECπ

2
i +

EL′(ϕi − ϕi−1)
2

2
+
ELϕ

2
i

2
+ EJ cos(ϕi − Φext)

]
, (S24)

LC Ic

L′

ϕi−1,i
L′

ϕi
Jϕi

C ϕi
L

ϕi−1 ϕi ϕi+1

L′

ϕi,i+1
L′

Φext

FIG. S2. Circuit diagram implementing the massive Thirring-Schwinger model. An external flux Φext threads each L-J loop.
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where we defined the energies

EC =
1

8C
, EL′ =

1

L′ , EL =
1

L
, IJ = EJ . (S25)

Redefining ϕi → βϕi and πi → πi/β, we obtain

H = χ
∑
i

[
π2
i

2
+

(ϕi − ϕi−1)
2

2
+
µ2ϕ2i
2

− λ cos(βϕi − θ)

]
, (S26)

which is Eq. (3) of the main text with

χ =
8EC

β2
,

EL′β4

8EC
= 1, µ2 =

ELβ
4

8EC
, λ =

EJβ
2

8EC
, θ = Φext − π. (S27)

Recall that the parameters of the bosonized lattice Hamiltonian are

χ =
1

a
, µ2 =M2a2, λ = ua2 exp[2π∆(a)], (S28)

where

∆(a) =

∫ π

−π

d2k

(2π)2
1

4
∑

µ sin
2
(

kµ

2

)
+ (Ma)2

(S29)

is the Feynman propagator on a lattice evaluated at the origin [S12]. Equations (S27) and (S28) together constitute a
dictionary between the parameters of the bosonized massive Thirring-Schwinger model and those of the circuit-QED
Hamiltonian.

B. Experimental meson–wave-packet preparation

In this section, we describe a scheme for preparing initial wave packets, focusing on meson excitations. The quarks,
being topological excitations, do not couple to local operators, hence their preparation is left to future work. Our
proposal goes as follows. We assume the system [i.e., Eq. (3) of the main text] is cooled down to its ground state in
the confined phase. We add two ancillary qubits [S13] far away from each other. Initializing the qubits in the excited
state and coupling them to the system will result in the decay of the two qubit excitations into the system, producing
two wave packets of quasiparticles. Choosing a weak coupling will ensure that multi-particle states are not be excited.

To see this, first note that, in terms of the quasiparticle degrees of freedom, Eq. (S26) can be re-expressed as follows:

H =
∑
j

∑
k

ωk,jΨ
†
k,jΨk,j + interactions, (S30)

where k is a label for the eigenstates assuming open boundary conditions. Ψ†
k,j and Ψk,j are the creation and

annihilation operators for the jth meson with energy ωk,j , i.e.,

Ψ†
k,j |vac⟩ = |πk,j⟩ , (S31)

Ψk,j |vac⟩ = 0, (S32)

where |πk,j⟩ are the meson quasiparticles.
Next, consider, for simplicity, a single qubit (e.g., a transmon or a fluxonium [S14]) with frequency ∆, coupled at

position i = L. The addition to Eq. (S26) is

Hqubit =
∆

2
σz + g(t)σx(aL + a†L), (S33)

where ai, a
†
i = ϕi±iπi√

2
are the creation and annihilation operators satisfying [ai, a

†
j ] = δij , and g(t) is the coupling

(which can be controlled in time using a tunable coupler [S15]). In terms of mesonic quasiparticles, the entire
Hamiltonian [Eq. (S26) plus Eq. (S33)] can be written as

H =
∑
j

∑
k

ωk,jΨ
†
k,jΨk,j +

∑
j

∑
k

[
g(t)λk,jΨ

†
k,jσ− +H.c.

]
+

∆

2
σz, (S34)
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𝜆

0.0 0.1 0.2 0.3 0.4 0.5 0.6

𝜃

− 𝜋

− 𝜋/2

0

𝜋/2

𝜋

one meson

two or more mesons

FIG. S3. Number of mesons in the confined phase. Purple (yellow) region corresponds to one (two or more) mesons. The
two regions are determined by obtaining the two lowest eigenvalues above the ground state using the topologically trivial MPS
quasiparticle ansatz (see Sec. III A). The single (two or more) meson region correspond to the second eigenvalue being bigger
(smaller) than twice the lowest eigenvalue (mass of the fundamental meson). The remaining parameters are χ = 1 and µ2 = 0.1
as in the main text. The star and circle indicate the parameters used in the main text [λ = 0.5 and θ = π − 0.04 (star) or
θ = π − 0.07 (circle)]. The vertical axis range is [−π + 0.001, π − 0.001] so as to avoid the deconfined phase at θ = −π, π.

under a rotating-wave approximation (RWA) that assumes only a single excitation in the combined qubit-system

and hence ignores interactions from Eq. (S30). λk,j ≡ ⟨πk,j | aL + a†L |vac⟩ is a matrix element that depends on the

overlaps of aL and a†L between the vacuum |vac⟩ and the meson eigenstates |πk,j⟩. Turning on g(t), the (initially)
excited qubit will decay into the system, producing a mesonic wave packet. The central momentum and the shape
of the resulting wave packet can be controlled by choosing the qubit frequency ∆ and the time dependence of the
qubit-system coupling g(t), as described in the Supplementary Methods of Ref. [S16]. Placing the qubit at the (left)
right edge can ensure that only (right-)left-moving excitations are created. The matrix element λk,j can either be
calculated numerically or accounted for (prior to performing the actual scattering experiment) using measurements of
the resulting wave-packet shape and a feedback loop. The wave-packet shape can be determined from, for example,
local measurements of the density (a†xax) [S17] or from spectroscopic measurements of the transmitted amplitude at
the other edge of the system [S18, S19].

An important subtlety is that the qubit generically couples to all mesons in the theory. If there is more than a single
meson flavor, this will result in an undesired superposition of wave packets of different mesons. To mitigate this issue,
this scheme can be combined with adiabatic state preparation. One can first tune the system to a parameter regime
where there is only a single meson particle. A simple example is the free-boson limit with λ = 0. More generally, the
“phase diagram” in Fig. S3, obtained using the uMPS methods of Sec. III A, shows the region in the {λ, θ} parameter
space with only a single meson particle for µ2 = 0.1. This phase diagram is consistent with the perturbative result
of Coleman [S3], predicting the existence of one meson for |θ| >∼ π/2 in the limit λ/µ → 0 (i.e., the strong-coupling
limit of the original Schwinger model). After preparing the meson wave packets in the single-meson regime, one can
adiabatically tune λ and θ to their desired regime, preparing in this way the fundamental mesons of the interacting
theory. Tuning both θ and λ can be accomplished using external time-dependant flux control. In order to be able to
tune λ, each Josephson junction in Fig. S2 can be replaced by a SQUID, a loop composed of two junctions, realizing an
effective single flux-tunable junction [S20]. Designing the two loops (the L-J loop from Fig. S2 and the SQUID loop)
to be asymmetric in size allows one to control both λ(Φext) and θ(Φext) with a single external flux [S18, S19, S21].
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C. Generalization to 2+1D and ϕ4 models

In this section, we provide a generalization of the circuit from Sec. IIA to two spatial dimensions and discuss how
it can be used to approximate other field theories such as the ϕ4 theory. The generaelized circuit, shown in Fig. S4,
consists of identical horizontal layers, each identical to Fig. S2, that are coupled vertically by additional inductors
(with the same inductance L′ as the horizontal coupling inductors).

FIG. S4. Circuit diagram generalizing Fig. S2 to two spatial dimensions.

A similar derivation to the one described in Sec. II A yields the Hamiltonian

H = χ
∑
i,j

[
π2
i,j

2
+

(ϕi.j − ϕi−1,j)
2 + (ϕi,j − ϕi,j−1)

2

2
+
µ2ϕ2i,j

2
− λ cos(βϕi,j − θ)

]
, (S35)

where i, j denote the lattice-site coordinate along the two Cartesian directions, and the parameters are the same as
in Eq. (S27). This Hamiltonian may be regarded as a lattice discretization of a 2+1D massive Sine Gordon model.
While this bosonic model is not dual to 2+1D QED, it can be of interest in its own right. In addition, this circuit
can approximate other theories of interest. In particular, for θ = π and small β, we obtain an approximation of the
lattice-discretized ϕ4 model:

H ≈ χ
∑
i,j

[
π2
i,j

2
+

(ϕi.j − ϕi−1,j)
2 + (ϕi,j − ϕi,j−1)

2

2
+
m2ϕ2i,j

2
+
λ̃

4!
ϕ4i,j

]
, (S36)

where m2 ≡ µ2 − λβ2 and λ̃ ≡ λβ4.
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III. NUMERICAL METHODS

In this section, we provide more details on the uniform-matrix-product-state methods, describing the wave-packet
preparation and particle detection.

A. Uniform Matrix Product States

We begin with a general review of uniform matrix product states (see Ref. [S22] for more details). A uniform matrix
product state (uMPS), describing a translationally invariant state, is graphically represented as

|Ψ(A)⟩ = · · · A A A A A

sn−1 sn sn+1

· · · , (S37)

where As is a D×D matrix for each basis index s. When dealing with a bosonic theory, even the local Hilbert space
is infinite dimensional and needs to be truncated. For the parameters used in the main text, we found the local energy
basis to be an efficient choice, i.e., the local (single-site) part of the Hamiltonian in Eq. (3) of the main text was
diagonalized using a very large Fock-state basis (of ∼ 2000 levels), keeping only the lowest d eigenstates (we found
d = 12 to be sufficient for the scattering considered in the main text). The full Hamiltonian was then projected on
this truncated local eigenbasis, and the ground state was subsequently found using variational methods [S23].

The quasiparticle excitations on top of the ground state can be described with the MPS quasiparticle ansatz [S9,
S23, S24]

|Φp(B)⟩ =
∑
n

eipn · · · AL AL B ÃR ÃR

. . . sn−1 sn sn+1 . . .

· · · . (S38)

This state is written in the so-called mixed canonical form, with the ground-state tensors AL and ÃR in the left-
and right-orthonormal forms, respectively. AL and ÃR can either represent the same ground state for a topologically
trivial excitation, in which case they are related by a gauge transformation (i.e AL = C−1ARC for a D ×D matrix
C), or different degenerate ground states for a topological excitation in case of a spontaneously broken symmetry.
The variational optimization of the B tensor reduces to an eigenvalue problem for each p ∈ [−π, π), providing both
the dispersion relation E(p) and the p-dependent eigenvectors B(p).
The dispersion relation is shown in Fig. S5 for the three parameter regimes studied in the main text: the deconfined

phase where θ = π, and the confined phase where θ = π−ε with ε = 0.04, 0.07. At low energies (insets), the dispersion

is well approximated by the relativistic relation E(p) ≈
√
m2 + p2, where m is the mass of the particle [obtained from

m ≡ E(p = 0)].
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FIG. S5. Dispersion relation as a function of (positive) momentum for the three parameter regimes considered in the main
text [with E(−p) = E(p)]. Solid lines are the numerical uMPS results [obtained using Eq. (S38)], and dashed lines are the

relativistic approximations E(p) ≈
√

m2 + p2, where m is E(p = 0) for the corresponding particle: quarks q in the deconfined
phase (ε = 0) and mesons πj in the confined phase with ε = 0.04, 0.07 (only the lightest two mesons corresponding to j = 1, 2
are shown). Insets show a zoom in the low-energy regime.
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B. MPS wave-packet preparation

In this section, we describe the numerical procedure for preparing initial wave-packet states using the uMPS
quasiparticles. We follow a procedure similar to the one in Refs. [S25, S26] albeit with some differences that are
explained below. Using the momentum quasiparticle eigenstates in Eq. (S38), a localized wave packets can be built
as

|Ψwp⟩ =
∫ π

−π

dp cp
∣∣Φp

(
B(p)

)〉
=

∑
n

· · · AL AL Bn ÃR ÃR

. . . sn−1 sn sn+1 . . .

· · · ,
(S39)

where

Bn ≡
∫ π

−π

dp cp e
ipnB(p). (S40)

Here, cp ∼ e−(p−p0)
2/(2σ2), which is a Gaussian function centered at p0 with width σ. We use σ = 0.12 for the

quark-antiquark wave packets (Fig. 2 of the main text) and σ = 0.06 for the meson wave packets (Fig. 3 of the main
text).

As first discussed in Ref. [S25], there are several caveats with this approach. First, because the B(p) tensors are
determined from an eigenvalue problem for each momentum p, they come with random phases, preventing the phase
coherence needed for building localized wave packets. To deal with this issue, we fix the global phase of each B(p)
such that one specifically chosen tensor element in each is real and positive. Second, one needs to fix the gauge
redundancy of the B(p) tensors (i.e., invariance of

∣∣Φp

(
B(p)

)〉
under Bs(p) → Bs(p)+Y Ãs

R − eipAs
LY for any D×D

matrix Y ). The choices used when solving the variational minimization problem, the so-called left or right gauge
fixing conditions, are inherently very asymmetric. To deal with this issue, we employ the “reflection symmetric”
gauge choice of Ref. [S26] as it is applicable for both topologically trivial and nontrival excitations. Together, this
approach is simpler and does not require any approximations or conditions on the wave-packets’ width, unlike the
methods of Refs. [S25, S26]. The final wave packet ends up slightly shifted from its intended location [which is n = 0
for the choice of cp in Eq. (S40)], which can be corrected by centering it based on argmax∥Bn∥, as discussed in the
following.

Finally, we note that, to evaluate Eq. (S40), one has to sample a finite grid of momenta p with resolution ∆p,
and the Bn are, therefore, periodic with period Np = 2π

∆p , i.e., Bn+Np = Bn. We choose Np large enough so that

the wave packet comfortably fits inside a single period (we used Np = 400), which we take to be centered around
n∗ = argmax∥Bn∥. Of this Np-sized interval of Bn tensors, we only keep N < Np tensors that satisfy ∥Bn∥/∥Bn∗∥ ≥ ϵ
for some chosen threshold ϵ (we used ϵ = 10−3), which we label by n ∈ [i + 1, i+N ] for a chosen i along the uMPS
chain. The integral in Eq. (S39) becomes a finite sum and can be analytically expressed as

|Ψwp⟩ = · · · AL Mi+1 Mi+2 Mi+N ÃR
. . . · · · ,

Mi+1 =
(
AL Bi+1

)
, Mn∈[i+2,i+N−1] =

(
AL Bn

0 ÃR

)
, Mi+N =

(
Bi+N

ÃR

)
.

(S41)

To create the initial two-particle state, this procedure can be carried out twice to create two wave packets with
opposite momenta. Given that AL is related to AR by a gauge transformation, i.e., ALC = CAR, the states are
then glued together using the matrix C−1. The result is a nonuniform window of tensors surrounded by the uniform
ground state. Note that the bond dimension of the tensors in Eq. (S41) is not uniform, as some have the value D and
others 2D. Finally, the one-site time-dependent variational principle (TDVP) [S27] is used to evolve the state in time,
which does not change the bond dimensions. Hence, prior to the time-evolution, we expand the bond dimensions of
all the tensors to a uniform value D′ ≥ 2D. For the quark-antiquark scattering (Fig. 2 of the main text), we found
that D = 20 and D′ = 50 were sufficient for convergence at late times, while the meson-meson scattering in the
confined phase required a larger bond dimension (D = 40 and D′ = 100). During the time evolution, we only update
the tensors inside the nonuniform window [S28–S30]. To decide whether to extend the window, at each time step, we
compute the entanglement entropy across the bonds at the edges of the window and compare that to the entropy of
the vacuum, extending the window by a site if the relative difference is greater than a specified threshold (which we
chose to be 0.02).
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FIG. S6. (a) Momentum and (b) position probability distributions of observing a π1π1 meson pair at t = 345 following the
π1π1 collision at ε = 0.07 in Fig. 3 of the main text.

C. Particle detection

In this section, we describe how the scattering matrix can be computed by projecting on multi-particle basis states.
As long as the particles are well separated, one can use Eq. (S38) to build multi-particle states, akin to the asymptotic
“out” states in the definition of the S-matrix. For example, a two-particles state, with a particle on the left with
momentum p1 and a particle on the right with momentum p2, is expressed as

|Φp1,p2⟩ =
∑

n1∈WL

∑
n2∈WR

eik1n1eik2n2 · · · AL B(p1) ÃR C−1 ÃL B(p2) AR
. . .

sn1
sn2

· · · . (S42)

The sums are restricted such that the two excitation tensors B appear in disjoint regionsWL andWR and are separated
by some minimum number r of vacuum tensors, ensuring that there are no interactions between the particles (we
found r = 40 to be sufficient for both meson and quark scattering in the main text). Moreover, since we are projecting
on a time-evolved state where the particles are constrained to a finite window of the uMPS, we further restrict the
sums to the sites within this nonuniform window. Using the left gauge-fixing condition for the left-most B tensor, and
the right gauge-fixing condition for the right-most B tensor [S22], ensures that overlaps where either of the B tensors
is outside of the window are exactly zero. The finite sums in Eq. (S42) can then be summed exactly and expressed as
a single MPS, similarly to Eq. (S41).

To compute the full n-particle momentum distribution (for n = 2, Sp1,p2
≡ ⟨Φp1,p2

|ψ(t)⟩, where |ψ(t)⟩ is the time-
evolved state),Mn

p contractions need to be performed, whereMp is the desired number of p samples (i.e., the equivalent
of Np in the incoming wave-packet construction). This can be sped up by precomputing partial contractions. For
example, for the two-particle case, we compute the partial left and right contractions for each value of p, which scale
as ∼Mp|WL| and ∼Mp|WR|, respectively. Then, the ∼M2

p contractions are very efficient since the remaining tensor
network is of length ∼ 1. As an example, Fig. S6 depicts the result of projecting the state following the meson-meson
collision (this process is depicted in Fig. 3 of the main text) on the lightest meson-meson (π1π1) two-particle basis.
From the momentum distribution, the position distribution (Sx1,x2) is computed by a Fourier transform. For this to
work, it is crucial that the phases of the B(p) tensors are fixed prior to the projection, as described in Sec. III B. To
avoid multiple unphysical copies due to the periodicity of the discrete Fourier transform, we choose the number of p
samples, Mp, to be larger than the window size (we used Mp = 400 for the quark-antiquark scattering andMp = 1300
for the meson-meson scattering). Finally, fitting Gaussians to the marginals of these distributions produces the
information plotted in Fig. 3(c) of the main text.
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